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Abstract 

We have analyzed the terrace width distribution on Cu (100) and (111) vicinal 

surfaces using a standard Gaussian approximation as well as a previous developed 

Wigner approach based on random matrix theory. The Wigner approach provides 

reasonable results only for the case of asymmetric terrace width distributions. Then, 

both methods yield approximately the same results for the variances of the terrace 

width distributions. For approximately symmetric distributions where the Wigner 

approach should fail the Gaussian approximation provides good results. 
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1. Introduction 

By examination of the quantitatively measurable terrace width distributions (TWD) on 

vicinal surfaces, one can extract information about the interaction between the steps.  

The typical analysis procedure makes use of the Gruber Mullins expression when 

there are no energetic interactions between the steps [1] and a similary-derived 

Gaussian approximation when these interactions are strong [2]. In a recent Letter, 

Einstein and Pierre-Louis observed that the so-called generalized Wigner surmise 

from random-matrix theory could describe these equilibrium fluctuations, as it does 

so many other fluctuation phenomena in physics [3]. This recognition relies on the 

mapping of the problem of interacting steps to that of the time evolution of fermions in 

one spatial dimension. The simple analytic expression provides an excellent 

approximation to the exact distribution for the three particular interactions for which 

the problem can actually be solved, as well as for other values in that range of 

interactions. That Letter offered a number of ideas on how to approach experimental 

data, but did not actually make contact with any. This Letter describes the first 

attempt to apply systematically this formula and viewpoint to a large number of 

closely related physical situations: both to nice ("typical") data and poor results, both 

to values within the range that the expression is expected to hold and to others 

beyond that range. We can thus assess which application procedures are viable and 

offer suggestions on how best to analyze data. The paper is organized as follows: In 

the second chapter, we describe the experimental set-up. We provide the reader with 

the essential theoretical ideas in chapter 3. This chapter is followed by the 

presentation and the discussion of the analysis of experimental results for various 

copper vicinal surfaces using both the standard Gaussian approximation and the 

generalized Wigner surmise. 

2. Experimental 
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The experiments were performed in a standard ultra-high vacuum chamber with a 

base pressure of 5###10-11 mbar. Our temperature variable scanning tunneling 

microscope (STM) is of the Besocke type. The experimental set-up and the sample 

cleaning are described in detail in previous publications [4, 5]. 

We used six different samples. Three of them were vicinal to the Cu (001) plane: Cu 

(117), (1 1 13) and (1 1 19). These crystal planes have miscut angles of 11.4°, 6.2° 

and 4.3° along the dense  110 -direction, respectively. The mean step separation is 

8.9 Å (corresponding to 3.5 a , a = 2.55 Å being the kink length), 16.6 Å ( 6.5 a ) 

and 24.2 Å (9.5 a ), respectively. The terraces are separated by parallel monatomic 

 110 -oriented steps. The other three surfaces are vicinals to the Cu (111) plane. 

Their miscut angles are 2.49°, 3.05° and 12.75° along the  112 -direction. These 

surfaces have an orientation (11 7 7), (19 17 17) and (23 21 21), respectively. The 

samples consist of parallel monatomic A-type steps along  1 10 . The mean terrace 

widths between adjacent steps are 10.2 Å (corresponding to 4.62 a , where a = 

2.21 Å is the kink length of a (100)-step on a (111)-surface), 32.3 Å (14.62 a ) and 

47.8 Å (21.63 a ), respectively. The accuracy of the miscut angles for all surfaces is 

within 0.1°. 

In our experiments, the concentration of pinning sites was lower than 10-7 per atom. 

For the analysis, we have chosen STM images obtained from areas free of residual 

contamination. A measured terrace width distribution was accepted for further 

analysis only when the average step density found from the distribution was 

consistent with the nominal step density given by the miscut angle of the surface. Fig. 

1 shows STM images of (a) Cu (11 7 7) at 296 K and (b) Cu (23 21 21) at 303 K. The 

scan widths are 240 Å and 760 Å, respectively. 
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We used a computer code in order to determine the step-step distance distributions. 

This code searches for the maximum slope in a spline fitted to the gray scale values 

of each scan line perpendicular to the step edges. For each distribution we analyzed 

a total step length of 5-17 µm taken from 10-40 STM images from different areas of 

the sample.  

3. Theory 

In the downstairs direction on a vicinal surface, there is just one characteristic length, 

the average <L> of the spacings L. Hence, it is natural to plot the terrace width 

distribution (TWD) P(s) in terms of s  L/<L>. This distribution must be normalized, 

and by construction it has unit mean. In general there is a repulsion between the 

steps of the form A/L2, due to elastic or dipolar forces, and there is always an 

entropic repulsion --because steps cannot cross--which obeys the same power-law 

decay. Then there are three energy-related quantities that characterize the problem: 

1) the thermal energy, kBT, which produces the fluctuations of the steps; 2) the 

stiffness of each step, 
~
  [2], which opposes bending of the step and has units of 

energy per length1; 3) the strength A of the repulsion, which has units energy-length. 

There is only one dimensionless combination that can be formed: we define  
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k TB
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2  (1) 

 

                                            

1 Equivalently, 
~
  can be written as 

k T a

b

B

2 , where b2 is the diffusivity [2] and a  the lattice 

spacing along the step. The diffusivity can be expressed in terms of the kink formation energy  
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Since steps do not start, end, or cross, the set of their configurations is equivalent to 

world lines of free fermions evolving in one spatial dimension (i.e. (x,t) plots). When 

A=0, these are free fermions. The venerable Gruber -Mullins approximation fixes the 

two neighboring steps of an (active) step to be straight and separated by twice the 

average spacing [1]. By analogy to the problem of a particle in a 1-D box, it is easy to 

show  
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Analytic approximants containing large numbers of elementary functions provide an 

arbitrarily accurate representation of the exact result [7], but can be inconvenient to 

use. When there are strong repulsions between the steps, so that the motion of each 

step tends to be confined near its mean position, a Gruber-Mullins argument shows 

that P(s) can be approximated by a Gaussian [1, 2] 
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if all steps are included. (Since the coefficient of 
~
AG in the latter is about 8% larger, 

the estimate of 
~
AG is about that much smaller than that deduced assuming just 

nearest-neighbor interactions.) 

Most of the above is well known, as is the fact that for 
~
A  = 2, 0, and -1/4, exact 

solutions exist [8]. The new idea is that random-matrix theory [9, 10] teaches that 

fluctuations should have a universal form determined by the symmetry of the 

couplings of the states. The so-called generalized Wigner surmise proposes that one 

can approximate [3] 

 

  P (s)  a  s  exp b  s2
 


  , (6) 

 

where the exponent  is related to 
~
A W (via the Sutherland Hamiltonian [8]) by  

 

   1 1 4
~
AW . (7) 
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The constants a and b are determined by the two conditions of normalization and 

unit mean. This formula represents an interpolation scheme between the values 1, 2, 

and 4 for  (or -1/2, 0, and 2 for 
~
A W) for which the exact solutions occur. At these 

three calibration points, the Wigner expressions P1, P2 and P4 provide remarkably 

accurate -- while still simple -- approximations of the corresponding exact 

distributions, within a couple percent. For values well beyond  = 4, there is no 

reason to expect the Wigner form to provide a better approximation than the 

Gaussian one, and several reasons to doubt it. 

Given the simple analytic form of the Wigner distribution, it is straightforward to 

deduce a number of statistical properties. We first note the explicit values of the two 

-dependent constants a and b [3] : 
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These two constants turn out to be rather linear in , so that in trying to deduce the 

value of  from data, it may be convenient to use expansions, e.g. about  = 4: 
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Eq. (7) provides an excellent approximation for the constants a and b for 2    6. 

In dealing with data, it is more convenient to compute moments of the order n about 

the origin than about the mean [3]: 

 

 n
ns P s ds' ( )




0

 (10) 

 

Specifically, the second moment 2
' , i.e. 
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(where the variance  is the typically-measured feature of the TWD) is 
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A distinctive feature of Gruber-Mullins approximations [1] is that the distribution is 

symmetric about the mean. While this approximation is not bad for strong repulsions, 

it obviously is not good as one approaches the free-fermion limit. The standard way 

to describe the asymmetry is to compute the skewness, defined in terms of the third 

moment about the mean as [3] 
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Since A is relatively independent of T while 
~
  decreases with it (weakly, until the 

roughening transition is approached), 
~
A  decreases strongly with T. Thus, looking at 

the same sample at several different temperatures provides a scan in 
~
A , even 

though not in A. 

Ref. [3] suggested that a fruitful way to determine  or 
~
A  is to fit separately the 

second and the third moments of the distribution. This proposal turns out not to work 

well with actual data. The moments are too sensitive to the errors in the measured 

distribution and the discreteness of the possible terrace widths. 

4. Results 

Fig. 2 shows terrace width distributions (TWD) measured on a Cu (1 1 13) surface at 

different temperatures. The experimental data is plotted as open circles. The 

experimental distributions are normalized with respect to the experimentally 

determined mean terrace widths in each specific measurement. We also analyzed 

the TWD using the nominal mean terrace width given by the miscut angle. It turns out 

that the Wigner analysis depends sensitively on the scaling factor. Differences 

between the nominal value and the experimentally determined mean terrace width of 

less than half an atom introduce large errors to the analysis. With respect to a simple 

determination of the variance of the distribution, the Gaussian analysis is less 

sensitive to deviations of the mean value from the nominal terrace width. Here, 

deviations of the order of half an atom still provide good results. 

For low temperatures, the experimental distribution is approximately symmetric. 

Here, both the Wigner (solid curve) and the Gaussian (dashed curve) model provide 

excellent fits to the data. At low temperatures the value of  determined using the 

Wigner surmise is relatively large ( = 7.5 at 295 K). With increasing temperature, the 

asymmetry of the step-step distance distribution increases and the value of  
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decreases (  = 4.7 at 348 K). Though the Gaussian distribution still is in reasonable 

agreement with the data in the vicinity of the distribution peak it fails in the range of 

large step separations. On the other hand, the Wigner expression gives a slightly less 

accurate accounting in the range of the distribution peak, though it reasonably fits the 

range of large step-step distances. 

In Fig. 3 two distributions measured for copper (111) vicinal surfaces are shown. For 

comparison we have chosen one distribution measured for the (11 7 7) plane in 

equilibrium and one for the (19 17 17) plane where the TWD is obviously not in 

equilibrium. The data corresponding to (19 17 17) displays a double-peak distribution. 

In addition we also show the variances using eqs. (11,12) and the variance obtained 

from the Gaussian fit, respectively, in both panels in Fig. 3. Whereas in the top panel 

the Wigner as well as the Gaussian model provide good agreement with the 

experimental data, the data in the lower panel is obviously not fitted by either of the 

models. The variances determined using the two models in the first case agree well: 

their difference is less than 4 %. This deviation is much less than that due to typical 

experimental errors. Errors are introduced e.g. by slight deviations of the 

experimental distribution from the true equilibrium distribution. Except for obvious 

cases like shown in the lower panel of Fig. 3, deviations of this nature must be 

anticipated. 

Table 1 gives an overview of representative data obtained by analyzing TWDs 

measured on various copper vicinal surfaces as a function of the temperature. For 

the Cu (1 1 13) surface it is shown in Fig. 2 that the TWD becomes broader and more 

asymmetric for increasing temperature. This is reflected in table 1 by a decreasing 

value of  for increasing temperature, as is expected from eq.(1) and subsequent 

discussion. We obtain values of  between 3.5 and 8.6. For low temperatures, the 

interaction potential on copper is strongly repulsive corresponding to  well above 4. 
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In our experiments, the distribution becomes slightly asymmetric, though far from the 

free fermion limit, in the high-temperature range. 

Columns 3 to 6 in table 1 show the interaction constants 
~
AW  (eq.(7)), 

~
AG (eq.(5)) 

and AW, AG (eq.(1)) for the Wigner and the Gaussian fit, respectively. While the 

constants 
~
AW  and 

~
AG are dimensionless, the interaction constants AW, AG are given 

in meV  
a

a

2

. For  of the order of 5 and smaller, the results obtained using both 

models are in excellent agreement. It is shown in particular that the additional factor 

of about 3 proposed by Ihle et al. [11] and Masson at al. [12] is not correct. For larger 

values of , the Wigner model overestimates the interaction constant by about a 

factor of 1.5 - 2. The overestimation is expected from the theory discussed in ref. [3]. 

The good agreement between the interaction constants determined by the Wigner 

and the Gaussian model becomes obvious from all measurements that we 

performed. The error bars for AW are generally larger than for AG. This is probably to 

the fact that the Wigner surmise sensitively depends on the distribution values at 

larger step-step distances. In this range, however, the statistical data base is lower 

than for the range around the distribution peak. Therefore, the experimental 

distributions with large asymmetry generally display a higher noise level for large 

step-step distances which again introduces a larger scattering in the determination of 

 in the Wigner surmise. 

In column 7 we have tabulated the values for T2 
~
AW  in units of 106 K2. As is 

proposed by eq.(1), this quantity obeys the same temperature dependence than the 

step edge stiffness 
~
 . Fig. 4 shows T2 

~
AW  for the complete data set obtained for Cu 

(1 1 13). The open circles are the experimental data and the solid curve is the 

theoretical prediction using eq.(1) and a kink formation energy of  = 0.128 meV [13, 
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14]. Concerning the error bars introduced by the error of 
~
AW  given in table 1, the 

experimental data is in agreement with the theoretical prediction. 

In our experiments, we find no values of  smaller than 3.5. Here, the Gaussian fit 

still provides comparable results to the Wigner surmise. For lower values of , the 

Gaussian model is expected to fail. In order to reach this limit, one would have to 

measure step-step distance distributions at higher temperatures than shown here. 

For this purpose, however, one would need samples with a larger mean step-step 

separation: With increasing temperature, the equilibrium fluctuations of steps 

increase. When the mean amplitude of these fluctuations are of the order of half the 

step separation, it becomes difficult (if not impossible) to distinguish positions of 

adjacent steps. For the measurements on copper surfaces presented here, 

temperatures up to 370 K are the upper limit for the determination of step positions. 

When using samples with lower step densities, however, one is restricted by residual 

pinning sites at step edges. The influence of residual pinning sites on the TWD 

becomes more important for larger mean step separations. Hence, it becomes more 

difficult to measure equilibrium distributions. 

Although the Wigner surmise is expected to provide good agreement with the 

Gaussian fit only for  less than about 6, the variances  theory
W  (eq.(11)) and exp

G  

determined from the Gaussian fit are in excellent agreement for all values of  up to 

8.6 measured in our experiments. This is in particular the case also when the peak of 

the Gaussian is not exactly posited at s=1 due to noise in the experimental data in 

the peak area. That is, the determination of the variance using a Gaussian fit is very 

reliable also for shifted and slightly asymmetric distributions. Hence, the Gaussian 

analysis also provides excellent results for the variances and the interaction 

constants when an experimental distribution is not normalized with respect to the 
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mean terrace width and unit mean, and so is more forgiving than the Wigner 

approach. 

We have also determined the second and the third moment of the experimental 

distributions (eq. (10)) The experimentally determined second moment around the 

origin 2
' (exp)  (eq.(10)) is given in column 7 of table 1. For comparison we have 

tabulated the theoretically expected value 2
' ( )theory  (eq.(12)) in column 8. As 

though the experimentally and theoretically determined values are partially in good 

and partially in reasonable agreement, the deviation of 2
' (exp)  from 2

' ( )theory  is 

significant. For the case of Cu (1 1 13) at 320K the value of  determined from the 

experimental second moment would be 4.5 rather than 5.2. The scattering in the 

results for the second moment is due to noise in the experimental data. Even for a 

very large data base like used in our experiments, the evaluation of 2
' (exp)  

sensitively depends on the noise of the data. Hence, the determination of the second 

moment from an experimental distribution is not a reliable method to obtain 

information about  and the step-step interaction. The influence of noise in the 

experimental data becomes even more dramatic for the determination of the third 

moment and hence the skewness (eq. (13)). Here, the results obtained may also 

become negative. Therefore, we have not listed the third moments in table 1. 

5. Summary 

In summary we have demonstrated that the results obtained from an analysis of the 

TWD on copper vicinal surfaces using the generalized Wigner surmise is in good 

agreement with those obtained from the standard Gaussian analysis for slightly 

asymmetric distributions. In particular, we have shown that the standard Gaussian 

analysis based on the hard-wall model proposed by Bartelt and coworkers has to be 

applicated in order to analyze TWDs. The Gaussian analysis proposed by Ihle et al. 
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and Masson et al. introducing an additional factor of about 3 considering the motion 

of a single step between immobile neighboring steps provides no correct results. We 

have also demonstrated that the determination of the moments of TWDs generally 

offers no reliable information on experimental TWDs due to large errors caused by 

noise in the experimental data. 
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Figure Captions: 

Fig. 1: STM images of (a) Cu (11 7 7) at T = 296 K and (b) Cu (23 21 21) at T= 303 

K. The scan widths are 240 and 760 Å, respectively. The monatomic steps run from 

top to bottom and the surface height increases from left to right. 

 

Fig. 2: TWD measured for Cu (1 1 13) at different temperatures. The solid curves are 

fits using the Wigner approach (eq. (6). The dashed curves are fits to a Gaussian.  

 

Fig. 3: TWD measured for two Cu (111) vicinal surfaces. The upper panel shows 

"typical" data, whereas the lower shows "poor" data. The solid and dashed curves 

are fits to the data using the Wigner and the Gaussian approach, respectively. 

 

Fig. 4: Temperature dependence of T2 
~
AW  (open circles). The solid curve is a 

theoretical curve calculated using eq. (1). 



Surface T  ~A W  ~A G  ~APl  AW AG APl T2 ~A W  2
' (exp) 2

' (theory)  3
3

Pl
exp

W   theory
W  exp

G  

Cu (1,1,7) 298 8.6  0.5 14.3 10.1 26.9 5.1  0.8 3.6 19.6 1.27 1.045 1.055 0.209 0.213 0.234 0.209 

Cu (1,1,13) 295 7.5  0.3 10.3 5.3 11.5 3.4  0.3 1.7 3.8 0.90 1.062 1.061 0.252 0.249 0.247 0.246 

 320 5.2  0.5 4.1 3.9 5.5 2.2  0.6 2.1 3.0 0.42 1.111 1.084 0.293 0.334 0.289 0.265 

 348 4.7  0.4 3.1 3.5 4.4 2.7  0.7 2.9 3.8 0.38 1.183 1.092 0.307 0.428 0.303 0.273 

Cu (1,1,19) 320 6.4  0.4 7.1 3.8 7.8 3.9  0.5 2.0 4.2 0.73 1.179 1.070 0.274 0.423 0.264 0.267 

 370 4.5  0.7 2.1 2.3 2.5 2.5  1.4 2.7 3.0 0.29 1.099 1.103 0.340 0.315 0.322 0.302 

Cu (11,7,7) 296 5.5  0.7 4.8 4.5 6.4 3.3  1.2 3.3 4.5 0.42 1.034 1.080 0.285 0.186 0.283 0.252 

 306 4.6  0.5 3.0 3.6 6.7 2.5  0.9 2.9 3.7 0.28 1.079 1.092 0.282 0.281 0.304 0.270 

Cu (19,17,17) 333 3.5  0.3 1.3 1.7 1.1 1.6  0.5 2.1 1.4 0.14 1.166 1.118 0.389 0.407 0.343 0.328 

 353 4.0  0.3 2.1 2.1 2.2 3.5  0.8 3.4 3.7 0.26 1.094 1.104 0.349 0.306 0.322 0.311 

Cu (23,21,21) 328 5.3  0.3 4.5 2.9 5.2 5.4  0.7 3.3 6.2 0.48 1.082 1.082 0.297 0.286 0.286 0.286 

Table I: 
Value of  determined from a Wigner fit (eq. (6)) for various copper surfaces at different temperatures. The temperature is given in K and  is a dimensionless 

number. In addition, the values for 
~A W  (eq.(7)) ~A G  (eq.(5)) and ~APl  (eq.(?)) determined from the Wigner fit, the Gaussian fit and the approach suggested by 

Plummer are given. The interaction constants AW, AG and APl are given in units of meV 
a

a

2
 , where a nm and a nm  0 221 0 255. .  for the Cu(111) vicinal 

surfaces and a    a   0.255 nm   for the Cu(100) vicinal surfaces.  The temperature dependence of T2 
~A W  is that of the step edge stiffness 

~
  (eq.(1)) and is given 

in 106 K2.2
' (exp) is the second moment over the origin determined from the experimental terrace width distribution (eq.(10)). 2

' (theory) is the theoretically 

expected value of the second moment over the origin using the experimentally determined value of  and eq.(12).  3
3

Pl
 is the skewness, determined 

following the approach suggested by Plummer (eq. (?)). exp
W  and  theory

W  are the variances calculated from 2
' (exp) and 2

' (theory), respectively, using eq.(11). 

exp
G  is the variance determined from a Gaussian fit to the experimental terrace width distributions. 



 
 
 
 

   
 
 
 
 
 

Fig. 1 

(a) Cu (11 7 7) (b)Cu (23 21 21) 
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Fig. 3 
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Fig. 4  
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