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SUMMARY
Imaging of lipid structures and associated protein complexes using cryoelectron microscopy (cryo-EM) is a
common visualization and structure determination technique. The quantitative analysis of the membrane
structures, however, is not routine and time consuming in particular when large amounts of data are involved.
Here, we introduce the automated image-processing software cryo-vesicle image analyzer (CryoVIA) that pa-
rametrizes lipid structures of large datasets from cryo-EM images. This toolkit combines segmentation,
structure identification with methods to automatically perform a large-scale data analysis of local and global
membrane properties such as bilayer thickness, size, and curvature including membrane shape classifica-
tions. We included analyses of exemplary datasets of different lipid compositions and protein-induced lipid
changes through an endosomal sorting complexes required for transport III (ESCRT-III) membrane remodel-
ing protein. The toolkit opens new possibilities to systematically study structural properties of membrane
structures and their modifications from cryo-EM images.
INTRODUCTION

Cryoelectron microscopy (cryo-EM) is a powerful tool to study

protein-membrane interactions as it provides high-resolution im-

ages of vitrified macromolecules under near-native conditions

including biological membranes.1 Isolated and soluble protein

structures of biological macromolecules are commonly deter-

mined to high resolution enabling atomic model building.2 A

group of lipid-interacting proteins is capable of deforming lipid

membranes and inducing shape changes on lipid membranes

through their distinct binding mechanisms.3 Archetypical exam-

ples are GTPase driven dynamin or bar-domain proteins that are

involved in the cellular membrane-trafficking processes like

endocytosis.4,5 Another important group of membrane-remodel-

ing proteins constitutes the family of endosomal sorting com-

plexes required for transport III (ESCRT-III) that are topologically

catalyzing budding reactions away from the cytosol. While struc-

tures of membrane-remodeling proteins can be determined in

isolation, many of them require their biological substrate in order

to polymerize.6,7

A series of membrane-remodeling protein structures have

been determined in the presence of lipid membranes using

cryo-EM.8–10 For this purpose, Fourier-Bessel, single-particle

or hybrid approaches of image processing approaches for

helical reconstruction were employed to resolve the protein
808 Structure 33, 808–819, April 3, 2025 ª 2025 The Author(s). Publ
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structures of the helical lattices formed on lipid membranes.11–13

In the meantime, widely used single-particle image processing

software suites have been adapted to work with helical protein

assemblies.14,15 These image processing suites primarily focus

their refinement on protein structures. In the case when lipid

membranes are tightly bound to the protein structures, lipid den-

sity can be observed alongside the protein density.16 However,

phospholipid bilayers alone also generate significant contrast

suitable for detailed analysis of characteristic lipid features and

membrane shapes.17 Nevertheless, the localization of such

membrane structures and the quantitative evaluation of those

features are often performed interactively and remains a

subjective as well as labor-intensive task. For the case of cellular

electron tomograms, few automated membrane analysis tools

have been put forward18–20 while they target to capture the larger

scale cellular environment in three-dimensional image volumes.

Quantitative analysis of membrane structure from many

micrographs is still a largely manual task as no suitable image

processing tools are available. To this end, we developed a

cryo vesicle image analysis (CryoVIA) tool to automate mem-

brane structural analysis. The developed toolkit combines neural

network-based image segmentation, structure identification

with a series of analytical tools to estimate local and global

structural properties including the classification of vesicular

membrane shapes. We apply CryoVIA to different preparations
ished by Elsevier Inc.
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Figure 1. Workflow of the cryo vesicle im-

age analyzer (CryoVIA)

Cryo-micrographs serve as input for the U-net

based segmentation that is followed by a mem-

brane structure identification. This step assigns

unique and single membrane entities and is crit-

ical to single out overlapping membrane struc-

tures. In the final step, the identified membrane

structures are subjected to a detailed quantitative

analysis for the extraction of local and global

structural parameters.
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of vesicles and lipid mixtures of exemplary datasets and reveal

modifications to their structural properties.

RESULTS

Principal workflow of CryoVIA
In order to generate a quantitative automated workflow suitable

for analyzing biological membranes from cryo-micrographs, we

created CryoVIA that requires electron micrographs as input

and concludes with analytical data plots. The workflow is divided

into three basic parts: neural-network based segmentation,

membrane structure identification, and structure analysis (Fig-

ure 1). For the first part of the toolkit, the given micrographs

are segmented to locate the membrane structures of interest

that are subsequently used for further analysis. We applied seg-

mentation using a pre-trained U-net with micrographs including

user-provided membrane structures as input21 and found mem-

branes across micrographs consistently labeled. By default, a

pre-trained U-Net is used, while some use cases may require

to re-train the U-Net on manually segmented micrographs.

Identification of membrane features
The second part of the toolkit refers to the membrane structure

identification that will generate membrane entities based on

the segmentation results from the first part. The results of the bi-

nary segmentation are used to identify independent instances of

membrane structures within one micrograph by simply splitting

the segmentation into independent connected components.

This approach worked well when membrane structures are

well separated in one micrograph; however, when the target

structures are crowded and membranes overlap, they require

additional separation routines. Overlapping membrane struc-

tures are located and re-connected by monitoring the

continuity of local membrane structures (see STAR Methods

for details). For presenting the principal functional features of

CryoVIA, we, initially, use a test dataset containing 356 cryo-mi-

crographs of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)

vesicles that were size-filtered by a 200 nm cutoff. As a result
of the feature identification, the initially

segmented skeletons are successfully

separated by restraining subsequent an-

gles into individual membrane structures

(Figure 2A).

For detailed and consistent analysis

of the identified membrane structures,

refinement of the initially detected pixel
positions is essential to obtain accurate membrane contours

located at the center of each membrane bilayer (Figure 2B).

For this purpose, we convolve the imagewith a bilayer-like kernel

and subsequently employ the Frangi filter22 (see STAR Methods

for details). As a result of the membrane structure identification,

the curated membrane contours are available for detailed anal-

ysis of the membrane structures. As an optional step, it is also

possible to remove identified membranes outside of grid foil

holes using a circle convolution (Figure S1). After identification

of the foil hole edges, localized membrane structures outside

of the holes can be effectively removed and the relevant mem-

brane features are ready for subsequent in-depth data analysis.

In summary, through a series of refinement and pruning steps,

segmentation results are enhanced for the following analysis of

structural features.

Quantitative extraction of local and global membrane
features
As the final part of the CryoVIA workflow, we perform structure

analyses for each membrane contour using the information

from the identified pixels. Measurements for each contoured

pixel such as curvature, bilayer thickness, and distance to other

membrane segments are obtained locally. Global statistics

about the membrane structure such as length, area, and diam-

eter are directly derived from the membrane contours. Finally,

shape classifications are employed for large-scale and intuitive

comparisons of different experimental datasets.

In order to describe local shape changes of themembrane con-

tours, we make use of the curvature descriptor. Curvature is

defined as the reciprocal radius of a circle that best describes

the local curve. The higher the curvature, the higher is the local

shape change of the membrane while a curvature of zero

corresponds to a straight line. In addition, the direction of the cur-

vature is calculated and represented by the sign of the curvature

value. For closed membranes (e.g., vesicles), convex regions of

the membrane have a positive curvature value while concave re-

gions will assume a negative value. Based on a local measure-

ment, it is notpossible todistinguishbetweenconvexandconcave
Structure 33, 808–819, April 3, 2025 809
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Figure 2. CryoVIA’s main functions: mem-

brane segmentation followed by structural

parameter and shape analysis

(A) From top to bottom rows: four micrographs of

the dataset DOPC (200 nm size filtered) containing

different lipid structures (top). The corresponding

U-net based segmentation (top center). The re-

sults of membrane identification (bottom center).

Segmentation results superimposed on original

micrographs (bottom). Only closed vesicles

were extracted from the segmentation. Scale bar:

200 nm.

(B) From top to bottom:magnified image of vesicle

(top). Segmentation of the corresponding vesicle:

multiple pixels are covering the bilayer (top cen-

ter). One pixel-wide initial skeleton of the seg-

mentation in yellow (top bottom). Skeleton in yel-

low, corrected skeleton in blue, pixels where

skeleton and corrected skeletons are identical in

green (bottom).

(C) Example stomatocyte vesicle from the DOPC

200 nm size-filtered dataset (left) with curvature

values superimposed on segmented membrane

(right).

(D) Curvature of (C) plotted as a function of contour

pixels.

(E) Example vesicle from the DOPG/DPPG dataset

with two cross sections in blue and orange (left)

with membrane thickness estimates super-

imposed on segmented membrane (right).

(F) Extracted (dashed line) and smoothened (solid)

density profiles from the corresponding cross

section locations in (E) blue and orange, respec-

tively.

(G) Global parameters extracted are diameter,

circumference, distance to adjacent membranes,

and area.

(H) Possible membrane shapes from membrane

structures are as follows: spheres, pears, ellip-

soid, hourglass, oblate, stomatocyte, and elon-

gated pear. These shapes are used for the training

of the default shape classifier later (see also

Figures S1 and S2).
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curvature in membrane segments, as they require the topological

information of the entiremembrane entity. In the following analysis

only completely closed membranes—vesicles—are considered

and analyzed. The calculated curvature values are presented in

two dimensions superimposed on themicrograph or as a function

of the contour length (Figures 2C and 2D).
810 Structure 33, 808–819, April 3, 2025
Another important local membrane

parameter is the underlying bilayer thick-

ness or leaflet separation reflecting the

physical properties and chemical compo-

sitionof themembrane.17 For bilayer thick-

ness estimation, the averaged local cross

sections of the bilayer density are ex-

tracted and smoothened by a Gaussian

filter until two distinct minima can be iden-

tified. The distance between theseminima

is estimated as the bilayer thickness

(Figures 2E and 2F). Due to the inherent

noise in cryo-EM images, the estimated
thickness values along the contour of the vesicle are additionally

smoothened by a Gaussian filter. The bilayer thickness is esti-

mated for each contour pixel of the vesicle locally as well as aver-

aged over one membrane structure, e.g., for one vesicle.

Global structural parameters such as diameter, circumfer-

ence, and area of each identified membrane structure are



Figure 3. Performance indicators of shape

classification

Confusion matrix and classification metrics ac-

curacy, precision, and recall for the default shape

classifier trained on seven different shapes.
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directly extracted based on the membrane contours accord-

ing to their geometric definitions (Figure 2G). Moreover, dis-

tances to other membrane structures are also determined,

e.g., for cases when vesicles contain additional enclosed ves-

icles. Membranes and vesicles occur in a wide variety of

shapes; therefore, classification or clustering into different

classes is desirable for further analysis. As self-contained

membrane structures can only assume a limited set of

shapes,23 they are classified by a small one-dimensional con-

volutional neural network using simulated reference shapes.

Based on our most frequent shape observations, we designed

the default classifier to distinguish seven shapes including

sphere, prolate, tube, pear, stomatocyte, hourglass, and an

elongated pear (Figure 2H). The shape classification makes

use of the fact that the curvature along the contour of the

vesicle has a distinct profile for each shape. To perform clas-

sification, the curvature contour of a given vesicle is length-

normalized by resizing the curvature values to a predefined

vesicle size, interpolating to a fixed number of data points

and the values are shifted to start with the lowest value. The

length-normalized values can then be used by the classifier.

The default classifier identifies the test shapes with an accu-

racy of 98.6% after training on a set of 200 instances for

each shape (Figure 3). In addition, it is possible to add custom

shapes to classify specific vesicles after user definition using

the provided GUI.

Errors in curvature and bilayer thickness estimation
To estimate the precision of the local curvature estimation, we

used another test dataset of DOPC sonicated vesicles. We

compared the local measurements with segmentation-based

global parameters that are generally of higher reliability. For
this purpose, we looked at 500 ideal ves-

icles of highest circularity and of diame-

ters of >1,000 Å. The circularity was

estimated by global segmentation pa-

rameters 4�Area�p
Perimeter2

with 1 being a perfect

circle and 0 being highly non-circular

shapes, which we consider to be a reli-

able measurement. Next, we estimated

the curvature locally and circle radii for

every point of the vesicle using six

different neighborhood sizes (50, 100,

200, 300, 400, and 500 Å, respectively)

and subsequently calculated the differ-

ence between these locally estimated

radii and the globally derived radii

(Figure 4A). The errors obtained with

large neighborhood sizes of 200, 300,

400, and 500 are small at 6.3, 3.4, 2.8,

and 2.6 Å, respectively. When using small
neighborhood sizes of 50 and 100 Å, the mean error in the curva-

ture estimation was substantially higher at 44.8 Å and 18.1 Å,

respectively, presumably due to the increase of noise over signal

available for radii fitting. While small neighborhood sizes can

detect radius changesmore locally, they are more prone to over-

fitting in the presence of higher noise levels in the measure-

ments. As a compromise between precision of the curvature

estimation and locality of the detectable features, we chose a

default neighborhood size of 200 Å.

To evaluate the error of the bilayer thickness estimation,

we examined the forward difference of the estimated bilayer

thickness values. For the same 500 most circular vesicles

described previously, the mean difference and standard

deviation corresponded to 0.14 Å and 0.17 Å, respectively.

Based on these considerations, bilayer thickness of the DOPC

vesicles can be estimated quite precisely with an error to about

0.2 Å. To further reduce the impact of noise in the micrograph

and the limitation of pixel accuracy, we smoothened the esti-

mated thickness values along the contour with a Gaussian kernel

of sigma 2 (Figure 4B). The analysis of the 500 vesicles yielded a

mean bilayer thickness of 28.2 Å and a standard deviation of

1.8 Å. The higher standard deviation than the aforementioned

estimated error is likely due to actual variation in membrane

thickness. In previous studies on DOPC bilayer thickness esti-

mation of 50–60 non-spherical vesicles recorded at the same de-

focus of 2.0 mm errors were estimated between 3.0 and 4.0 Å.24

In comparison, we obtain a slightly smaller but still very similar

variance in the thickness.

Analysis of multiple liposome test datasets
In order to comprehensively test the capabilities of CryoVIA, we

compared multiple size preparations of unilamellar vesicles
Structure 33, 808–819, April 3, 2025 811
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Figure 4. Error estimation of curvature and bilayer thickness determination in a DOPC sonicated dataset using the 500 most circular vesicle

contours found

(A) Median of difference between the globally estimated vesicle radius (ideal) and the locally determined (estimated) curvature radius using different maximum

neighborhood sizes for curvature estimation. For neighborhood sizes larger than 200 Å the errors are smaller than 6 Å.

(B) Bilayer thickness estimations of all contour points yield a distribution of 28.2 ± 1.8 Å. One standard deviation of the mean accounts for 72.4% of included

values.
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made of DOPC and 1,2-dioleoyl-snsn-glycero-3-phospho-

(10-rac-glycerol) (DOPG)/1,2-dipalmitoyl-snsn-glycero-3-phos-

pho-(10-rac-glycerol) (DPPG) (70/30) lipids that are known to

give rise to different ultrastructures. For the first sample, we

considered the sonicated DOPC vesicles, and for the second

and third, we assigned DOPC 50 nm and 200 nm size-filtered

preparations, respectively. For the fourth sample, we generated

vesicles from a DOPG/DPPG (70/30) mixture. For each of the

samples, we prepared plunge-frozen cryo-samples and re-

corded between 251 and 909 micrographs (Table 1). Each data-

set was segmented by a U-net specifically trained to detect

densely packed vesicles. In the four datasets, a total of 48,938

vesicles were reliably identified, while only fully closed mem-

brane structures were considered. The detected vesicles of

each dataset were manually examined and discontinuously

segmented or incorrectly identified vesicular structures were

discarded. Incorrectly detected membranes often have unrealis-

tic sharp bents in the contour and can, therefore, be identified by

their very high curvature values. The GUI provides an easy way

for sorting according to high curvature and quickly removing

the segmentations by a threshold value. For each dataset, the

average amount of detected vesicles per micrograph varied. In

micrographs of sonicated DOPC vesicles, the highest frequency

of vesicles per micrograph (42.8 on average) was found due to

the small circular vesicles. For the 50 and 200 nm DOPC data-
Table 1. Sample and data acquisition details of test datasets

DOPC sonicated DOPC 50 nm size

Lipid concentration (mg/mL) 5 5

Magnification (3 10,000) 49 49

Pixel size (Å/pix) 1.737 1.737

# Frames 45 45

Total dose (e�/Å2) 45 45

Underfocus (mm) 2.0 2.0

# Movies 909 251

# Vesicles detected/vesicle

frequency per micrograph

38,871/42.8 6,061/24.1

812 Structure 33, 808–819, April 3, 2025
sets, the micrographs were often densely packed while the tool-

kit managed to identify on average 24.1 and 5.1 vesicles per

micrograph, respectively whereas the DOPG/DPPG vesicle

preparation only had an average of 4.2 vesicles per micrograph.

When we computed global parameters of circumference,

diameter, and area (Table 2; Figures 5A, S2A, and S2B), we

found the that the determined circumferences of vesicles in the

sonicated DOPC dataset are on average smaller with a median

circumference of 651 ± 189 Å median absolute deviation

(m.a.d.) than in the datasets of the 50, 200 nm size-filtered

DOPC and DOPG/DPPG at 1,466 ± 579 Å m.a.d., 2,263 ±

1,356 Å m.a.d. and 2,368 ± 1,027 Å m.a.d., respectively. When

inspecting the determined diameters of the 50 and 200 nm

size-filtered DOPC vesicles, the median diameters differ from

465 ± 189 Å m.a.d. to 744 ± 458 Å m.a.d., respectively, which

is in agreement with the chosen polycarbonate size filters for

the vesicle preparations. The presence of vesicles with

maximum diameters up to 3,040 and 4,374 Å larger than the

size filters of 50 and 200 Å, respectively, reveals that a consider-

able amount of large diameter vesicles was not removed by the

filter presumably due to the fluid and deformable properties of

the lipid membranes. The sonicated DOPC vesicles showed a

median diameter of 209 ± 58 Åm.a.d. while the DPPG-DOPGda-

taset had a similarly high median diameter as the 200 nm DOPC

vesicles with a median diameter of 737 ± 315 Å m.a.d. The
-filtered DOPC 200 nm size-filtered DOPG/DPPG (70/30)

5 5

49 53

1.737 1.737

45 45

45 45

2.0 2.0

356 514

1,819/5.1 2,179/4.2



Table 2. Circumference, diameter, and area statistics of the four datasets

Maximum Minimum Mean Median Median absolute deviation

Circumference (Å)

DOPC sonicated 15,897 388 961 654 189

DOPC 50 nm size-filtered 8,563 402 1.758 1,466 579

DOPC 200 nm size-filtered 12,566 402 3,117 2,263 1,356

DOPG/DPPG (70/30) 23,473 406 3,077 2,368 1,027

Diameter (Å)

DOPC sonicated 6,052 124 309 209 58

DOPC 50 nm size-filtered 3,040 126 575 465 189

DOPC 200 nm size-filtered 4,374 126 1,041 744 458

DOPG/DPPG (70/30) 7,364 134 960 737 315

Area (nm2)

DOPC sonicated 125,508 104 1,102 302 154

DOPC 50 nm size-filtered 41,469 106 2,875 1,495 1,027

DOPC 200 nm size-filtered 89,825 114 9,941 3,453 3,020

DOPG/DPPG (70/30) 392,323 118 10,793 3,995 2,979
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obtained results including the deviations from the sonication-

only dataset are in agreement with previous studies as sonicat-

ion produces on average smaller vesicles.25 Together, CryoVIA

is capable of automatically determining global size statistics of

multiple lipid vesicle preparations from a large number of cryo-

EM micrographs.

In order to further characterize the local membrane properties

of the chosen test samples, we performed detailed membrane

analysis as part of CryoVIA. As a result, we found that the

average of the mean bilayer thickness of sonicated DOPC vesi-

cles and the DOPG/DPPG vesicles with 27.5 Å and 27.2 Å was

smaller than in the 50 and 200 size-filtered DOPC samples at

29.0 and 30.5 Å (Figure 5B), which is likely a direct result of the

filter treatment of sonicated DOPC vesicles. For DOPG/DPPG

vesicles, the observed difference between the maximum and

minimum bilayer thickness was higher at 22 Å than for the

DOPC vesicles at 15 Å (Figure 5C), suggesting larger local struc-

tural changes, possibly due to the presence of unsaturated

DPPG molecules. Inspection of DOPG/DPPG vesicles identified

with high bilayer thickness supports the measured quantities

visually (Figure 5D). Relating the bilayer thickness with diameter

revealed an overall correlation between the two quantities for the

vesicles taken from the four datasets (Figure 5E). Interestingly,

sonicated DOPC as well as DOPG/DPPG samples showed a

more focused distribution of diameter with bilayer thickness

whereas the size-filtered datasets show a more continuous dis-

tribution of vesicles.

In order to further characterize the shapes of the four vesicular

samples, we clustered them using the pre-trained default

CryoVIA shape classifier. For the four samples, the most promi-

nent shape was the spherical vesicle, in particular for sonicated

DOPC and DOPG/DPPG vesicles as they made up more than

95% of all vesicles (Figure 6A). The 50 and 200 nm size-filtered

DOPC samples showed more shape diversity as other shapes

took up more than 13 and 20% share, respectively. The majority

of the remaining vesicles were classified as prolates that tended

to be close to spherical as well (Figure 6B). Examples of classi-

fied shapes were inspected and overlayed onto each other
(Figures 6C and 6D) as well as a small share of unusual shapes

not found in the default training set (Figure S2C). The complete

analysis of the 2031 micrographs took 3.5 h and a total of

48,930 vesicles were identified and analyzed (see STAR

Methods). In conclusion, CryoVIA reliably extracted local mem-

brane characteristics and consistently classified the majority of

the shapes of the four differently prepared vesicle datasets.

Membrane remodeling effects of bacterial ESCRT-III
member PspA
To test further the utility of the developed CryoVIA tools on cryo-

EM data obtained from protein lipid mixtures, we turned to a pre-

viously characterized preparation of small unilamellar vesicles

(SUVs) from E. coli polar lipid extract (EPL) incubated with the

bacterial ESCRT-III protein PspA.8 Previously, it was observed

that upon addition of PspA the SUVs were converted into larger

vesicles in comparison with the control of EPL alone and that

bilayer thickness increased for large vesicles. This time, we

applied CryoVIA to the two datasets, respectively (Table 3).

Initially, we benchmarked the capabilities of the pre-trained

network. Prior to segmentation, high-pass filtering was applied

to compensate for the strong contrast effects of the lacey carbon

foil. This way, a total of 50 randomly selected micrographs were

segmented with the provided pre-trained network. Based on the

160 manually curated reference vesicles, the pre-trained neural

network detected 146 correctly while only 8 had been missing,

reaching an accuracy of 0.91. The small fraction of missing ves-

icles is composed of non-closed vesicles. While the average

circumference of membranes was similar between EPL SUVs

and EPL + PspA samples, the dataset containing PspA gener-

ated membranes of larger lengths (Figure 7A). When focusing

the analysis on membranes with a circumference greater than

5,000 Å (Figure S2D), the difference between the largest vesi-

cles/membranes in both datasets becamemore apparent. While

the length of EPL SUV membranes rarely exceeded 6,000 Å, the

EPL membranes including PspA were mostly found evenly

distributed between 5,000 and 8,000 Å with a tail fraction even

longer than 10,000 Å. This analysis was limited by the fact that
Structure 33, 808–819, April 3, 2025 813
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Figure 5. Determined quantities of circumference, diameters, and membrane thickness from four lipid samples

(A–C) Violin plots of the evaluated vesicles from four datasets (DOPC sonicated (n = 38871), DOPC 50 nm size-filtered (n = 6061), DOPC 200 nm size-filtered

(n = 1819), and DOPG/DPPG (70/30) (n = 2179) with circumference (A), mean bilayer thickness distribution (B), and range (C). The white dot within each violin

indicates the median, while the shaded area represents the kernel density estimate of the data distribution. The inner gray box represents the 25%–75% in-

terquartile range, while the vertical gray line includes values inside the interquartile range multiplied by 1.5.

(D) Example images for high bilayer thickness of the DOPG/DPPG dataset. The vesicle image with a dashed box indicating the region of zoomed inset (left). The

thickness map along the segmented contour from yellow to red with red being the highest thickness (center). Zoomed membrane segment with the highest

thickness value (right).

(E) Kernel density distribution plots of diameter against the mean bilayer thickness. The density values of each distribution are normalized in such a way that the

sum equals 1 (see also Figure S2).
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a lot of themembrane structureswere larger than the dimensions

of the micrographs and were, therefore, not automatically

analyzed due to the non-closed entity present on themicrograph

(Figure S3A). By contrast, in the respective publication,8 the au-

thors had annotated membranes with a length of over 15,000 Å

by fitting an ellipsoid shaped vesicles the beyond the micro-

graph, which we did not implement in CryoVIA. Nevertheless,
814 Structure 33, 808–819, April 3, 2025
the clear trend in size difference between EPL SUVs and

EPL+PspA as a result of PspA-mediated membrane fusion was

confirmed by the CryoVIA workflow.

When analyzing themean bilayer thickness of the two datasets

(Figure 7B), at first sight the bulk distribution looked very similar

with a mean thickness of around 30 Å and most values found

25–35 Å. Nevertheless, the EPL+PspA sample had an additional
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Figure 6. Shape classification of sonicated, 50, and 200 nm size-filtered DOPC and DOPG/DPPG vesicles

(A) Bar graph of the shape distribution of the four datasets.

(B) Bar graph of the shape distribution of all datasets excluding spheres as they make up the majority of shapes.

(C) Example vesicle images of shapes found in micrographs. From top left to bottom right: prolate, hourglass, pear (from DOPC 200 nm sample, respectively),

elongated pear (DOPC sonicated), tube (DOPC 200 nm), and stomatocyte (DOPC sonicated).

(D) A total of 7 classified shapes, 10 aligned and superimposed experimentally segmented vesicle contours. The 10 vesicles with the highest confidence for each

shape in the shape classification are displayed (see also Figure S2).

ll
OPEN ACCESSResource
distribution of membranes with a bilayer thickness of around

45–55 Å. When we examined the bilayer thickness of mem-

branes with a length greater than 5000 Å (Figures S2D and

S2E), we detected a shift toward a greater thickness in the

PspA dataset with a mean of 42 Å compared to the new mean

of 33 Å in the EPL SUV dataset, thus confirming the reported

conclusions that larger vesicles on average possess an

increased bilayer thickness.8 Moreover, when correlating the

mean bilayer thickness with circumference a second population
Table 3. Sample and cryo-EM data acquisition details of EPL

SUVs and the EPL+PspA mixture8

EPL SUVs EPL+PspA

Pixel size (Å/pix) 0.681 0.681

# Frames 50 50

Total dose (e�/Å2) 30–32 30–32

Underfocus (mm) 2.0–3.0 2.0–3.0

# Movies 1525 1531

# Closed vesicles detected

Total/per micrograph

1,576/1.0 2,773/1.8
emerged with bilayer thickness greater than about 45 Å mostly

found in vesicles of large circumference (Figures 7C and 7D). It

should be noted most of the large circumference membranes

with a thicker bilayer exceeded the dimensions the micrograph

(Figure S3B) and thus limiting the precise reporting of this

apparent structural property. For more precise reporting and

analysis through CryoVIA, lower magnification micrographs

with larger fields of views will more accurately capture structural

changes of large membrane entities. We demonstrated that

CryoVIA can be successfully employed to protein lipid mixtures

in order to characterize the protein-inducedmembrane remodel-

ing effects on lipids.

DISCUSSION

We introduced a dedicated CryoVIA software package for the

evaluation of membrane structures in cryo-EM datasets.

CryoVIA comprises the complete image analysis workflow

from neural-network segmentation, membrane structure identifi-

cation followed by the structure analysis (Figure 1). When com-

plete membrane structures are identified, they are subjected to

the analysis of local and global structural parameters such as
Structure 33, 808–819, April 3, 2025 815
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Figure 7. Membrane remodeling analysis of

the EPL+PspA dataset

(A) Violin plot of the membrane length distribution.

(B) Violin plot of the mean bilayer thickness dis-

tribution.

(A and B) The white dot within each violin indicates

the median, while the shaded area represents the

kernel density estimate of the data distribution.

The inner gray box represents the 25%–75% in-

terquartile range, while the vertical gray line in-

cludes values inside the interquartile range multi-

plied by 1.5. The sample size is noted below the

label.

(C) Scatterplot of mean bilayer thickness against

circumference of the EPL SUVs dataset.

(D) Scatterplot of mean bilayer thickness against

circumference of the EPL +PspA dataset (see also

Figure S3).
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membrane thickness and curvature with high precision as well

as diameter, circumference, and area followed by classification

into distinct membrane shapes (Figures 2, 3, and 4). CryoVIA

was tested on the analysis of four different vesicle datasets

confirming relevant differences induced by the preparation pro-

cedure and membrane composition (Tables 1 and 2; Figures 5

and 6). Moreover, CryoVIA was applied to quantitively evaluate

membrane shape changes of a previously reported bacterial

ESCRT-III membrane remodeling protein PspA (Table 3;

Figure 7).

The here obtained membrane thicknesses were determined

directly from the cryo-EM images with an estimated spatial pre-

cision of ±0.2 Å. When image intensities are used for thickness

estimation, they interestingly correspond to the lipid hydropho-

bic thickness (2DC).
17 This thickness is given by the distance

covering the lipid chains embedded present in the bilayer and

is slightly lower than the expected distance between the denser

phosphate head groups (DHH) that are commonly obtained by

X-ray or neutron scattering methods. For instance, in the case

of DOPC (50 nm size filtered) the 2DC and DHH were determined

by small angle X-ray scattering (SAXS) at 29.3 and 35.0 Å,

respectively. The same study reported cryo-EM based

measured bilayer thickness of DOPC lipids (50 nm size filtered):

mean thickness value of 29.7 ± 0.6 Å matching the hydrophobic

thickness (2DC).
17 The here estimated bilayer thickness of the

DOPC 50 nm size-filtered test dataset at 29.0 Å compares well

with the reported cryo-EM value of 29.7 Å. The slight differences

are likely explained by different pixel size calibrations. Reasons

for the deviation to the actual phosphate head group distance

DHH arise from the smearing of the obtained lipid intensities

due to the 2D projection through a spherical 3D lipid membrane

convolved with the contrast transfer function (CTF). For DOPG

and DPPG, the lipid hydrophobic thicknesses 2DCwere reported

to be 27.2 Å and 26.8 Å, respectively, albeit at elevated temper-

atures of 50�C.26 For the mean bilayer thickness of DOPG/DPPG

using the CryoVIA method, we obtained 27.2 Å that is in close
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correspondence to the previously re-

ported values. Together, we find the

CryoVIA estimates on membrane thick-

ness very precise on sub-Å-scale and ac-
curate on an Å level as they are in good agreement with previ-

ously reported values by scattering methods. Regardless of

minor deviations, CryoVIA can be used to reliably estimate mem-

brane thickness in particular for comparative studies that inves-

tigate membrane thickness changes.

Imaging of vesicular lipid structures using cryo-EM has been a

direct way to visualize and characterize the structures at high

resolution. In some contexts, negative staining electron

microscopy has been used. However, as the technique requires

specimen drying followed by a collapse of the lipid structures,

the detailed structural properties are not faithfully maintained

for imaging. In contrast, the main advantage of cryo-EM is the

structural preservation of the specimen in a fully hydrated

manner after plunge-freezing them in vitreous ice. However, it

should be mentioned that during the freezing procedure, the

volume of the starting droplet is reduced drastically into water

films of 40–80 nm of thickness imposing stress and crowding

of the large lipid structures. This preparation procedure excludes

lipid structures from the analysis that are larger than the

dimensions of the ice film thickness such as giant unilamellar

vesicles. Nevertheless, although the observed lipid structures

of appropriate sizes may suffer from some deformation, the

cryo-EM method presents a direct and faithful way of imaging

lipid structures in aqueous solution.

The presented CryoVIA was developed and tested using

cryo-EM micrographs of purified lipid-water mixtures. In this

case, the structural analyses are restricted to the images in

two dimensions. The analyzed micrographs were recorded

with a dose of 20–30 e�/Å2 at an underfocus range between

2.0 and 3.0 mm. Previous analyses revealed that defocus series

did not have an effect on the estimated bilayer thickness

measurements while images close to focus suffered from poor

overall contrast problematic for image analysis.24 The precision

and easy accessibility to quantifications of lipid shape changes

opens up new possibilities to study membrane-remodeling pro-

teins8–10 such as dynamin and ESCRT-III proteins.
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Vesicle identification in cryo-micrographs can also be used to

aid in solving the structure ofmembrane proteins using single par-

ticle structure determination.27 Although not implemented,

CryoVIA applications could also be extended to inform particle

picking for single-particle structure determination of bilayer-

embedded protein complexes, e.g., by selecting protein com-

plexes that reside in vesicles of particular diameter ranges and

lipid curvatures in analogy to the previously published tool Vesicle

Picker.28 Various methods for solving structures of membrane-

bound proteins in liposomes have been proposed.29 This way,

proteins can be directly isolated in cell-derived membrane vesi-

cles30 and exposed to additional stimuli, e.g., electric fields31

and buffer gradients.32,33 Although CryoVIA was not designed

for single particle protein structure determination, it could be

used to enhance the homogeneity of the structure by classifying

picked particles through membrane curvature or vesicle shapes.

Nevertheless, the current implementation of CryoVIA focuses on

analyzing themembrane and vesicle structures themselves rather

than solving the structure of membrane proteins. Lipid membrane

analysis tools in three dimensions have been developed for elec-

tron tomography.18,20We here show thatmany of the conclusions

on ultrastructural lipid changes can already be observed in two-

dimensional images at better signal-to-noise ratios without the

need of tilt-series acquisition and tomographic reconstructions.

Moreover, the application of zero-tilt imaging has already suc-

cessfully been extended to the in situ cellular environment34

and, therefore, the analysis of lipid structures from cellular images

based on two-dimensional micrographs are expected to be

possible. The results of the quantitative lipid structure analysis

will largely depend on the initial results of segmentation, and,

therefore alternative and more tailored membrane segmentation

approaches19,35 could be combined with the analytical tools

from CryoVIA. CryoVIA’s ability to process multiple datasets effi-

ciently streamlines the analysis process. This feature is particularly

advantageous when dealing with large-scale comparative studies

including high-throughput experiments.

CryoVIA is a python-based program that is designed to run

quickly onadesktop computer to run the analysis in a user-friendly

manner, i.e., a dataset of 2031 micrographs can be fully analyzed

within 4 h of runtime on a dedicated work station (see STAR

Methods). One of the key advantages of our toolkit is the ability

to accurately measure key membrane parameters such as bilayer

thickness, diameter, and shape of vesicles. This level of precision

is critical for understanding the structural andmolecular variations

of biological membranes of vesicles and organelles. The toolkit’s

user-friendly interface and algorithms ensure that researchers,

regardless of their expertise, can access and utilize these analyt-

ical tools. The presented toolkit offers a robust and accessible so-

lution for the analysis of membranes in cryo-EM micrographs

opening up new avenues to study protein lipid interactions. More-

over, the software can also be employed to address experimental

challenges inadjacent fieldsof structural biology suchasnanopar-

ticles used in drug delivery as well as soft-matter science.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

DOPC Avanti Research 850375C-25mg

DOPG Avanti Research 840475C-25mg

DPPG Avanti Research 840455P-25mg

Deposited data

Micrographs DOPC (sonicated) This paper EMPIAR:12520

Micrographs DOPC (50 nm size-filtered) This paper EMPIAR:12523

Micrographs DOPC (200 nm size-filtered) This paper EMPIAR:12521

Micrographs DOPG/DPPG (70/30) This paper EMPIAR:12522

Micrograph datasets from

Junglas et al. 20218

1. EPL SUVs

2. EPL SUVs incubated with PspA

Junglas et al. 20218 N/A

Software and algorithms

CryoVia with all included packages This paper https://github.com/philipp-

schoennenbeck/CryoVia

https://doi.org/10.5281/zenodo.14335953

matplotlib https://matplotlib.org/ https://doi.org/10.1109/MCSE.2007.55

https://github.com/matplotlib/matplotlib

pandas https://pandas.pydata.org/ https://zenodo.org/records/13819579

https://github.com/pandas-dev/pandas

seaborn https://seaborn.pydata.org/ https://doi.org/10.21105/joss.03021

https://github.com/mwaskom/seaborn

statannotations statannotations https://doi.org/10.5281/zenodo.7213391

https://github.com/trevismd/

statannotations

EPU ThermoFisher Scientific https://www.thermofisher.com/de/de/

home/electron-microscopy/products/

softwareem-3d-vis/epu-software.html

CryoSparc v4 Punjani et al.,201715 https://cryosparc.com/

Other

Quantifoil Grids R1.2/1.3 Cu 200 mesh Electron Microscopy Sciences Cat#Q210CR1.3
METHOD DETAILS

Liposome preparation
Chloroform dissolved 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol)

(DOPG) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DPPG) were purchased from Avanti Polar Lipids. Lipid films

were produced by mixing the lipid solutions (100% DOPC or 70% DOPG/30 % DPPG (w/w) mixture) and evaporating the solvent

under a gentle stream of nitrogen and followed by vacuum desiccation overnight. The lipid films were rehydrated in 10 mM

Na-Phosphate buffer pH 7.6 (DOPC) or 10 mM Tris-HCl pH 8.0 (DOPG/DPPG) by shaking for 30 mins at 37�C (DOPC) or 50�C
(DOPG/DPPG). The resulting liposome solution was subjected to five freeze-thaw cycles. The liposome solution was either

used as is (DOPG/DPPG), or SUVs (small unilamellar vesicles) were generated by extrusion of the liposome solution through a porous

polycarbonate filter (50 nm pores, 200 nm pores) or tip sonication (40% power output, 50% duty cycle, 5 min) using an Ultrasonic

Homogenizer (Biologics, Inc.).

Electron cryo-microscopy
Liposome grids were prepared by applying 4 mL sample (for sample details see Table 1) to glow-discharged (PELCO easiGlow Glow

Discharger, Ted Pella Inc.) Quantifoil grids (R1.2/1.3 Cu 200 mesh, Electron Microscopy Sciences). The grids were plunge-frozen in
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liquid ethane using a Leica EM GP2 set to 80% humidity at 10�C (sensor aided backside blotting, blotting time 3 – 5 s). Movies were

recorded in underfocus on a 200 kV Talos Arctica G2 (ThermoFisher Scientific) or a 300 kV Titan Krios G4 (ThermoFisher Scientific)

electron microscope equipped with a Bioquantum K3 (Gatan) or Biocontinuum K3 (Gatan) detector, respectively, while operated by

EPU (ThermoFisher Scientific). Movie frames were gain corrected, dose weighted, aligned, binned to the physical pixel size and the

CTF of the micrographs was estimated using cryoSPARC Live.15 Micrographs with poor ice or poor CTF fit were removed.

Segmentation
Segmentation was performed by a U-Net with image patches of 256 x 256 pixels, a depth of 4, 32 filters in the first layer, a kernel size

of 3, 2 convolution layers per depth and a training rate of 4*10-4. A total of 92 images were manually segmented and used as training

data with a pixel size of 7 Å per pixel. As the micrographs of the analyzed data sets contained a large number of overlapping and very

closely packed membranes, the following specific strategy was applied. Manually segmented images were passed to the contour

improvement algorithm and only corrected contours were used for the training of the U-Net. To obtain a consistently thin segmen-

tation centered at the lipid bilayer, the contour pixels were extracted and dilated for one iteration. For images of less densely packed

membranes, this step is not required and not advisable as it removes a lot of the training data. Four different segmentation strategies

were tested and evaluated for their recall rates (Table S1). While the overall metrics ranked highest for strategy I using all images, we

still decided for strategy IV as the results were robust for separating densely packedmembranes inmicrographs and provided thinner

segmentation contours.

As part of feature identification, the segmented tracks need to be pruned in particular to disentangle overlapping membrane

structures. For this step, the connected components of the segmentation were extracted and for each component the skeleton

was calculated (Figure S4A). Subsequently, the skeleton was converted to a graph network. According to graph theory, nodes repre-

sent the crossovers of membrane skeletons and edges represent the membrane skeleton segments connected to crossover nodes.

(Figures S4B and S4C). Each node was then evaluated to connect membrane segments that may be part of the same membrane by

calculating the angle between the segments. When this angle was larger than 125�, the segments were not combined whereas when

two segments formed a straight line, the skeletons weremerged into one continuousmembrane structure. The segment combination

that did not form a straight line but had an angle smaller than 125� was evaluated by the curvature and the corresponding center of the

fitted circles (Figures S4D and S4E). The segments were combined when these values were similar. The output of this method is a

binary segmentation mask for each individual membrane (Figure S4F). In this approach, overlapping membrane segments can be

assigned to continuous underlying membrane stretches.

For subsequent parameter determination, the refinement of the membrane bilayer center is critical as the segmentation procedure

inconsistently detected inner and outer leaflet separately. In order to remove those ambiguities, we convolved the micrograph with a

bilayer-like kernel consisting of a ring where the outer radius represents half the maximum bilayer thickness and the inner radius was

chosen such that the distance between the outer and inner radius corresponded to the leaflet thickness. As a result of this

convolution, the bilayer membrane signal was enhanced and presented by a single line that was boosted by the application of

the Frangi filter, which had been developed to enhance vessel-like structures.22 Lastly, the detected lines were further simplified us-

ing interpolation through selected points of highest pixel intensities of the filtered image. When this method of detecting the bilayer

center failed due to weak signal, the segmented membranes were labeled unsuitable for more detailed membrane bilayer thickness

analysis. In order to detect grid holes for feature removal, the following steps were preformed: given the priorly known hole size of,

e.g., 1.2 or 2.0 mm, we created a binary reference circle with the appropriate size of the grid hole. Subsequently, we performed a

convolution of the micrograph with the reference image and calculate the difference between the mean pixel values outside of the

circle and inside of the circle for every possible circle coordinate. The coordinate with the highest difference was the most likely

spot for the center of the grid hole.

Curvature estimation
The local curvature is calculated at each contour point of the membranes. For each point j, a neighborhood Mj is extracted:

Mj =
�
x˛V : djðxÞ<max dist

�
(Equation 1)

where V is the set of all points assigned to the current membrane, dj(x) is the distance between j and x along the contour of the

membrane, and max_dist is a set variable that affects the sensitivity of the curvature estimation. For closed membranes, the

maximum value for max_dist is c
4, where c is the circumference of the closed membrane.

In the next step, the curvature curvj at each point j is estimated by

curvj :=

 P
m˛Mj

eucl distðcenterj;mÞ��Mj

��
!� 1

(Equation 2)
centerj := y˛N2 where y is one of the minima in
n
dist sqjðxÞ : x˛N2

o
(Equation 3)
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dist sqjðrÞ :=
X

m˛Mj

 
eucl distðr;mÞ �

P
n˛Mj

eucl distðr;nÞ��Mj

��
!2

; r ˛N2 (Equation 4)

where eucl_dist(x, y) is the Euclidean distance between x and y, centerj is the center of the best-fitting circle for the neighborhood of

point j, and dist_sq(r) is the sum of squares of the differences between the Euclidean distances of r and x, and the mean of the

Euclidean distances between all points ofMj and r for all points x inMj. The calculation of the sign of the curvature can only be reliably

determined when the membrane is part of a closed structure. For this scenario, the calculation was performed for each point j by

taking a small step in the direction of the centerj. When the resulting point was inside the closed vesicle, the curvature was considered

positive and when the resulting point is outside the closed membrane, the curvature is considered negative. For non-closed mem-

branes, determining the sign of the curvature value was estimated such that the vector from j towards the centerj was on the same

side of the tangent vector as the direction towards the previously estimated normal vector. An illustration of the curvature estimation

is shown in Figure S4G.

Shape classification
Vesicles were found in varying sizes and orientations on the micrographs. As the curvature decreases with increasing vesicle size,

vesicles must be normalized to have consistent values for a one-dimensional convolutional neural network classifier. As a first step,

the vesicles were rotated such that the two most distant points of the contour was aligned horizontally by rotating the vesicle. After

rotation, the vesicle was also resized to a fixed size of 200 pixels between two points used for rotation. The ratio of the new vesicle

width to the originally rotated vesicle width was then used to normalize previously calculated curvature values. To provide a consis-

tent input to the classifier, the curvature contour was interpolated to 200 values. For the classification, the contour was shifted to the

smallest curvature value at the beginning and reversed when the first maximum appeared in opposite direction.

Bilayer thickness estimation
As the segmentation and the contour detection are usually performed on a lower resolution micrograph (the default network seg-

ments at 7 Å/pixel), the contour has to be refined to the original resolution of the micrograph. A modified procedure based on local

pixel averaging from Heberle et al.17 was employed: After interpolating the contour pixels onto the original micrograph size, the dis-

tance between the contour pixel and all pixels surrounding the contour pixels was estimated up to a predefined maximum distance.

The distance of pixels within the vesicle was considered as negative to differentiate between the different directions. In the next step,

all pixel density values for the same distance bin were smoothened with a Gaussian filter with a sigma value of 10 Å, averaged and

plotted as a function of distance from the contour. The values were smoothened by a Gaussian filter until two distinct minima can be

extracted on either side of the contour and their distance taken as the bilayer thickness.

Graphical user interface
CryoVIA is implemented in python and is available as a graphical user interface (GUI) for ease of use. The GUI is split into four

sections:

1. Segmentation training (Figure S5A)

In the first section, the user can create, copy or delete specific neural networks models. The default model is trained on the data

sets we analyzed but additional models can be created by training a completely blankmodel or fine-tuning existing models. Depend-

ing on the variance in different data sets, it is helpful to use different models for different data sets. The segmentation section also

provides a method to manually annotate training data by opening a plugin in napari.37

2. Shape classifier training (Figure S5B)

The second section can be used to create new shape classifier models. The user can add and remove specific shapes frommodels

and create new shapes by drawing in the provided window.

3. Foil hole edge detection (Figure S6A)

The third section can be used to detect and exclude carbon outside of foil holes in micrographs. This detection can be directly

applied to already created data sets or the correct parameters can be identified and applied during the data set analysis.When detec-

tion is applied to data sets, membranes found outside of the foil holes will be removed from the data sets. This task is also available as

a standalone software and can be applied to particle picking jobs of Relion38 or CryoSparc.15

4. Membrane analysis (Figure S6B)

The last section is the main part of the GUI and can be used to create new data sets, run segmentation and analysis on data sets

and to inspect and clean data sets. The inspection offers various filters and possibilities to inspect single membranes found in the

data sets. It is also possible to compare the results of different data sets and export various results as csv-files.
e3 Structure 33, 808–819.e1–e4, April 3, 2025
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Computational resources
For the analysis of the four datasets, we used five threads with 10 parallel jobs on a server with 56 Intel(R) Xeon(R) Gold 5120 CPU @

2.20GHz processors and two Nvidia Geforce RTX 4080 GPUs for the segmentation. The segmentation including the structure iden-

tification and the analysis of the four datasets with a total of 2031 micrographs took 3.5 h yielding a total of 50,561 vesicles. The seg-

mentation and the analysis took 72 and 138min, respectively. On average, the segmentation of a micrograph took 2.1 s and the anal-

ysis of a single vesicle 0.2 s. These values varied depending on the hardware, the size of the micrographs, the number of vesicles

found permicrograph and the size of the vesicles. The 50,561 identified vesicles were reduced to 48,930 by using filtering andmanual

clean up provided by the GUI.

QUANTIFICATION AND STATISTICAL ANALYSIS

The relevant data columns were exported from CryoVIA and figures were created using matplotlib,39 seaborn,40 pandas,41

statsannoations.42 To evaluate the accuracy of the default vesicle shape classifier, we used the standard definition of accuracy,

precision, and recall. The accuracy of the curvature calculation with different neighborhood sizes was estimated by calculating

the difference between the estimated radii and the ideal radii for the most circular segmented vesicles and visualize the median

for each of these vesicles. The same vesicles were used to visualize the distribution of the estimated bilayer thickness to show a

high correlation to a Gaussian distribution. Correlation between the vesicle diameter and bilayer thickness was visualized by a

kernel density estimation plot using the python seaborn package. To show differences between the circumference and mean

thickness distribution of the EPL SUVs and EPL+PspA datasets a Welch’s t-test was calculated by the python package

statannotations.
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