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We propose a Landau theory for phase change materials (PCMs), which describes stress-induced
amorphization in vacancy-free, ordered PCMs as a condensation of defects in analogy to equilibrium
gas-liquid transitions. Three dimensionless parameters suffice to deduce a highly-accurate equation
of state for both phases from it. The reference data for our model alloy GexSb1−x is produced from
molecular dynamics simulations and synchrotron X-ray diffraction (XRD). Raman spectroscopy is
used to estimate the density of tetrahedrally coordinated germanium atoms, which we relate to the
order parameter. All methods provide consistent support for the reversibility of the transition.

PACS numbers: 61.43.Dq, 61.43.Bn, 61.46.-w

I. INTRODUCTION

Optoelectronic phase change materials (PCM) have
markedly different optical reflectivity and electrical con-
ductivity in their disordered and ordered phases.1 They
can be switched rapidly and reversibly between their
better conducting crystalline and the more insulating
amorphous phases. Short intense and long low-intensity
heat or laser pulses induce the amorphous and the crys-
talline phase respectively.2–4 Owing to their properties,
PCMs are used as non-volatile memory materials and
bear promise as materials for programmable logic cir-
cuits.5

Recently, the response of PCMs to pressure has re-
ceived increased attention, mainly for the commercially
used Ge2Sb2Te5

6–10 but also for GexSb1−x.11,12 These
studies were motivated predominantly by the desire to
unravel the interplay between atomic and electronic
structure. Understanding PCMs under pressure might
prove especially useful in the debate if the peculiar prop-
erties of PCMs arise either due to a difference of local
order between crystalline and disordered phases, or be-
cause the absence of long-range order in the glass sup-
presses resonance bonding.13

In the mentioned PCMs and related compounds, the
crystalline structures can be derived from simple cubic
crystals by introducing a Peierls deformation and/or by
(partially14) ordering the Ge, Sb, and Te atoms, as well
as vacancies, onto sublattices. In these structures, the
coordination shell of atoms can be described as ideal,
distorted, or defective octahedra. According to various
groups, the local arrangement of atoms can differ in the
glass:11,15–22 a significant fraction of germanium atoms
have four short bonds with predominantly tetrahedral
coordination.

The application of pressure allows one to alter local
coordination without changing composition or tempera-
ture. This in turn can elucidate the relaxation dynam-
ics in the glass. For example, one could use pressure

to squeeze some germanium atoms from a small, e.g.,
tetrahedral shell (possible in the glass) into a larger, oc-
tahedral shell (only allowed coordination in the crystal).
Once the pressure is released, one can determine if they
remain at their new positions or if they move back to a
“glass-like” coordination. If the latter happens, a well-
defined number of germanium atoms with local glassy co-
ordination might exist, which could make it possible to
describe the disordered phase with an equilibrium theory.

Support for the idea that local order plays the predom-
inant role in some disordered PCMs can be deduced from
density functional theory (DFT) based molecular dynam-
ics simulations:23 after sudden changes in either volume
or temperature, the stress in glassy PCMs quickly ap-
proached that observed experimentally — already after
times too short for atoms to move much more than one or
two Angstroms. Moreover the relaxation occurred such
that several parameters, including the mean coordina-
tion number of Ge atoms, moved away from the crys-
talline reference values as the glass aged. This is con-
sistent with the later observation24 that the resistivity
of the glassy Ge15Sb85 slowly increases with time rather
than to approach the conducting, crystalline state. This
could imply that a well-defined meta-stable glassy state
exists, whose vicinity is approached rather quickly even
if long-time relaxation may be necessary to fully reach it.

In this work, we explore possibilities to construct a
Landau theory for PCMs. Since, the transition between
crystal and glass can be invoked by stress without passing
an intermediate liquid phase,9–11 we use pressure rather
than temperature as the driving force. The equation of
state (EOS) that is deduced from the theory is compared
to new experimental and numerical data. To isolate the
effect of local coordination from that of the squeeze-out
of vacancies, we restrict our attention to PCMs with a
negligible number of vacancies in the crystal. We thus
disregard any GeTe-Sb2Te3 pseudo binary alloys, also
because these alloys lie close to the flexible part of a
Maxwell-rigidity contour map22, where glassy relaxation
is non-negligible.
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An additional incentive to focus on GexSb1−x is
that stress-induced amorphization and crystallization in
these alloys occur at more moderate pressures than in
Ge2Sb2Te5, i.e., at estimated pressures of pa = −4 GPa
for x = 0.15 (tensile pressure for amorphization) and
pc = 2 GPa (crystallization) versus pa,c = O(20 GPa).
Moreover, a Maxwell rigidity analysis of Ge1Sb6 indi-
cated that this alloy has a large number of constraints
implying a large connectedness reducing second-neighbor
motion22, whereby relaxation in the glass should be
small. Lastly, the transitions in our alloys occur be-
tween the technologically relevant phases, which are both
(meta–) stable at ambient conditions. Thus, if the tran-
sition turns out reversible, it could become possible to
switch our alloys through small-scale piezoelectric actu-
ators. If the technical challenges could be solved,5 stress
switching should be faster and less energy demanding
than thermal switching, which excites many “irrelevant”
modes and is furthermore limited by thermal conductiv-
ity rather than by the speed of sound.

II. METHODS

A. Experimental methods

The Landau theory presented in this work is compared
to experimental and numerical results on GexSb1−x. In
our experiments, we used the same diamond anvil cell
(DAC) and followed the same protocol as that described
in Ref. 12, except that this time, additional experiments
were conducted at the PDIFF Beamline (at 19.0 keV;
λ = 0.06525 nm) of the ANKA synchrotron at the KIT.
Densities of the amorphous phase were deduced from the
broad peaks, which were gauged by using the well known
8% density difference for the amorphous and crystalline
phase, which coincided with the density difference seen in
our simulations. We refer the reader to Refs. 11 and 24
to justify the comparison between the sputtered exper-
imental samples and temperature- or pressure-quenched
in silico samples.

XRD spectra, representative of those from which we
deduced equations of state, are shown in Fig. 1. The load
and relieve cycle begins at the bottom and ends at the
top. Broad peaks at ambient pressure are indicative of
the amorphous state. With increasing pressure, a phase
transformation occurs. Coexistence of both phases is ob-
served at 1.7 GPa, where sharp but low-intensity Bragg
peaks can be seen in addition to the broad features. Af-
ter crystallization a Peierls distorted structure emerges.
As observed previously, the distortion is reduced with in-
creasing pressure, as evidenced by the convergence of the
(104) and (110) peaks. At 12.8 GPa the Peierls distor-
tion is entirely squeezed out and a simple cubic structure
results. After decompression, the Peierls distorted struc-
ture is restored and the peaks are separated again. A
transformation back to the amorphous state from high
pressures does not occur in this example.
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FIG. 1: (Color online) Representative X-ray spectra of
Ge0.15Sb0.85 during compression and subsequent decompres-
sion. The bottom spectrum represents the initial sample.

Raman spectroscopy was performed using a WiTec al-
pha 300R Raman system with 532 nm excitation emerg-
ing from a frequency-doubled Nd:YAG laser. The power
density at the sample was kept at a low level to avoid
crystallization, while the spectra were detected by a
cooled CCD. The power density at the sample was kept at
a low level to avoid crystallization. The laser power was
0.3 mW at a focus spot of ∼ 7 µm diameter with a Mitu-
toyo M Plan Apo 20x (long working distance) objective.
The pressure was determined in the ruby fluorescence
method25.

In more detail, Raman images (50 × 50 pixels, 80 ×
80 µm2) were recorded using a 1800 grid. Each pixel con-
tained a full Raman spectrum between approximately 0
and 1200 cm−1. The raw Raman spectra in each pixel
represent a set of potential mixtures of different chemical
stoicheometries or structural phases — depending on the
displayed sample position. The Raman spectra are rep-
resented by a matrix M, where spectral intensities are
given by the matrix rows and spectral frequencies are
found in the matrix columns. For a Raman scan of N
pixels with K frequencies, M is a N × K matrix. The
Raman scans, respectively the intensity matrix were an-
alyzed using Principal Component Analysis (PCA)26,27,
a mathematical procedure based on orthogonal transfor-
mations to convert (experimental, possibly linearly de-
pendent) observations into linear independent (orthogo-
nal) observations, the principal components (PC). PCA
is frequently used to analyze spectroscopy data28–34. The
PCs are sorted with respect to descending variance along
their principal axes. The PCA expresses the matrix M as
the product of two new matrices S (scores) and L (load-
ings), M = SLT . The scores are the coordinates of the
original raw spectra in the new coordinate system of the
principal components. Raman spectra of different chem-
ical components or different phases are then generally
recovered as different principal components.

We used the standard algorithms for PCA analysis as
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implemented in the Matlab statistics toolbox (version
7.11.0 R2010b, Mathworks Inc.). The raw data was pre-
processed using a Matlab based cosmic ray removal fil-
ter. Additional preprocessing, such as for instance back-
ground subtraction was not necessary and therefore not
applied. A homogeneous background signal is automati-
cally accounted for in the PCA.

Fig. 2 shows representative Raman spectra of initially
amorphous Ge0.15Sb0.85 obtained from the PCA analy-
sis. At 1.5 GPa, first signs of the crystalline phase can
be observed. The transition appears nearly complete at
2.0 GPa. Further compression is followed by peak shift-
ings due to mode stiffening.
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FIG. 2: (Color online) Typical Raman spectra of Ge0.15Sb0.85

at different pressures. The bottom spectrum represents the
initial sample.

To obtain information about the microscopic order,
Raman spectra were fitted to a superposition of Gaus-
sians. Representative fits are shown in Fig. 3 for spectra
obtained from (a) an amorphous and (b) a crystalline
Ge0.15Sb0.85 alloy. Differences are revealed in white-light
images of the sample inside the DAC, as evidenced in
Fig. 4.
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FIG. 3: (Color online) Raman spectra of (a) an amorphous
sample at 1.0 GPa and (b) a crystalline sample at 2.0 GPa.
Dashed blue lines are individual Gaussians fitted to the spec-
tra. Solid red lines represent the sum of the blue lines.

(a)1.0 GPa, amorphous (b)2.0 GPa, crystalline

FIG. 4: (Color online) Optical images of the sample giving
rise to the spectra shown in Fig. 3.

B. Numerical methods

For the simulations, we used the same DFT-based MD
method as in Ref. 11 and Chapter 5 in Ref. 35. The sys-
tem was composed 28 Ge and 164 Sb atoms. The nuclear
and electronic degrees of freedom were propagated within
the Car-Parrinello molecular dynamics (CPMD) frame-
work36 using a plane-wave basis with an energy cutoff of
35 Ryd and the B-LYP density functional to approximate
electronic exchange and correlation effects.37,38 Nosé-
Hoover chain thermostats39 were used to ensure constant
temperature and adiabatic separation of the electronic
and nuclear degrees of freedom. Pseudopotentials were
of the Martins-Troullier type.40 Amorphous samples were
generated by two means: (1) Thermal quench of the liq-
uid from 973K to 300K at different rates. (2) Application
of a tensile load at a rate of −0.25 GPa/ps. In both pro-
tocols, four-coordinated Ge defects appeared in the glass.
These were all tetrahedral as already found in simulations
of the related GeSb6 alloy.22

The liquid configuration was generated by first melt-
ing the initial crystalline GeSb configuration for 10 ps at
973 K. Amorphous glass configurations were then gener-
ated by thermal quenching from the last frame of this liq-
uid configuration. Three different quenching rates were
used to cool the material. Firstly, a fast quench, in which
the temperature was instantly reduced from 973 to 300 K
and the trajectory was equilibrated for another 2 ps es-
sentially yielded a frozen-in liquid configuration with lit-
tle change in structure from the liquid reference state.
Secondly, a medium quench with a cooling rate of ap-
proximately 70 K/ps was simulated for 9 ps, yielding a
more significant rehybridization of both Ge and Sb lo-
cal configurations. Thirdly, a slow quench with a cooling
rate of approximately 40 K/ps was conducted for 16 ps
yielding structural changes similar to the medium cooling
rate, but with larger drops in conductivity (see Ref.[11]).

For the pressure anneal, the initial crystalline struc-
ture was placed under increasing tensile load at the rate
of −0.25 GPa/ps, until the material amorphized at ap-
proximately −4.0 GPa (the volume of the box was in-
crementally increased and the resulting tensile load was
determined by measuring the resulting stress tensor).
Whether or not this seemingly large tensile load was an



4

over-estimation of the true yield strength of the material
is not known at the moment. It seems likely, however,
that the material would have yielded earlier if simulation
times and the box size had been larger. After the ma-
terial yielded, it was allowed to equilibrate for a further
4 ps under the large tensile load. Finally, the load was
removed (the material was returned to its original vol-
ume), and the recompressed PCM was further allowed to
equilibrate for another 2 ps. If the material was not given
enough time to disorder at the transition tensile load, it
recrystallized again when recompressed. This should not
impact the metastability of the amorphous state in a real
device, as the time scales in a technical application would
at least be an order of magnitude larger than those ac-
cessed by the simulation, giving the material ample time
to fully disorder.

Compressibilities (for the EOS curves) were com-
puted41 by varying the volume of selected frames from
the dynamics trajectories, using an increased cutoff of 60
Ryd. The coordinates of each configuration were relaxed
via damped dynamics until the largest atomic force on
the atoms was less than 0.001 Ryd/Bohr. Energies were
converged to 10−6 Ryd, with tighter convergence criteria
on a few test systems (10−10 Ryd) yielding indistinguish-
able results. To estimate adiabatic compressibilities, the
volume of the glass was changed isotropically from a ref-
erence point without relaxing any structural degree of
freedom.

Statistical uncertainties for the simulation data were
generated by averaging over several separate configura-
tions from the liquid/amorphous trajectories. The un-
certainties for the “liquid/solid” data were generated by
averaging over 5 initial frames separated by 2 ps from the
liquid simulation. The uncertainties for the “glass/solid”
amorphous data were generated by averaging over the
structures from the last frame from each thermal quench-
ing protocol. Each point in the EOS curves was struc-
turally minimized at the given volume. The pressure and
number of 4-coordinated Ge atoms were obtained after
convergence of these structural minimizations.

III. THEORY

It is usually possible to interpret the order parameter
Φ of a Landau theory microscopically. While Φ generally
quantifies the amount of symmetry breaking, it can also
relate to densities. For example, the gas-liquid transition
can be cast as a Landau theory, although both phases are
perfectly isotropic. A transition can only occur, if there
is a feedback mechanism, e.g., a spin in the ferromag-
netic Ising model tends to align spins on adjacent sites,
which then stabilize the original spin. If the feedback
is strong compared to thermal fluctuations, symmetry
breaking can occur even without external field. It was
argued that such a feedback must exist between different
Ge atoms with glassy disorder, because otherwise one
can explain neither why disordered Ge-Sb alloys “relax

away” from the crystal nor why the crystallization pres-
sure pc increases rapidly with the concentration of Ge or
Si dopants in Sb.12 This observation motivates us to as-
sociate the order parameter with the number density of
atoms with local order not occurring in the crystal, e.g.,
that of non-octahedrally coordinated Ge atoms.

Since the amorphous-crystalline transformation is dis-
continuous, we propose to use the regular expression for
the free energy of the lattice gas model

Fgl =
A

2
(Va − V )Φ2 − B

3
Φ3 +

C

4
Φ4, (1)

where the three coefficients A, B, C are positive, V is the
volume and Va is the volume above which the reference
crystal is unstable against amorphization (normalized,
for instance, on the unit cell of the reference crystal).
We neglect the temperature dependence of all param-
eters, because our experiments are conducted at room
temperature and thermal effects in related stress-induced
transformations were found to be weak.42 We note that
the third-order term is symmetry allowed if the order
parameter relates to a density (of defects), since the den-
sity remains invariant under a symmetry transformation.
If, however, the order parameter related to a displacive
mode from a crystal with inversion symmetry, then the
third-order term would no longer symmetry allowed, be-
cause it would change sign under a mirror reflection.
Moreover, we cannot replace the term A(Va − V )Φ2/2
with A(p − pa)Φ2/2, because we want to ascertain the
non-analytical behavior of the density near the phase
change point.

An alternative free energy expression Fdm can be mo-
tivated from systems in which displacive modes break
inversion symmetry.43 The simplest dependence of Fdm

on Φ producing such a discontinuous transition reads

Fdm =
A′

2
(Va − V )Φ2 − C ′

4
Φ4 +

D′

6
Φ6, (2)

where the coefficients A′, C ′, and D′ are again positive.
In the specific case, one could argue that the motion of Ge
atoms from quasi-octahedral to tetrahedral sites reflect
such a displacive mode. Alternatively, collective modes
such as they occur in the phase transformation between
(resonant-bonding) simple cubic phase of antimony and
its (symmetry-broken) α-arsenic structure (A7) would
obey Eq. (2). The identification of the correct inter-
pretation necessitates additional information about the
microscopic order, which is discussed further below.

The values of Φ minimizing the free energy satisfy
∂F/∂Φ = 0 in all phases, Φ = 0 in the crystal, and

Φ =


B
2C

{
1 +

√
1 + 4AC

B2 (V − Va)
}

Fgl glass√
C′

2D′

{
1 +

√
1 + 4A′D′

C′2 (V − Va)
}

Fdm glass,

.

(3)
as well as ∂2F/∂Φ2 > 0. When ∂2F/∂Φ2 approaches 0+,
small thermal fluctuations can induce the phase change.
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To introduce coupling to external pressure, we need an
expression for the Gibbs free energy of the crystal. For
the semi-quantitative analysis pursued here, we restrict
ourselves to a scalar theory and thus use the volume V
rather than the strain as the second state variable of our
material. Because we are interested in the EOS over a
large pressure range, an expression that is only quadratic
in volume would be too inaccurate. We therefore resort
to a Gibbs free energy of the crystal, which includes stiff-
ening with pressure.44

Gcr =
B0V

B′0

{
1 +

(V0/V )B
′
0

B′0 − 1

}
− B0V0
B′0 − 1

+ pV. (4)

Here V0 and B0 denote the specific volume and the bulk
modulus at zero pressure, while B′0 ≡ dB/dp is a mea-
sure for pressure-induced stiffening. Many simple crys-
tals, take values in between 3.5 and 4, irrespective of
the nature of the chemical bonds. This is why we use
B′0 = 3.75 as a generic value.

Depending on the model used, the total Gibbs free en-
ergy per atom reads either Ggl = Gcr+Fgl for the lattice-
gas model or Gdm = Gcr + Fdm for the displacive-mode
approach. In either case, minimizing G with respect to
V results in the following EOS:

p(V ) =
B0

B′0

{[(
V0
V

)B′
0

− 1

]}
+
A

2
Φ2, (5)

which reduces to the Murnaghan equation of state44 for
a perfect crystal. To yield the EOS of the glass, we insert
the appropriate solutions for Φ(V ) from Eq. (3).

The bulk modulus is defined as B ≡ −∂p/∂ lnV .
The derivative can be taken with two different side con-
straints. If the system is given enough time to relax to
the (potentially metastable) equilibrium, i.e., assuming
∂G/∂Φ = 0, we obtain the isothermal bulk modulus
BT . Alternatively, when compression is too fast to allow
structural relaxation within the bulk, i.e., for Φ = const,
the adiabatic bulk modulus BS is obtained. Since the
ideal-gas contribution to elasticity is negligibly small for
solids, we disregard it in the calculation of BT and BS .

IV. RESULTS

A. Equation of State

We determined the EOS for two different GexSb1−x
compositions and adjusted the free parameters of the
Gibbs free energy to match the data. Results are shown
for x = 0.15 in Fig. 5 and for x = 0.25 in Fig. 6. B0,
V0, and one parameter in F (Φ) can be used to gauge the
units of p, V , and Φ. For the latter we chose C = B0V0
and D′ = B0V0 in case of the gas-liquid and displacive
mode picture, respectively. B′0 = 3.75 is a quasi-universal
value, which leaves us with three free dimensionless ad-
justable parameters, i.e., Va/V0, and either A/C, B/C
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displacive mode approach

experiment amorphous

experiment crystalline

simulation amorphous

simulation crystalline

FIG. 5: The equation of state of Ge0.15Sb0.85 as measured
experimentally (closed symbols) and determined numerically
(open symbols). Full (black) and dotted (grey) lines represent
the lattice-gas and displacive-mode Landau approach, respec-
tively. Arrows indicate the instability points. V0 and B0 rep-
resent experimental volume per unit cell and bulk modulus at
ambient conditions, respectively.
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FIG. 6: The equation of state of Ge0.25Sb0.75. Symbols as in
Figure 5.

or A′/D′, B′/D′. The three adjustable dimensionless
parameters can be gauged to match exactly three ob-
servables. We chose them to be pc, the latent density
at the crystallization transition, and the glass density at
ambient pressure. Latent density and pc could be deter-
mined with relatively high accuracy, because amorphous
and crystalline spectra coexisted at pc. Once the dimen-
sionless parameters are fixed, we have no more possibility
to “fudge” the curves.

In Fig. 5 we find almost perfect agreement for the
x = 0.15 alloy when calculations are based on the Gibbs
free energy of the liquid-gas model. We interpret the
almost perfect agreement for the x = 0.15 curve be-
tween Landau theory and simulation as a fortuitous can-
cellation of two small errors: As mentioned above, we
estimated the isothermal EOS for the glass with high-
temperature simulations. This leads to an overestima-
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tion of the density of . 1%. At the same time, our
DFT simulations underestimate density by . 1%, as can
be seen from the crystalline reference data. The dis-
placive mode picture is less satisfactory, except for the
crystalline phase, where both models coincide. Particu-
larly the small hysteresis is flawed, because it indicates
that the (dm) glass has smaller enthalpy than the crystal
at ambient conditions. Similar trends are observed for
the x = 0.25 alloy as shown in Fig. 6. The parameters
used to produce the Landau theory are summarized in
Table I.

Ge0.15Sb0.85 Ge0.25Sb0.75

a b va a b va
24.88 24.19 1.10 20.89 20.38 1.08

a′ b′ v′a a′ b′ v′a
18.93 10.73 1.01 16.52 6.99 0.97

TABLE I: (Color online.) Summary of the dimensionless pa-
rameters used for the fitting of the EOS of GexSb1−x. The
variables a, b, va refer to the lattice gas model, while a′, b′,
v′a relate to the displacive-model picture.

Two more results support the lattice-gas ansatz: First,
the termination point of the crystalline EOS, as deter-
mined from experimental data, coincides with a theoret-
ical prediction11 of the (negative) amorphization pres-
sure of p = −4 GPa. For x = 0.25, the predicted in-
stability point of the displacive mode model lies within
the experimentally observed stability regime, while the
lattice-gas model correctly predicts the material to re-
main stable at non-negative pressures. Second, we find
that the EOS of the quenched glass (isotropic compres-
sion of the DFT glass not allowing structural relaxations)
are almost identical with those of the crystal, except that
they are shifted by 3 GPa (not shown explicitly). This
last value coincides with the numerical value we obtain
for the term −AΦ2/2 in Eq. (5) for the gl-Landau ap-
proach. As a consequence, we find almost identical values

for BDFT
S −BDFT

T = 14.7 GPa and Bgl
S −B

gl
T = 15.1 GPa

while the dm result Bdm
S −Bdm

T = 10.6 GPa is less good.

B. Reversibility

The Landau approach is based on the idea that struc-
tural changes are reversible. As it is currently not fea-
sible to attain negative pressures in DACs, we cannot
produce direct experimental evidence that the full transi-
tion from the glass to the crystal can be reversed through
tensile loads. However, as demonstrated in Fig. 7, we
reversed most of the partial crystallinity, when decom-
pressing from a pressure just a little below pc. Only
when crystallinity exceeded 25% did we no longer recu-
perate the amorphous phase after decompression. Partial
crystallinity can be rationalized theoretically by consid-
ering the small, but experimentally unavoidable pressure
anisotropies in the DAC. Its quantitative modeling would
require the use of (direction-dependent) square-gradient

corrections to the enthalpy, which is beyond the scope of
this work.

FIG. 7: XRD spectra of amorphous Ge0.25Sb0.75 compressed
to p = 2.95 GPa (left) and decompressed back to ambient
pressure (right). The partial crystallinity is reversed. The
Bragg peaks are related to the NaCl reference crystal included
in the DAC. Peak intensities are shown in Fig. 8.

The compression-decompression cycle, from which the
snapshots in Fig. 7 are deduced, is presented in more de-
tail in Fig. 8. The maximum pressure was chosen to be
just at the onset of crystallization. At that point, two
phases can coexist due to small pressure heterogeneities
in the DAC chamber. After decompression back to am-
bient pressures, the crystallinity decreases to some few
percents and remains below 1%. A small densification
of O(1%) remains of the initially sputtered sample after
decompression from 3.0 GPa.
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FIG. 8: (Color online.) Compression decompression cy-
cle of Ge0.25Sb0.75. The partial crystallinity attained at
p = 3.0 GPa is essentially lost.

C. Microscopic interpretation of the order
parameter

The microscopic interpretation of the order parameter
still needs to be substantiated. To this end we exploit the
observation by Mazzarello et al.20, who identified weak
features in Raman spectra for frequencies 190cm−1 <
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ω < 250cm−1. They could be related to modes involving
tetrahedrally-coordinated germanium atoms. We were
able to fit the Raman data with 3(4) peaks in the amor-
phous (crystalline) phase of Ge0.15Sb0.85. Assuming that
the intensity of each peak is proportional to the density
of the corresponding atoms, it is possible to deduce the
order parameter from Raman experiments as the ratio of
the peak intensities related to the vibrations of tetrahe-
drally and six-coordinated Ge atoms.

Fig. 9 demonstrates consistency of the number of tetra-
hedral Ge atoms as deduced from the lattice-gas based
Landau theory, the Raman experiments, and the simula-
tions. As can be deduced from the scan indices in Fig. 9,
the number of tetrahedral Ge atoms recuperates after de-
compression in the amorphous phase, e.g., after scan 6,
but no more at p > 0 after crystallization, e.g., after scan
8. Note also that the Landau theory predicts the glass
to become unstable at a similar negative pressure where
simulations no longer find octahedral Ge atoms (acting
as “predetermined breaking points”). Simulation provid-
ing the order parameter are discussed in the remainder
of this section.
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FIG. 9: (Color online.) Relative number of tetrahedrally-
coordinated Ge atoms in Ge0.15Sb0.85 obtained after constant-
volume energy minimizations of the T = 973 K liquid (green
crosses) and the T = 300 K glass (red circles). For clarity,
representative error bars are given for one data point only.
Full lines reflect Landau theory. Landau theory and Raman
data (blue circles) have been normalized to match simulations
results near zero pressure. Numbers on the Raman symbols
index the scans.

Fig. 10 compares the liquid structure of Ge15Sb0.85

at 973 K with that resulting from the slow temperature
quench at 300 K. Both structures are highly disordered,
as can be seen in Figs. 10a–b. However, there are subtle
and nevertheless important differences in the two struc-
tures. This is made evident in Fig. 10c, which shows the
coordination probabilities of both Ge and Sb measured in
the simulation leading to the shown structures. In the liq-
uid, germanium is approximately 50% 4-coordinated and
only 40% 3-coordinated. Once cooled, the number of 4-
coordinated germanium increases to approximately 70%,

a) b)

c)

d)

FIG. 10: (Color online) Comparison between local structures
for liquid Ge0.15Sb0.85 at (a) 973K and (b) the quenched
amorphous samples at 300K. (c) Coordination probability for
Ge and Sb in each of the simulations. (d) Average-angle dis-
tributions around 4-coordinated Ge and 3-coordinated Sb.
The majority of 4-coordinated Ge atoms are in tetrahedral
configurations, with bond angle distributions centered around
109◦.

with the remainder being 3-coordinated. This increase
in tetrahedral germanium coordination can also be seen
from the average-angle distribution functions shown in
Fig. 10d. These distributions measure the average-angle
around a given atom-type with a particular coordination.
The distributions show that the signal of tetrahedrally
bonded germaniums (there are sharp peaks centered at
109◦) increases by a factor of 3 after the quenching pro-
tocol. There is also a change in the antimony average
structure, although not as pronounced as in the germa-
nium case. After the thermal quench, 86% of the anti-
mony end up in their preferred 3-coordinated state, as
can be seen in Fig. 10c.

V. CONCLUSIONS

The pressure anneal shows a similar propensity to gen-
erate tetrahedral germanium as the temperature anneal.
This can be seen in the comparison between the struc-
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a) b)

c)

d)

FIG. 11: (Color online) Comparison between local structures
for (a) crystalline Ge0.15Sb0.85 and (b) a pressure annealed
“amorphous” samples at 300K. (c) Coordination probability
for Ge and Sb in each of the simulations. (d) Average-angle
distributions around 4-coordinated Ge and 3-coordinated Sb.
The majority of 4-coordinated Ge atoms are in tetrahedral
configurations, with bond angle distributions centered around
109◦.

ture of a 4 ps equilibrated crystal (0 GPa) and that of
system equilibrated for 4 ps at −4.0 GPa (tensile) load
in Fig. 11. While the lamellar (“long-range”) structure
of the A7 parent antimony lattice remains visible in the
streched sample, the local environment of many germa-
nium atoms have changed. Specifically, in the A7 crys-
tal structure each atom has three short bonds to neigh-
bors within their lamella and three long bonds to next-
nearest neighbors located in the adjoining layer. Under
sufficiently large tensile load, a few of the germaniums
break one of their short bonds and create a tetrahedral
complex by forming two short bonds with the adjoining
layer. This process is akin of the so-called “umbrella”
flip15 in the 225 material. In the current situation, it

can be seen as a self-healing process, in which the onset
of delamination is impeded by germanium atoms adjoin-
ing two departing lamella back together. This structural
rearrangement is quantified in the coordination data pre-
sented in Fig. 11c. In the crystal, only 20% of the ger-
maniums are 4-coordinated. This number doubles in the
annealed configuration and is expeted to grow further if
the system were given more time to relax. The tetrahe-
dral rehybridization is also evident in the average angu-
lar distribution function in Fig. 11d, with a clear increase
in the number of 4-coordinated tetrahedral Ge (average
bond angle around the element about 109◦).

In summary, we propose that the amorphous phase
of optoelectronic PCMs should not be regarded as reg-
ular glasses produced by quenching a fluid. Instead,
amorphization in these systems can be interpreted as a
condensation of defects with characteristic local order.
A Landau theory with three dimensionless parameters,
which is based on this picture, not only produces a highly
accurate equation of state for the glass, it also predicts
similar results as DFT-based simulations for the amor-
phization stress and the difference between adiabatic and
isothermal bulk modulus. Moreover, the integrated Ra-
man signal related to tetrahedrally coordinated germa-
nium atoms (which are not present in the crystal) corre-
lates with the order parameter. We also provide direct
experimental evidence that stress-induced partial crys-
tallinity is indeed reversible when stress is released.

The presented results support the idea that differences
in the (mechanical) properties between our amorphous
and disordered PCMs stem predominantly from changes
in the local structure, even if the detailed intermediate-
or long-range structure certainly affect response function
as well. However, as already found previously14, ordering
of species onto sublattices in the crystal is not necessary
to explain the strong contrast between amorphous and
crystalline PCMs. Local (athermal) dynamics suffice to
invoke the phase change by stress, which explains why
PCMs can be switched so rapidly.
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