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Phenylalanine-glycine (FG) repeats are present in many intrin-
sically disordered proteins and have been linked to multiple 
cellular processes1–4. Sequence analysis has identified more 

than 600 proteins containing FG repeats5. Nucleoporins contain-
ing FG repeats form the permeability barrier of the nuclear pore 
complex4,6–8. In addition, they are involved in cancer-associated bio-
molecular condensates, the so-called oncogenic transcription factor 
condensates9–12. FG-repeat proteins are also present in several other 
membraneless organelles3. Increasing evidence further links cellular 
mislocalization of FG-repeat-containing nucleoporins to pathologi-
cal protein misfolding and aggregation in neurodegenerative dis-
eases, including Alzheimer’s disease, amyotrophic lateral sclerosis 
and frontotemporal dementia13,14. Mutagenesis in combination with 
functional assays has provided ample support for the critical role 
of FG repeats in these cellular processes. However, the nature of  
the underlying molecular interactions between FG repeats is  
largely unknown.

An important FG-repeat protein associated with multiple physi-
ological and pathological processes is the human nucleoporin 98 
(Nup98)2. In certain types of leukaemia, the FG-repeat domain of 
Nup98 is fused to a chromatin-binding domain as a result of recur-
rent chromosomal translocations15. The oncogenic properties of 
the Nup98 fusion proteins are related to their ability to concen-
trate into condensates9–12. Site-directed mutagenesis demonstrates 
that the ability to self-associate and form oncogenic transcription 
factor condensates critically depends on the FG repeats of Nup98  
(refs. 9,11,12). Consistent with the formation of Nup98 condensates 
in cells, the FG repeats of several nucleoporins phase separate 
in vitro into liquid-like droplets and solid-like condensates above 
critical concentrations as low as 20 nM (refs. 5,16). The biophysical 
properties of particles and gels of FG-repeat Nups have been char-

acterized previously in great detail5,17–20. The FG-repeat domain of 
Nup98 also facilitates the aggregation of the protein tau associated 
with Alzheimer’s disease in vitro and accumulates in the cell bodies 
of neurons that contain tau aggregates14.

Through a combination of NMR spectroscopy and cryoelectron 
microscopy (cryo-EM), here we provide insights into the dynamic 
structure of the FG-repeat domain of Nup98 at the single residue 
level, reveal a stable preformed structure and define the molecular 
organization of cohesive FG–FG interactions in reversible FG clus-
ters at high resolution.

Results
Molecular organization of the FG-repeat domain of human 
Nup98. The amino-terminal 384 residues of human Nup98 (named 
Nup98FG) have a high density of FG repeats comprising in total 41 
phenylalanine residues. We recombinantly expressed and purified 
Nup98FG (see Methods and Supplementary Materials). Nup98FG 
is soluble and predominantly disordered at pH 3 (Fig. 1a,b and 
Supplementary Fig. 1). This is in agreement with previous reports 
that at acidic pH the net charge of proteins changes and the  
hydrophobic interactions of aromatic rings are attenuated,  
promoting the solubility of proteins that are highly insoluble at native  
pH (refs. 21,22).

To gain insight into the soluble structure of Nup98FG, we per-
formed extensive NMR measurements on both Nup98FG and a large 
number of shorter Nup98FG segments (Supplementary Figs. 2 and 3).  
In addition, NMR spectra were recorded at both native pH and 
pH 3 (Fig. 1c and Supplementary Fig. 2). Through this integra-
tive approach, we overcame the challenges of a highly repetitive 
sequence and strong aggregation tendency5 and determined the 
sequence-specific resonance assignment of Nup98FG at native pH 
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(Supplementary Table 1). The sequence-specific assignment showed 
that uniformly spaced, short segments of extended β-structure (Fig. 
1d,e), which coincide with phenylalanine residues, are abundant in 
the FG-repeat domain of Nup98.

Preformed structure for messenger RNA export factor bind-
ing. The nuclear membrane spatially separates transcription and 
translation. The mRNA synthesized in the nucleus has to cross the 
nuclear membrane by passing through the permeability barrier of 
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Fig. 1 | Dynamic structure of Nup98FG. a, Macroscopic changes in samples of the FG-repeat domain of Nup98FG at pH 3, after adjusting to pH 7 and then 
back to pH 3 before incubation (top row) and after incubation at 65 °C for 30 min (bottom row). b, CD spectra of Nup98FG in the soluble phase (pH 3) and 
in the condensed/aggregated phase (pH 7). c, Two-dimensional 1H–15N heteronuclear single quantum coherence spectrum of Nup98FG at pH 7 (started 
~5 min after adjusting the pH from 3 to 7). d, The conformational properties of soluble Nup98FG at pH 6.8. The likelihood of residue-specific backbone 
torsion was determined from the experimental NMR chemical shifts using TALOS-N. The propensity for prion-like domain (PLD) structure and the location 
of FG motifs are shown above (red, FG; yellow, SAFG; cyan, GLFG; green, FXFG). e, The β-strand motifs in the N-terminal prion-like domain (taken from d). 
The conformation derived from TALOS-N is shown as the inset; the colouring is based on the threshold propensity shown in the graph. Phenylalanine and 
leucine side chains are displayed. f, Preformed secondary structure of the GLeBS-binding motif of monomeric unbound Nup98FG (taken from d). The inset 
shows the crystal structure (Protein Data Bank identification (PDB ID): 3MMY) of the GLeBS-binding motif in the complex with the mRNA export factor 
Rae1. Regions of the crystal structure that are preformed (>0.2) prior to binding to Rae1 are coloured (the α-helical structure is shown in blue and the 
β-structure in magenta).
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the nuclear pore complex. This passage is achieved with the help 
of mRNA export factors. The mRNA export factor Rae1 binds to 
the conserved Gle2-binding sequence (GLEBS; residues 157–213)23, 
which is located between the two prion-like FG-rich regions of 
Nup98 (Fig. 1d,f). When complexed with Rae1, the GLEBS domain 
of Nup98 folds into two short β-strands, a short α-helix and a longer 
α-helix comprising residues 200–210 (the structure is displayed in 
the inset of Fig. 1f)23. Residue-specific analysis of the NMR chemi-
cal shifts (Fig. 1d) revealed that residues 200–210 of Nup98FG, which 
contain the core GLEBS motif24 and form the long α-helix in the 
complex with Rae1 (ref. 23), are folded into a stable α-helix prior to 
binding to Rae1 (Fig. 1f). The prefolded α-helical structure of the 
GLEBS motif may decrease the entropic costs of binding to Rae1, 
thereby promoting the interaction of the GLEBS motif of Nup98 
with Rae1.

Amyloid-like interactions of Nup98 FG repeats. To gain insight 
into the structure of cohesive FG–FG interactions, we studied the 
molecular properties of aggregated Nup98FG. When we changed the 
pH from 3 to 7, solutions of Nup98FG rapidly turned turbid (Fig. 
1a) and the circular dichroism (CD) spectrum changed markedly 
(Fig. 1b). For a ‘regular’ β-structure, a minimum at 218 nm and a 
maximum at 200 nm are expected. The CD spectrum of Nup98FG 

at pH 7, however, does not exhibit a maximum at 200 nm and the 
minimum is located at 223 nm. A minimum at ~223 nm was pre-
viously observed for fibrillar amyloid-β(1–40)25, while the lack of 
the maximum at 200 nm is probably due to a substantial amount of 
remaining disordered structure in Nup98FG at pH 7.

Further support for the pH-induced changes in the molecular 
properties of Nup98FG was obtained by microscopy. At pH 7, clus-
ters of particles were observed by differential interference contrast 
microscopy (Fig. 2a, left). Notably, the particles were fluorescent 
when we exposed the sample to the amyloid-specific dye thio-
flavin T (ThT) (Fig. 2a and Supplementary Fig. 4). In addition to 
these ThT-positive particles/particle clusters, amyloid fibrils were 
detected by electron microscopy (EM; Fig. 2b). Taken together, 
these experiments showed that the FG-repeat domain of Nup98, 
similar to the FG-repeat domains of other nucleoporins26,27,  
readily forms ThT-positive particles and amyloid-like structures  
at native pH.

To investigate whether specific regions in Nup98FG favour the 
formation of amyloid-like aggregates, we studied the aggrega-
tion propensity of 18 shorter segments, which together cover the 
FG-repeat domain of Nup98 (Fig. 2c). We quantified the aggrega-
tion propensity of each segment by the time-dependent changes 
in NMR signal intensity. The analysis showed that the aggregation 
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Fig. 2 | Nup98FG forms an amyloid-like structure. a, Differential interference contrast (left) and fluorescence (right) microscopy images of two examples 
of aggregates/condensates formed by Nup98FG. The fluorescence originates from staining with ThT. b, Negative-stain eM images of Nup98FG aggregates. 
c, Self-association propensities of 18 Nup98FG fragments. The residue numbers of each fragment in the Nup98FG sequence are indicated above the plot. The 
percentage propensity to self-association (condensation/aggregation) corresponds to the difference between the NMR signal expected for that peptide 
concentration and that observed after 1 day of incubation at 5 °C. High, intermediate and low self-association propensities are coloured magenta, purple 
and violet, respectively. For the fragments showing no propensity data, the NMR signal remained unchanged and the connecting dashed lines are shown 
in blue. The error bars represent the s.d. based on the NMR signal-to-noise ratio. d, Residues 85–124 of Nup98 (Nup98FG85), which are the most prone to 
self-association, as indicated in c (black horizontal dotted line). Phenylalanine and leucine are highlighted in orange, asparagine and glutamine in green, 
lysine in blue, and serine and threonine in yellow. The canonical FG motifs are underlined (notably, the glycine in FG motifs is sometimes replaced by other 
small amino acids, for example, serine5). e, Nup98FG85 forms solid-like particles that can be stained with ThT. The time plot shows that the bleached ThT 
fluorescence of three different particles did not recover within 250 s (the plot colour corresponds to the micrograph with the same colour outline).
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propensity varies markedly along the Nup98FG sequence (Fig. 2c). 
The most aggregation-prone segment comprises residues 85–124 
(named Nup98FG85; Fig. 2c). Nup98FG85 contains five phenylalanine 
residues, three in FG motifs (Fig. 2d). Two of the phenylalanines 
are preceded by leucine. Similar to the 384-residue Nup98FG domain 
(Fig. 2a), Nup98FG85 forms ThT-positive particles/clusters (Fig. 2e 
and Supplementary Fig. 4). Fluorescence recovery after photo-
bleaching (FRAP) experiments showed that bleached fluorescence 
did not recover with time (Fig. 2e), consistent with the solid-like 
nature of the Nup98FG85 particles/clusters. We have thus identified a 
highly aggregation-prone FG-rich segment in Nup98.

We also quantified the time-dependent decrease in the NMR sig-
nal of a slightly shorter peptide (residues 95–124 of Nup98; Fig. 2c) 
and compared this with the decrease in signal of two mutant pep-
tides in which either two phenylalanine residues (F117 and F120) 
or two glutamine residues (Q105 and Q111) were replaced by serine 
(Supplementary Fig. 5). The glutamine-to-serine mutations reduced 
slightly the aggregation kinetics and resulted in a higher residual 
NMR-observable peptide concentration at the end of the incuba-
tion period. The impact of the phenylalanine-to-serine mutations 
was more pronounced, leading to a nearly twofold increase in the 

time for 50% of the peptide to become unobservable. This analysis 
suggests that both phenylalanine and glutamine are important con-
tributors to the aggregation of Nup98FG.

Cryo-EM structures of Nup98(85–124) fibrils. To gain insight 
into the molecular organization of cohesive FG-repeat interactions, 
Nup98FG85 was allowed to aggregate in pure water. EM revealed the 
formation of well-defined and mostly separated amyloid fibrils 
(Supplementary Fig. 6). Using cryo-EM, we determined the struc-
tures of four different fibril polymorphs (pm1–pm4; Fig. 3a and 
Supplementary Tables 2 and 3).

The most abundant polymorph fibril, pm1, was resolved at a 
resolution of 2.8 Å (Supplementary Fig. 7a) and is formed by three 
asymmetrically arranged protofilaments (Supplementary Fig. 8). 
Polymorphs pm2 and pm3, which are almost equally populated, 
were solved at a resolution of 3.3 and 2.8 Å, respectively, and are 
formed by two protofilaments (Supplementary Figs. 7b,c, 9 and 
10). The least populated polymorph, pm4, was reconstructed at a  
resolution of 3.4 Å (Supplementary Fig. 7d) and contains two 
protofilaments related by an approximate 21 screw symmetry 
(Supplementary Fig. 11).
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All four fibril types display a parallel in-register β-structure com-
prising short and kinked β-strands (Fig. 3a). Kinked aromatic-rich 
structures were previously named low-complexity aromatic-rich 
kinked segments28. The most common motif shared by the four 
polymorphs is a 13-residue β-turn/β-arch structure (Fig. 3b). A 
leucine-phenylalanine pair (L91-F92) is located at the tip of the 
β-turn, with both side chains pointing away from the turn (Fig. 3b). 
The other LF motifs in the four fibril structures show a very similar 
structure (Supplementary Fig. 12). Notably, this specific amyloid 
structure of the LF motif closely overlaps the structure of the GLFG 
motifs bound to importin-β (Fig. 3c).

Cohesive FG–FG interactions at high resolution. The structure 
of the most abundant polymorph, pm1, deviates considerably from 
the flat two-dimensional (2D) arrangement of cross-β-structure 
sheets (Fig. 4a). This leads to one chain forming contacts with sev-
eral layers of the opposing protofilaments and the formation of a 
cluster of phenylalanine side chains (Fig. 4a,b, bottom). For exam-
ple, the aromatic ring of F102 contacts three other phenylalanine 
rings located up to three layers away (Fig. 4a). Similar interactions 
can be found in the other polymorphs, where clusters of up to six 
phenylalanine rings, in some cases including leucine side chains, 
establish a tight network of molecular contacts (Fig. 4b, bottom). 
In all four Nup98FG85 fibril structures, side chains stacked along the  
fibril axes build glutamine and asparagine ladders (Fig. 4b, top). 
Previous studies showed that gels formed by Nup98 FG domains, 
which are rich in glutamine and asparagine, exhibit a strong 
amyloid-like character5,27.

The pm1 structure contains a large cavity (Fig. 3a) that is pre-
dominantly lined by polar residues (Fig. 5). Because the Nup98FG85 
fibrils were prepared in pure water, it is likely that the cavity is filled 

with water molecules. In contrast, the cavity observed in the struc-
ture of α-synuclein fibrils purified from the brain of a patient with 
multiple system atrophy is lined by hydrophobic and charged resi-
dues (Fig. 5). Finally, mostly hydrophobic residues are observed at 
the rim of the cavity in amyloid-β fibrils purified from the brain 
of a patient with Alzheimer’s disease (Fig. 5). Hydrophobic and/
or charged cofactors are therefore likely to fill the cavities of these 
disease-associated amyloid fibrils29.

FG–FG interactions have low stability. Next, we estimated the 
atomic solvation energies30 as a measure of the stability of the four 
Nup98FG85 fibril structures and compared them with those of pre-
viously resolved fibril structures (Fig. 6a). We obtained values of 
approximately −20 kcal mol–1 per chain for the four Nup98FG85 fibril 
structures. This value is comparable to the stability of amyloid fibrils 
formed by the RNA-binding proteins hnRNPA1 and hnRNPA2  
(Fig. 6a). By contrast, most disease-associated fibrils are predicted to 
be more stable (Fig. 6a). Considering that Nup98FG85 has the stron-
gest condensation propensity in the FG-repeat domain of Nup98 
(Fig. 2c), −20 kcal mol–1 per chain is likely to be the maximum value 
that is reached for cohesive conformations within the FG-repeat 
domain of Nup98.

Mapping of the calculated solvation energies onto the structures 
shows that the stabilizing interactions are distributed non-uniformly 
(Fig 6b and Supplementary Fig. 13). Most of the stabilizing inter-
actions arise where there are clusters of two to four phenylalanine 
rings and one or more leucine side chains. Other regions contrib-
ute little to the stability of the FG nucleoporin fibrils (Fig. 6b and 
Supplementary Fig. 13).

The Nup98FG85 fibril structures are predicted to have higher sta-
bility than the amyloid fibrils formed by the low-complexity region 
of the stress granule-associated protein fused in sarcoma (FUS;  
Fig. 6a). The low-complexity region of FUS (FUS-LC) contains 
many polar residues (Supplementary Fig. 14). In addition, the pre-
dominant aromatic residue in FUS-LC is tyrosine, which has the 
ability to form polar contacts through its hydroxy group and does 
not form as many hydrophobic clusters as the phenylalanine resi-
dues in Nup98FG85 (compare Supplementary Fig. 14 with Fig. 6b). 
The high content of polar residues might be responsible for the pre-
dicted lower stability of FUS-LC fibrils (Fig. 6a).

FG-based interactions are reversible. Pathogenic amyloid fibrils do 
not resolubilize when exposed to very high temperature (>100 °C) 
over several hours31–33. In contrast, functional fibrils/fibres associ-
ated with gels and membraneless organelles are less stable (Fig. 6a) 
and can dissociate upon changes in pH/ionic strength and elevated 
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temperature (~65 °C)31–33. To experimentally study the stability of 
Nup98FG aggregates, we freshly prepared the 384-residue FG-repeat 
domain of Nup98 at pH 3. In agreement with the CD and turbidity 
experiments (Fig. 1a,b), Nup98FG at pH 3 displays an NMR spec-
trum that is typical of a flexible protein (Fig. 6c). When we then 
raised the pH to 7, we observed an immediate and strong signal 
loss. The signal loss was partially reversed on lowering the pH back 
to 3 and raising the temperature to 65 °C (Fig. 6c, left). In addition, 
the sample became less turbid (Fig. 1a). Quantification of the NMR 

signal intensities showed that ~85% of the original protein signal 
was regained (Fig. 6c, right).

We then performed the same experiments with the highly 
aggregation-prone Nup98FG85 segment (Fig. 6d). Again, strong signal 
loss occurred at native pH, but the NMR signal could be regained 
on returning to pH 3 and raising the temperature to 65 °C (Fig. 6d, 
left). Notably, however, only 22% of the original NMR signal was 
regained (Fig. 6d, right), indicating that the more aggregation-prone 
Nup98FG85 segment forms more stable aggregates. This combination 
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of experiments (Fig. 6c,d) and stability estimations (Fig. 6a,b) dem-
onstrates that amyloid-like aggregates of the FG-repeat domain of 
Nup98 have low stability.

Discussion
The human nucleoporin Nup98 forms fusion proteins in certain 
types of malignant leukaemia, is a critical component of the perme-
ability barrier of the nuclear pore complex and is mislocalized in 
cytosolic deposits in Alzheimer’s disease2,9–12,14,15. Key to these Nup98 
activities is its large FG-repeat domain with a high number of FG 
motifs. In leukaemia-associated transcription factor condensates, 
the Nup98 FG-repeat domain is fused to DNA-binding domains, 
whereas it is attached to scaffold proteins inside the nuclear pore 
complex. In both cases, the FG-repeat domain of Nup98 critically 
influences the molecular properties of these cellular compartments. 
High-resolution information about the interactions between FG 
motifs either within a single Nup98FG chain or between multiple 
Nup98FG chains has, however, been largely elusive. In this study we 
combined NMR spectroscopy with four cryo-EM structures to gain 
detailed insights into the structural organization of both the more 
transient liquid-like and the more stable cohesive interactions of the 
FG-repeat domain of Nup98. The data reveal a preformed structure 
recognized by mRNA export factors and the molecular basis of FG 
cluster stabilization, as well as establishing a structural mimicry of 
FG motifs inside cohesive FG clusters and when bound to nuclear 
transport receptors.

The condensates formed by the FG-repeat domains of Nup98 
from different species display different amounts of amyloid-like 
structure, that is, different levels of liquid- and solid-like proper-
ties5. Our data show that the ability of Nup98 to self-associate 
varies strongly along its long FG-repeat domain. The strongest 
self-association propensity is observed in 3 segments comprising 
~30–40 residues (Fig. 2c). This suggests that Nup98 phase separa-
tion and condensate formation may be explained by a well-balanced 
network of interactions involving less cohesive and transient inter-
actions as well as cohesive and stable interactions. Depending on the 
precise sequence composition, the relative contribution of liquid- 
and solid-like interactions is thus likely to vary in Nup98 FG-repeat 
domains from different species. The combination of NMR spectros-
copy and cryo-EM provides insights into the least and most stable 
interactions from the spectrum of possible FG-repeat interactions. 
When more liquid-like interactions dominate, the FG-repeat domain 
is very dynamic, the FG motifs transiently populate β-structure and 
the GLEBS motif folds into a stable α-helix. Cryo-EM determines 
with high resolution the most stable interactions from the spectrum 
of possible FG-repeat interactions. The combined data thus advance 
our structural knowledge of both the local and long-range structure 
of cohesive FG interactions to a new level compared with previous 
studies (for example, ref. 34). Because the amyloid-like interactions 
between FG motifs are reversible (Fig. 6), it is likely that liquid-like 
transient and amyloid-like cohesive interactions are not completely 
distinct/disconnected molecular properties but can interchange 
even within a single region of an FG-repeat protein.

The central channel of the nuclear pore complex is filled with 
FG-repeat-containing nucleoporins that form the permeability bar-
rier6,7. Several different (sometimes competing) models have been 
suggested for the molecular organization of the FG permeability 
barrier of the nuclear pore complex (reviewed, for example, in refs. 
7,16,35,36). In some of these models, cohesive interactions between FG 
motifs do not play a role in the transport selectivity of the FG-filled 
channel, while in other models cohesive FG–FG interactions are 
critical. In particular, in a model that considers the FG-filled chan-
nel as a phase-separated biomolecular condensate, cohesive FG–FG 
interactions are essential17,19. In addition, it has been shown that 
self-assembled Nup98FG particles, which display key features of 
transport selectivity, can contain cross-β-structure, as evidenced 

by ThT staining5. Indeed, we confirmed here the presence of 
cross-β-structure in the Nup98FG particles by ThT staining (Fig. 1 
and Supplementary Fig. 4). Solid-state NMR analysis of nucleopo-
rin FG gels further indicated that regions containing asparagine and 
glutamine residues form the cross-β-structure27. Consistent with 
these results, we found that the most aggregation-prone segment of 
the FG-repeat domain of Nup98, identified in this study and struc-
turally characterized at high resolution using cryo-EM, contains 
five asparagine and two glutamine residues.

Self-association and cohesive FG–FG interactions underlie the 
phase separation and formation of leukaemia-associated Nup98 
fusion protein condensates9,11,12 and might influence the mislo-
calization and accumulation of Nup98 in Alzheimer’s disease14. 
However, high-resolution structural information has not been 
available for any of these FG-repeat assemblies. Furthermore, it has 
often been unclear whether they are more liquid- or solid-like, or 
whether they can be described at all by the physicochemical pro-
cess of phase separation7,9,14,16,35,36. A recent study, for example, sug-
gested that an artificial nucleoporin sequence based on Nup98 and 
comprising 52 repeats of 12 residues remains disordered in the 
phase-separated state34, while another study based on a solid-state 
NMR analysis identified an amyloid-like β-structure inside gels 
formed by the yeast nucleoporin Nsp1p (ref. 27). Importantly, 
changes in the material properties of condensates, from liquid- 
to solid-like, have been linked to human diseases37, suggesting 
that cohesive FG-repeat interactions could be most relevant for 
the pathological states of FG-repeat-based compartments and 
the mislocalization of FG-repeat-containing nucleoporins in  
neurodegenerative diseases.

In summary, our study represents a critical advance in the 
understanding of the molecular interactions determining the 
self-association of Nup98 and thus provides an important reference 
for future studies of FG-repeat proteins.
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Methods
Protein preparation. The FG-repeat domain of human Nup98 (Nup98FG, 
residues 1–384) was cloned into bacterial expression vector pET28a (Novagen) 
between the restriction sites NheI and XhoI, keeping the N-terminal His-Tag for 
its purification. The recombinant Nup98FG was expressed in the Escherichia coli 
expression strain BL21(DE3). For the unlabelled protein, the bacteria were grown 
in Luria-Bertani (LB) medium supplemented with kanamycin to an optical density 
at 600 nm (OD600) of ~0.8 and induced with 0.5 mM isopropyl-β-d-thiogalactoside 
(IPTG) overnight at 37 °C. For the uniform 13C,15N labelling of Nup98FG, 5 ml 
of an overnight LB culture was inoculated into 1 l of M9 medium containing 
4 g l–1 d-[13C6]glucose and 2 g l–1 15NH4Cl, supplemented with kanamycin and 
13C,15N-labelled ISOGRO powder growth medium. At an OD600 of ~0.8, the culture 
was induced with 0.5 mM IPTG overnight at 37 °C. For purification, cell pellets 
were sonicated in lysis buffer containing 100 mM Na2HPO4, 10 mM Tris and 10 mM 
2-mercaptoethanol at pH 8.5, and the lysate was clarified by centrifugation. After 
centrifugation, the supernatant was discarded and the pellet containing Nup98FG 
was resuspended in denaturing buffer containing 8 M urea, 100 mM Na2HPO4, 
10 mM Tris and 10 mM 2-mercaptoethanol at pH 8.5. After a second centrifugation 
step, the supernatant was loaded onto a self-packed nickel-nitrilotriacetic acid 
(Ni-NTA) column (Qiagen) equilibrated with denaturing buffer and bound protein 
was eluted with a buffer solution of 6 M urea, 100 mM Na2HPO4, 10 mM Tris and 
10 mM 2-mercaptoethanol at pH 4.0. The same elution buffer was used to perform 
size exclusion chromatography on a Superdex75 26/600 column (GE Healthcare). 
A second size exclusion chromatography (using the same column equilibrated with 
50 mM sodium phosphate buffer containing 1 mM tris(2-carboxyethyl)phosphin 
(TCEP) at pH 3) was conducted to remove any remaining impurities. The pure 
protein was concentrated by ultracentrifugation using a 5 kDa molecular weight 
cut-off membrane.

Nup98 peptides were prepared by solid-phase synthesis (Genscript). For EM 
and optical microscopy measurements, powdered lyophilized Nup98FG85 was 
dissolved in pure water to reach a concentration of 1.5 mM, followed by incubation 
at 25 °C for 1 h.

Circular dichroism. Nup98FG samples were prepared at a concentration of 
5 μM in 50 mM sodium phosphate buffer containing 1 mM TCEP at pH 3. The 
experiments at pH 7 were performed with the same samples, adjusting the pH to 7 
just before measurement. CD data were collected in the range 185–280 nm using a 
Chirascan-plus qCD spectrometer (Applied Photophysics) at 25 °C with 1.5 s per 
point in 1 nm steps. The datasets are averages of ten repeat experiments. All spectra 
were baseline-corrected against buffer and smoothed (window size: 4) using 
GraphPad Prism.

Dynamic light scattering. Nup98FG samples were prepared at a concentration 
of 2.5 μM in 50 mM sodium phosphate buffer containing 1 mM TCEP at pH 3. 
Samples at pH 7 were prepared in the same buffer by adjusting the pH to 7 
just before measurement and reducing the protein concentration to 100 nM. 
Both concentrations were optimized to avoid saturation of the detector. 
Measurements were conducted at 25 °C using a DynaPro NanoStar instrument 
(Wyatt Technologies) and NanoStar disposable microcuvettes. The samples were 
illuminated with a 120 mW air-launched laser at a wavelength of 662 nm and 
the intensity of light scattered at an angle of 90° was detected with an actively 
quenched, solid-state single-photon counting module. Data were acquired with 
an acquisition time of 5 s with a total of five acquisitions per measurement. The 
hydrodynamic radii were determined using the Dynamics (version 7.10.0.23) 
software package. The final values are given as the average and standard error of 12 
measurements.

Light microscopy. For optical microscopy, Nup98FG samples were prepared at 
a concentration of 50 μM in 50 mM sodium phosphate buffer containing 1 mM 
TCEP at pH 3. The samples measured at pH 7 were prepared by adjusting the pH 
to 7 just before measurement. Nup98FG85 samples were prepared by dissolving the 
powder in water to a concentration of 1.5 mM, incubating them for 1 h at 25 °C and 
then diluting to a concentration of 200 μM. Where indicated, ThT was added to 
reach a concentration of 50 μM. A total 5 μl of sample was loaded onto a slide and 
covered with a 18 mm coverslip. Differential interference contrast micrographs as 
well as fluorescent micrographs were acquired on a Leica DM6B microscope with 
a ×63 objective (water immersion) and processed using ImageJ. The exposure time 
of the fluorescent micrographs in the absence of ThT was 100 times longer.

FRAP measurements of Nup98FG85 hydrogels were conducted with a Leica 
TCS SP8 confocal microscope using a ×63 objective (oil immersion) and a 488 nm 
argon laser line. Samples were loaded onto a slide and covered with a 18 mm 
coverslip. FRAP curves were acquired in 64 × 64 format at a scan speed of 1,000 Hz. 
Ten frames were collected for pre-bleaching and bleaching, and 500 frames for 
post-bleaching. Each frame corresponded to 523 ms. Regions of interest (ROIs) 
were bleached with 80% laser power, while a low laser intensity (5%) was used 
during recovery. Data were processed using FIJI software (NIH).

FRAP recovery curves were obtained by the standard protocols. Briefly, for 
each FRAP measurement, the intensities of the pre-bleaching, bleaching and 
post-bleaching ROIs were measured. A pre-bleaching ROI corresponds to a 

selected region in the droplet before bleaching, a bleaching ROI corresponds to the 
bleached area, and a reference ROI corresponds to an area that did not experience 
bleaching. The fluorescence intensity measured for each of the described ROIs 
was corrected for background by subtraction; a region where no fluorescence was 
detected was used to calculate the background.

NMR spectroscopy. NMR spectra were recorded at 5 °C on Bruker 700, 800, 900 
and 950 MHz spectrometers equipped with triple-resonance cryogenic probes. 
For the full-length Nup98FG protein (200 μM in 50 mM sodium phosphate buffer, 
1 mM TCEP, 0.01% NaN3, 5% D2O, pH 3), one-dimensional 1H NMR and 2D 
1H–1H TOCSY spectra were acquired at 800 MHz. In addition, 1H–15N and 1H–13C 
heteronuclear single quantum coherence (HSQC) and three-dimensional (3D) 
HNCO, HNcaCO, HNCA, HNcoCA, HNCACB and HNcoCACB spectra were 
recorded at 900 MHz. Samples were incubated each day for 30 min at 65 °C to 
resolubilize the protein.

The 1H–15N HSQC spectrum at pH 7 was acquired after adjusting the pH 
of the same sample from 3 to 7 (the dead time from changing the pH, mixing, 
transferring to the NMR spectrometer to starting the 1H–15N HSQC acquisition 
was ~5 min). The acquisition time of the1H–15N HSQC spectrum at pH 7  
was 15 min.

To assign the backbone resonances of the FG-repeat domain of Nup98 at 
pH 6.8, 17 overlapping Nup98 peptides (N-terminal acetylated, except residues 
1–15, and carboxy-terminal amidated, except residues 5–44) were used covering 
the sequence of residues 1–384: 1–15, 5–44, 30–59, 45–84, 72–99, 95–124, 115–
144, 137–170, 165–204, 189–218, 205–244, 225–264, 256–275, 265–304, 298–327, 
322–351 and 345–384. Peptide concentrations of 2 mM were used for resonance 
assignment. The peptides were dissolved in 50 mM sodium phosphate buffer 
containing 0.01% NaN3 and 5% D2O at pH 6.8. Samples of Nup98(165–204) also 
included 1 mM TCEP. Several samples of Nup98(95–124), Nup98(298–327) and 
Nup98(345–384) were used due to their rapid aggregation. One-dimensional 1H 
NMR, 2D 1H–1H TOCSY, NOESY, and 1H–15N and 1H–13C HSQC spectra of the 17 
overlapped Nup98 peptides were acquired. All the NMR data were processed using 
TopSpin 3.6.1 (Bruker) and analysed with Sparky38. The 1H NMR chemical shifts 
were referenced to 2,2-dimethyl-2-silapentane-5-sulfonate (DSS, 0 ppm), and the 
13C and 15N NMR chemical shifts were indirectly referenced to DSS. All HA, HN, 
N, CA and CB resonances were assigned except for the N of prolines and the CA of 
the three asparagine residues before prolines. The overlapping peptide assignments 
were used to negate the influence of peptide ends on the final chemical shift 
assignments (Supplementary Fig. 15). The secondary structure and φ/ψ angles 
were calculated from the experimental HA, HN, N, CA and CB chemical shifts 
using TALOS-N (ref. 39).

To study the reversibility of the amyloid-like structure in the FG-repeat domain 
of Nup98, samples of Nup98FG (200 μM) and Nup98FG85 (100 μM) were prepared in 
50 mM sodium phosphate buffer containing 1 mM TCEP, 0.01% NaN3 and 5% D2O 
at pH 3. Subsequently, the pH was adjusted to 7 and then back to 3, followed by 
incubation of the samples for 30 min at 65 °C in a water bath.

Transmission electron microscopy. Nup98FG samples at a concentration of 20 μM 
were dialysed in 50 mM HEPES buffer containing 1 mM TCEP at pH 3, and just 
before preparation of the grid, the pH was adjusted to pH 7 by adding NaOH. 
Samples were adsorbed onto 400-mesh carbon-coated copper grids and the buffer 
removed using filter paper. Subsequently, samples were stained by the addition of 
1% uranyl acetate solution and dried with filter paper. The grids were imaged using 
a Talos L120C G2 electron microscope.

Cryoelectron microscopy. Nup98FG85 fibrils were prepared by dissolving the 
peptide in water to reach a concentration of 1.5 mM, followed by incubation at 
25 °C for 1 h. Subsequently, 3 μl of sample was applied to freshly glow-discharged 
R2/1 holey carbon grids (Quantifoil) and vitrified in liquid ethane using a Mark 
IV Vitrobot (Thermo Fisher) operated at 100% relative humidity and 4 °C. 
Cryoelectron microscopy was conducted with a Titan Krios transmission electron 
microscope (Thermo Fisher) operated at an accelerating voltage of 300 keV. Images 
were recorded at a nominal magnification of ×81,000 using a Quantum LS energy 
filter (Gatan) with the slit width set to 20 eV and a K3 direct electron detector 
(Gatan) in non-super-resolution counting mode, corresponding to a calibrated 
pixel size of 1.05 Å at the specimen level. In total, 4,180 images with defocus values 
in the range of –0.7 to –2.0 μm were acquired in movie mode with an acquisition 
time of 2.5 s. Each movie contained 40 frames with an accumulated dose of 
approximately 41 electrons per Å2. The resulting dose-fractionated image stacks, 
containing all 40 frames, were subjected to beam-induced motion correction on 
the fly using Warp40.

Nup98FG85 fibrils were reconstructed using RELION-3.1 (ref. 41) following the 
helical reconstruction scheme42. First, contrast transfer function (CTF) parameters 
were estimated for each motion-corrected micrograph using CTFFIND4 (ref. 43), 
and only micrographs with an estimated resolution of ≤4.0 Å were considered for 
manual fibril picking. For 2D classification, we extracted particle segments using 
a box size of 600 pixels downscaled to 200 pixels and an interbox distance of 14 Å; 
pm1 and pm3 fibrils were successfully separated by this classification procedure, 
but pm2 and pm4 could not be separated owing to their close similarity. For 
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3D classification, the segments after 2D classification were re-extracted without 
downscaling using a box size of 250 pixels. The initial helical rise was estimated 
from the cross-over distances (180° helical turn), measured from the 2D class 
averages, and the helical rise was initially set to 4.75 Å. We performed the 3D 
classification several times, starting from a 60 Å low-pass-filtered featureless 
cylinder, until the separated β-strands along the helical axis became visible, 
and then optimized the helical parameters (the final parameters are reported 
in Supplementary Table 2). We were able to separate the pm2 and pm4 fibrils 
during the 3D classification. For 3D auto-refinement, all fibril polymorphs were 
reconstructed individually. Next, standard RELION post-processing with a 
soft-edged solvent mask that included the central 10% of the box height yielded 
post-processed maps (sharpening B factors are reported in Supplementary Table 2). 
The resolution was estimated from the value of the Fourier shell correlation (FSC) 
curve for two independently refined half maps at 0.143 (refs. 44,45; Supplementary 
Fig. 7). Finally, the optimized helical symmetry was applied to the post-processed 
maps to yield the final maps.

The atomic models of the Nup98FG85 fibrils were constructed de novo in Coot46. 
The high resolution of the cryo-EM maps allowed reliable modelling of the protein 
backbone and side chain rotamers. Refinement in real space was conducted using 
PHENIX47,48 and Coot46 in an iterative manner. The resulting models were  
validated with MolProbity49 and their construction data are presented in 
Supplementary Table 3.

Solvation energy calculation. Nup98FG85 fibril stability was calculated on the basis 
of the solvation energy using the software accessiblesurfacearea_v07.2d (ref. 30). 
The number of layers for each fibril was set to five, and the energy of the middle 
layer was used. For pm1, nine layers were used because of the interactions between 
distant layers.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the main findings of this study are available in the main text 
and the Supplementary Information. NMR chemical shifts are included in the 
Supplementary Information. Cryo-EM maps have been deposited in the Electron 
Microscopy Data Bank (EMDB) under the accession numbers EMD-13851 
(pm1), EMD-13852 (pm2), EMD-13853 (pm3) and EMD-13854 (pm4). The 
corresponding atomic models have been deposited in the PDB under the accession 
numbers: 7Q64 (pm1), 7Q65 (pm2), 7Q66 (pm3) and 7Q67 (pm4). PDB accession 
codes 6XYO, 6IC3, 6SHS, 6NZN, 6VPS, 6SDZ, 6ZRF, 6XFM, 6MST, 6GK3, 7KWZ, 
5O3O, 6TUB, 2RNM, 7BX7, 6WQK, 6UUR and 5V7Z cited in the text are publicly 
available in the PDB. Source data are provided with this paper.
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Data collection NMR data were acquired using Topspin versions 3.5pl7 or 4.0.8. DLS data were acquired with DYNAMICS v7.10.0.23. CD data were acquired 
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and FRAP experiments were analyzed with ImageJ v1.52a. DLS data were analyzed with DYNAMICS v7.10.0.23. Nup98FG85 fibrils were 
reconstructed using RELION-3.1 and the micrographs CTF corrected with CTFFIND4. The atomic models of Nup98FG85 fibrils were built in 
Coot 0.8.9.1. Refinement in real space was conducted using PHENIX 1.19.2 and Coot 0.8.9.1. The resulting models were validated with 
MolProbity 4.5. Stability calculations based on solvation energy were performed with the software accessiblesurfacearea_v07.2d. Graphpad 
Prism 7 was used for plotting data.
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Nuclear magnetic resonance chemical shifts are included in the extended data. Cryo-EM maps have been deposited in the Electron Microscopy Data bank (EMDB) 
under the accession numbers EMD-13851 (pm1), EMD-13852 (pm2), EMD-13853 (pm3), and EMD-13854 (pm4). The corresponding atomic models have been 
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