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We describe a novel method for the determination of the absolute step energies using the temperature dependence of 

the equilibrium shape of adatom or vacancy islands. The method is demonstrated with islands on the Cu(111) surface. 

PACS numbers: 05.50.+q; 68.10.Cr; 68.35.B 

 
The free energy of steps of monatomic height is one of the 
most important energetic parameters in the physics of 
crystalline solids. It controls the size of facets in the 
equilibrium shape of crystals and the curvature of rough 
surfaces [1]. It is likewise an important parameter in the 
stability of vicinal surfaces against step bunching transitions 
[2, 3] and transitions involving a reconstruction of the 
surface [4, 5]. Furthermore, the minimization of the step 
energy is the driving force for coarsening processes on 
surfaces, e. g. for the growth of larger islands at the expense 
of smaller ones, the decay of mounds during and after 
epitaxial growth [6-13], and for the decay of nanostructures 
in general. Last but not least, the equilibrium shape and the 
shape fluctuations of monatomic high islands (2D-islands) 
on surfaces, and thereby also the migration of entire islands 
on surfaces, depend on the step free energy [14-16]. The 
ubiquity of the step free energy as the controlling parameter 
in many phenomena should provide ample means to 
determine its magnitude. This is, however, not so. The 
traditional way to determine the step energy from the 
equilibrium shape of crystals is barred with many nontrivial 
experimental difficulties and additionally requires as an 
input the free energy of the flat surfaces [17, 18] which in 
turn is not known very accurately. The step free energy 
derived from the chemical potential of islands as observed 
in Ostwald ripening of islands appears to be unrealistically 
high for reasons hitherto not understood [12]. A recent 
attempt to calculate the step energy from the Brownian 
motion of islands involves the assumption of an isotropic 
step free energy at temperatures where this condition is 
certainly not met and it is not known which errors are 
introduced thereby [19]. Relying entirely on first principles 
theoretical calculation is likewise not a remedy to the 
situation as it seems that different respectable approaches 
(e.g. with and without gradient corrections in the exchange 
potential) yield not insignificantly different results [20, 21]. 
While the determination of the absolute value of the step 
free energy is a problem, the variation of the step energy as 
function of the orientation can be measured 
straightforwardly from the equilibrium shape of 2D-islands. 
Michely et al., e. g., have determined the ratio of the 

energies of A- and B-steps on Pt(111) from island 
equilibrium shapes [22]. Since 2D-islands have no facets at 
finite temperature the complete orientational dependence of 
the step free energy is obtained from the equilibrium shape 
using an "inverse" Wulff plot [1].  

In this letter we describe a novel method to determine 
the absolute value of step energies from experimental data 
on the equilibrium shape of 2D-islands as a function of 
temperature. The method is based on the fact that the 
leading term in the temperature dependence of the free 
energy of a step oriented at mid-angle between the two 
densely packed directions (i. e. a 100% kinked surface) is 
controlled by a zero point entropy term for which an 
analytical expression is easily derived. The contour lines for 
such a step are plotted in Fig. 1a and b as solid lines, for the 
square and the hexagonal lattice, respectively. The step 
contour changes direction after each length unit, equivalent 
to an atom diameter a. Assuming for the moment that the 
step energy is proportional to the number of broken bonds, 
all microscopic realizations of the steps shown as dotted 
lines have the same energy. The number of paths for a step 
consisting of N length units is equal to the number of 
possibilities Z in a coin tossing game to have in N tosses 
exactly N/2 results "+1" and N/2 results "-1". The number 
of possibilities is Z = N!/[(N/2)!]^2 [23]. For large N, the 
entropy is therefore 
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Fig. 1: N=10 length units of the 100% kinked steps (solid lines) 
(a) on a square lattice and (b) on a hexagonal lattice. The 
orientation is along the 011  and 112  directions, respectively. 

The ensemble of dashed lines represent paths which have the 
same microscopic length and therefore the same energy if the 
energy of atoms is proportional to the coordination number. (c) 
Structure of a 112  oriented step (solid line) on a (111) surface. 

In the macroscopic limit only configurations which correspond to 
adding the dashed atom or removing a kink atom from the step 
contribute to the free energy. The contribution of the different 
paths of the step to the free energy is entirely entropic if the step 
energy is the same with and without the added (dashed) and 
removed atom, respectively. 

 S k Z NkN B B  ln ln 2  (1) 

Here, we are interested in the entropy per step length S 

which is S = SN 2 / a  and S = 2SN/a 3  for steps on a 
square and a hexagonal lattice, respectively. The free energy 
 for a step oriented along 112  directions on a hexagonal 

surfaces is therefore 
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For steps with the mean orientation along the direction of 
dense packing the free energy can be expressed in terms of 
the energy k necessary to create a kink of one atom length 
in that step. To first order in exp(-k/kBT) the result is easily 
derived as 
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The ratio of the free energies of the 100% kinked and nearly 
straight steps is  
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An analogous equation can be derived for the square lattice. 
Because of the symmetry of the hexagonal lattice, the ratio 
of the free energy  

112 011
/  is equal to the ratio of the 

distances from the island center to the perimeter with the 
corresponding orientations. Eq. (4) and the equivalent one 
for the square lattice can also be derived from the analytical 
forms of the equilibrium shapes in the Ising model [24, 25] 
but the validity does not depend on the special assumptions 
of the Ising model. Eq. (4) is accurate to first order in   
exp(-k/kBT). Comparison to the exact form of the 
equilibrium shape in the Ising model shows that the 
approximation is excellent for temperatures T < 0.6k/kB 
(here T  750 K). 
Using eq. (4) the absolute value of the step energy 
a T

011
0( )  can now be determined from a plot of 

experimental data of the ratios of the free energies vs. T by 
recursion: a first estimate on the step energy is obtained 
from the slope of the ratios of the free energies vs. T, 
neglecting the kink term on the left side of eq.(4). In a 
second round, the estimate for the step energy and the kink 
energy k are used to calculate the term involving the kink 
energy. Then, the left hand side of eq. (4) is plotted vs. the 
temperature T once more to obtain a refined value for step 
energy, and so forth. The procedure converges rapidly so 
that only about three iterations are required. The kink 
energy can be determined independently, e. g., from the 
spatial correlation function of steps on vicinal surfaces [26], 
from fitting the island shape to the analytical shape function 
of the Ising model [25], or from an Arrhenius-plot of the 
curvature of the island in the section where the curvature is 
the least [27]. 
Our method neglects vibrational contributions to the step 
free energy which requires consideration. For steps on 
Cu(100) surfaces, the vibrational free energy is linear in the 
temperature above 300 K [28]. With a term linear in the 
temperature taken into account, eq. (4) is to be modified 
such that the term ln2 is replaced by  

 ln ln  ( ) ( )2 2
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Here,  ( )
112
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011
vib  denotes the difference in the 

vibrational free energies per atom in units of kBT for  the 
kinked and straight step, respectively. A rough estimate of 
the difference is obtained by scaling the frequencies with 
the square root of the coordination number of the atoms, a 
procedure which leads to qualitative agreement with 
calculated vibrational step free energies [28]. The result for 

the difference  ( )
112
vib   ( )

011

vib  is -0.008 which amounts to 

1% of ln2. Vibrational contributions can therefore be 
neglected. 

We now apply the method to islands on the Cu(111) 
surface. On a real surface, the energies for the various paths 
depicted in Fig. 1b may be different. In the macroscopic 
limit, only two configurations contribute to the entropy per 
atom which are shown in Fig. 1c. The energy difference 
between the two configurations may be estimated within the 
nearest-neighbor EMT-model [29]. In this model, the 
energy Eb(K) of an atom in an arbitrary site becomes a 
nonlinear function of its nearest-neighbor coordination K. 
Considering the number of nearest neighbors the energy 
difference between the two step configurations in Fig. 1c is 

E E E Eb b b b  ( ) ( ) ( )6 8 2 7 . (6) 

Eb would be zero if the energy were a linear function of 
the coordination number between K=6 and K=8. Using a 
parameterized form of Eb(K) for the Cu(111) surface, e. g. 
from [29] (Eb = 1.924 0.159 K+0.0023 K2 eV), a 



difference Eb = 4.6 meV is calculated. The energy 
difference between the two decisive configurations can be 
neglected in the calculation of the entropy as long as Eb is 
smaller than 2kBT (50 meV at 300K). The use of eq. (4) 
for the analysis of experimental data taken above 300 K is 
therefore safe even when the energy difference is 
significantly larger.  

On the (111) surface of an fcc crystal two 
crystallographically different densely packed steps exist. 
These A- and B-steps display (100) and (111) facets, 
respectively. The energies of the two types of steps need not 
be the same. In other words, the symmetry is reduced from 
hexagonal to trigonal. However, eq. (4) is easily generalized 
to the trigonal case with different energies for the A- and B-
steps by replacing 

011
 by A and B, and the kink energy 

k by A and B, respectively. For the trigonal lattice, the 
ratios of the free energies in eq. (4) is no longer equal to the 
ratio of the radii to the corner and the straight section but 
must be determined from the equilibrium shape by an 
"inverse" Wulff-construction.  
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Fig. 2. Upper half of the equilibrium shapes of adatom islands on 
Cu(111) at three different temperatures. The lines represent 
unsmoothed connecting lines between individual data points (not 
shown). The distances to the tangents of the island perimeters are 
proportional to the free energies .  

Islands on Cu(111) were studied experimentally using a 
variable temperature scanning tunneling microscope of the 
Besocke type. For details of the sample preparation the 
reader is referred to [12]. In the temperature range of our 
investigation (300K < T < 380K) the diffusion along the  
perimeter of the islands is fast enough so that the island 
have their equilibrium shape, save for spatiotemporal 
fluctuations which are quite large for the islands sizes  
studied here (4000-9000 atoms). In order to average over 
these fluctuations we have averaged 110-180 island shapes 
for each temperature. In total 2000 adatom and vacancy 
islands were evaluated. Special care was taken to restrict the 
analysis to islands which showed no noticeable 
contamination over a period of several hours. The averaged 
island shapes were also corrected for a possible distortion of 
the images due to the hysteresis of the piezo actuators of 
the STM. Three out of a total of 15 averaged equilibrium 

shapes are shown Fig. 2. The shapes are nearly hexagonal 
which means that the energies for A and B-step and also the 
kink energies are nearly equal. We find the ratio of the two 
energies to be A/B=0.9890.005, consistent with an 
earlier, but less accurate result [30]. While the ratio differs 
slightly from unity we can safely neglect the small deviation 
in the following considerations. Using the 15 equilibrium 
shapes we have determined the kink energy by fitting the 
analytical form of the shape for an Ising-island to the 
experimental data. The kink energy is the only parameter in 
the model. The resulting kink energy is k = 0.110  0.005 
eV. The same number within the statistical error is obtained 
if one fits only the curvature in the nearly straight sections 
of the island edge to an analytical expression which relates 
curvature, line tension and diffusivity of the step, or from 
an  
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Fig. 3. The experimentally determined ratios of the step free 
energies for steps oriented along the 112  and 011 -directions 

multiplied by the kink term on the left hand side of eq. (4) plotted 
vs. the temperature. Circles and squares refer to adatom and 
vacancy islands, respectively. The absolute step energy is 
proportional to the inverse of the slope. 

Arrhenius-plot of the curvature [27]. The kink energy is in 
the expected range, 15% smaller than the kink energy for 
steps on the Cu(100) surface [26].  

The ratio of the free energies of the steps,  112 / A  

and  112 / B , were determined from an inverse Wulff 

plot. From the slope of the mean value 
( / / )/   112 112 2A B  plotted vs. temperature a 

first value for A/B(T=0) is obtained which was then used to 
calculate the correction term containing the kink energy. 
Fig. 3 displays the  converged result. From the slope and the 
intersection with the y-axis one obtains 
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The quoted error includes the error in the determination of 
the kink energy. The result for the step energy obtained here 



is significantly lower than the 0.5 eV/a obtained in island 
decay studies [12]. The difference is far outside the 
experimental error. While the reason for this discrepancy is 
not clear, it is obvious from a comparison to step energies 
of other materials [31] that the value derived from the 
effective chemical potential controlling the island decay 
must be too high. The present result is higher than the 
result obtained from an analysis of the Brownian motion of 
adatom and vacancy islands on the same surface (A/B = 
0.22  0.02 eV/a) [19]. Unfortunately no first principles 
numbers for the step energies seem to be available for Cu 
surfaces. Using the semi-empirical embedded atom model 
Karimi et al. [32] find a step energy of 0.26 eV/a. A tight 
binding model with many-body corrections produces 0.24 
eV/a [33]. Compared to these numbers our experimental 
result is 20-30% higher. The ratio  112 / /A B  at T = 0 is 

slightly smaller than 2/ 3  = 1.155 which would be the 
ratio in the Ising-model and in a nearest-neighbor model 
with the binding energy Eb(K) being a linear function of the 
coordination number. However, the difference is hardly 
outside the statistical error.  

In summary we have demonstrated a new method to 
determine the absolute value of step energies from 
equilibrium island shapes. The method is applicable to 
quadratic as well as to trigonal lattices. For trigonal lattices, 
the different energies of A and B-steps can be determined 
independently. The requirement that the energy difference 
between the two lowest energy states of the 100% kinked 
step must be smaller than 2kBT can presumably be met in 
most cases by analyzing data at not too low T.  Otherwise, 
the step energy could still be obtained from a self consistent 
fit of generalized forms of eq. (4) to the experimental 
results, provided that a sufficiently large and accurate data 
base is available. In most cases, the lower limit in the 
temperature will be set by the requirement that the diffusion 
along the island perimeter must be rapid enough to ensure 
that the islands have assumed their equilibrium shape. 
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