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Abstract

The potentid dependence of the step line tenson for eectrodes in contact with an dectrolyte,
but without specific adsorption, is cdculated by solving the Poisson-Boltzmann equation
numericaly. Two contributions to the potentia dependence are found. A contribution arisng
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prevaling contribution arises from the dipole moment of the charge didribution at seps. It is
gpproximately proportiond to the dipole moment and the specific surface charge, and negative

for potentids pogitive of pzc.
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Introduction

Due to the growing interest in the generation and functiondization of nano-scale structures on
solid templates consderable attention has been devoted lately to the energetics and dynamics
of monatomic steps on single crystd surface, be it on surfaces in vacuum or on surfaces in
contact with an dectrolyte [1, 2]. For the purpose of quantitative studies two types of
idedlized step Sructures are particular suitable: Extended straight steps, idedlly infinitely long,
as they exist on vicind surfaces and closed loops of steps such as provided by two-
dimensond idands of monatomic height. In both cases the individud steps may be in ques-
equilibrium with other steps and the rest of the surface. On a vicind surface, e. g., repulsive
interactions (entropy and dastic energy) stabilize the position of a step to remain near the mean
step-step distance, and the step position fluctuates around that mean position. The closed step
aong the perimeter of an idand is dso frequently in a quad equilibrium date insofar as the
diffuson adong the perimeter of an idand is typicaly much fagter than the attachment and
detachment processes which are the time limiting steps involved in inter-idand and interlayer
mass trangport. On a solid surface, and in particular on metal surfaces, the step which defines
an individud idand is in equilibrium with itsdlf. A uniform chemica potentia may therefore be
attributed to the entire perimeter of an idand. Because of these quasi-equilibrium stuations and
the smal spatiad and time gradients in the chemica potentid, the energetics and dynamics of
deps on a mesoscopic scae can be described in terms of thermodynamics with
thermodynamic functions varying dowly in space and time. By using this thermodynamic
gpproach methods have been developed lately which enable the determination of the step line
tendgon from idand equilibrium shapes [3, 4] and idand shape fluctuations [5, 6]. Whereas
these methods were originaly developed for surfaces in vacuum, they can likewise be gpplied

to surfaces in contact with an eectrolyte [7-9]. In the latter case, the interfacid Gibbs free
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energy associated with a step (henceforth called the line tension of a step) is determined for

which the dectrode potentiad is the independent variable. We note that this is a different
thermodynamic quantity than considered and measured in vacuum surface physics. There, one
consders and measures the Helmholtz step free energy per length for which the step charge is
the independent variable (confusngly aso cdled “line tenson”). The most remarkable aspect
of the sudies of [7-9] is the strong dependence of the line tenson of steps on the Au(100)
surface in contact with 50 mM H.SO, on the eectrode potential. The work presented with
this paper was largely inspired by these results. As afirgt step towards an understanding of the
observed potentia dependence of the line tenson we intend to explore the contribution of the
outer space charge layer of ions in the eectrolyte on the line tension, while the effect of a
modification at steps with respect to the inner Hemholtz-layer, the eectronic response of the
metal and specific adsorption is left to future studies. The outer space charge layer in the
electrolyte contributes to the line tenson of a step for two entirdy different reasons. One
reason is that the step represents a particular type of surface roughness which changes
(reduces, as we shadl see) the interfacial capacitance near a step. A second contribution arises
from the loca potentid at a step owed to the Smoluchowski-effect [10]. The far fied of this
potential can be described by a step dipole moment. The perpendicular component of this
dipole moment gives rise to the observed reduction in the work function of stepped surfaces
[11, 12] and to a shift in the potential of zero charge (pzc) [13, 14]. The effect of the
roughness and the potentia on the line tension are studied (i) by solving the Poisson-Boltzmann
equation for the space charge layer of ions in the eectrolyte numericaly and (ii) with the help
of ample semi-quantitative andytica models. In the present gpproach, the potentia distribution

a a sep will be modeled by the potentid of a point dipole. In a future sudy the potentia
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distribution and its effect on the potentid dependence of the step line tension will be caculated

using pseudo-potentias[15].

The key result of this paper is that indeed the space charge layer adds a considerable,
potential dependent contribution to the line tenson which is of the same order of magnitude as
the experimentally observed effect. It will be shown furthermore that to a good gpproximation
the potential dependence of the line tension can be expressed in terms of the shift in the pzc on
stepped surfaces and the potential dependence of the surface charge.

The paper is organized as follows. In the following section the line tenson of a step on an
electrode which is in equilibrium with an dectrolyte is defined, and the relation to the step
capacitance is established. In section 3 andyticaly solvable models for the step capacitance
and the step tension are presented. Section 4 describes the model which is used for the step
geometry and the eectric properties of a step, and the method for the numerica solution of the
Poisson-Boltzmann equation is ducidaied. The results of the smulations are presented in
section 5 and discussed in connection with the andytica models.

2. Thelinetension of a step in equilibrium with an eectrolyte

The line tenson of a step (denoted as b) on a surface which is in equilibrium with an
electrolyte can be defined andog to the surface tenson g We note again that this surface
tensgon differs from the surface tensgon as normaly defined in surface physics, where it is the
Helmhotz free energy per aread™, while here the surface tenson is the Gibbs free energy per
area d® for which the dectrode potentia is the independent variable. The two surface tensions

are related by the Lagrange transformation

g©® =g -fs- d mG )
i

Heres and f are the surface charge density on the metd and the potentid, and G and mare

the surface excess and the chemicd potentia of al solution species except the solvent,
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respectively. Since we are interested in the potentiad dependence of the line tension rather than

in an absolute vaue we use the differentid formulation of the eectrocapillary equation for the
surface tension (d®, from now on smply denoted as g as the starting point [16, 17]:

dg =-sdf - § Gdm 2

We assume that the surface has a sngle sraight step that extends dong the cartesian
coordinatey at x = 0. In other words, the surface is now defined by contour function z(x) with

the limiting vaues gm¥ z(x) =h and gm¥ z(x) = 0, with h the step height. The presence of
X - X +

the step modifies the surface charge density and the surface excess near the step postion.
Consequently, the charge density and the surface excess become a function of x, and so does
the surface tenson g The line tenson to be attributed to the step is therefore the difference
between the surface tension of a surface with the step g(x) and the surface without the step g,
integrated over the coordinate x perpendicular to the step direction. We can therefore write

for the differentid line tenson db:
L
db = i, (#(dg.(9 - doo) 3

and hence

c/

L é .
db= - fim -(?jxg(ss(x) - s,)df + & (G.(x) - G,)dmy. @)

oOC

The indices s and O denote quantities on a surface with and without a step, respectively. The
integration range L must be sufficiently large so that s¢(£L) = so and G (L )=G,o. Because of
the integration dong the x-axis the line tenson b is an energy per length rather than per area,
as it should be. We remark that n an entirdy numericd caculaion the line tendon can be
caculated as difference in the totd  Gibbs free energy of a surface with and without a step

divided by the step length. Hence no explicit integration is needed in that case. The form of
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egs. 3/4 however lends itsdlf to analytical model caculations, as will be shown in the following.

In principle, eg. (4) could be used as a basis for a step chronocoulometry in a Smilar way as
eg. (2) is employed for the chronocoulometry of a surface [18, 19]. The method would
require the posshility of meassuring a step charge. While no direct method for the
determination of a step charge on a single step seems at hand (see however [12]) the step
charge dengity could be measured as the difference of the surface charges on avicina crystd
with regular Sep arrays and a flat surface of the same area. In the following we focus on the
contribution of the first term in eg. (4) to the line tenson that arises from the excess charge a
the step, while any excess adsorption at the step is neglected.

A differential step capacitance can be defined following the procedure as described above:

L L.
_ i A EISs(X) TS0 0
Cep(f) = im (L)jng i (5

Again, the step capacitance Cge, iS a capacitance per length aong the step direction. The line
tendon b can be cdculated from the step capacitance smply by integration at constant
chemicd potentid m in a Imilar way as the surface tenson is cdculated from the surface
cagpacitance using the Lippmann equation (see e. g. [16]). Our task to caculate the potentia
dependence of the line tension thus reduces to a caculation of the step capacitance as a

function of the eectrode potentid.

3. Analytically solvable models
The potentid T (X,y,2) in the space charge layer of the dectrolyte near a charged metd
electrode is described by a sdf-consstent solution of the Poisson-equation together with

Boltzmann datidtics for the concentration of ions in the eectrolyte. We assume a neutra
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electrolyte with concentration no of ions, with postive and negdtive ions having the same

vaence Z. The charge density r (X,y,z) isthen

eZf (x,Y,2) e (xy,2)
r(xy,2=2ne ' -e ' ). (6)

Thereferencelevd f (x,y,2) = 0 is the neutrd eectrolyte. The charge density r (x,y,z) and the

potentid f (X,y,z) aso obey the Poisson-equation

|:f(x, y,z):M (7)
S=4

inwhich e and e, are the relative and the vacuum permittivities, respectively. Egs.(6) and (7)
can be solved andyticdly for the one-dimensiond case (Gouy-Chapman theory) [16, 20, 21].

Assuming that the metal surface isthe X,y plane the potentid f (2) is

aZ ef 5 ol

f(2) ——arctan| e tanhgm% 8
B

where K ! isthe Debye length

-1 :weokBT jé (9)

Gowre =K = o e’

and f ¢ denotes the potentid a a boundary between the layer of immobilized species at the

electrode and the liquid dectrolyte with mobile ions. The charge density at this boundary sg is

Se :%s‘nh( Zef o 12kgT) (10)
The capacitance (per surface area) of the space charge region of mobile ions Cg (Gouy-
Chapman capacitance) is

Co =56 - g K cosh(Zef  / 2Kk, T) (11)

fs
The capacitance has aminimum at the potential of zero charge (pzc) f ¢ = Owhichis

—enk. (12)
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The Gouy-Chapman theory does not take into account the finite size of the ion cores and the

repulsive interactions between the ions. As a consequence, the surface charge becomes
unredigticaly large for larger deviaion from pzc. In order to correct for this deficiency the
Gouy-Chapmann capacitance can be consdered as being in series with an additiona
Helmholz-capacitance Cy which is of the order of 20-100 niF/en? and a dower varying
function of the electrode potentia so that the total capacitance becomes
Ciot =Ciy +Cg'. (13)

For lower concentrations of the dectrolyte Cg < Cy near pzc, f o = 0O, the totd capacitance is
mainly determined by the Gouy-Chapman capacitance Cg. The same holds for the potentia
dependence of the totd capacitance. The origind rationd for introducing the Helmholtz-
capacitance was the assumption of a Stern-layer of immobile water molecules at the surface.
As shown by Schmickler and Henderson [22] more redistic modds which include finite sze
effects for the ions and the didectric response of the metal surface can dso be cast into the
form of a Hemholtz-capacitance Cy in series with the Gouy-Chapman capacitance.

The capacitance of a surface with a step can be caculated by solving the Poisson-Boltzmann
equation numericaly with the boundary conditions set by the geometrical Structure and the
surface potentia of the step. The numericad solution will be consdered in the next section. In
the remainder of this section we condder the effect of the new boundary conditions
quaitatively and present an gpproximate andytical expresson in certain limits for the step
capacitance and the step tension. In the absence of any better knowledge, the Hemholtz-
capacitance at the step and the thickness of the layer of immobile ions at the surface are
assumed to be independent of the surface potential and to be the same as on the flat surface.

While this assumption is certainly not judtified it is a reasonable approach for potentids near
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pzc and for eectrolytes of low concentration because of the smdl contribution of the

Helmholtz-capacitance to the total capacitance.

The influence of the step geometry on the capacitance can be quditatively understood by
congdering the equi-potentid lines in the space layer of ions (Fig. 1). At the distance dpeye
where, according to the Gouy-Chapman theory the effective counter eectrode resides, the
equi-potentia contour follows the step contour but smoothly over a laterd distance which is
approximately again the screening length dpeye. This leads to an effective reduction of the
surface capacitance in a stripe which extends aong the step length Ly in awidth dpeye Since
there the capacitor has a larger thickness dpeyeth When h is the sep haght. The line

capacitance Cgg, Can thus be estimated roughly as:

c . & 1 1 0 1
-a - -
5 o Debyeé d Debye +h d Debye B

Here a is afitting factor of the order of one. This line capacitance is again in series with the
Hemholtz-capacitance in the same gtripe area. After some trivid agebra one obtains for the

tota line capacitance

- theb e
Coep =- GEB)— Deby (15)
S (adH +dDebye)(adH +h+ dDebye)
inwhich dy is
d :ﬂ 16
e (16

These eguations only hold for smal deviation of the potentid from pzc, i. e. where the Gouy-
Chapman cgpacitance has its minimum. For larger potentid f the effective screening length
becomes shorter due to the non-linearity of the Poisson-Boltzmann equation. The effect of the
non-linearity on the line capacitance will be sudied later numericaly. We note that the effect of

adatidtica roughness on the specific capacitance has been sudied in quite some detall earlier



-10 -
by Dakhin et d. [23]. However, eg. (15) , cannot be recovered from this earlier work

because of the rather different geometry of a step. Presumably a periodic array of steps such
as on vicina surfaces could be handled by the mathematicd methods developed in [23].
However, we abstained from proceeding further along those lines because the numerica
andyssis rather sraightforward and, more importantly, we shal find the contribution from the
step dipole moment to the line cgpacitance prevailing.
The dipole moment is due to the well known Smoluchowski effect [10]: Near a step the
electron charge dendty contours follow the step contour but smoothly in order to save kinetic
energy a the expense of building up the dectrogtatic energy associated with the loca deviation
from neutrdity. The verticad component of the step dipole moment gives rise to a reduction in
the work function on vicind surfaces with regular step arrays and likewise to alowering of pzc,
and can therefore be measured for surfaces in vacuum [11] as well as in contact with an
electrolyte [ 13]. Due to water adsorption the dipole moment measured in the two cases need
not be the same. The reation between the vertical component of the dipole moment per step
atom p, and the reduction in the work function, respectively the lowering of pzc DF is

P, = &3y Lae AF (17)
Here, g, isatom the diameter and L, the distance between the steps. Eq. (17) can either be
derived by a forma integration of the dipole potentids, or, Sraightforwardly by consdering a
homogeneous digtribution of dipoles in the continuum limit. For our considerations here we are
interested in the locd variaion of the potential due to the surface dipole of steps which are
assumed to be sraight and infinitely long. In the cartesian coordinates as defined above, one
obtains for the eectrostatic potential caused by the step dipole

} 1 & z X 0
1 4) = z + Py - 1
D= e e P (18)
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with py the parald component of the step dipole moment. Note that the cdculation is for a
point dipole and is with reference to the plane z = 0! The potentid aisng from the
perpendicular dipole moment p, to be added locdly to the potentid of the eectrode is twice
the amount. The eectrodtatic potentia gives rise to aloca variation in the double layer charge
which effects the step capacitance as well as the step tenson. Since the quditative effect of the
additiona dipole potentid on the step tension is easer to edimate than the effect on the
capacitance we condder the effect on the dep tenson. The differentid step tenson is

cdculated from eq. (4) with the charge dengities

f
Sof) = Fo(f gdf ¢ (19)
0
T+2j s(x,2)
ss(xf)= Fs(xfYaf¢ (20)
0

Here Cs and C, are the surface capacitances with and without the presence of a sep,

respectively. The capacitance C,(x,f § can be approximated by (see discussion above)

1 Cyen/ Apep 0<Xx<dpg
Cx,fG=Cy(fQ+ % ve eoe 21
S f9=Cof 9+ e (21)
With this expresson for the capecitance Cs the charge dendity s ((X,f) becomes:

F+2 5002 | Cotep! Upenyelf +2j o(%,2) 0<X <dpepye

f
s.(x,f)= g‘po(f Odf ¢+ f(\f:o(f §df ¢+%' 0 dee (2

2)
With the further approximation j  <<f and Cge(f) = Csep(0) One obtains for the line tenson

+¥

db(f ) » - Cyef df - Co(f ) df (i 4(x,2)dx (23)
-¥

Theintegra over j . (eg. (18)) isindependent of z and one obtains for the line tension:
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b(f)- by, =- ez’; s,(f) - %c:stepf2 (24)
|

The firg term which arises from the dipole potentid is roughly linear in f , the second term is
the normal term from the step capacitance due to the geometric structure of the step. Since the
step capacitance is negative (eg. 15) the geometric structure of the step contributes dways

positively to the step tension.

4. The numerical solution of the Poisson-Boltzmann equation

The step capacitance and the contribution of the ionic space charge layer to the line tenson of
a dep are determined by a numerica solution of the Poisson-Boltzmann eguation in two
dimensions with the step structure and the potentia digtribution a the step as the boundary
condition. In an improved smulation the relevant geometric structure of the step should be the
position of the image plane and the boundary condition for the potentia should be the potentia
on the image plane. Here, the geometric structure of the boundary is modeed by a (100)
oriented X, y plane with a (111) oriented step of height h. In order to make contact with the
experimentd work of Diduweit et d. [8] dl geometric parameters are taken as for the
Au(100) surface. The potentid digtribution on this boundary is chosen as to be that of a point

dipole. Hence, the boundary z.(x) near the step at x=0 bears the potential

00z () =+ P (29

We have tested the modd for the potential by varying (i) the exact postion of the dipole and
(i) by adding the potential of a parale component of the dipole of the same magnitude as the
perpendicular component (which contributes a negetive potentia to the lower step edge) and
found that these modifications have merdy aminor effect on the step line tenson. A non-trivia

problem in modeling the step are the inner Helmholtz-layer of immobile water molecules and
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the response of the metal surface charge to an externd field at a step. For a flat surface the

response of the surface charge to an externa field has been treated in the jdlium modd [22].
For a gtep this issue will be addressed in a forthcoming publication [15]. For the moment, we
describe the effect of the inner layer in the same way as it is frequently done for the flat
surface, namely by giving the Hemholtz-layer a potentid independent capacitance. In the
particular case of a surface structured by a step the thickness of the layer needs to be
specified. We assume the layer to have a congtant thickness of 3 A with a sharp boundary
towards the solution. Since thickness and capacitance are chosen arbitrarily (though guided by
experimental data) the didectric congant of the layer (which follows from the assumed
capacity and thickness as @, = 20) differs from the dielectric congtant of water (e= 78). This
imposes additional boundary condiitions & the interface between the Helmholtz-layer and the
liquid eectrolyte which are not automaticdly fulfilled in the standard dgorithm for solving the
Poisson-equation. As well known (see eg. [24]), the Poisson-equation is solved by a

repetitive use of the dgorithm

r@.i)o
£ J)——g(l Lp+t@+L)+f0,j- D+, j+1) +—— = - (25
inwhich i, j denote points on a two-dimensiond grid. The cartesian coordinates of each grid
point (x, z) are given (Dx, jDz) with Dx = Dz the length unit of the grid. The boundary
conditions on the interface between the Hemholtz-layer and the dectrolyte are fulfilled if on
the boundary itsdlf eq. (25) is replaced by (see Appendix A)

£ j):e(i-lj)f(i-1,j)+e(i+1j)f(i +1j)+el,j- Df(i,j- ) +el, j+Df (i,j+1) (26)
’ eli-Lj)+ei+1j)+el,j- D+e(i,j+1)

Using this agorithm, the surface charge distribution near a step, the step capacitance, and the
step tenson were calculated on a grid size of 200x300, for the x- and y-direction respectively.

The metric of the system was set by assigning 20 pixes to the step height of h= 2.04 A. The
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far most Sde boundaries of the grid in x-direction (f (0,j) and f (200,j)) were loaded with the

andyticd solution of the Poisson-Boltzmann equation and kept fixed while the agorithm ran
over the grid. In the presence of a Helmholtz-layer the solution of the Poisson-Boltzmann
equation for aflat surface cannot be expressed in a single closed form since the potentid f ¢ at
the interface between the Helmholtz-layer and the liquid eectrolyte on the one hand is
determined by the voltage divison between the Helmholtz-capacitance and the Gouy-
Chapmann capacitance (eg. (13)), while on the other hand the Gouy-Chapman capacitance is
aso a function of the potentid f g (eg. (11)). A sdf-consstent solution is however easly
caculated numericaly. With these rigid boundary conditions a rdlaively large over-reaxation
of 1.95 [24, 25] (dability limit is 2.0) could be used which ensured good convergence of the

results after about 300 repetitions.

5. Results

In order to be able to separate conceptualy between the effect of the step structure and the
dipole potentia at the step, ca culations were performed with and without the dipole potentid.
The results for the cdculations with the step dipole were found to be dmost unaffected by the
position of the center of the dipole potentiad. This is in accordance with the andyticad model
which shows that the main contribution to the line tenson is from the product of the surface
charge with the integrd over the dipole potentia (eg. (24)). Smadl corrections which are
sengtive to the loca pogition of the step dipole arise from the variation of the loca capacitance
near the step site. Whether or not the dipole moment has a sgnificant effect on the line tenson
depends on the magnitude of the dipole moment. The dipole moment can be taken from
independent experiments, ether from the variation of the work function with the step dengty

on crystds or by the variation of the potentid of zero charge with the step densty. The
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variation of pzc on gold surfaces has been studied by Lecoeur et d. [26] for a large number of

vicina surfaces. For Au(111) vicinds, the pzc-datayield a dipole moment of p, = 0.04 €A and
p, = 0.06 eA for the (100) and the (111) steps respectively. The results agree with the work
function measurements within about 30% [11]. The difference is attributed to the dipole
moment of the adsorbed water molecules [26]. The data of Lecoeur et d. include aso the
Au(1,1,19) surface which congsts of (100) terraces with (111) step every 9.5 atom distances.
For this surface the step dipole moment is calculated to be p, = 0.013 eA. Recent theoretical
cdculaions on the same surface in contact with a modd dectrolyte [27] are dso in rough
agreement with experimental data. We note that the step dipole seemsto be particular large on
Au(111). On Ag(111) one calculates a dipole moment of p, = 0.021 eA for the B-steps from
the variation of pzc [14].

We congder the results of the smulations without a step dipole first. The results are caculated
for afixed and potential independent Helmholtz-capacitance of 60 ni/cn. The Debye length
Opeye IS Varied between 9 A and 30 A (which corresponds to concentrations of monovaent
electrolytes between 0.1 M and 0.01 M). Fig. 2 displays the (differentid) surface and step
cgpacitances. The surface cgpacitance is here caculated with the smulation program, but is
equivaent to the results of the standard Gouy-Chapman theory with a Hemholtz-layer. The
surface capacitance shows the characteristic minimum at pzc which is often used to determine
the potentia of zero charge experimentaly. For larger deviations from pzc the Gouy-Chapman
capacitance becomes very large (eg. (11)). The total capacitance therefore approaches the
capacitance of the Helmholtz-layer (eg. (13)). The potentid dependence of the line
cgpacitance displays severd interesting feature. For large deviations from pzc the line
capacitance is very smal, independent of the Debye-length. For large potentias the decay

length of the space charge becomes very smdl. As a consequence the equi-potentid lines
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follow the geometric contour of the step (Fig. 2). The surface charge is then that of a flat

surface. The tota charge is however dightly larger because of the increased surface area due
to the step contour. At pzc the line capacitance displays a maximum for larger dpeye and a
minimum for smal dpeye. Again this result is essly understood by consdering the equi-

potentia lines. At pzc and for large dpaye the equi-potentia lines follow the geometric step
contour only smoothly, so that the lower edge of the step is effectively screened which results
in a negdive line capacitance (see discusson in sect. 3). As the potentid increases the
screened range near the step stay's gpproximately constant until for larger potentials most of
the potentia drop in the Gouy-Chapman layer is within adistance of the order of a step height.

Since the Gouy-Chapman capacitance increases the absolute value of the line capacitance dso
increases, until eventudly the equi-potentia lines follow the step contour closely as described
above. The latter effect takes over immediately even for smdler potentids when the Debye-

length is short. The surface tension according to the Gouy-Chapman theory and as calculated
here and the line tension for steps without a step dipole are presented in Fig. 4. Since the line
cagpacitance is negative, the line tenson is pogtive for al potentids. The absolute numbers are,

however, rather smal compared to typica step energies which are of the order of 100 meV.

Fig. 5 shows the dependence of the line capacitance at pzc on the Debye-length. The full line
is afit to eg. (15) with a = 0.29. The agreement between the andyticd modd and the
numerical Smulationsis quite plessing.

We now condder the effect of the step dipole. As for the magnitude of the dipole moment we
choose a vaue of p,=0.015 eA which is approximaey the dipole moment of steps on
Au(100) [26]. With the step-dipole, the line capacitance is dramatically larger and assumes an
S-shaped function of the potentid (Fig. 6). Likewise isthe line tenson considerably larger and

goproximately a linear function of the potentia (Fig. 7). Although the caculations include the
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geometric effect on the line cgpacitance the tenson is completely dominated by the dipole

contribution. The line tenson depends little on the Debyellength of the dectrolyte. The
approximate linearity of the dependence on the potentid, the absolute magnitude, and the small
effect of the Debye-length are in agreement with the modd developed in sect. 3. According to
€. (24) the line tenson should be proportiond to the dipole moment and the surface charge of
the step free surface. In Fig. 8 the result of the smulation is compared with eg. (24), with the
surface charge cdculated from the Gouy-Chapman theory (with the constant Helmholtz-
capacitance of 60 nF/cnf). The agreement is again quite acceptable considering the
gpproximations in the model. We conclude therefore that the potential dependence of the step

line tension in the absence of gpecific adsorption can be quite approximated by

b(f) = b(f o) - e.%;so(f) . 27)

I
We note that the capacitance of the Hemholtz-layer need not be potentid independent for eq.
(27) to hold gnce any variaion of the Hemholtz-capacitance leads to a varidion in the
dependence of the surface charge on the potentia and is taken care of in the formulation of eg.
(27). With this remarkable equation at hand, one is now in a position to caculate the potentia
dependence of the step line tenson from data obtained in conventiond dectrochemica
experiments. The surface charge as a function of the potentid is obtained from integrating
voltamograms and the dipole moment can be caculated from the shift of the pzc on vicind

surfaces (eg. 17).

6. Discussion
Although the results presented in this paper are based on a modd for the true potentia at steps
there are severd sdient features which should persist in a rigorous theory of the complete

solid/dectrolyte interface. As we have seen, the by far largest contribution of the space charge
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region of mobile ions to the step line tension results from the reduced work function near steps

which is a consegquence of the dipole moment associated with the charge distribution at steps.
The comparison of the change in the work function in vacuum and the variation of pzc for
Au(100) [11, 13, 26] shows that the step dipole moment is not dramaticaly affected by the
presence of an dectrolyte (in the absence of specific adsorption a seps, thet isl). The
contribution of the step dipole moment to the interfacid line tenson which arises from the
space charge continuum of mobile ions should therefore be aso independent on the
microscopic detals of the solid/dectrolyte interface and the eectrolyte compostion, if the
effect is expressed in terms of the specific surface charge and if there is no specific adsorption
of ions. Fig. 8 shows that the semi-macroscopic contribution to the line tenson of steps is
nearly a linear function of the surface charge, and therefore a smooth function of the surface
potentid, with a decreasing line tenson for positive potentias. Nether the smooth dependence
nor the overdl decrease of the line tenson is in agreement with the so far only experiment on
the dependence of the step line tension as a function of the potential on the Au(100) surfacein
aulfuric acid [8]. It is however well known that SO, -ions are pecifically adsorbed on gold
surfaces [28-30]. Specific adsorption necessarily modifies the potential dependence of the line
tenson. Specific adsorption a step Stes changes the dipole moment. The step excess dso
enters directly via the thermodynamics (eqg. (4)). A potentid dependent excess adsorption is
therefore directly reflected in the line tenson of steps. The experimentaly observed sharp
features in the sep line tenson as a function of potentid in [8] are therefore attributed to
specific adsorption.

The congderationsin this paper concerning the role of step dipoles on the step line tenson can
be carried over to the dependence of the energy of other defects on the potentid. Kinks in

deps, e. g., are expected to carry an even larger dipole moment than steps because of the
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more open sructure. Hence, the kink energy should decrease with positive potentids, just as

the step line tension. The same can be said about the (Gibbs) free energy (to be defined again
under conditions of congtant eectrode potentia, not constant charge) of a sngle atom on a
terrace. The reduction of the kink energy for positive potentials would lead to an increase in
the mass trangport dong steps and thereby to larger step fluctuations for positive potentid. The
decrease of the effective activation energy should be approximately proportiond to the line
charge, and hence approximately proportiond to the eectrode potentid, at least in a small

potentia range. This behavior has indeed been observed [31-33]. Agan the effect of the
surface charge on the activation energies as caculated in the EAM-modd would contribute as
an additiond effect [27].

We findly comment that the contribution of the step dipole moment to the step line tension
may have interesting consequences for step-step interactions a close distance. The dipole
moment of steps at close proximity should be distance dependent, and hence the total energy
should likewise become a function of the step distance. At present no theoretica caculaions
on the magnitude of the dipole moment as a function of step distance are available. Hence,

nothing can be said about the magnitude of the effect.
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Appendix A

The scenario considered in this paper requires the sdf-consstent solution of the Poisson-
Boltzmann equation for the liquid together with the Laplace equation for Helmholtz layer, with
anontrivia boundary between the two media Thus, the agorithm must ensure the fulfillment of
the boundary condition that the parallel and perpendicular component of the dectric field and
displacement are continuous at the boundary, respectively. To develop the agorithm we first
need to define the boundary grid points: we introduce a height function z,(i) which describes
the boundary of the Hemholtz layer a each column i (black filled points in Fg. Al). The
function can be made to fulfill the condition z,(x;) 3 z,(X,,,) S0 that the points , j) with
z,(x,,)EDjE z,(x,) ae points on the boundary (gray filled points in Fig. Al) and
condtitute avertical section on theboundary if z,, (x;) - z,(x,,,) 2 2Dz All grid points below

and to the left of the boundary and the points on the boundary (filled and open circles in Fig.
A1) belong to the Hemholtz layer with a dieectric congant €I, j) = e (= 20 eg.), and the
points above and on the right of the boundary belong to the dectrolyte with a didectric
congtant e(i, J) = eg (= 78) and a non-vanishing space charger (i, j). The boundary conditions

arefulfilled if on the boundary (i, j)

v+ - e j- DI

=0 Al
e = (A1)

j-0

N i .
e(|+11J)W e(l 1!])1.[)(

i+0 i-0

Here the symbolsi +0 and j +0 denote that the derivetives are taken on a point infinitesmaly
shifted away from the exact postion. For a point (i, j) on a horizontal boundary one has €(i-

1)) = i) = e(i+1;) = i j-1) = &, , and i j+1) = & o that

e.ﬂ (A2)
j+0 j-0

i
i+0 ™ i

1if
& x

+e.—
ioeG'”Z




Ty

Eq.(A2) isfulfilledif (A3)

3,
i,j+1 ﬂZ

which are just the required boundary conditions. In the same way it can be shown that the

ij-1

boundary conditions are obeyed on a vertica interface if eg. (A1) holds. The agorithm which
secures eg. (Al) is derived andogous to the derivation of the standard agorithm for the

solution of the Laplace-equation. On the interface one has the Taylor-expansions of f (i, j)

f(i-1,j):f(i,j)-E Dx + 191 Dx?

Xliio 2 x? o
f(i+lj):f(i,j)+£ Dx + 177 Dx?

1-[Xi+0 ZﬂX i+0

x (A4)

FG-0=fG)- T pre 2T 2

fzl;. o 212 0
tien=fip+ T o alTT pp

ﬂzj+0 2ﬂZ j+0

By multiplying the four expansons with €(i-1,j), €i+1,)), €i,j-1), and €i,j+1), respectively
and after summing one obtainswith Dx = Dz

e(i-L)f(i-L)+e(i+L)f(i+1))+e(,j- Df (i,j- D +e(i,j+Df (i,j+])

A5
= lefi- 1) +&i +1 ) +efi,j- D +&(, | +D]f G, ) #9
if eg. (A1) and the Laplace-equation %Jf%: 0 is obeyed. Eq. (A5) is the required

dgorithm.
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Figure Captions

Fig. 1. Equipotentid contours a a step for a step height h=2 A, a Debyelength of
Obee = 10 A and an eectrode potentia of 0.05 V vs. pzc. No Stern layer of specificaly
adsorbed ionsis assumed. Since the potentia contours at the vertical distance dpey,e follow the
step contour but smoothly over a lateral distance which is again gpproximately dpeye, the
effective capacitance is reduced near the step.

Fig. 2. Surface and line capacitance (without a step dipole) for an assumed Hemholtz-
capacitance of 60 nfF/cn? as a function of the potential and the Debyelength. The line
capacitance of a step depends on the details of the assumed step geometry.

Fig. 3: Equi-potential lines near a step with an inner Helmholtz-layer of 3 A thickness. The
Debye-length of the dectrolyte is 30 A. The equi-potentia lines are densely spaced inside the
Helmholtz-layer, because of the high capacity of thet layer. Fig. 3 () and (b) are for electrode
potentials of 1V and 20 mV, respectively.

Fig. 4. Surface and line tenson in the absence of a step dipole.

Fig. 5: Numerical cdculation of the line capacitance a pzc compared to the andytica
expression (eg. (15)).

Fig. 6: Surface and line capacitance for a step with a step dipole of p, = 0.015 éA.

Fig. 7: Surface and line tension for a step with astep dipole of p, = 0.015 €A,

Fig.8: Linetension of astep with astep dipole of p, = 0.015 eA plotted vs. the surface charge

dengity so. Thefull line represents the analytica mode (eg. (24)).
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