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Critical behavior in rectangles with mixed boundaries
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Density profiles are investigated arising in a critical Ising model in two dimensions which is confined to
a rectangular domain with uniform or mixed boundary conditions and arbitrary aspect ratio. For the cases in
which the two vertical sides of the rectangle have up-spin boundary conditions + and the two horizontal sides
with either down-spin boundary conditions − or with free-spin boundary conditions f , exact results are presented
for the density profiles of the energy and the order parameter which display a surprisingly rich behavior. The
new results follow by means of conformal transformations from known results in the half plane with + − + − +
and + f + f + boundary conditions. The corners with mixed boundary conditions lead to interesting behavior,
even in the limit of a half-infinite strip. The behavior near these corners can be described by a “corner-operator-
expansion,” which is discussed in the second part of the paper. The analytic predictions agree very well with
simulations, with no adjustable parameters.
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I. INTRODUCTION

Due to the macroscopic correlation length in a critical sys-
tem, the effects of boundaries penetrate deeply into the bulk.
Two or more boundaries, even when separated by a macro-
scopic distance, induce critical density profiles which are,
in general, not simple superpositions of the single-boundary
profiles. Both the density profiles and the free energy of inter-
action of macroscopic range between the boundaries depend
in a nontrivial way on the configuration of the boundaries.

An important feature is the detail-independence or “uni-
versality” on large length scales of bulk and boundary
critical phenomena [1–3]. This paper concentrates on two-
dimensional systems in the Ising universality class. The
boundaries belong to the “ordinary” and “normal” boundary
universality classes which we denote by f and + or − since
these two universality classes are realized in the Ising lattice
model by boundary spins that are free of outside bonds or fixed
in the + or − direction, respectively. The simplest geometry
in two dimensions with a boundary is the upper half plane
bounded by the horizontal coordinate axis. Besides uniform
boundaries with one of the three classes or boundary condi-
tions f , +, and − extending along the entire horizontal axis
[4], the interesting case of mixed boundaries has also been
studied [5–9]. In the simplest case, the boundary condition
along the negative horizontal axis is different from that along
the positive axis, i.e., the boundary condition switches at the
origin. In Refs. [7–9] explicit expressions for the density pro-
files of the order parameter, the energy, and the stress tensor
in the half plane [10] were obtained for multiple switching
points between + and −, between + and f , and for − f + at
arbitrary switch points with a macroscopic distance between
them.

Section III of this paper is devoted to evaluating the critical
density profiles in a rectangle with mixed boundaries and
their dependence on the aspect ratio. Of main interest is the

case in which the common universality class of the horizontal
boundaries is different from the common universality class
of the vertical boundaries. While extensive studies exist for
(the universal part of) the free energy of this system, see,
e.g., Refs. [11–16], density profiles in rectangles with mixed
boundary conditions have been investigated to a much lesser
extent [17]. Assuming the system is at its bulk-critical point,
the exact density profiles in the rectangle are derived from
those in the upper half plane by means of conformal transfor-
mations. In Sec. II density profiles are studied in the simpler
geometry of a semi-infinite rectangle or semi-infinite strip.
In addition to the densities of the order parameter σ and the
energy ε, attention is payed to the density of the stress tensor
T since, apart from its importance in the conformal theory and
for the free energy, it plays a key role in the discussion of the
near-boundary behavior. At internal points of the rectangle the
density profiles of σ , ε, and T provide local information about
the amount of preference for one of the two Ising directions,
the degree of disorder, and the orientation-dependence of short
distance correlations, respectively.

The corners of a rectangle where two different universality
classes meet have a profound effect on the density profiles,
in particular on the energy density [18], and there is an in-
teresting dependence on the aspect-ratio. Another motivation
for considering the rectangular geometry is that the theoretical
results can be conveniently compared with simulations [19].

In Sec. IV of the paper, operator expansions are introduced
that hold in the vicinity of corners with arbitrary angles, both
with sides of the same and of different universality classes.
The boundary operators in the expansions are located right
at the tips of the corners. These “corner-operator expansions
(COE)” are interesting in their own right. They are used to
evaluate the near-corner behavior of the density profiles and
study the dependence on the size and aspect ratio [20] of
the rectangle. The expansions apply not only to the Ising
model but also to other conformally invariant models in two
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spatial dimensions. They are similar in spirit to the short
distance expansion of an operator product in the bulk or the
boundary-operator expansions (BOE) for a flat boundary, see,
e.g., Appendix A and Ref. [9].

II. DENSITY PROFILES IN SEMI-INFINITE
STRIPS WITH A MIXED BOUNDARY

For the later study of rectangles it is instructive to be-
gin with the simple system of a semi-infinite strip 0 < y <

W, 0 < x < +∞ in the z = x + iy plane. Exact results for
the density profiles are obtained by means of the conformal
mapping

H (z) = cosh z̃, z̃ ≡ πz/W = x̃ + iỹ (2.1)

of the semi-infinite strip onto the upper half H plane, H =
G + iJ with J > 0 [10]. The corners at z = 0 and z = iW
of the strip are mapped onto H = 1 and H = −1, respec-
tively, and the midline z = x + iW/2 of the strip is mapped
onto the imaginary axis H = iJ , with J = sinh x̃. Generally,
G = cosh x̃ × cos ỹ and J = sinh x̃ × sin ỹ, so that a point and
its mirror image about the midline of the strip are mapped to
a point and its mirror image about the imaginary axis of the
upper half H plane.

Densities of primary operators φ such as [21] ε and σ in
the strip follow from those in the half plane via

〈φ(x, y)〉 = |dH/dz|xφ × 〈φ(G, J )〉, (2.2)

where xφ is the scaling dimension of φ.
For the case of uniform boundary condition a, where

〈φ(G, J )〉 = A(φ)
a J−xφ , Eq. (2.2) yields [21,22]

〈φ(x, y)〉 = |dH/dz|xφ × A(φ)
a J−xφ = A(φ)

a �xφ ,

� ≡ π

W
| sinh z̃|

Im cosh z̃
= π

W

(
1

sinh2 x̃
+ 1

sin2 ỹ

)1/2

.

(2.3)

This allows us to rewrite Eq. (2.2) in the form

〈φ(x, y)〉 = �xφ × [Jxφ 〈φ(G, J )〉]G=cosh x̃×cos ỹ, J=sinh x̃×sin ỹ,

(2.4)

which turns out to be convenient. The expressions (2.3), (2.4),
and (2.5)–(2.11) below are quite general and not limited to the
Ising model.

In the Ising model three types of mixed boundary condi-
tions are of particular interest: These are ABC = − + −, f +
f , and − f +, where in counterclockwise order A refers to the
upper horizontal edge, B to the vertical edge, and C to the
lower horizontal edge. The corresponding boundary condi-
tions in the upper half H plane are A for −∞ < G < −1, B
for −1 < G < 1, and C for 1 < G < +∞.

A. Stress tensor density in the strip geometry

The stress tensor density in the semi-infinite strip follows
via the general transformation formula in Ref. [23] from the
stress tensor in the upper half H plane. The latter can be

obtained from Eq. (1.3) in Ref. [9], and one finds

〈T (z)〉ABC =
( π

W
)2
{

ĉ

12

(
1 − 3

2
coth2z̃

)
+ tAC − 2

[
tAB

1 + coshz̃
+ tBC

1 − coshz̃

]}
. (2.5)

Here tAB is the amplitude in the expression 〈T (H )〉AB =
tAB/H2 of the stress tensor in the upper half plane, with a
single switch from A to B on the boundary at H = 0, see
Ref. [6], which vanishes for A = B.

We mention a few properties of Eq. (2.5).
(i) For x̃ � 1 it takes the well-known form

〈T (z)〉ABC →
( π

W
)2[

− ĉ

24
+ tAC

]
, x � W (2.6)

of the stress tensor in an infinite AC strip, which is indepen-
dent of z and the distant vertical boundary B.

(ii) Along the midline y = W/2 it takes the form

〈T (z = x + iW/2)〉ABC

=
(

π

W

)2{ ĉ

12

(
1 − 3

2
tanh2x̃

)
+ tAC

− 2

1 + sinh2x̃

[
tAB + tBC + i(tAB − tBC ) sinhx̃

]}
, (2.7)

implying that

〈T (z = iW/2)〉ABC =
(

π

W

)2{ ĉ

12
+ tAC − 2[tAB + tBC]

}
(2.8)

in the center z = iW/2 of the vertical boundary.
(iii) 〈T (z)〉ABC is finite for all z including the boundaries,

except at the corners z = 0 and z = iW , where it diverges. For
B = C the leading and next-to-leading terms near the corner at
z = 0, where the vertical boundary of class B meets the lower
horizontal boundary of class C, are given by

〈T (z)〉ABB → − ĉ

8

1

z2
+
(

π

W

)4 1

4

(
− ĉ

30
+ tAB

)
z2. (2.9)

For B �= C

〈T (z)〉ABC →
(

− ĉ

8
+ 4tBC

)
1

z2

+
( π

W
)2
(

tAC − tAB − 1

3
tBC

)
. (2.10)

Thus, the next-to-leading orders are ∝ z2 and ∝ z0 in the cases
B = C and B �= C, respectively.

(iv) For ABC = aba and bab the stress tensors are equal,
like their counterparts in the upper half plane, and are given
by

〈T (z)〉aba = 〈T (z)〉bab =
(

π

W

)2{ ĉ

12

(
1 − 3

2
coth2z̃

)
− 2 tab

[
1

1 + coshz̃
+ 1

1 − coshz̃

]}
. (2.11)
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As shown below, the expressions (2.8) and (2.9), (2.10) for
the stress tensor determine the order parameter and energy
density profiles in the strip near the end point z = iW/2 of its
midline and near its lower corner z = 0 according to boundary
and corner-operator expansions, respectively. See Eqs. (A3)–
(A6) in Appendix A and Sec. IV D 1 ff., respectively.

The expressions (2.3)–(2.10) below are quite general and
not limited to the Ising model. In the Ising model

A(φ)
a = 21/8,−21/8, 0,−1/2,−1/2, 1/2 (2.12)

for the pairs (φ, a) = (σ,+), (σ,−), (σ, f ), (ε,+), (ε,−),
(ε, f ), compare Eqs. (2.20), (2.21) in Ref. [9], and

ĉ = 1/2, t+− = 1/2, t+ f = t− f = 1/16, (2.13)

see above Eqs. (4.1) in Ref. [6].

B. Energy density in the strip geometry

The energy density profiles in the upper half H plane for
the three sets of boundary conditions mentioned above are for
the Ising model given by

〈ε(G, J )〉−+− = − 1

2J
(4C2 − 3),

〈ε(G, J )〉 f + f = −〈ε(G, J )〉+ f + = 1

2J
C, (2.14)

〈ε(G, J )〉− f + = 1

2J

−G2 + 3J2 + 1

Q
,

where

C ≡ G2 + J2 − 1

Q
, Q ≡

√
[G2 + J2]2 + 1 + 2(J2 − G2).

(2.15)

The first two profiles have a boundary with only two different
boundary conditions and, as discussed in Ref. [24], are ob-
tained from the profiles with a single switch between them,
which are given in Eq. (4.1) in Ref. [6] and in Eqs. (4.9)
and (4.11) below. The third profile with a − f + boundary of
three different boundary conditions follows from Eq. (2.63) of
Ref. [9]. All three energy profiles in Eq. (2.14) are even in G,
so that their counterparts in the semi-infinite strip are symmet-
ric about the midline, as expected. Three simple features help
understand the functional form of the energy densities in the
strips:

(i) The “zero-lines” of 〈ε〉 in the x, y plane along which
〈ε(x, y)〉 vanishes and which separate regions with positive
and negative 〈ε〉, i.e., regions with a short range order that
is weaker and stronger, respectively, than in the bulk [21,25].
These lines are quite different in the three cases and follow
immediately from their counterparts in the G, J plane. Like
the switching points H = 1 and H = −1, the two corners of
the strip are end points of the lines.

(ii) For x � W the energy densities reduce to the
x-independent profiles in the infinite strip, 〈ε(x →
∞, y)〉ABC → 〈ε(y)〉AC . The limiting densities

〈ε(y)〉−− = −〈ε(y)〉 f f = − π

2W sin ỹ
,

〈ε(y)〉−+ = π

2W

(
4 sin ỹ − 1

sin ỹ

)
(2.16)

follow from Eqs. (4.1) in Ref. [6] and are all symmetric about
the midline ỹ = π/2, as mentioned above. While the −− and
f f profiles are negative and positive for all y, respectively,
the −+ profile changes sign at y = W/6 and 5W/6 and is
positive in between.

(iii) The behavior along the midline of the strips for which
Eq. (2.2) with G = 0 yields

〈ε(x, y = W/2)〉−+−

= − π

W sinh(2x̃)

[
cosh2 x̃ − 16 + 16

cosh2 x̃

]
,

〈ε(x, y = W/2)〉 f + f

= − π

W sinh(2x̃)
[1 − sinh2 x̃],

〈ε(x, y = W/2)〉− f +

= π

W sinh(2x̃)
[1 + 3 sinh2 x̃]. (2.17)

For 0 < x 
 W and x � W the three ABC expressions re-
duce, respectively, to the behavior of 〈ε〉 near an infinite
vertical B wall and to the value of 〈ε〉 on the midline of the in-
finite AC strip addressed above. The next-to-leading behavior
for 0 < x 
 W is related to a boundary-operator expansion
as we discuss in Appendix A.

The energy density is now discussed for each of the three
strips in more detail.

1. Semi-infinite − + − strip

In this case the conflicting tendencies of the vertical and
the two horizontal boundaries to align the Ising spins up and
down, respectively, lead to a remarkable distribution of order
(〈ε〉 < 0) and disorder (〈ε〉 > 0) inside the strip, which is
discussed in some detail.

Due to the symmetry of 〈ε〉 it is sufficient to determine
its zero lines in the lower half 0 < y < W/2 of the strip
corresponding to the upper right quarter of the H plane. There
are two zero lines, which for the strip read

z = z0±(J ) ≡ W
π

× arccosh(G±(J ) + iJ ), 0 < J < 2 ±
√

3,

G±(J ) ≡
√

1 ± 2J
√

3 − J2. (2.18)

The parametric representation (2.18) arises from the corre-
sponding zero lines G = G±(J ), 0 < J < 2 ± √

3 in the H
plane, seen in the first of Eqs. (2.14), which are the two circu-
lar segments addressed in Ref. [24]. The two lines z = z0+(J )
and z = z0−(J ) are upward bending curves starting at J = 0
at the lower corner z = z0±(J = 0) = 0 with tangent unit
vectors exp(iπ/12) and exp(5iπ/12), respectively. Including,
for later comparison with the COE, the next order correction
near the corner, their form follows from expanding [26] the
right-hand side (rhs) of Eq. (2.18) to orders J1/2 and J3/2 and
can be expressed as

arg(z0+, z0−) =
(

π

12
,

5π

12

)
+ 1

24

( π

W
)2

(|z0+|2, |z0−|2).

(2.19)
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FIG. 1. Zero lines of 〈ε〉 in the rectangle with boundary con-
ditions − and + on the horizontal and vertical sides with lengths
H and W , respectively. The lines separate regions of positive and
negative 〈ε〉 induced by the disordering −+ corners and the ordering
− or + sides, respectively. Results for the aspect ratios H/W =
2.2, 1.0, 1/2.2 are shown in panels (a), (b), and (c). In panels (a) and
(c) the energy density is positive inside the two moon-like regions
while in the three regions outside the moons, one of which includes
the rectangle’s center, it is negative. For the square in panel (b),
however, the energy density is positive in the region that includes the
center. As described in points (1)–(4) of Sec. III A 1 b, the topology
of the lines changes at the two aspect ratios H/W = 1.5172 and
1/1.5172 for which two of the zero lines form an intersection at
the center where 〈ε〉 vanishes. On moving from panel (b) to panel
(a) on increasing H/W from 1.0 to 2.2, the upper and lower regions
of negative 〈ε〉 in panel (b) approach each other and coagulate at
H/W = 1.5172 to finally form in panel (a) the central region of
negative 〈ε〉. At the same time the central region of positive 〈ε〉 in
panel (b) splits into a left and right region that form in panel (a) the
two moon-like regions of positive 〈ε〉. The situation near the coagu-
lation point H/W = 1.5172 is detailed in the paragraph containing
Eq. (3.21). In particular, right at H/W = 1.5172 the opening angle
of the upper and lower regions of negative 〈ε〉 at the intersection
equals 0.352 π . The present coagulation process from panel (b) to
panel (a) should be compared with its counterpart in Fig. 3 where
there are only two zero lines, where on moving from panel (a) to
panel (e) the right and left regions of negative 〈ε〉 coagulate to form
the central region, and where their opening angle at the intersection
in panel (c) equals π/3.

For the upper limits of J , where G± vanishes, the zero
lines arrive at the midline of the strip at z = z0±(2 ± √

3) =
i(W/2) + x± with x+ = 0.6454W and x− = 0.0843W .
When extended to the entire strip, the region in between
z0−(J ) and z0+(J ) has the shape of a waxing moon with its
tips located at the two corners of the semi-infinite strip, similar
to the left moon in Fig. 1(a). Inside and outside the moon,
〈ε〉 > 0 and 〈ε〉 < 0, respectively.

FIG. 2. Dependence of the energy density along the horizontal
midlines of the three rectangles (a), (b), and (c) of Fig. 1 with
boundary conditions − and + on the horizontal and vertical sides,
respectively. Shown is the scale-invariant form E ≡ (H × W )1/2 〈ε〉
introduced in Eq. (3.22). Moving from X = −0.5 to X = 0 means
moving along the horizontal midlines from their left ends at the left
vertical boundary sides to the centers of the corresponding rectan-
gles. Analytic results (line of dashes, full line, dash-dotted line) are
compared with those from simulations (circles, triangles, squares).
While the former are obtained via Eq. (3.23), the latter are taken from
the Monte Carlo simulations in Ref. [19] for Ising models on a square
lattice with 220×100 spins for rectangle (a), with 100×220 spins
for rectangle (c), and with 100×100 spins for the square (b). The
simulation method used in Ref. [19] is explained in Appendix D and
is a correspondingly adapted version of the Monte Carlo simulation
described in the paper in Ref. [18]. Good agreement is found between
the analytic and simulation results which are normalized without
any adjustable parameter according to Ref. [21] and Appendix D,
respectively. For the center of the square, for example, the simu-
lation result of E ≈ 3.14 agrees well with the analytic expression
E = (5/3)K(1/

√
2) = 3.090.

On the midline y = W/2 the energy density 〈ε〉 is
given by the first of Eqs. (2.17), with the expected lim-
iting behavior −1/(2x) and −π/(2W ) for x 
 W and
x � W , respectively. In the positive region between x−
and x+, 〈ε〉 displays a striking maximum at x = xm ≡
(W/π ) × arccosh(2

√
(10 + √

7)/31) ≈ 0.232 × W , where
〈ε〉 ≈ 7.059/W . This maximum reappears in the correspond-
ing rectangle of Sec. III A when its horizontal extension H is
sufficiently large compared to its vertical width W , see curve
(a) in Fig. 2 for H/W = 2.2.

From the perspective of the entire strip, this midline-
maximum is actually a saddle point of the energy density.
Moving at fixed x = xm away from it in y direction, 〈ε〉
increases and, in the lower half of the strip, for example,
reaches a maximum at the point (x = xm, y ≈ 0.22W ) where
〈ε〉 ≈ 8.881/W . This point belongs to a line inside the moon-
shaped region which is the projection of the top-line of a ridge
in the 〈ε〉 landscape that at this point is rather broad. The
ridge ascends and sharpens on decreasing x, and finally the
line approaches the lower corner x = y = 0 with a tangent
unit vector exp(iπ/4). There 〈ε〉 → 3/|z| diverges, reaching
its maximal value, i.e., maximal disorder, in the lower half
of the strip. Due to mirror symmetry about the midline, there
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is corresponding behavior in the upper half of the strip. In
contrast, approaching the horizontal or vertical boundaries of
the strip one is outside the moonlike region, and 〈ε〉 tends to
−∞, corresponding to maximal order.

2. Semi-infinite f + f strip

In this case the midline behavior of 〈ε〉 is given by the
second equation in Eq. (2.17) and has the limiting behavior
−1/(2x) and π/(2W ) of 〈ε〉 for x → 0 and x → ∞. Here
〈ε(x, y = W/2)〉 increases monotonically with x, and there
is a single change of sign at x = x0 = (W/π ) ln(1 + √

2) ≈
0.280 × W , corresponding to the single zero J = J0 = 1 of
〈ε(G = 0, J )〉. This zero is the intersection point of the mid-
line with the zero-line along which 〈ε(x, y)〉 vanishes. The
zero line is the image of the upper unit circle H = H0 =√

1 − J2 + iJ with parametric representation

z = z0(J ) ≡ W
π

× arccosh(
√

1 − J2 + iJ ), 0 < J < 1,

(2.20)

with a positive square root for the lower half of the strip.
The line is an upward bending curve starting at J = 0 from
the lower corner z = 0 with a tangent vector exp(iπ/4). The
leading and next-to-leading behavior

argz0 → π

4
+ 1

12

(
π |z0|
W

)2

(2.21)

of the zero line near the corner follows from the expansion
[26] of the rhs of Eq. (2.20) for small J to orders J1/2

and J3/2.

3. Semi-infinite − f+ strip

a. Midline. The x dependence of 〈ε〉 along the midline
is given by the third equation in Eq. (2.17). 〈ε〉 is always
positive there with limiting behavior 1/(2x) and 3π/(2W ) ≈
4.712/W for x 
 W and x � W , respectively, and displays
a shallow minimum 〈ε〉 ≈ 4.443/W at x = (W/π ) ln(1 +√

2) ≈ 0.280 × W . The location of the minimum in the − f +
strip happens to be the same as the location of the zero in the
f + f strip.

b. BOE at the left end of the midline. The boundary-
operator expansion [2,3,9] is a useful tool to evaluate the
behavior of density profiles close to a locally flat and uniform
boundary, such as the vertical boundary of the semi-infinite
strips. Here the BOE follows from Eq. (A2) as described in
the paragraph above Eq. (A3) and involves the stress tensor
〈T (iW/2)〉 given in Eq. (2.8). With tAC = 1/2, tAB = tBC =
1/16 and ĉ = 1/2 the BOE predicts that 〈ε(x,W/2)〉 →
(2x)−1[1 + (7/3)x̃2] which is in agreement with the expres-
sion in the third of Eqs. (2.17).

c. Zero lines. There are two zero-lines. One,

z = zlower (J )

≡ W
π

× arccosh(
√

3J2 + 1 + iJ ), 0 < J < ∞, (2.22)

starts from the corner z = 0 at J = 0 with a tangent vector
exp(iπ/4) and, on increasing monotonically, reaches the hori-
zontal line z = iW/6 for J → ∞, which is the lower zero-line

in the infinite −+ strip. The other one, z = zupper (J ), is its
mirror image with respect to (wrt) the midline. In between
and outside the two zero-lines, 〈ε〉 is positive and negative,
respectively.

C. Order parameter densities in the strip

The counterparts of Eqs. (2.14) for the order parameter are

〈σ (G, J )〉−+− = −
(

2

J

)1/8

C,

〈σ (G, J )〉 f + f =
(

2

J

)1/8

2−1/4 (1 − C)1/4,

〈σ (G, J )〉− f + =
(

2

J

)1/8

2−1/4 [(1 + C)1/2 − J (1 − C)1/2]1/2.

(2.23)

Here C is the quantity considered in Ref. [24] and given in
Eq. (2.15). Obviously the line in the semi-infinite strip along
which 〈σ (x, y)〉−+− vanishes equals the line of 〈ε(x, y)〉 f + f

discussed in Eq. (2.20) above. The zero-lines of 〈σ 〉 f + f in the
upper half H plane and the semi-infinite strip are the two f
boundaries which correspond to cos θ = 1 of the single switch
profile 〈σ 〉+ f in the zBX plane, see Refs. [6,24].

III. DENSITY PROFILES IN RECTANGLES
WITH A MIXED BOUNDARY

Next we consider a critical system defined on the rect-
angular domain −H/2 < xM < H/2, −W/2 < yM < W/2
centered about the origin of the zM = xM + iyM plane and
discuss the profiles 〈φ(xM, yM)〉 of the energy density φ = ε

and the order parameter φ = σ for the boundary conditions
+,−, or f on the four sides of the rectangle.

Of primary interest is the dependence on the aspect ratio
H/W . While for H � W or H 
 W the behavior corre-
sponds to adjacent semi-infinite strips, new features arise for
H/W of order one. This is true, in particular, for the topology
of the zero-lines, the behavior along the midlines yM = 0 and
xM = 0 of the rectangle, including its center, and near the
corners.

In the following denote, in counterclockwise order, the
NE, NW, SW, and SE corners of the rectangle at (H +
iW )/2, (−H + iW )/2, (−H − iW )/2, and (H − iW )/2 by
I, II, III, and IV. Likewise, the four corresponding quarters
of the rectangle inside which the coordinates (xM, yM) are
(positive, positive), (negative, positive), (negative, negative),
and (positive, negative) are denoted by i, ii, iii, and iv.

Using conformal invariance at the critical point [3] the
profiles 〈φ(xM, yM)〉 in the rectangle can be evaluated from the
known profiles 〈φ(G, J )〉 in the upper half H = G + iJ plane
with appropriate boundary conditions [9]. The corresponding
conformal transformation proceeds through the intermedi-
ate geometry of the circular unit-disk [27], as presented in
Appendix B 2. It maps the boundary of the rectangle to the
real axis H = G, the centers of the N, W, S, and E sides of the
rectangle at iW/2, −H/2, −iW/2, and H/2, to the points

H = −1, 0, 1,∞, (3.1)
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and the corners I, II, III, and IV to the points

G = GI ≡ −t−1, GII ≡ −t, GIII ≡ t,

GIV ≡ t−1, 0 < t < 1, t ≡ tan(α/2), (3.2)

which are denoted by (I), (II), (III), and (IV). The angle α is
related to the aspect ratio of the rectangle by

H
W = K(cos α)

K(sin α)
, 0 < α < π/2, (3.3)

where K is the complete elliptic integral of the first kind. Thus,
α = π/4 for the square H = W , and α → 0 and α → π/2
for H � W and H 
 W , respectively.

Sometimes it is convenient to use the alternative notations
[28]

q ≡ cos α, q′ ≡ sin α, s ≡ sin α, S ≡ sin2 α (3.4)

to characterize the aspect ratio, see, e.g., Eqs. (B1), (B2), and
(B9), as well as the present section. Equation (3.3) implies in
particular that s → 4 exp[−(π/2)H/W] for H � W .

The horizontal and vertical midlines yM = 0 and xM = 0 of
the rectangle are mapped to the imaginary axis H = iJ with
0 < J < ∞ and to the upper half unit circle H = i exp(iψ )
with −π/2 < ψ < π/2, respectively, of the upper half H
plane, cf. the discussion above Eq. (B14). Thus, the four
quarters i, ii, iii, and iv of the rectangle are mapped onto the
four half-plane regions “left of the imaginary axis and outside
the unit circle,” “left of the imaginary axis and inside the unit
circle,” “right of the imaginary axis and inside the unit circle,”
and “right of the imaginary axis and outside the unit circle,”
respectively. These regions are grouped in a counterclockwise
manner around the point H = i, the image of the rectangle’s
center zM = 0, and we denote them by (i), (ii), (iii), and (iv),
respectively. Obviously the points (I), (II), (III), and (IV)
lie on the boundaries of the regions (i), (ii), (iii), and (iv),
respectively.

The simple relation

〈φ(xM = 0, yM = 0)〉 =
(

2




)xφ

〈φ(G = 0, J = 1)〉 (3.5)

between the profile values at the center zM = 0 of the rect-
angle and at H = i in the upper half plane follows from
the transformations (B7), (B8), and (B13). Here the length

 depends on the size and aspect ratio of the rectangle, as
defined in Eq. (B2), which in the notation (3.4) reads

1



≡
(

K(cos α)

H
K(sin α)

W

)1/2

≡ K(cos α)

H ≡ K(sin α)

W .

(3.6)

For later use note that

〈φ(xM = 0, yM = 0)〉a =
(

2




)xφ

× A(φ)
a (3.7)

for rectangles with a uniform boundary condition a. This
follows from the form 〈φ(G, J )〉a = A(φ)

a J−xφ of the profiles
in the half plane with a uniform boundary condition a. For the
values of A(φ)

a in the Ising model see Eq. (2.12).
Assume uniform boundary conditions for each of the

N, W, S, and E sides, i.e., of the top, left, bottom, and

right sides of the rectangle which are denoted by A, B,
C, and D, respectively, which is in line with the notation
below Eq. (2.4) for semi-infinite strips. Thus, the corre-
sponding boundary conditions in the upper half H plane
are D, A, B,C, D for −∞ < G < GI, GI < G < GII, GII <

G < GIII, GIII < G < GIV, GIV < G < ∞, respectively. In
the following rectangles are considered where the two vertical
boundaries have the same boundary condition a and the two
horizontal boundaries have the same boundary condition b,
so that ABCD = baba [29] and in the upper half plane the
boundary conditions are ababa.

In the two limits α = 0 (t = 0) and α = π/2 (t = 1) of
infinite horizontal and vertical strips, this implies uniform
boundary conditions b and a, respectively, in the upper half
plane, so that the rectangle profiles reduce to profiles in the
infinite strip with b and a boundary conditions, respectively.
In particular, 〈φ(G = 0, J = 1)〉 reduces to A(φ)

b and A(φ)
a ,

respectively, which is consistent with the profile value (3.5)
at the center reducing to the corresponding profile value (3.7)
on the midline of the infinite strip. The leading correction
to the infinite strip value follows from viewing the rectangle
as two semi-infinite strips stiched together. For finite W and
H → ∞, where α → 0, it corresponds to two semi-infinite
bab strips, and the correction is given by

〈φ(xM = 0, yM = 0)〉 −
( π

W
)xφ

A(φ)
b

→ 2

[
〈φ(x = H/2, y = W/2)〉bab −

(
π

W

)xφ

A(φ)
b

]
,

H � W . (3.8)

For increasing H/W the expression on the rhs of Eq. (3.8)
decays exponentially to zero. For example, for a = b it is
given by (π/W )

xφA(φ)
b × 4xφ exp[−πH/W], see Eq. (2.3),

and for φ = σ, a = +, b = f , where A(φ)
b ≡ A(σ )

f vanishes,

by (π/W )
1/8

213/8 exp[−(π/4)H/W] which follows from
Eq. (2.23) together with 1 − C = 2/(sinh2 x̃ + 1). These re-
sults follow directly from the expressions for the rectangle on
the left-hand side (lhs) of Eq. (3.8), the first one via Eq. (3.7)
and the second one via Eq. (3.63) below, taking into account
the exponential decay of s given below Eq. (3.4) and the
corresponding behavior of 1/
 determined by Eq. (3.6).

The density profiles 〈φ(xM, yM)〉 of the rectangle and the
profiles 〈φ(u, v)〉 in the intermediate geometry of the unit
disk introduced in Appendix B 2 are mirror-symmetric about
the coordinate axes [27], since the above-mentioned boundary
conditions have this symmetry. In the upper half H plane, by
the same argument the profiles are mirror symmetric about
the vertical coordinate axis. Moreover, since the conformal
transformation H → −1/H ≡ −H̄/|H |2 maps the upper half
plane with the boundary conditions onto itself, the profiles
must be reproduced by this transformation. Thus,

〈φ(G, J )〉 = 〈φ(−G, J )〉

= 1

(G2+J2)xφ

〈
φ

(
G → G

G2 + J2
, J→ J

G2 + J2

)〉
.

(3.9)
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A. Rectangle with horizontal − and vertical + boundaries

Here consider a rectangle with boundary condition a = +
on the two vertical edges and b = − on the two horizon-
tal edges, i.e., ABCD = −+−+ in the above notation. This
corresponds to an upper half plane with boundary conditions
+−+−+ in the intervals (3.2).

1. Energy density

The energy density 〈ε(G, J )〉 follows from Eqs. (16) in
Ref. [8] and can be written as

〈ε(G, J )〉 = − 1

2J

{
1 − 4J2

P

[
16 G2

M(t ) M(−t ) M(t−1) M(−t−1)

+
(

t2

M(t ) M(−t )
+ t−2

M(t−1) M(−t−1)

)]}
,

(3.10)

where

M(τ ) = (G − τ )2 + J2, P = 4

(t2 − t−2)2
+ 1

4

= 1

4

[
1

1 − S
− S

]
, (3.11)

where P is the corresponding form of the Pfaffian Pf(4)ζ−1
i j

in Ref. [8]. For t = 0 and t = 1, corresponding to uni-
form − and + boundaries, the rhs of Eq. (3.10) reduces to
−1/(2J ), as expected. On approaching a switching point, say
(G, J ) → (t, 0), Eq. (3.10), (3.11) yields 〈ε(G, J )〉 → −{1 −
4J2/M(t )}/(2J ) = −{1 − 4 sin2 θ}/(2J ), consistent with ex-
pression (4.1) of Ref. [6] for a single +− switch at G = t .
Here θ is the angle G − t + iJ forms with the positive real
axis.

a. Horizontal and vertical midline of the circular unit-disk.
According to Appendix B 2 the horizontal midline yM = 0
corresponds to G = 0, for which Eq. (3.10) implies

〈ε(G = 0, J )〉 = − 1

2J

{
1 − 4

P


(J2 + J−2) + 4

(
 + J2 + J−2)2

}
,


 = t2 + t−2 ≡ (4/S) − 2. (3.12)

On using the transformation formula 〈ε(u, v = 0)〉 = 2(1 −
u)−2 〈ε(G = 0, J )〉, J = (1 + u)/(1 − u) from Eq. (B13) that
maps (G = 0, J ) to the real axis w = u inside the circular
unit-disk in the w = u + iv plane, Eq. (3.12) then yields

〈ε(u, 0)〉 = : e(u, S),

e(u, S) = − 1

1 − u2

{
1 − 16

S(1 − S)

1 − S(1 − S)
(1 − u2)2

× (2 − S)(1 + 6u2 + u4) + S(1 − u2)2

[S(1 + 6u2 + u4) + (2 − S)(1 − u2)2]2

}
.

(3.13)

In addition to the general mirror symmetry about the coor-
dinate axes for fixed S considered in between Eqs. (3.7) and
(3.9) above, 〈ε(u, v)〉 is invariant on replacing

(u, v; S) → (v, u; 1 − S), (3.14)

which for u = 0 implies that

〈ε(0, v)〉 = e(v, 1 − S), (3.15)

so that Eq. (3.13) not only determines the energy density
along the horizontal but also along the vertical midline. For
the corner images in the disk given below Eq. (B9) the disks
characterized by S and 1 − S, i.e., by α and (π/2) − α, follow
from each other simply by a rotation of 90 degrees together
with an exchange of boundary conditions + and −, which has
no effect on the profile of the energy density.

In the case of a disk with + f + f + boundary condition
that is considered below in subsection III B, exchanging +
and f has a nontrivial effect on 〈ε〉—see the discussion in
Ref. [30]—and a simple relation such as Eq. (3.14) does not
exist. As a consequence there is no simple relation between
the corresponding two midline expressions (3.58) and (3.59).

b. Center values, special aspect ratios, and zero lines. In an
expansion about the center of the unit disk a second order term
∝ uv is absent due to the mirror symmetries, and Eqs. (3.13)
and (3.15) imply

〈ε(u, v)〉 → e0(S) + u2 e2(S) + v2 e2(1 − S) + O(|u + iv|4),

(3.16)

where

e0(S) = −1 − 9S(1 − S)

1 − S(1 − S)
≡ −1 − 9 sin2 α cos2 α

1 − sin2 α cos2 α
,

e2(S) = −
[

1 − 8
S(1 − S)

1 − S(1 − S)
(9 − 12S)

]
(3.17)

are the coefficients in the expansion e(u, S) → e0(S) +
u2e2(S) + ... of e(u, S) in Eq. (3.13) for small u.

The corresponding expression for the rectangle in the zM

plane follows from the transformation (B16), (B7), and (B8)
and reads


〈ε(xM, yM)〉 → e0(S) + (xM/
)2 [e2(S) + (2S − 1)e0(S)]

+ (yM/
)2 [e2(1 − S) + (1 − 2S)e0(S)]

+ O((|xM + iyM|/
)4), (3.18)

where 
 is from Eq. (3.6) and the second terms in the square
brackets arise from the rescaling factor |dw/dZM|.

As expected the expression for the energy density at the
center of the rectangle,

〈ε(xM = 0, yM = 0)〉 = e0(S)/
, (3.19)

is invariant under α → (π/2) − α, i.e., under S → 1 − S
which exchanges the values of H and W . It vanishes for the
two values S = S> ≡ (1/2) + (

√
5/6) and S = S< ≡ (1/2) −

(
√

5/6), which correspond to the aspect ratios W = 1.5172H
and H = 1.5172W , respectively [31]. For the S interval in
between, 〈ε(xM = 0, yM = 0)〉 is positive while it is negative
outside the interval. In particular, for the square H = W ,
where S = 1/2, it equals

〈ε(xM = 0, yM = 0)〉 = (5/3)K(1/
√

2)/H
= 3.0902/H, H = W, (3.20)

and for S = 0 and S = 1, where H/W → ∞ and → 0, it
reproduces the values −π/(2W ) and −π/(2H), respectively,
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for the infinite strip. The different signs arise from the dif-
ference how the proximities of the center to the ordering sides
compare with those to the disordering corners of the rectangle.

Next consider the zero lines, separating regions of positive
and negative 〈ε(xM, yM)〉, the sources and sinks of which
are the corners of the rectangle. Two zero lines (with an
asymptotically enclosed angle of π/3) leave from each of
our +− corners (see Sec. IV C and Fig. 1) and arrive at one
or two of the other corners, so there are four zero lines in
the rectangle. Their topology must change at the borders of
the abovementioned interval S> > S > S<, i.e., 1/1.5172 <

H/W < 1.5172, since for aspect ratios inside the interval the
center of the rectangle is the center of a region of positive
〈ε〉 while outside the interval it is the center of a region of
negative 〈ε〉. We now describe the corresponding topologies
of the lines:

(1) For aspect ratios inside the interval the four zero lines
with obvious notation LI,II, LII,III, LIII,IV, and LIV,I connect,
without intersecting, corners I with II, II with III, III with
IV, and IV with I, enclosing a region where 〈ε〉 is positive
and which includes the rectangle’s center. For the square with
S = 1/2, in particular, this region has the symmetry of the
square, and its smallest diameter is along the coordinate axes
with a size of 0.3963×2×(H = W ), as argued in the para-
graph above Eq. (3.26) and shown in Fig. 1(b). This should
be compared with the central region of the square with + f
corners discussed in (1) of Sec. III B 1 a which has a different
shape, cf. Fig. 3(e), and where 〈ε〉 is negative, and the present
center value (3.20) is to be compared with Eq. (3.51).

(2) On decreasing S from S> down to 0, i.e., increasing
H/W from 1/1.5172 up to ∞, the lines LII,III and LIV,I persist
all the way, with their crossing points with the horizontal
midline remaining at a finite distance from the center. How-
ever, the lines LI,II and LIII,IV do not persist beyond the value
S = S<, i.e., beyond H/W = 1.517. Approaching this value,
their crossing points with the vertical midline move to the
center so that right at S = S< the two lines combine to form
two lines LI,III and LII,IV that connect corners I with III and
II with IV and intersect with a finite angle at the center. The
value of this angle is determined by


〈ε(xM, yM)〉 → (xM/
)2 e2[(1/2) − (
√

5/6)]

+ (yM/
)2 e2[(1/2) + (
√

5/6)]

= 2[(xM/
)2(
√

5 + 1) − (yM/
)2 (
√

5 − 1)],

(3.21)

which follows from Eqs. (3.17) and (3.18) for our case e0 = 0.
Thus, the intersection separates upper and lower regions with
negative 〈ε〉 from left and right regions with positive 〈ε〉, and
the opening angle 2arctan

√
(
√

5 − 1)/(
√

5 + 1) = 0.352 π

of the upper and lower regions is smaller than that of the left
and right regions. This qualitative difference from the larger
opening angle of the upper and lower regions at the crossing
in Fig. 3(c), corresponding to paragraph (2) of Sec. III B 1 a,
is not surprising, since here the zero lines leave the corners on
enclosing the small angle π/12 with the horizontal sides of
the rectangle while in case of Fig. 3 it is π/4 (and there are
only two zero lines).

FIG. 3. Zero lines of 〈ε〉 in the rectangle with boundary condi-
tions f and + on the horizontal and vertical sides. The lines separate
regions of positive and negative 〈ε〉 induced by the disordering f
and the ordering + sides, respectively. Results for the aspect ra-
tios H/W = 1.500, 1.289, 1.279, 1.269, and 1.000 are shown in
panels (a), (b), (c), (d), and (e). As described in points (1)–(3) of
Sec. III B 1 a, the topology of the lines changes at H/W = 1.279,
i.e., at (c), for which the two zero lines form an intersection at the
center where 〈ε〉 vanishes. On the way from panel (a) over panels
(c) to (e) the left and right regions of negative 〈ε〉 shown in panels
(a) and (b) approach each other and coagulate at panel (c) to form
in panels (d) and (e) the central region of negative 〈ε〉. At the same
time the central region of positive 〈ε〉 in panels (a) and (b) splits into
an upper and lower region of positive 〈ε〉 in panels (d) and (e). The
opening angle of the left and right regions at the intersection point in
panel (c) equals π/3; see Ref [32]. In between panels (a) and (b), at
H/W = 1.471, the turning away of the lines from their asymptotic
corner tangents toward the + boundaries as in panel (a) changes to
turning away toward the f boundaries as in panels (b)–(e).

(3) On decreasing S beyond S<, i.e., increasing H/W
beyond 1.5172 the intersecting lines LI,III and LII,IV split into
two lines L′

II,III and L′
IV,I which together with the lines LII,III

and LIV,I form the shape of a crescent moon and its reflected
partner with tips at the corner-pairs II, III and IV, I, respec-
tively; see Fig. 1(a). For S → 0, i.e., H/W → ∞, the former
one reduces to the crescent moon in the − + − semi-infinite
horizontal strip addressed below Eq. (2.18). Inside the two
moons the energy density is positive, while in the region
between L′

II,III and L′
IV,I, which includes the center and the

entire vertical midline of the rectangle, it is negative.
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(4) The development of the zero lines on increasing S
within the interval S< < S < 1 follows easily from their de-
velopment on decreasing S within the interval S> > S > 0
described above since the consequence of S → 1 − S for the
shapes of the rectangle and its zero lines is a mere rotation
by 90 degrees. Thus, in the new interval it is the lines LI,II and
LIII,IV that persist all the way and in its subinterval S> < S < 1
the lines LII,III and LIV,I are changed to lines L′

I,II and L′
III,IV

enclosing a region of negative 〈ε〉 that contains the center
and the horizontal midline of the rectangle, see Figs. 1(b)
and 1(c).

Finally consider the behavior of the zero lines near the
corners as predicted by Sec. IV C on the basis of the corner-
operator expansion. Due to symmetry it is sufficient to discuss
the behavior near the SW corner III where the tangent vec-
tors of the two zero lines form the angles π/12 and 5π/12
with the lower horizontal boundary. Since for 1/2 > S > 0
the average 〈Y〉 of the corner operator in Eq. (4.20) is <0,
cf. Eq. (4.68) for q > q′, the relation (4.22) implies that the
two zero lines bend away from their tangents in counterclock
direction for all H > W . In particular, for 1/2 > S > S<, i.e.,
1 < H/W < 1.5172, this implies that the lines LI,II and LIII,IV

in (1) have two inflection points, i.e., resemble a saucer and a
bell, respectively.

For the square H/W = 1, i.e., S = 1/2, there is no vio-
lation of the symmetry about its diagonal since 〈Y〉 vanishes
and the bending away from the tangents is of higher order, not
described by the COE, cf. point (ii) in Sec. IV E 2.

c. Complete behavior along the midlines of the rectangle.
Due to the invariance (3.14) and (3.15), the value of 〈ε(xM =
0, yM = ξ )〉 on the vertical midline equals 〈ε(xM = ξ, yM =
0)〉 on the horizontal midline on interchanging the magnitudes
of H and W so that S → 1 − S.

The complete dependence of 〈ε〉 along the horizontal mid-
line of the rectangle is conveniently represented in terms of
the scale-invariant function

E (X , S) ≡ (H × W )1/2 〈ε(xM = XH, yM = 0)〉,
− 1/2 < X < 1/2, (3.22)

which depends on S, i.e., on the aspect ratio H/W of the
rectangle, but not on its size. Applying the above invariance to
the rectangle’s center yields E (0, S) = E (0, 1 − S). The form
of E follows from substituting Eq. (3.13) in the transformation
formula (B16) and using the relations (B7), (B8), as well as
(3.4) and (3.6), and reads

E (X , S) = (K(
√

1 − S) K(
√

S))1/2 |du/dXM| e(u, S),

u = u(XM, q(S)),

XM ≡ xM/
 = XK(
√

1 − S). (3.23)

In Figs. 2(c) and 2(a) explicit results for the X dependence
of E are plotted for S = 63/64 = 1 − 1/64 and S = 1/64,
corresponding to W = 2.2040H and H = 2.2040W , respec-
tively, that coincide for X = 0, while in Fig. 2(b) we show the
dependence for the square H = W where S = 1/2.

To understand the gross behavior, consider the limit-
ing cases. For S close to 1, where H 
 W , the corners
of the rectangle are far away from all points of the

horizontal midline, and 〈ε(xM, yM = 0)〉 equals the profile
−π [2H cos(πxM/H)]−1 in an infinite vertical strip of width
H. However, for S close to 0 where H � W , 〈ε(xM, yM = 0)〉
takes the (midline) value −π/(2W ) of an infinite horizontal
strip of width W only outside the two regions near the ends
of the midline, where the distance from the corners is of order
W or less, while inside these regions it displays the midline
behavior in a semi-infinite horizontal strip with the maximum
discussed in Sec. II B 1. Features of the limits H 
 W and
H � W are still visible in the curves in Figs. 2(c) and 2(a),
respectively, of Fig. 2. See, in particular, the maximum in
Fig. 2(a).

In agreement with the discussion in (1)–(4) of Sec. III A 1 b
and Fig. 1(a), 〈ε(xM, 0)〉 has four zeros for 0 < S < S<, two
inner ones, ±xM−, and two outer ones, ±xM+ where |xM−| <

|xM+|. For S< < S < S> only the two outer ones survive, and
for S> < S < 1 there are no zeros on the horizontal midline,
cf. Figs. 1(b) and 1(c), respectively. The locations of the zeros
follow via Eq. (B14) from the values of J for which the curly
bracket in Eq. (3.12) vanishes and are given by

|xM±|
H = 1

2K(
√

1 − S)
F

((
k±(S) − 1

k±(S) + 1

)1/2

, (1 − S)1/2

)
,

(3.24)

where the elliptic integral F is defined below Eq. (B12) and

k±(S) = (2 − S)(7 − 7S − S2) ± 8
√

3(1 − S)3/2

S(1 − S + S2)
. (3.25)

The functions k+(S) and k−(S) decrease monotonically with
increasing S and approach the value 1 at S = S> and S =
S<, respectively, for which, consistent with the discussion
in (1)–(4) above, the corresponding zero xM+ and xM−
is at the midpoint of the rectangle and beyond which it
disappears.

Applying Eq. (3.24) to the square, where S = 1/2, one
finds |xM+|/(H = W ) = 0.3963 and for the rectangle with
S = 1/64, i.e., H = 2.2 × W , the values [|xM−|, |xM+|]/H =
[0.2068, 0.4617], in agreement with Figs. 1 and 2.

Also note the form

[(H/2) − |xM±|]/W

=
[

K((1 − S)1/2) − F

((
k±(S) − 1

k±(S) + 1

)1/2

,

(1 − S)1/2

)]/
[2K(S1/2)] (3.26)

of the normalized distances between the two left zeros and
the left boundary of the rectangle. For S ↘ 0 this reproduces

the two corresponding distances x∓/W = [0.0843, 0.6454]
in the semi-infinite strip mentioned below Eq. (2.18).

2. Order parameter

The density 〈σ (G, J )〉 of the order parameter follows from
Eqs. (17) and (18a) in Ref. [8] and reads

〈σ (G, J )〉 = (2/J )1/8 × Mσ (G, J; S), (3.27)
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where

Mσ (G, J; S) = (M(t ) M(−t ) M(t−1) M(−t−1))−1/2

×
[

(G2 + J2)2 + 1 − 2
2 − S

S

×
(

G2 + 1 − S − S2

1 − S + S2
J2

)]
, (3.28)

with M(τ ) from Eq. (3.11). The corresponding profile in the
unit circle is

〈σ (u, v)〉 =
(

4

1 − u2 − v2

)1/8

× Nσ (u, v; S),

Nσ (u, v; S) ≡ Mσ

( −2v

1 − 2u + u2 + v2
,

× 1 − u2 − v2

1 − 2u + u2 + v2
; S

)
, (3.29)

which checks with the symmetry relation

Nσ (u, v; S) = −Nσ (v, u; 1 − S). (3.30)

a. Horizontal midline. The horizontal midline corresponds
to G = 0, for which Eq. (3.28) yields

Mσ (G = 0, J; S) = J2 + J−2 − 2k(S)

J2 + J−2 + 2(2 − S)/S
,

k(S) ≡ 2 − S

S
× 1 − S − S2

1 − S + S2
. (3.31)

Here it was used that the first factor on the rhs of Eq. (3.28)
equals J4 + 1 + 
J2, with 
 ≡ t2 + t−2 = (4/S) − 2.

As a first application note that at the center of the rectangle

〈σ (xM = 0, yM = 0)〉 = 〈σ (G = 0, J = 1)〉

× 21/8

(
K(

√
1 − S)

H
K(

√
S)

W

)1/16

,

〈σ (G = 0, J = 1)〉 = 21/8 2[S − (1/2)]

(3/4) + [S − (1/2)]2
. (3.32)

As expected, the order parameter at the center of the +−+−
rectangle vanishes for the square H = W where S = 1/2.

For 0 < S � 1/2 Eq. (3.31) implies that 〈σ (G = 0, J )〉
vanishes for J2 = k(S) ±

√
k(S)2 − 1. For 1/2 < S < 1 it

does not vanish on the imaginary axis H = iJ , since in this
case 2k(S) < 2 while J2 + J−2 cannot be smaller than 2. To
determine for the rectangle via Eq. (B14) the zeros xM =
±xM0 where 〈σ (xM, yM = 0)〉 vanishes from the vanishing of
the numerator of Mσ , one uses the identity (J2 − 1)/(J2 +
1) = [(J2 + J−2 − 2)/(J2 + J−2 + 2)]1/2 and obtains

|xM0|
W = 1

2K(S1/2)
F

((
k(S) − 1

k(S) + 1

)1/2

, (1 − S)1/2

)
,

0 < S < 1/2, (3.33)

with k(S) given by Eq. (3.31). This checks with the expected
result for the square H/W = 1, in which, by symmetry, the
order parameter vanishes along the two diagonals so that
|xM0| = 0. This is consistent with Eq. (3.33) since S = 1/2
and k(S) = 1 for the square.

As in Eq. (3.26) consider the difference [H/2 −
|xM0(S)|]/W . This is again given by the expression on the
rhs of Eq. (3.26), except that k±(S) is replaced by k(S). On
increasing S from 0 to 1/2 the difference monotonically in-
creases from the value 0.28055 of the semi-infinite − + −
strip mentioned above to the value 0.5000 for the square.

b. Zero lines in the rectangle. Dropping the restriction to
the midline and considering the entire rectangle, one finds
that 〈σ 〉 vanishes along two nonintersecting parabolic-like
lines with mirror symmetry with respect to the vertical and
horizontal midlines. For H > W (S < 1/2) one line, LII,III,
connects the corners II and III and intersects the horizontal
midline at zM = −|xM0|. The other, LI,IV, connects the corners
I and IV. For H < W (S > 1/2) one, LI,II, connects I with II
and the other, LIII,IV, III with IV. For H = W the lines reduce
to the two diagonals.

A parametric representation, similar to Eq. (2.18), of the
zero lines in the rectangle follows from that of the correspond-
ing lines LII,III etc. in the upper half H plane, for which the
square bracket in Eq. (3.28) vanishes and which can be written
as

G = ±|G(J, S)|±,

(|G(J, S)|±)2 ≡ 2 − S

S
− J2

± 2

(
1

S2
− 1

S
− J2 (2 − S)S

1 − S + S2

)1/2

. (3.34)

For G > 0 the curves (G = |G(J, S)|−, J) and (G =
|G(J, S)|+, J) describe for S < 1/2 the right halves of LII,III

and LI,IV, respectively, while for S > 1/2 they describe two
segments composing LIII,IV. This implies that for J = 0,
|G(J; S)|− = tan(α/2) ≡ GIII and |G(J, S)|+ = cot(α/2) ≡
GIV, which is easily checked. As expected, for S < 1/2,
|G(J, S)|− and |G(J, S)|+ vanish, respectively, at the smaller
and larger J value for the vanishing of Mσ (G = 0, J; S) in
Eq. (3.31) discussed above.

To obtain the quantitative shapes of the zero lines L in the
rectangle, it is sufficient to discuss for 0 < S < 1/2 the lower
half of LII,III, originating from corner III, that corresponds to
the right half of LII,III, originating from switching point (III).
From the symmetries of the +−+− rectangle all the zero lines
L follow. The corresponding parametric representation reads

zM(J, S)

W = ZM(w(J, S), S)

K(S1/2)
, w(J, S) = H (J, S) − i

H (J, S) + i
,

H (J, S) = |G(J, S)|− + iJ,

0 < J <

√
k(S) −

√
(k(S))2 − 1 (3.35)

as follows from the transformations ZM(w, S) given in
Eq. (B10) and w(H ) = (H − i)/(H + i), which is the inverse
of the Moebius transformation in Eq. (B13).

B. Rectangle with horizontal f and vertical + boundaries

Here the boundary conditions of the corresponding upper
half H = G + iJ plane are the same as in the previous Sub-
section except that − is replaced by f .
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Let us start with the expressions for 〈ε〉 and 〈σ 〉 in the half
plane given in Eqs. (2.41) and (2.40) of Ref. [9], which can be
written as

〈ε(G, J )〉 = − 1

2J
[CII,I CIV,III + � SII,I SIV,III], (3.36)

〈σ (G, J )〉 =
(

2

J

)1/8

2−1/2 [
√

(1 + CII,I )(1 + CIV,III )

+ �
√

(1 − CII,I )(1 − CIV,III )]
1/2, (3.37)

where

[CII,I, SII,I] = [NII,I, J (GII − GI )]/
√

N2
II,I + J2(GII − GI )2,

NII,I ≡ (G − GII )(G − GI ) + J2 ; [CIV,III, SIV,III]

= [CII,I, SII,I]|GII→GIV, GI→GIII , (3.38)

and

� = 1 − χ2

1 + χ2
, χ2 =

[
(GIII − GI )(GIV − GII )

(GIII − GII )(GIV − GI )

]1/2

, (3.39)

and which are valid for an arbitrary configuration GI < GII <

GIII < GIV of the switching points of the + f + f + boundary
conditions. For the configuration (3.2) considered here,

� = −1 − s

1 + s
, s ≡ sin α. (3.40)

For the shifted rectangle considered in Appendices B 1 and
C 3, the configuration is different and the corresponding � is
given in Eq. (C10).

1. Energy density

The energy density profile 〈ε(xM, yM)〉 in the rectangle
considered here allows us to study interesting features of the
competition between order and disorder induced by the two
types of boundaries. Of particular interest is the dependence
on the aspect ratio H/W .

For the configuration (3.2) of switching points, the gen-
eral expression for the energy density in Eqs. (3.36)–(3.39)
reduces to

〈ε(G, J )〉 = − 1

2J
× B, B = 1

R+R−
[C+C− + � �], (3.41)

〈ε(G, J )〉 = − 1

2J

1

1 + s−1
× A,

A = 1

R+R−
[(1 + s−1) C+C− + (1 − s−1) �], (3.42)

where � is from Eq. (3.40) and

C± = |H |2 + 1 ± 2Gs−1, � = 4J2(s−2 − 1),

R± = (C2
± + �)1/2, s ≡ S1/2 = sin α. (3.43)

One may check that this result obeys the symmetry
properties (3.9).

According to Eq. (3.41) the zero lines in the H plane along
which 〈ε(G, J )〉 vanishes are determined by

(G2 + J2 + 1)2 = 4[G2s−2 + J2(s−1 − 1)2]. (3.44)

The zero lines in the rectangle follow from Eq. (3.44) via the
inverse of the Möbius transformation (B13) and Eqs. (B8)
and (B10). Results are shown in Fig. 3 and discussed in
Sec. III B 1 a below.

An important special case is the behavior of 〈ε〉 along the
horizontal and vertical midlines yM = 0 and xM = 0 of the
rectangle. As explained below Eq. (3.3), this corresponds to
the imaginary axis and the half unit circle, respectively, in the
upper half H plane. In the first case Eqs. (3.41) and (3.43)
imply

B = 1

1 + s

[
s + (J2 + 1)2 − 4J2(s−2 − 1)

(J2 − 1)2 + 4J2s−2

]
, (3.45)

A = 1 + 1

s

(J2 + 1)2 − 4J2(s−2 − 1)

(J2 − 1)2 + 4J2s−2
, (3.46)

and in the second case, in which G = − sin ψ, J = cos ψ , and
R± = 2(s−1 ∓ sin ψ ),

B = −1 + 2s cos2 ψ

1 − s2 sin2 ψ
, (3.47)

R+R− × A = −4 s−3 (1 + s) [1 − 2s + sin2 ψ × s(2 − s)],

(3.48)

which is noted for later use.
The imaginary axis and the unit circle intersect at H = i,

which corresponds to the center zM = 0 of the rectangle.
In this case Eq. (3.41), together with Eq. (3.43) or with
Eqs. (3.45) and (3.47), yield

〈ε(G = 0, J = 1)〉 = 1
2 − sin α, (3.49)

so that from Eq. (3.5)

〈ε(xM = 0, yM = 0)〉 = 1 − 2 sin α



, (3.50)

with 1/
 given by Eq. (3.6). In the limits α → 0 and α →
π/2 where the rectangle reduces to an infinite horizontal
strip with f boundaries of width W and an infinite vertical
strip with + boundaries of width H, respectively, Eq. (3.50)
reproduces the corresponding midline values (2/
)A(ε)

f =
π/(2W ) and (2/
)A(ε)

+ = −π/(2H) of 〈ε〉, respectively.
a. Order-disorder competition, zero lines, and three special

aspect ratios. It is interesting that in the competition between
the disorder induced by the two horizontal f boundaries and
the order induced by the two vertical + boundaries of the
rectangle, the latter is stronger.

(1) For the square H/W = 1 where α = π/4, 1 −
2 sin α = 1 − √

2, so that the energy density at the midpoint,

〈ε(xM = 0, yM = 0)〉 = −(
√

2 − 1)K(1/
√

2)/H
= −0.768/H, W = H, (3.51)

is negative. One of the two zero lines, LI,II, connects the NE
with the NW corner and the other one, LIII,IV, the SW with
the SE corner, see Fig. 3(e). In the region in between them,
which contains the entire horizontal axis, the energy density is
negative. Their crossing points (xM, yM) = (0,±y0+) with the
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FIG. 4. Energy density 〈ε(xM, yM)〉 in the square of Fig. 3(e)
with side length H = W ≡ L, boundary conditions f along the two
horizontal sides, and + along the vertical sides. The data denoted by
(i), (ii), and (iii) represent the scale-free expressions L × 〈ε(LX , 0)〉,
L × 〈ε(0,LX )〉, and L × 〈ε(LX ,LX )〉 of 〈ε〉 along the horizontal
midline, the vertical midline, and along the diagonal of the square as
X varies from −1/2 to 0. The three expressions meet at X = 0, the
center of the square, where 〈ε〉 is negative. The field theory results for
(i) and (ii) follow from Eqs. (3.58) and (3.59) on substituting them
in the transformation (B16) and using (B7), (B8). The result (iii)
follows from Eq. (4.63) which yields L × 〈ε(LX ,LX )〉 = −(

√
2 −

1)Kcn(2XK) where the modulus q of the Jacobi function cn and
of the complete elliptic integral K equals q = 1/

√
2 so that, e.g.,

K = K(1/
√

2) = 1.854. All the values in (i) and (iii) are negative
since the horizontal midline and the diagonal are entirely within the
central region of Fig. 3(e). The vertical midline, however, crosses the
zero lines in Fig. 3(e) and the values of (ii) are negative and positive
for |X | < 0.208 and |X | > 0.208 as predicted by Eq. (3.55). Like
in Fig. 2 there is good agreement between the results of conformal
field theory (full line, dash-dotted line, line of dashes) and of the nu-
merical simulations (triangles, circles, squares) obtained in Ref. [19]
on a 200×200 lattice of Ising spins. For the center of the square,
for example, the simulation result of ≈ −0.779 agrees well with the
analytic expression −(

√
2 − 1)K = −0.768 from Eq. (3.51).

vertical midline have a considerable mutual separation 2y0+
which is only smaller by a factor 0.41 than the entire side-
length W = H of the square, see Eq. (3.55) below, Fig. 3(e),
and curve (ii) in Fig. 4. The behavior of 〈ε〉 along the diago-
nals of the square, which also belong to the negative region,
is presented in Eq. (4.63) below and shown in curve (iii) in
Fig. 4. The corresponding behavior (4.62) in the upper half
plane is another instructive example in which + dominates f .

(2) In order that 1 − 2 sin α and the energy density at
the midpoint vanish, the length H of the f boundaries must
be longer than the length W of the + boundary. This hap-
pens for α = π/6, corresponding via Eq. (3.3) to H/W =
K(

√
3/2)/K(1/2) = 1.279.

For H/W < 1.279 the zero lines qualitatively behave as in
(1); see, e.g., Fig. 3(d). For H/W = 1.279 they combine to
two lines, LI,III and LII,IV, that connect the NE with the SW
corner and the NW with the SE corner, respectively, and cross
at the center, see Fig. 3(c). These lines separate the rectangle
in upper and lower regions with positive 〈ε〉, each with an
opening angle of 2π/3 near the center and in left and right
regions with negative 〈ε〉, each with an opening angle of π/3
near the center, see below Eq. (3.61) and Ref. [32]. That the

former angle is larger than the latter is plausible, since H >

W and since the zero lines leave the corners at an angle of 45
degrees between their boundaries, see Sec. IV C. For H/W >

1.279, however, the zero lines connect the NE with the SE
corner (LI,IV) and the NW with the SW corner (LII,III). They
cross the horizontal axis at points (xM, yM) = (±x0+, 0), and
in the region between them, which contains the entire vertical
axis, the energy density is positive, see Figs. 3(a) and 3(b).

(3) The zero lines flow into the corners with a tangent equal
to the symmetry line that encloses 45 degrees with the bound-
ing + and f sides of the corner. The leading deviation from
this asymptotic behavior changes at the aspect ratio H/W =
K(

√
(3

√
5 − 5)/2)/K((3 − √

5)/2) = 1.471, corresponding
to sin α = (3 − √

5)/2. For H/W < 1.471 the lines bend
away from the tangent toward the region where 〈ε〉 is positive,
i.e., toward the f side of the corner, and for H/W > 1.471
toward the + side of the corner. As explained in Sec IV C this
follows from the change in sign of the average corner operator
〈Y〉 implied by Eq. (4.69).

b. Zeros on the midlines. As in Eqs. (3.24)–(3.26) in
Sec. III A 1 c, compact analytic expressions are presented now
for the location of the zeros of the energy density on the
midlines of the rectangle that describe their dependence on
the aspect ratio.

According to Eq. (B16) the vanishing of 〈ε(xM, yM)〉 fol-
lows from the vanishing of 〈ε(G, J )〉. Due to Eqs. (3.45) and
(3.47) the latter vanishes for

G = 0,

J2 = J2
± ≡ s−2[2(1 − 2s) + s2 ± 2(1 − s)

√
1 − 2s],

0 < α < π/6, (3.52)

and for

H = ieiψ, sin ψ = sin ψ± ≡ ±
(

2s − 1

s(2 − s)

)1/2

,

π/6 < α < π/2, (3.53)

which for H/W > 1.279 and H/W < 1.279 determines the
values of the zeros x0+ and y0+ addressed above. The explicit
result for the latter,

y0+ = W
K(s)

Y0+, Y0+ = 1

2
F

([
2s − 1

s(2 − s)

]1/2

, s

)
,

1

2
< s ≡ sin α < 1, (3.54)

follows from Eqs. (3.53), (B8), and (B15). Here F is the
elliptic integral of the first kind as defined below Eq. (B12).
For the square with s = 1/

√
2 and H/W = 1, this yields

2y0+
W ≡ 2Y0+

K(s)
= 0.41646, s = 1√

2
. (3.55)

As expected, the two zeros are equidistant from the rect-
angle’s midpoint in accordance with the symmetry of the
boundary conditions. This is obvious for the zeros on the ver-
tical midline, and, since J2

− = J−2
+ , together with Eq. (B14),

it applies as well to the zeros at xM = ±x0+ on the horizontal
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axis. Equations (3.52) and (B14) imply

x0+ = H
K(

√
1 − s2)

X0+,

X0+ = 1

2
F

(√
1 − 2s

1 − s
,
√

1 − s2

)
, 0 < s ≡ sin α <

1

2
.

(3.56)

For H/W = 2 for example, where s = tan2(π/8) and
H〈ε(xM = 0, yM = 0)〉 = 2.079 by (3.50), Eq. (3.56) yields
x0+/H = 0.33716.

It is instructive to consider the dimensionless distance
dhoriz ≡ (H/2 − x0+)/W of the right zero from its closer
vertical boundary in a rectangle with H = L, W = � and
compare it with its counterpart dvert ≡ (W/2 − y0+)/H in a
rectangle with H = �, W = L. Thus, dhoriz = (L/2 − x0+)/�
is to be compared with dvert = (L/2 − y0+)/�. In order that
both zeros x0+ and y0+ exist, we require L/� � 1.279, i.e.,
α = α̃ and α = (π/2) − α̃ in the two cases with α̃ � π/6,
cf. Fig. 3. Thus, apart from a 90 degree rotation, the two
rectangles have the same shape but the boundary conditions f
and + are interchanged. As expected, dhoriz > dvert, in general,
reflecting that + dominates f . For L/� = 1.279, i.e., α = π/6
and α = π/2 − π/6 = π/3, for example, this follows from
x0+ = 0 and y0+ > 0, compare the remark below Eq. (3.53).
Using Eqs. (3.52), (3.53), and (B14), (B15) or (3.54) one
finds, e.g., dhoriz = 0.6396, 0.3564 for α = π/6, π/12 and
dvert = 0.2823, 0.2806 for α = π/3, 5π/12. However, for
L/� → ∞, dhoriz ↘ dvert, and both approach the same finite
value π−1 ln(1 + √

2) = 0.2805499. The reason is that in this
limit the two rectangles are like semi-infinite strips, one of
width W = � with boundary condition f in the infinitely long
edges and + in the finite edge and the other with f and +
exchanged. In this case duality [30] implies the same ε profiles
apart from the sign, so that the distance of the zeros on the
midlines from the finite edge are the same and given by the
above value as shown in Sec. II B 2.

c. Behavior of ε along the midlines. The expression

〈ε(u, v)〉 = − 1

1 − u2 − v2
× [B]H=i(1+w)/(1−w) (3.57)

for the energy density in the unit disk follows from
Eqs. (3.41), (B17), and (B13).

Along the horizontal midline v = 0 of the disk, Eq. (3.45)
leads to

〈ε(u, v = 0)〉

= 1

u2 − 1
× (u4 + 1)(2S1/2 − 1) + 2u2(2S − 2S1/2 + 1)

u4 + 1 + 2u2(2S − 1)
.

(3.58)

For u → ±1, S > 0, where one of the two + boundaries is
approached, the rhs of Eq. (3.58) diverges as −1/(1 − u2)
toward −∞, while for S = 0 and S = 1, in which case the
boundary becomes uniformly f and +, the rhs has over the
entire interval −1 < u < 1 the positive and negative depen-
dence 1/(1 − u2) and −1(1 − u2), respectively.

Along the vertical midline u = 0, Eq. (3.47) together with
(sin ψ, cos ψ ) = (2v, 1 − v2)/(1 + v2) yields

〈ε(u = 0, v)〉 = 1

1 − v2
− 2S1/2 1 − v2

(1 + v2)2 − 4Sv2
. (3.59)

As above, this checks with the known limits for v → ±1,
S = 0, and S = 1. For the square, where S = 1/2, the corre-
sponding behavior along the horizontal and vertical midlines
is shown in curves (i) and (ii), respectively, of Fig. 4.

The expressions

〈ε(u, v)〉 → E0 + u2E (horiz)
2 + v2E (vertic)

2 ; E0 = 1 − 2S1/2,

E (horiz)
2 = 1 − 2S1/2 − 8S + 8S3/2,

E (vertic)
2 = 1 + 6S1/2 − 8S3/2 (3.60)

near the center of the circle follow from expanding
Eqs. (3.58), (3.59), and the absence of a term ∝ uv due to
symmetry. The corresponding expression for the rectangle in
the zM plane follows from the transformation (B16), (B7),
(B8) and reads


〈ε(xM, yM)〉 → E0 + (xM/
)2
[
E (horiz)

2 + (2S − 1)E0
]

+ (yM/
)2
[
E (vertic)

2 + (1 − 2S)E0
]

+ O((|xM + iyM|/
)4), (3.61)

where the second terms in the square brackets arise from
the rescaling factor |dw/dZM|. For S = 1/4 where E0 = 0,
E (horiz)

2 = −1, and E (vertic)
2 = 3, Eq. (3.61) determines the

form xM = ±√
3 yM of the intersecting zero lines near the cen-

ter, so that the right and left sectors with negative 〈ε〉 enclose
an angle of π/3 (60 degrees). Due to the angle-invariance of
conformal mappings, this value can be determined directly in
the half-plane geometry, see Ref. [32] where it is denote by
2β.

2. Order parameter density

The profile 〈σ (G, J )〉 follows from inserting the expres-
sions (3.2) for the switching points into Eqs. (3.37)–(3.39).
For G = 0, which determines the behavior along the horizon-
tal midline of the rectangle, this yields

〈σ (G = 0, J )〉

=
(

2

J

)1/8√ s

1 + s

(
1 + 1 + J2√

(1 − J2)2s2 + 4J2

)1/2

,

s ≡ S1/2. (3.62)

Together with Eq. (3.5), this implies the dependence

〈σ (xM = 0, xM = 0)〉 =
(

1




)1/8

23/4

√
s

1 + s
(3.63)

of the center value of 〈σ 〉on the aspect ratio. Here Eqs. (3.6)
and (3.3) must be taken into account.

IV. CORNER BOUNDARY EXPANSIONS

A useful tool for investigating the behavior near the bound-
ary of a critical system is the boundary-operator expansion,

044133-13



E. EISENRIEGLER PHYSICAL REVIEW E 108, 044133 (2023)

in which a bulk operator φ is expanded in terms of “bound-
ary operators” located on the boundary, see the discussions
belonging to Eqs. (3.167) and (23) in the first and second
review, respectively, of Diehl [2]. These expansions were
first developed for uniform boundary conditions. Recently, in
two spatial dimensions, expansions about points where the
boundary condition switches between two different bound-
ary universality classes have been considered in Ref. [9].
Here these expansions, in which the boundary is a straight
line, are generalized to corners where the boundary abruptly
changes directions, expanding in terms of operators located
at the apex [33]. This is clearly of interest to critical sys-
tems bounded by a wedge or a polygon, in particular, by a
rectangle.

As other operator expansions, the corner-operator expan-
sion describes how distant perturbations affect the critical
behavior in the vicinity of the expansion point, here the
point where the boundaries intersect. The leading term in
the expansion is the apex-operator of lowest scaling dimen-
sion multiplied by an amplitude F (φ) which depends on the
bulk-operator φ in question. While the distant perturbations
in a given case affect the corresponding average of the apex-
operator, the amplitude depends, apart from φ, solely on the
enclosed angle of the corner and the two boundary conditions
meeting at the apex. Due to this local nature the amplitude
may be calculated for the corner of a wedge with the most
convenient type of perturbations, which are switches between
boundary conditions at distant points on the sides of the
wedge. The reason is that these perturbations do not change
the shape, and both in their presence and absence the mapping
to the corresponding half-plane situations is the same.

As in the upper half plane, at the corner there are qualita-
tive differences, notably in the scaling dimension of the apex
operator and its amplitude, depending on whether the two
boundary conditions a and b meeting at the apex are equal
or not. In the first and second of the following subsections
wedges with a = b and a �= b, respectively, are discussed and
the corresponding amplitudes are determined. It is checked in
the third subsection that the amplitudes are local properties
with the same form near corners in the quite different geom-
etry of a semi-infinite strip. Lateron this check is extended to
rectangles.

The corner considered in the following encloses an angle
γ ≡ π/g and its apex is at the origin z = 0 of the z = x + iy
plane. One of its edges is directed along the positive real axis
z = |z| with boundary condition b, and the other along the
direction z = |z| exp(iγ ) with boundary condition a. When
unperturbed, it is the corner of a wedge where the two edges
extend with uniform boundary conditions from |z| = 0 to
|z| = ∞, and we denote it by a|b.

A. Corner with equal boundary conditions meeting at the apex

To derive the expansion in this case, begin with the
two-dimensional version of the well known BOE near
the uniform boundary of semi-infinite critical systems; see
Refs. [2,3,34,35]. The BOE applies as well on approaching
a flat part of the boundary where the boundary condition is
uniform and outside which the boundary might be nonuni-
form and have a more complicated shape; see Sec. III A of

Ref. [9] and Appendix A of the present paper. On approaching
a boundary interval with boundary condition a of the upper
half H = G + iJ plane, it reads

φ(G, J ) − 〈φ〉a → μ(φ)
a J2−xφ T (G), J → 0. (4.1)

Here 〈φ〉a ≡ A(φ)
a /Jxφ is the average for a boundary condition

a extending uniformly along the entire real axis, “unper-
turbed” by any switching point. Equation (4.1) applies to the
pairs (φ, a) for which the leading boundary operator is the
stress tensor T (G), and the prefactors are given by μ(φ)

a =
−(4xφ/ĉ)A(φ)

a . For the Ising model with ĉ = 1/2 the pairs are
(φ, a) = (σ,+), (σ,−), (ε,+), (ε,−), (ε, f ) [36] and the
values of A(φ)

a are given in Eq. (2.12).
We focus on approaching the boundary of the upper half

plane at the origin H = G = 0, assuming that it is an internal
point of the interval with boundary condition a. According to
the previous discussion a simple example is a boundary with a
single switching point at G = χ > 0 with boundary condition
a for −∞ < G < χ and c for χ < G < +∞. For the average
〈φ〉 of φ in this system, Eq. (4.1) yields

〈φ(G, J )〉 − 〈φ〉a → μ(φ)
a J2−xφ 〈T (H = 0)〉

〈T (H )〉 → 〈T (H = 0)〉. (4.2)

Here included is the “expansion” for the stress tensor aver-
age which is regular at the boundary, away from switching
points. For the above example 〈T (H = 0)〉 = tac/χ

2, cf. the
paragraph below Eq. (2.5).

The conformal transformation

H (z) = zg (4.3)

relates the upper half H plane to the wedge in the z = x + iy
plane with opening angle γ ≡ π/g mentioned above. In the
example it has boundary condition a except for the interval
χ1/g ≡ ζ < x < +∞ on the real axis, i.e., there is a switching
point from a to c at z = ζ . The two boundaries meeting at the
apex both have boundary condition a, so that in the notation
introduced above we are dealing with an a|a corner. Applying
the transformation laws given in Eq. (2.2) and in Ref. [23],

〈φ(x, y)〉 − 〈φ(x, y)〉a|a = |dH/dz|xφ (〈φ(G, J )〉 − 〈φ〉a),

〈T (z)〉 − 〈T (z)〉a|a = (dH/dz)2 〈T (H )〉, (4.4)

to the relations (4.2) yields their counterparts

〈φ(x, y)〉 − 〈φ(x, y)〉a|a → gxφ |z|(g−1)xφ μ(φ)
a (Imzg)2−xφ × 〈T 〉

≡ μ(φ)
a gxφ |z|2g−xφ (sin(ϑg))2−xφ × 〈T 〉

≡ F (φ)
a (x, y) × 〈T 〉,

〈T (z)〉 − 〈T (z)〉a|a → g2z2g−2 × 〈T 〉 ≡ F (T )
a (z) × 〈T 〉

(4.5)

for the wedge with the corresponding boundary conditions.
Here z = |z| exp(iϑ ), and the apex operator T is normalized
by imposing the condition [37]

〈T 〉 = 〈T (H = 0)〉. (4.6)

In the simple example 〈T 〉 = tac/χ
2 ≡ tac/ζ

2g. Generally,
〈T 〉 scales as (1/length)2g ≡ (1/length)2π/γ , i.e., T has the
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scaling dimension 2g. For later reference note that [36]

φ(x, y)−〈φ(x, y)〉a|a → F (φ)
a (x, y) × T ;

(φ, a) = (σ,+), (σ,−), (ε,+), (ε,−), (ε, f ),

T (z) − 〈T (z)〉a|a → F (T )
a (z) × T , (4.7)

which follows from Eq. (4.5).
The above forms of the prefactors F (φ)

a (x, y) and
F (T )

a (z) of the apex operator should be compared with the

forms 〈φ(x, y)〉a|a = A(φ)
a [g/(|z| sin(ϑg))]

xφ

and 〈T (z)〉a|a =
(ĉ/12) S(H (z)) = (1 − g2) ĉ/(24z2) of the profiles of φ and
T , respectively, in the unperturbed a|a wedge. Here S is
the Schwarzian derivative [23] of the transformation H (z) in
Eq. (4.3). Both F (T )

a and 〈T (z)〉a|a are independent of a.
Both F (φ)

a (x, y) and 〈φ(x, y)〉a|a are invariant under mirror-
imaging about the centerline of the wedge, i.e., under ϑ →
γ − ϑ ≡ (π/g) − ϑ .

B. Corner with different boundary conditions
meeting at the apex

Deriving the expansion for a corner with different bound-
ary conditions a|b follows pretty much the track presented
in Sec. IV A for equal boundary conditions. Here one starts
from the BOE about the a|b switching point at H = 0 in
the nonuniform boundary of the upper half H plane. The
simple example is a nonuniform boundary with conditions
a, b, and c for −∞ < G < 0, 0 < G < χ , and χ < G < +∞,
respectively, where a �= b and b �= c. This has been discussed
in detail in Eqs. (3.6) ff. of Ref. [9], and the counterpart of
Eq. (4.2) is

〈φ(G, J )〉 − 〈φ〉a|b → F (φ)
ab (G, J ) × 〈ϒ(H = 0)〉,

φ = σ, ε,

〈T (H )〉 − 〈T (H )〉a|b → 1

H
〈ϒ(H = 0)〉

≡ F (T )
ab 〈ϒ(H = 0)〉, (4.8)

where ϒ(H = 0) is the boundary operator at the ab switching
point of lowest scaling dimension. For the simple example
mentioned right above Eq. (4.8) 〈ϒ(H = 0)〉 = (tab + tbc −
tac)/χ. Unlike (4.1), (4.2), and (4.7), here and in Eq. (4.20)
below there is no restriction on combining φ with the pair
ab. The average 〈φ〉a|b is for a boundary with conditions a
and b for −∞ < G < 0 and 0 < G < +∞, “unperturbed” by
further switchings. It has the scaling form

〈φ(G, J )〉a|b = J−xφB(φ)
a|b (θ ), (4.9)

where θ is the angle that H = G + iJ encloses with the posi-
tive real axis such that B(φ)

a|b (θ ) equals A(φ)
a and A(φ)

b for θ = π

and θ = 0, respectively. As shown in Eq. (3.29) of Ref. [9]

F (φ)
ab (G, J ) = 1

2tab
J−xφ |H | × (sin θ )

d

dθ
B(φ)

a|b (θ ). (4.10)

The relations in Eqs. (4.9) and (4.10) as well as 〈T (H )〉a|b =
tab/H2 for the stress tensor are of general validity, not limited
to the Ising model. For the Ising model the form of the scaling

functions B(φ)
a|b (θ ) follows from Eq. (4.1) in Ref. [6] and reads

B(σ )
+|− = −B(σ )

−|+ = −21/8 cos θ,

B(ε)
+|− = B(ε)

−|+ = −1

2
(1 − 4 sin2 θ ),

B(σ )
+| f = 21/8

(
sin

θ

2

)1/2

, B(σ )
f |+ = 21/8

(
cos

θ

2

)1/2

,

B(ε)
+| f = −B(ε)

f |+ = 1

2
cos θ. (4.11)

The conformal mapping leads to a wedge with a|b switch at
the apex, and the transformations (4.4) adapted to the present
case with a|a replaced by a|b and 〈φ〉a by 〈φ〉a|b together with
Eq. (4.8) yields

〈φ(x, y)〉 − 〈φ(x, y)〉a|b → gxφ |z|(g−1)xφ F (φ)
ab (G, J ) × 〈Y〉

≡ F (φ)
a|b (x, y) × 〈Y〉,

〈T (z)〉 − 〈T (z)〉a|b → g2zg−2 × 〈Y〉 ≡ F (T )
a|b (z) × 〈Y〉.

(4.12)

Here we have normalized the apex operator Y by imposing
the condition [37]

〈Y〉 = 〈ϒ(H = 0)〉. (4.13)

In the simple example its explicit form is 〈Y〉 = (tab +
tbc − tac)/χ ≡ (tab + tbc − tac)/ζ g. The scaling dimension g
of the present apex operator Y for a �= b should be com-
pared with the scaling dimension 2g of the apex operator T
for a = b.

Combinig the scaling expressions in Eqs. (4.9) and (4.10)
with the transformation (4.3) and the relation (4.12) between
F (φ)

a|b and F (φ)
ab yields

〈φ(x, y)〉a|b =
(

g

|z| sin gϑ

)xφ

B(φ)
a|b (gϑ ),

F (φ)
a|b (x, y) = 1

2tab

(
g

|z| sin gϑ

)xφ

|z|g sin gϑ × d B(φ)
a|b (gϑ )

d gϑ
,

(4.14)

where, like above, ϑ is the argument of z = x + iy =
|z| exp(iϑ ). For g = 1, 〈φ(x, y)〉a|b and F (φ)

a|b reduce to

〈φ(G, J )〉a|b and F (φ)
ab , respectively. For the Ising model the

explicit expressions

F (ε)
+| f (x, y) = −4g|z|g−1 sin(ϑ g),

F (σ )
+| f (x, y) = 4g1/8|z|g−1/8

(
sin

ϑg

2

)3/8(
cos

ϑg

2

)15/8

,

(4.15)

and

F (ε)
+|−(x, y) = 2g|z|g−1 sin(2ϑg),

F (σ )
+|−(x, y) = (2g)1/8|z|g−1/8 sin2−(1/8)(ϑg), (4.16)
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as well as

〈ε(x, y)〉+| f = g

2|z| cot(ϑ g),

〈σ (x, y)〉+| f =
(

2g

|z| sin(ϑ g)

)1/8 (
sin

ϑg

2

)1/2

, (4.17)

and

〈ε(x, y)〉+|− = − g

2|z| sin(ϑ g)
(1 − 4 sin2(ϑ g)),

〈σ (x, y)〉+|− = −
(

2g

|z| sin(ϑ g)

)1/8

cos(ϑg), (4.18)

follow from Eq. (4.11). The generally valid result for the stress
tensor in the unperturbed wedge [38],

〈T (z)〉a|b = 1

z2

(
g2tab + ĉ

24
(1 − g2)

)
, (4.19)

follows from the transformation formula in footnote [23] and
the Schwarzian derivative of the mapping (4.3) addressed
below Eq. (4.7). For the Ising model ĉ = 1/2 and t+ f = 1/16,
t+− = 1/2, cf. the paragraph below Eq. (2.5).

From Eqs. (4.12) one obtains

φ(x, y) − 〈φ(x, y)〉a|b → F (φ)
a|b (x, y) × Y, φ = σ, ε,

T (z) − 〈T (z)〉a|b → F (T )
a|b (z) × Y . (4.20)

The derivation of the operator expansions (4.7) and (4.20)
for the wedge geometry from the corresponding expansions
(4.2) and (4.8), respectively, in the upper half plane is possible
since the conformal mapping for the perturbed and unper-
turbed averages on the left-hand sides of Eq. (4.5) or of
Eq. (4.12) is the same. This is due to the simple nature of
the perturbations, i.e., the switches, which do not change the
shape of the infinite wedge system. This is different in the
cases of a semi-infinite strip and a rectangle that we consider
below [37].

C. “Zero lines” of 〈φ(x, y)〉 originating from
an a|b corner and the COE

The a|b corners are origins of “zero lines.” These are
contour lines along which 〈φ〉 vanishes, cf. Secs. II and
III. It follows from Eqs. (4.18) and (4.17) that two zero
lines of 〈ε〉 originate at a +|− corner, with tangent vectors
exp[iπ/(6g)] and exp[5iπ/(6g)]), and one of 〈σ 〉 with tangent
vector exp[iπ/(2g)]. A +| f corner emanates one zero line
of 〈ε〉 with tangent vector exp[iπ/(2g)] and one of 〈σ 〉 with
tangent vector in the f boundary of the corner.

The COE (4.20) predicts the |z| dependence of 〈φ(x, y)〉
for arbitrary fixed ϑ in leading and next-to-leading order.
For the special values of ϑ where exp(iϑ ) equals one of
the above-mentioned tangent vectors and the leading contri-
bution 〈φ(x, y)〉a|b vanishes, a positive and negative sign of
F (φ)

a|b (x, y) × 〈Y〉 implies that the zero line bends away from
its tangent direction toward the side where 〈φ(x, y)〉a|b is neg-
ative and positive, respectively.

The COE (4.20) provides even quantitative results for
this bending away, since a zero line z = z0 of 〈φ(x, y)〉
near an a|b corner is determined by the vanishing of

〈φ(x, y)〉a|b + F (φ)
a|b (x, y) × 〈Y〉 for z = z0. Parametrizing the

line by the dependence of argz0 ≡ ϑ0 on |z0|, one finds for the
Ising model with the explicit expressions given in Eqs. (4.15)–
(4.18) and a corner with opening angle of 90 degrees (g = 2)
the following results for small |z0|:

For φ = ε and a|b = +| f

argz0 = π

4
− 4|z0|2 × 〈Y〉, (4.21)

for φ = ε and a|b = +|−, where there are two lines z = z0+
and z = z0−,

arg(z0+, z0−) =
(

π

12
,

5π

12

)
− 1

4
(|z0+|2, |z0−|2) × 〈Y〉,

(4.22)

and for φ = σ and a|b = +|−

argz0 = π

4
− 1

2
|z0|2 × 〈Y〉. (4.23)

For a given geometry the values of 〈Y〉 in Eqs. (4.22)
and (4.23) are the same so that the zero line z0 of σ can be
compared directly with the two zero lines z0+, z0− of ε. In
particular, the signs of the bending away (clockwise or coun-
terclockwise) from their asymptotic tangents are the same for
the three lines.

The expressions in Eqs. (4.21)–(4.23) are consistent with
expansions of exact results. For the semi-infinite strips on
using the values of 〈Y〉 given in Eqs. (4.26), see Eqs. (4.22)
and (2.21), and the remark below Eq. (2.23). The expression in
Eq. (4.21) also agrees with the behavior (C13) of an f + | f +
rectangle of arbitrary aspect ratio due to the form of 〈Y〉 given
in Eq. (4.69).

Corresponding results for zero lines in the half plane orig-
inating from a switching point, can be obtained from the
BOE (4.8).

D. Corner of a semi-infinite strip

The operator expansions (4.7) and (4.20) derived for an
a|a or a|b wedge not only apply to perturbations arising from
distant switches but also from deviations from the wedges
shape at large distance from the apex. A useful example is the
corner with apex at z = 0 of the semi-infinite strip introduced
in Sec. II. It can be used to confirm that the operator expan-
sions (4.7) and (4.20) again apply with the above prefactors
F (φ)

a , F (T )
a and F (φ)

a|b , F (T )
a|b taken for an enclosed angle of 90

degrees, i.e., for g = 2.
Since the perturbed and unperturbed density profiles are

mapped with different conformal transformations (2.1) and
(4.3) onto the upper half H plane, the BOE’s (4.2) and (4.8) in
the upper half H plane cannot be invoked. One possibility is
to evaluate the perturbed and unperturbed averages separately
before investigating their difference for the situation W � |z|
in which the shape perturbation is far away. This requires
knowing the corresponding profiles in the upper half plane,
which one does for many cases in the Ising model. Using the
product representation in Eq. (2.4) even allows us to derive
the COE for the semi-infinite strip from the BOE in the half
plane without recourse to results for a particular model, see
the discussion in Sec. IV D 4.
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Adopting throughout this subsection the notation ABC for
the three sides of the strip introduced below Eq. (2.4), the
above notation (a, b) for the boundary classes of the (vertical,
horizontal) sides of a wedge of 90 degrees, with apex at z = 0,
is changed to

(a, b) → (B,C). (4.24)

1. Corner-operator averages

For equal and different side classes B = C and B �= C of
the corner sides, the averages 〈T 〉 and 〈Y〉 of the correspond-
ing operators follow from the definitions (4.5) and (4.12)
using the stress tensor expressions in Eqs. (2.9) and (2.10)
with the results

〈T 〉 = 〈T 〉AB|B = 1

16

[
− ĉ

30
+ tAB

](
π

W

)4

, (4.25)

and

〈Y〉 = 〈Y〉AB|C = 1

4

[
tAC − tAB − 1

3
tBC

](
π

W

)2

, B �= C.

(4.26)

2. B|B corner in a BB|B strip

In this case of uniform boundary conditions B, the averages
〈φ(x, y)〉 of φ = σ or ε in the strip are given in Eq. (2.3) for
arbitrary z. For |z| 
 W the quantity � in Eq. (2.3) becomes

� → 2

|z| sin(2ϑ )

[
1 + 1

120

(
π |z|
W

)4

sin2(2ϑ )

]
, (4.27)

yielding

〈φ(x, y)〉 →A(φ)
B

(
2

|z| sin(2ϑ )

)xφ

×
[

1 + xφ

120

(
π |z|
W

)4

sin2(2ϑ )

]
, (4.28)

and

〈φ(x, y)〉 − 〈φ(x, y)〉B|B

→ A(φ)
B

2xφ xφ

120
|z|4−xφ sin2−xφ (2ϑ ) ×

(
π

W

)4

, (4.29)

since 〈φ(x, y)〉B|B equals the limit of the rhs of Eq. (4.28) for
W → ∞. The rhs of Eq. (4.29) indeed equals the product of

F (φ)
B = μ

(φ)
B 2xφ |z|4−xφ sin2−xφ (2ϑ )

≡ −A(φ)
B (4/ĉ) 2xφ xφ|z|4−xφ sin2−xφ (2ϑ ), (4.30)

that follows from Eq. (4.5) for g = 2, a → B, and of the op-
erator average 〈T 〉 given in Eq. (4.25) for A = B, as predicted
by the operator expansion (4.7).

3. B|B corner in AB|B strips

a. +|+ corner in an f + |+ strip. To confirm the COE in a
strip with A �= B = C, consider the Ising model with ĉ = 1/2
and the special case A = f and B = +. Since the switching
point z = iW between A and B is mapped onto H = −1, using

Eq. (4.1) in Ref. [6] for the energy density, the corresponding
half-plane profile reads

〈ε(G, J )〉 = − 1

2J
cos 
, 
 = arg(H + 1), (4.31)

i.e., 
 is the angle that the vector from the switching point
−1 to point H forms with the real axis. Inserting H (z) from
Eq. (2.1) and expanding for z → 0 yields

cos 
 → 1 − 1
32 |z̃|4 sin2(2ϑ ). (4.32)

Due to the product representation (2.4), the expansion
of the 〈ε(x, y)〉 follows on multiplying (4.28) for φ =
ε, xφ = xε = 1, and A(φ)

B = A(ε)
+ = −1/2 with Eq. (4.32).

This leads to an expression of the form (4.28), where
the content 1 + 1/120 |z̃|4 sin2(2ϑ ) of the square bracket
is replaced by 1 + (1/120 − 1/32) |z̃|4 sin2(2ϑ ). This re-
placement 1/120 → 1/120 − 1/32 relating the 〈ε(x, y)〉’s
when moving from BB|B = + + |+ to f + |+ is consis-
tent with the corresponding replacement ĉ/30 ≡ 1/60 →
(ĉ/30) − tAB ≡ 1/60 − 1/16 relating the 〈T 〉’s, see the cor-
responding expression (4.25). Thus, the validity of the COE
(4.7) for 〈ε(x, y)〉 in the case f + |+ follows from that
in + + |+.

A corresponding check for the order parameter runs along
the same lines. Here the half-plane profile reads

〈σ (G, J )〉 =
(

2

J

)1/8 [1 + cos 


2

]1/4

, (4.33)

leading via Eqs. (2.4) and (4.27) with xφ = xσ = 1/8, A(φ)
B =

A(σ )
+ = 21/8, and via Eq. (4.32) to

〈σ (x, y)〉 →
(

4

|z| sin(2ϑ )

)1/8

×
[

1 + 1

8

(
1

120
− 1

32

)(
π |z|
W

)4

sin2(2ϑ )

]
(4.34)

for f + |+ boundary conditions. Again the difference from
the uniform boundary case in Eq. (4.28) is consistent with the
difference in the 〈T 〉’s and confirms the COE for σ in f + |+.

It is interesting to compare the effect on 〈φ〉 of the distant
perturbation of the half line A in the present strip geometry
with that in the simple wedge geometry described below
Eq. (4.3) with a, c, ζ replaced by B, A,W . Here it helps to
consider their ratio given by the ratio (π/2)4 {1 − [ĉ/(30tAB)]}
of the averages 〈T 〉 of the corresponding boundary oper-
ators, given in Eq. (4.25) and below Eq. (4.6), since the
prefactors F (φ)

B drop out. Due to the half line with bound-
ary condition A being closer to the B|B corner in the strip
geometry than in the wedge geometry one expects this ra-
tio to be larger than 1. Indeed, in the Ising model it equals
5.88 and 4.46 for AB = +− or −+ and for + f or f +,
respectively.

b. f | f corner in a + f | f strip. Here we consider the case
of σ near an f | f corner which preserves the Ising (+ ↔ −)
symmetry so that corresponding corner operators must be odd
under this symmetry and T does not qualify. In accordance
with Ref. [36] we denote the leading corner operator by S and
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confirm that it has scaling dimension 1. Taking from Eq. (4.1)
of Ref. [6] the corresponding half plane profile

〈σ (G, J )〉 =
(

2

J

)1/8 [1 − cos 


2

]1/4

(4.35)

and using Eq. (4.32) yields

〈σ (x, y)〉 → π

2
2−1/4 |z|1−(1/8)(sin 2ϑ )3/8 × 1

W . (4.36)

This is indeed consistent with the last expression displayed in
Ref. [36] when putting g = 2 and ζ = W . The half line with
boundary condition + is closer to the corner in the present
strip geometry than in the wedge geometry of Ref. [36]. This
is reflected by the present prefactor being larger by π/2.

4. B|C corner in AB|C strip

Here arbitrary classes ABC with B �= C are considered, i.e.,
there is a switch at the corner z = 0 and, correspondingly at
H = 1. Since the leading deviation of 〈φ〉 from the unper-
turbed wedge that we wish to confirm is of order (|z|/W )2,
in the product representation (2.4) we disregard in � of
Eq. (4.27) the term ∝ (|z|/W )4 and consider

〈φ(x, y)〉AB|C →
(

2

|z| sin(2ϑ )

)xφ

× Jxφ 〈φ(G, J )〉AB|C .

(4.37)

Beginning with the BOE for the corresponding problem in
the upper half H plane, one confirms the COE (4.12) for the
semi-infinite strip as follows: First, expand 〈φ(G, J )〉AB|C in
Eq. (4.37) about the B|C switch at H = 1 on using the BOE
which resembles the BOE about H = 0 in Eq. (4.8) and yields

〈φ(G, J )〉AB|C → 〈φ(G, J )〉B|C + F (φ)
B|C (G − 1, J )

× 〈ϒ(H = 1)〉AB|C

= J−xφB(φ)
B|C (θ1) + 1

2tBC
J−xφ |H − 1|

× (sin θ1)
d

dθ1
B(φ)

B|C (θ1)

× 〈ϒ(H = 1)〉AB|C, (4.38)

where Eqs. (4.9) and (4.10) has been used in the last step. Here
θ1 ≡ arg(H − 1) is the angle that H − 1 = |H − 1| exp iθ1

forms with the positive real axis and, via the mapping (2.1)
is, for large W/|z|, given by

θ1 ≡ arg(cosh z̃ − 1) → arg
z̃2

2
+ arg

(
1 + z̃2

12

)
→ 2ϑ +

(
π |z|
W

)2

× sin 2ϑ

12
. (4.39)

The last factor in Eq. (4.38) follows from Eq. (3.11) in Ref. [9]
and reads

〈ϒ(H = 1)〉AB|C = (tAC − tAB − tBC )/2, (4.40)

since ζ1 and ζ2 there are to be identified with 1 and −1,
respectively. Since |H − 1| → |z̃2|2/2, expanding (4.38) up to

order (|z|/W )2 yields

Jxφ × 〈φ(G, J )〉AB|C →

= B(φ)
B|C (2ϑ ) + |z|2

2tBC
(sin 2ϑ )

d

d2ϑ
B(φ)

B|C (2ϑ )

× 1

4

[
tAC − tAB − 1

3
tBC

](
π

W

)2

. (4.41)

Inserting this in Eq. (4.37) and taking the form of 〈Y〉 in
Eq. (4.26) into account leads to the expected expansion of
〈φ(x, y)〉 shown in Eqs. (4.12) and (4.14) for the present 90
degree corner where g = 2. This derivation is quite general,
and uses no properties specific to the Ising model.

Besides this general argument it is instructive to confirm
the COE by straightforward calculation for the two following
BB|C examples.

5. B|C corner in BB|C strip

In this case of A = B �= C, Eq. (4.26) tells us that

〈Y〉 = 1

6
tBC

(
π

W

)2

. (4.42)

Now consider two realizations.
a. +| f corner in a + + | f strip. For φ = ε

〈ε(G, J )〉 = 1

2J
cos θ, θ ≡ arg(H − 1), (4.43)

so that

〈ε(x, y)〉 = 1
2� cos θ, (4.44)

with � from Eq. (2.3) which for small |z| reduces to
Eq. (4.27). The transformation (2.1) implies the expansion

cos θ → cos(2ϑ ) − 1
12 |z̃|2 sin2(2ϑ ), (4.45)

which should be compared with Eq. (4.32). On inserting this
in Eq. (4.44) and expanding for small |z| to leading and next-
to-leading order, only the leading term of � in Eq. (4.27)
contributes, and one finds

〈ε(x, y)〉 → 〈ε(x, y)〉+| f − 1

12
|z| sin(2ϑ ) ×

(
π

W

)2

,

〈ε(x, y)〉+| f = 1

|z| cot(2ϑ ). (4.46)

The first of these equations, together with 〈Y〉 =
(1/96)(π/W )2 from Eq. (4.42) and with the form of F (ε)

+| f
given in the first equation (4.15), confirms the COE (4.20).

Besides deriving the form of the zero line z = z0 of 〈ε〉
from Eq. (4.46), a more direct way, like in Eqs. (2.18), (4.22)
and (2.20), (2.21), is from its image H = H0 = 1 + iJ . By ex-
panding z0 = (W/π ) arccosh(1 + iJ ) to orders J1/2 and J3/2

one finds

argz0 → π

4
− 1

24

( |z0|π
W

)2

. (4.47)

b. +|− corner in + + |− strip. Here the profile of the
energy density in the half plane reads

〈ε(G, J )〉 = − 1

2J
(1 − 4 sin2 θ ), (4.48)
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with θ from Eq. (4.43), which implies

〈ε(x, y)〉 = − 1
2�(1 − 4 sin2 θ ). (4.49)

Since in conformity with Eq. (4.45)

sin2 θ → sin2(2ϑ )

[
1 + 1

6

(
π |z|
W

)2

cos(2ϑ )

]
(4.50)

for |z| 
 W in leading and next-to-leading order, Eq. (4.49)
is consistent with the operator expansion (4.20) when the
expressions of F (ε)

+|− in Eq. (4.16), of 〈ε〉+|− in Eq. (4.18),
and the expression 〈Y〉 = (1/12)(π/W )2 from Eq. (4.42) are
taken into account.

Deriving the two zero lines z = z0+ and z = z0− either from
the COE (4.20) via Eq. (4.22) or, more directly, from their
images H = H0+ = 1 + J exp(iπ/6) and 1 + J exp(5iπ/6),
yields

arg(z0+, z0−) =
(

π

12
,

5π

12

)
− 1

48
(|z0+|2, |z0−|2)

(
π

W

)2

.

(4.51)

E. Squares: Compact expressions and corner-perturbations
prevented by symmetry

Consider squares with side length L, with centers located
at the origin, and with corners on the axes of the (xD, yD)
coordinate system in the zD = xD + iyD plane. By the confor-
mal transformation in Appendix B 3 they are mapped to the
upper half H = G + iJ = |H |i exp(iψ ) plane with their (NE,
NW, SW, SE) sides mapped onto the intervals (−∞ < G <

−1, −1 < G < 0, 0 < G < 1, 1 < G < ∞) on the real axis
J = 0 and the horizontal diagonal, that extends along yD = 0
between the left and right corners −L/

√
2 < xD < L/

√
2,

to the imaginary axis G = 0 of the half plane. To simplify
the following, the variable ZD ≡ XD + iYD = zD K × √

2/L
of Eq. (B37) is used, which at the left and right corners takes
the values ZD = ∓K. Here K ≡ K(1/

√
2) = 1.85407 with

K(q) the complete elliptic integral.
Besides discussing how symmetry about the diagonal

affects the behavior near the corners of the square, this Sub-
section presents compact expressions for the profiles all along
the diagonal.

1. Order parameter- and energy-densities in a square
with a uniform boundary

For a square in which all four edges have the same bound-
ary universality class a, the densities of the primary operators
φ = σ or ε in the corresponding half plane and circular disk
are given by

〈φ(G, J )〉 = A(φ)
a J−xφ (4.52)

and, due to the Moebius mapping H (wD) = i(1 + wD)/
(1 − wD),

〈φ(uD, vD)〉 = A(φ)
a

(
2

1 − u2
D − v2

D

)xφ

, (4.53)

respectively. For the densities in the square, Eqs. (B36) and
(B37) then yield

〈φ(xD, yD〉 = A(φ)
a (2Q(ZD) K/L)xφ ,

Q(ZD) ≡ |cnZD|
|dnZD|2 − (1/2)|snZD|2

= D(ZD + K) = D(ZD − K), (4.54)

where sn, cn, and dn are Jacobi functions and where

D(Z ) =
√

2
|snZ dnZ|
1 − |cnZ|2

→ 23/2 |Z|
Z2 + Z̄2

[
1 + 1

160
(Z2 + Z̄2)2

]
+ O(|Z|)4.

(4.55)

On the horizontal diagonal [39] of the square, where ZD = XD

is real, Eq. (4.54) reduces to the compact expression

Q = 1

cn(XD)
. (4.56)

The last form in Eq. (4.55) serves to describe the neighbor-
hood of the left and right corners. For zD = −(L/

√
2) + ẑD

a small deviation ẑD = |ẑD| exp(iϕ) apart from the left cor-
ner, the modulus of Z = ZD + K = ẑD K

√
2/L is small and

Eqs. (4.54) and (4.55) yield the expansion

〈φ(xD, yD〉 =A(φ)
a

(
2

|ẑD| cos(2ϕ)

)xφ

×
[

1 + xφ

10

(
|ẑD| K

L

)4

cos2(2ϕ)

]
. (4.57)

To check the COE in Eq. (4.5), one finds, by a rotation ẑD =
z exp(−iπ/4) about the left corner, the required profile

〈φ(x, y〉 = [〈φ(xD, yD)〉]|ẑD|→|z|, ϕ→ϑ−π/4, (4.58)

since z = |z| exp(iϑ ). Here 0 < ϑ < π/2 and −π/4 < ϕ <

π/4. Thus, cos(2ϕ) → sin(2ϑ ), and the validity of the COE
then follows on using the forms of F (φ)

a arising from Eq. (4.5),
with μ(φ)

a given below Eq. (4.1) and of 〈T 〉 given in Eq. (B44)
as well as of 〈φ〉a|a given below Eq. (4.7).

2. Squares with mixed boundaries

There are special cases of a|b corners in which the shape
and boundary conditions of the system generate a profile 〈φ〉
with a symmetry which is incompatible with the form of
the prefactors F (φ)

a|b in the expression (4.20). In these cases
〈Y〉 must vanish, and the perturbation is of higher order than
predicted by (4.20). For illustration consider squares with
mirror symmetry about the horizontal diagonal yD = 0. Due
to the mapping in Appendix B 3, this corresponds to a mirror
symmetry about the imaginary axis G = 0 in the upper half H
plane. Along the diagonal simple compact expressions for the
profiles are obtained and, as in Eqs. (4.57) and (4.58), their
behavior near the left corners of the square is compared with
the COE in Sec. IV B.

(i) Consider boundary conditions (+,+, f , f ) on the
(NE, NW, SW, SE) sides of the square. In the corresponding
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H plane this implies a single switch from + to f at the origin
and the profiles 〈φ(G, J )〉 can be taken from Eqs. (4.1) in
Ref. [6].

The energy density in the square is antisymmetric about the
horizontal diagonal of the square, i.e., it changes sign on re-
placing ϕ → −ϕ, since the corresponding form A(ε)

+ J−1 sin ψ

with A(ε)
+ = −(1/2) in the upper half H = |H |i exp(iψ ) plane

is antisymmetric about the imaginary axis ψ = 0. Due to
Eq. (4.58), this is compatible with 〈ε(x, y)〉+| f = −|z| tan(2ϕ)
but incompatible with F (ε)

+| f (x, y) = −8|z| cos(2ϕ) from
Eq. (4.15) so that 〈Y〉 must vanish.

Now consider the density of the order parameter in
the square and its counterpart in the upper H plane,
A(σ )

+ J−1/8[sin(ψ/2) + cos(ψ/2)]
1/2 × 2−1/4 where A(σ )

+ =
21/8. Obviously both have no symmetry properties of the
type discussed above for the energy density. Still, the van-
ishing of 〈Y〉 implies a dependence of 〈σ 〉 on the distance
|ẑD ≡ zD + L/

√
2| from the left corner of the square leading,

in next-to-leading order, to a power law with an exponent
λ larger than the exponent 2 − (1/8) predicted by F (σ )

+| f ∝
|z|2−(1/8) sin3/8 ϑ cos15/8 ϑ from Eq. (4.15). That this is the
case and that the exponent equals λ = 4 − (1/8) is implied
by the result

〈σ (xD, yD = 0)〉 = A(σ )
+

(
2 K/L
cn(XD)

)1/8

× 2−1/4 (4.59)

for the order parameter profile all along the horizontal diago-
nal of the square. Equation (4.59) follows from observing that
along the imaginary axis ψ = 0 of the upper half H plane, the
profile of the order parameter given at the beginning of this
paragraph and the corresponding profile (4.52) for the uniform
boundary are equal apart from an overall factor 2−1/4.

(ii) For boundary conditions (−,+,−,+) on the
(NE, NW, SW, SE) sides of the square, the energy density
and the order parameter are obviously symmetric and anti-
symmetric, respectively, about the horizontal diagonal of the
square and about the imaginary axis of the half plane, i.e.,
about ϕ = 0 and ψ = 0. This is incompatible with the forms
F (ε)

+|−(x, y) ∝ − sin(4ϕ) and F (σ )
+|−(x, y) ∝ cos15/8(2ϕ), which

are antisymmetric and symmetric, respectively, for ϕ → −ϕ,
i.e., on exchanging the values of x and y. Likewise, in the
corresponding half plane it is incompatible with the forms
considered below Eq. (4.16) of F (ε)

+− and F (σ )
+− , which are

antisymmetric and symmetric, respectively, for ψ → −ψ in
our notation H = |H |i exp(iψ ). Thus, for the boundary con-
ditions considered here the average 〈Y〉 of the corner operator
Y and that of the boundary operator ϒ in the half plane
introduced in Eq. (4.8) must vanish, and the perturbations
must be of higher order. The vanishing of 〈Y〉 is confirmed
by taking the square limit q = q′ = 1/

√
2 in the expression

(4.68) below for the rectangle with corresponding boundary
conditions.

For later comparison note the simple results,

〈ε(G = 0, J )〉 = 3

2J
− 8

3

ζ 2J

(ζ 2 + J2)2
, (4.60)

following from Eqs. (16) in Ref. [8], and

〈ε(xD, yD = 0)〉 = K
L

(
3

cn(XD)
− 4

3
cn3(XD)

)
,

XD ≡ xD
K

L/
√

2
, (4.61)

for the energy densities on the imaginary axis of the upper
half plane, with switching points −ζ , 0, ζ instead of −1, 0, 1,
and on the horizontal diagonal of the square [40], respectively.
Note that the second term on the rhs of Eq. (4.60) vanishes
for ζ = 0 and for ζ = ∞, in which case the − + −+ bound-
ary of the half plane reduces to a −+ and a +− boundary,
respectively.

(iii) Unlike the two preceding cases, for boundary condi-
tions ( f ,+, f ,+) there is no symmetry or antisymmetry [30],
ruling out the leading perturbation of the +| f wedge due to
finite L, and 〈ϒ〉 and 〈Y〉 are nonvanishing. The counterparts
of the relations (4.60) and (4.61) read

〈ε(G = 0, J )〉 = −(
√

2 − 1)
ζ

ζ 2 + J2
(4.62)

and

〈ε(xD, yD = 0)〉 = −(
√

2 − 1)
K
L cn(XD)

→ −(
√

2 − 1)

(
K
L

)2

x̂D, (4.63)

where x̂D = xD + L/
√

2 is the distance from the left corner.
The expression (4.62) follows from Eq. (2.41) in Ref. [9]. In
agreement with the duality arguments given in Ref. [30], the
expression is nonvanishing, reflecting the lack of antisymme-
try about the imaginary axis, except for ζ = 0 and ζ = ∞
where the boundary condition f + f + reduces to the single
switch cases + f and f +, respectively, for which the antisym-
metry 〈ε(−G, J )〉 = −〈ε(G, J )〉 applies. The last expression
in Eq. (4.63) gives the behavior near the left corner. It is in
agreement with the COE prediction since the energy density
along the diagonal ϑ = π/4 vanishes in the unperturbed +| f
wedge where L = ∞, compare Eq. (4.17), and since the lead-
ing behavior for large L is determined by F (ε)

+| f (ϑ = π/4) =
−8|z| = −8x̂D and 〈Y〉 = (1/8)(

√
2 − 1)(K/L)2, compare

Eqs. (4.15) and (4.69) below in the square limit q′ = 1/
√

2.
Now turn to the order parameter. Obviously it does not dis-

play a symmetry wrt the diagonal, since even the unperturbed
〈σ 〉+| f does not, see Eq. (4.17). The relations corresponding
to Eqs. (4.62) and (4.63) read

〈σ (G = 0, J )〉 =
(

2

J

)1/8

2−1/2

[√
(1 + (ζ/R)) (1 + (J/R))

− (
√

2 − 1)2
√

(1 − (ζ/R))(1−(J/R))

]1/2

,

R ≡
√

ζ 2 + J2 (4.64)
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and

〈σ (xD, yD = 0)〉 =
(

K
L cn(XD)

)1/8

21/4 (
√

2 − 1)1/2

× [dn(XD) + 1]1/2

→ x̂D
−1/8 + x̂D

2−(1/8)(
√

2 − 1)K2/(4L2).

(4.65)

Equation (4.64) reproduces, in the two single-switch lim-
its ζ = 0 and ζ = ∞, the result 〈σ (G = 0, J )〉 = (2/J )1/8 ×
2−1/4 known from Eq. (4.1) in Ref. [6]. The last line
in Eq. (4.65) is consistent with the COE, since on using
Eq. (4.58) its first term is reproduced by 〈σ (x, y = 0)〉+| f =
|z|−1/8 from Eq. (4.17) for ϑ = π/4 and its second term by
the product of F (σ )

+| f = 2|z|2−(1/8) from Eq. (4.15) for ϑ = π/4
and 〈Y〉 for the present square which is given in the text below
Eq. (4.63).

F. Corner of a rectangle

Finally consider the corner at z = 0 of a rectangle
extending over the domain 0 < y < W , 0 < x < H. The ar-
rangement of boundary conditions A, B,C, and D along the
top, left, bottom, and right boundaries of the rectangle, in-
troduced in-between Eqs. (3.7) and (3.8) above, we denote
now by AB|CD. Here the results for the average of the corner
operator at z = 0 are presented. The derivation of these results
as well as confirming the validity of the corresponding COE
is deferred to Appendix C.

1. Rectangle with uniform boundary condition a

For uniform boundary conditions aa|aa it is shown in
Appendix C that

〈T (z)〉 − 〈T (z)〉a|a → 4z2 〈T 〉,

〈T 〉 = − ĉ

60
(1 + q4 + q′4)/
4. (4.66)

The quantities q, q′ and the length 
 depend on the aspect
ratio and the size of the rectangle, as explained in Eqs. (3.4)
and (3.6) or Eqs. (B1) and (B2). From their form the expected
W ↔ H invariance of 〈T 〉 can be read off immediately.

It is easy to see that the results for 〈T 〉 given in Eq. (4.25)
for the semi-infinite strip and in Eq. (B44) for the square
are special cases of Eq. (4.66). For the semi-infinite strip,
H → ∞, so that by Eq. (B1) q → 1, q′ → 0, and the bracket
in Eq. (4.66) is equal to 2. Since by Eq. (B2) 1/
4 →
(K(0)/W )

4 ≡ (π/(2W ))
4
, the rhs of Eq. (4.66) reduces to

〈T 〉 given in Eq. (4.25) when A = B. For the square with
W = H ≡ L the bracket in Eq. (4.66) equals 3/2 since q =
q′ = 1/

√
2, and Eq. (4.66) reduces to 〈T 〉 given in Eq. (B44).

2. Rectangle with aa|bb boundary conditions

For an aa|bb rectangle the top and left edges have boundary
condition a while the bottom and right edges have boundary
condition b. In Appendix C it is shown that in this case

〈T (z)〉 − 〈T (z)〉a|b → 8
3 tab (q2 − q′2)/
2 = 4 〈Y〉. (4.67)

In the limit of the semi-infinite strip H → ∞ where q → 1,
q′ → 0, Eq. (4.67) reduces to Eq. (4.42). In the limit of
the square H = W , q = q′, and 〈Y〉 vanishes, in agreement
with the symmetry-argument given above (4.59) in part (i)
of Sec. IV E 2. On exchanging the values of W and H, the
average 〈Y〉 in Eq. (4.67) retains its magnitude but changes
sign.

3. Rectangle with −+|−+ boundary conditions

For a rectangle with boundary condition + on the two
vertical edges and − on the two horizontal edges, the stress
tensor for z → 0 reads

〈T (z)〉 − 〈T (z)〉a|b → − 4


2
(q2 − q′2)

[
1 − (q2 − q′2)2

9

]/
[

1 + (q2 − q′2)2

3

]
= 4 〈Y〉, (4.68)

as shown in Appendix C. The average 〈Y〉 vanishes for the
square according to the symmetry argument given above
Eq. (4.60) in part (ii) of Sec. IV E 2, and it changes its sign on
exchanging W and H. Again the result for q′ → 0 has been
checked against the semi-infinite strip.

Note that Eqs. (4.68) and (4.67) have opposite signs. This
is understood most easily in the limit q′ → 0, i.e., H → ∞,
of the semi-infinite strip where F (φ)

a|b describes how the infinite
wedge with apex at z = 0 is perturbed by the upper horizontal
edge. In the case of Eq. (4.67) the upper horizontal edge with
boundary condition a enhances the a-effect of the vertical
edge and reduces the b-effect of the lower horizontal edge.
In contrast in the case of Eq. (4.68) the upper horizontal
− edge reduces the + effect of the vertical + edge and
enhances the lower horizontal − edge. For example, com-
pare the aa|bb = + + | − − case with the − + | − + case.
In the corresponding expansion 〈σ 〉 → 〈σ 〉+|− + F (σ )

+|− × 〈Y〉
of the order parameter profile, 〈σ 〉+|− is negative (positive)
near ϑ = 0 (ϑ = π/2) while F (σ )

+|− is always positive, see
Eq. (4.16). Thus, for aa|bb = + + | − − and − + | − + in
the semi-infinite strip limit, 〈Y〉 must be positive and negative,
respectively, to generate the enhancement/reduction effect
described above. In the other limit q′ → 1, i.e., W → ∞, the
semi-infinite strip extends in vertical rather than horizontal
direction, and the enhancement versus reduction is reversed.

4. Rectangle with f + | f+ boundary conditions

For vertical edges +, as before, but boundary condition f
on the two horizontal edges, one obtains

〈T (z)〉 − 〈T (z)〉a|b →
(

q′ − 1 + q′2

3

)
/
2 = 4 〈Y〉, (4.69)

as shown in Appendix C. While the enhancement versus re-
duction effects on the two edges meeting at z = 0 have, in
the two limits q′ → 0 and q′ → 1, the same signs as in the
case of Eq. (4.68), their vanishing, i.e., the vanishing of 〈Y〉,
does not happen for the square where q′ = 1/

√
2 but instead

for q′ = (3 − √
5)/2 ≈ 0.382, corresponding to the aspect

ratio H/W = 1.470511 between the horizontal f edges and
the vertical + edges. This is in agreement with the property
that “+ dominates f ” that we found in Sec. III B 1 a. The
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consequence of the vanishing on the zero line of the energy
density entering the rectangle’s corner is discussed in point
(3) of this section. The role of nonvanishing 〈Y〉 for the COE
in the square is discussed in part (iii) of Sec. IV E 2.

V. SUMMARY AND CONCLUDING REMARKS

Boundary critical phenomena have been investigated both
theoretically and with simulation for various geometries. On
the theoretical side studies began with the simple geometry
of a half space where the boundary is an infinite plane. Sim-
ulation studies involve finite systems for which the boundary
has a more complicated form. For lattice simulations in two
spatial dimensions a paradigmatic geometry is a rectangular
domain.

In this paper a field theoretical study of critical density pro-
files in rectangular domains is presented. We do not consider
pseudorectangles with periodic boundaries in one direction
but rather rectangles with four genuine boundary sides. This
offers the opportunity to study the interesting boundary effects
coming from the corners. The main emphasis is on mixed
boundaries with equal boundary conditions on opposing sides
but different for the horizontal and vertical sides. Since the
main interest is in the Ising model, the combinations −+ and
f + are considered.

The density profiles 〈φ〉 of the order parameter φ = σ and
the energy φ = ε in the rectangle at criticality are evaluated by
means of conformal mappings from their known counterparts
[6–9] in the upper half plane. The results crucially depend
on the aspect ratio H/W where H and W are the lengths of
the horizontal and vertical sides of the rectangle. In the limits
H � W and H 
 W the effects coming from the two shorter
sides decouple, and the behavior degenerates to that of two
semi-infinite strips. The latter are interesting in their own right
and are discussed in Sec. II. Results for H/W of order 1 are
presented in Sec. III.

The mixed boundary conditions and variable aspect ratio
lead to a rich behavior of the density profiles. To illustrate
this, now consider two examples. They involve the energy
density 〈ε〉 as defined in Ref. [21], which when positive and
negative signifies stronger and weaker local disorder, respec-
tively, than in the infinite bulk. Thus, in the half plane with
uniform boundary condition f and + or −, 〈ε〉 is positive
and negative, respectively. In the midline of a +− wedge the
competition between the two differently ordered sides leads
to strong disorder with 〈ε〉 > 0 while approaching one of the
two sides of the wedge away from the tip leads to 〈ε〉 < 0
[41]. These phenomena help to understand the interesting
behavior of 〈ε〉 in the rectangle − + −+ with horizontal −
and vertical + sides that is discussed in detail in Sec. III A.
In the center of the corresponding square (H/W = 1), 〈ε〉
is positive due to the strong disordering effects of the four
+− corners. However, for H/W � 1 or 
 1 the ordering −
or + sides are much closer to the center than the corners,
and 〈ε〉 is negative in the center, cf. Fig. 1. Thus, at some
intermediate value of the aspect ratio 〈ε〉 in the center must
vanish. This happens for H/W = 1.5172 and its inverse. An
even more remarkable consequence of this competition is the
appearance of two symmetric maxima when 〈ε〉 moves along
midlines of the rectangle; see Fig. 2(a). The maxima appear

for the square and, for all aspect ratios, when moving along
the longer midline. In particular a maximum appears along the
midline of the corresponding semi-infinite strip, as discussed
in Sec. II B 1. Along the shorter midline of the rectangle the
maxima only appear when the aspect ratio is sufficiently close
to 1. We note that unlike 〈ε〉, the stress tensor density 〈T 〉
does vanish at the center of the −+−+ square, due to the
combination of the 90 degree symmetry of the square’s shape
and the +− symmetry of the stress tensor, see Eq. (B34).

Another interesting competition between disorder and or-
der arises from the combination of disordering and ordering
sides in a rectangle with horizontal f and vertical + sides
that are discussed in Sec. III B. Consider, e.g., the diagonal
of the corresponding square. On approaching the + f corners,
〈ε〉 → 0, see Eq. (4.63), but in the center of the square the
competition is not balanced and 〈ε〉 is negative, cf. curve (iii)
in Fig. 4. A vanishing 〈ε〉 in the center of the rectangle requires
the length H of the f side to be longer by a factor 1.279 than
the length W of the vertical + side [30]. Likewise, the vanish-
ing of the stress tensor in the center requires H/W = 2.413;
see Eq. (B35) and Appendix E. In this sense + dominates over
f [42].

Results of simulations on a square lattice [19] for the two
above-mentioned examples compare surprisingly well with
the analytic predictions, without using any adjustable param-
eter, an apparent confirmation of universality. See Figs. 2 and
4 as well as Appendix D.

In the detailed discussion of the density profiles and their
dependence on the aspect ratio in Sec. III, two points are
investigated in particular:

(i) The behavior at the center and along the entire hori-
zontal and vertical midlines of the rectangle. As discussed
in the two above examples, the simple results for 〈ε〉, 〈σ 〉,
〈T 〉 at the center given in Eqs. (3.19), (3.32), (B34) and
(3.50), (3.63), (B35) help to understand important features
of the aspect-ratio dependence in the −+−+ and f + f +
rectangles, respectively. Near the ends where the midlines
touch the centers of the boundary sides, the boundary-operator
expansion discussed in Appendix A connects the aspect-ratio
dependence of 〈ε〉 and 〈σ 〉. See, in particular, the discussion in
the long paragraph following Eq. (A2). For the behavior along
the entire midlines, see Figs. 2 and 4.

(ii) To understand the behavior in the entire rectangle, it
is useful to discuss the structure of the “zero-lines” along
which the profiles vanish, separating regions in the rectangle
of positive and negative 〈ε〉 or 〈σ 〉, i.e., regions where the
values of the profiles are larger and smaller, respectively, than
in the bulk. The lines originate and end in the corners with
mixed boundary conditions, see Sec. IV C and Figs. 1 and 3.

Note that the density profiles can be used to evaluate the
free energy of interaction with a small embedded particle
[43]. An example involving the density of the stress tensor
is presented in Appendix E.

Section IV of the paper is devoted to a systematic study
of the profiles 〈φ〉 near a corner. We concentrate on the SW
corner of the rectangle and place its tip or apex at the origin
of the z = x + iy plane, as described in Appendix B 1. To
leading order in the small distance |z|, the profile equals the
one inside the wedge formed by the two corner sides when
their length is infinite, i.e., it is independent of the size and
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aspect ratio of the rectangle. The dependence on the latter
arises from the deviations of the rectangle from the infinite
wedge which appear from a point (x, y) close to the tip as
distant perturbations of the infinite wedge. To evaluate their
effect (and that of other distant perturbations) on 〈φ〉, the
operator φ(x, y) can be replaced by a series of operators O
located right in the tip and multiplied with amplitudes that
carry the (x, y) dependence. While both the operators O and
their amplitudes are independent of the perturbations, the lat-
ter enter the averages 〈O〉. For a given opening angle of the
corner, the operators O depend on the boundary conditions of
its two sides only, while their amplitudes depend in addition
on whether one considers φ = ε or φ = σ . For an opening
angle of 180 degrees the present “corner-operator-expansion
(COE)” reduce to the boundary-operator-expansion (BOE) for
a flat boundary like the ones discussed in Ref. [9]. For the
opening angle of 90 degrees, like in the SW corner of the
rectangles, the leading operator has a scaling dimension twice
as large as the dimension of the corresponding BOE operator.
So the dimension of the operator Y for two different sides
of the corner is (1/length)2. For equal sides it is (1/length)4

except for the COE of σ in an f f corner [36] where in
the Ising model it is (1/length), and the two corresponding
operators are T and S , respectively. For the SW corner of the
rectangles the COE is confirmed to lowest order by explicitly
evaluating the averages of T and Y for arbitrary aspect ratio,
see Sec. IV F and Appendix C. As for S , the corresponding
COE given in Ref. [36] is confirmed for the f | f wedge with
an f + switch and for the + f | f semi-infinite strip in Ref. [36]
and in Sec. IV D 3 b, respectively.

As indicated above the aspect-ratio dependence of the pro-
files near the centers of the rectangle’s sides is evaluated.
Together with the BOE’s in Appendix A the results follow
from the expressions for the stress tensors at these centers
given in Eqs. (B23) ff.

Both the BOE’s and the COE’s are based on general prin-
ciples of conformally invariant field theories in two spatial
dimensions and are not limited to the Ising model.
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APPENDIX A: BOUNDARY-OPERATOR
EXPANSIONS (BOE)

Boundary-operator expansions are a useful tool for investi-
gating the density profiles 〈φ〉, φ = ε or σ , near an internal
point of the horizontal and vertical boundary sides of our
semi-infinite strips and rectangles. Here “near” means that φ

is located much closer to the boundary than to the corners
where the boundaries intersect. For the horizontal boundary of
universality class a of the upper half H = G + iJ plane J > 0,
the expansion reads

φ(G, J )

A(φ)
a J−xφ

→ 1 − J2 4xφ

ĉ
T (H = G), J → 0, (A1)

as discussed in detail in the paragraph containing Eq. (4.1) and
in Sec. III A of Ref. [9]. The corresponding expansion near the
vertical boundary of the right half H = G + iJ plane G > 0
follows by a rotation of 90 degrees, in which T acquires a
minus sign in front [44], so that

φ(G, J )

A(φ)
a G−xφ

→ 1 + G2 4xφ

ĉ
T (H = iJ ), G → 0. (A2)

Note that at the two boundaries, T and −T are the components
of the Cartesian stress tensor perpendicular to the boundary
[3]. Due to their local character these expansions apply also to
the horizontal and vertical boundary sides of the semi-infinite
strips and rectangles.

For the density profiles along the midlines of rectangles,
the BOE’s provide information on the effect of the aspect ratio
near the midline ends at the centers of the boundary sides. This
arises from the dependence on the aspect-ratio of the average
of T at the centers, which can even change sign at some value
(H/W )0 of the aspect ratio. Thus, the asymptotic behavior of
the profiles near the boundary, which is independent of the
aspect ratio, can be enhanced or weakened in next order for
aspect ratio smaller or larger than (H/W )0, and this change
appears for 〈ε〉 and 〈σ 〉 at the same value of the aspect ratio.
Near the left vertical boundary of a horizontal midline, in
particular, the equivalent of Eq. (A2) in the rectangle tells
us that the asymptotic behavior of decreasing magnitude of
〈φ〉 with increasing distance from the boundary is supported
and suppressed, respectively, for positive and negative value
of the average of the boundary operator T . In a rectangle with
horizontal − and vertical + boundary conditions, for example,
we show near Eq. (B28) that the average of T is positive and
negative for small and large H/W , respectively. The ensuing
enhancement and suppression in the profiles 〈ε〉 and 〈σ 〉 is as
expected intuitively.

It is instructive to check the BOE’s by calculating the
stress tensor and the profile independently. For the latter it
is convenient to split off its behavior for uniform boundary
conditions, as in Eq. (2.4), and investigate the near-boundary
behavior for the two factors separately.

For example, consider the density profile along the midline
in the semi-infinite strip with ABC boundary conditions of
Sec. II close to its end point z = iW/2 at the vertical B
boundary. Here the corresponding BOE is Eq. (A2) with G,
J , and T (H = iJ ) replaced by x, W/2, and T (z = iW/2),
respectively, and A(φ)

a replaced by A(φ)
B . On multiplying and

dividing by the profile 〈φ(x,W/2)〉B of the semi-infinite strip
with uniform boundaries B, one writes the average LHS of the
left-hand side as a product LHS = I × II of the two factors

I = 〈φ(x,W/2)〉B

A(φ)
B x−xφ

;

II = 〈φ(x,W/2)〉
〈φ(x,W/2)〉B

≡ 〈φ(G = 0, J )〉
A(φ)

B J−xφ

,

J ≡ J (x, y = W/2). (A3)

In the last step of II the rescaling factor in the transformation
(2.1) from the strip to the upper half plane drops out. Introduc-
ing the product facilitates checking the BOE by expanding,
instead of the product, each of the two factors separately for
small x up to order x2. For I this involves checking the BOE
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for the simpler case of a uniform strip,

I → 1 + x2 4xφ

ĉ
〈T (iW/2)〉B, (A4)

the validity of which follows readily from Eqs. (2.3) and (2.8).
For II checking the BOE requires showing that

II → 1 + x2 4xφ

ĉ
[〈T (iW/2)〉 − 〈T (iW/2)〉B], (A5)

in which case one can use the BOE in Eq. (A1) in the
corresponding half plane with ABC boundary conditions de-
scribed below Eq. (2.4). These imply H = 0 and 〈T (H =
0)〉 = 2(tAB + tBC ) − tAC on using Eq. (1.3) in Ref. [9]. With
J = J (x, y = W/2) → πx/W the result

II → 1 − J2 4xφ

ĉ
〈T (H = 0)〉

→ 1 −
(

πx

W

)2 4xφ

ĉ
[2(tAB + tBC ) − tAC] (A6)

of the BOE in the half plane agrees with the rhs of Eq. (A5)
when the expression (2.8) for 〈T (iW/2) is taken into account.
These arguments show that the BOE at the boundary point
z = iW/2 of the semi-infinite strip is consistent with the BOE
at H = 0 in the upper half plane with the corresponding ABC
boundary conditions and are quite general, not limited to the
Ising model. Of course, the half-plane profiles of the Ising
model given in Eqs. (2.14) and (2.23) obey the BOE (A1) in
the ABC half plane, as one verifies by expanding them along
the imaginary axis G = 0 for small J .

For the rectangle near the end of the left midline xM =
−H/2 with vertical B sides, one has to check correspondingly
whether

I ≡ 〈φ(xM, yM = 0)〉B

A(φ)
B x̂M

−xφ

→ 1 + x̂M
2 4xφ

ĉ
〈T (zM = −H/2)〉uniform,

II ≡ 〈φ(xM, yM = 0)〉
〈φ(xM, yM = 0)〉B

≡ 〈φ(G = 0, J )〉
A(φ)

B J−xφ

→ 1 + x̂M
2 4xφ

ĉ
[〈T (zM = −H/2)〉

− 〈T (zM = −H/2)〉uniform] (A7)

for xM ≡ −H/2 + x̂M with x̂M small, so that in turn J ≡
J (xM, yM = 0) in II becomes small and equal to (1 + u)/2 →
q′x̂M/
 in leading order, see Eqs. (B13), (B7), and (B8). To
verify II , consider the example 〈φ〉 = 〈ε〉 in a rectangle with
horizontal − and vertical B = + sides. Here II is given by
the curly bracket in Eq. (3.10), which for small J tends to 1 −
4J2
/P. Using the basic relation S = q′2 in the expression for

 and P then yields II → 1 − 32(x̂M/
)2(1 + q2)q2/(1 −
q2q′2), which confirms the second relation in Eq. (A7) on
comparing with the stress tensor expressions (B27) and (B23).
Concerning I , one verifies that the horizontal midline behavior

of the profile for uniform boundary condition in Eq. (B17)
with a = B obeys the first relation in Eq. (A7) with the corre-
sponding stress tensor average given in Eq. (B23).

APPENDIX B: VARIOUS WAYS TO MAP THE
INTERIOR OF RECTANGLES AND SQUARES

TO THE UPPER HALF H PLANE

For a rectangle of side lengths H and W in the horizontal
and vertical directions, respectively, it is convenient to char-
acterize the aspect ratio H/W via

H
W = K(q)

K(q′)
, q′ ≡

√
1 − q2 (B1)

in terms of a parameter q, where K is the complete elliptic
integral of the first kind, and to introduce the dilatation factor

1



=
(

K(q)

H
K(q′)
W

)1/2

≡ K(q)/H ≡ K(q′)/W (B2)

between the rectangle and a rectangle with horizontal and
vertical side lengths K(q) and K(q′). Exchanging the values
of the horizontal and vertical lengths H and W exchanges the
values of q and q′ while 
 remains unchanged.

1. Rectangle 0 < x < H, 0 < y < W to half plane

The conformal transformation

H (Z ) = sn2(Z, q), dH/dZ = 2 sn(Z, q)cn(Z, q)dn(Z, q)

(B3)

with

Z = z/
 (B4)

maps the rectangle in the z plane with corners at z =
0, H, H + iW, iW and the center at z = (H + iW )/2 to the
upper half H plane with the image points of the corners at
H = 0, 1, 1/q2,∞ on its boundary and with the image of the
center at H = 1 + i(q′/q). It encompasses as special cases
the square for H = W where q = 1/

√
2 and the semi-infinite

strip H → ∞ with W fixed [45] where q = 1.
Since (B3) is easily expanded about the corner z = 0, this

mapping is most convenient for verifying the corner-operator
expansion.

In the following we often suppress the arguments (Z, q)
and q of the Jacobian elliptic functions sn, cn, dn of Eq. (B3)
and use the abbreviated notation K(q) ≡ K and K(q′) ≡ K′
for the complete elliptic integrals in Eqs. (B1) and (B2).

For the discussion of the stress tensor in Appendix C 1 note
the Schwarzian derivative

S(z) = Š(Z )/
2 (B5)

of H (Z (z)), where

Š(Z ) ≡ H ′′′H ′ − (3/2)H ′′2

H ′2 = − 1

2 sn2

3(1 + q4sn8) − 4(1 + q2)(1 + q2sn4)sn2 + 2(2 + q2 + 2q4)sn4

1 − (1 + q2)sn2 + q2sn4

→ − 3

2 Z2
− 8

5
(1 − q2 + q4) Z2 + O(Z4). (B6)
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Here the primes denote derivatives wrt Z , and for the Jaco-
bian functions sn ≡ sn(Z, q) relations such as 8.145, 8.154,
and 8.158 in Gradsteyn + Ryshik have been used. Note the
absence of a term ∝ Z0 in the expansion for small Z .

2. Rectangle −H/2 < xM < H/2, −W/2 < yM < W/2
to unit circle to half plane

Here the rectangle is mapped to the half plane in two steps.
(i) The conformal transformation

w(ZM) = sn(ZM, q) dn(ZM, q)

cn(ZM, q)
,

dw

dZM
= dn2(ZM, q)

cn2(ZM, q)
− q2 sn2(ZM, q), (B7)

with

ZM = zM/
, (B8)

maps the rectangle in the zM plane with corners at
zM = (H + iW )/2, (−H + iW )/2, −(H + iW )/2, (H −
iW )/2, i.e., at ZM = (K(q) + iK(q′))/2, (−K(q) +
iK(q′))/2, −(K(q) + iK(q′))/2, (K(q) − iK(q′))/2 and
the center at zM = ZM = 0 onto the interior of the circular
unit-disk in the entire w plane with the image points of the
corners at w = q + iq′, −q + iq′, −(q + iq′), q − iq′ on its
boundary and with the image of the center at w = 0. In the
useful notation

q = cos α, q′ = sin α (B9)

introduced in Eq. (3.4), the images of the corner are at w =
exp iα, − exp(−iα), − exp iα, exp(−iα) [46]. The subscript
M on z and Z should remind us that the midlines of the
rectangle and their images in the circular disk are located on
the coordinate axes. The mapping in Eq. (B7) is the inverse of
the transformation

ZM(w) =
∫ w

0

dω√
1 − 2ω2 cos(2α) + ω4

,

cos(2α) = q2 − q′2. (B10)

For w ≡ u on the real axis and for w ≡ iv on the imaginary
axis, Eq. (B10) can be written as

ZM(u) ≡ XM(u) = 1

2
F

(
2u

1 + u2
, q

)
(B11)

and

ZM(iv)/i ≡ YM(v) = 1

2
F

(
2v

1 + v2
, q′

)
, (B12)

respectively, compare 3.138.5 in Gradsteyn and Ryshik. Here
F (t, Q) = ∫ t

0 ds[(1 − s2)(1 − Q2s2)]−1/2 is the elliptic in-
tegral of the first kind [47]. Equations (B11) and (B12)
imply that ZM(w = 1) = (1/2)F (1, q) = (1/2)K(q), consis-
tent with zM = (1/2)H and ZM(w = i) = (i/2)F (1, q′) =
(i/2)K(q′) consistent with zM = (i/2)W , respectively, see
Eq. (B8).

(ii) Finally, the Moebius transformation

H (w) = i
1 + w

1 − w
,

dH

dw
= 2i

(1 − w)2
(B13)

maps the unit disk to the upper half H plane with the corner
images at H = − cot(α/2), − tan(α/2), tan(α/2), cot(α/2),
cf. Eq. (3.2), and the centers of the rectangle and unit disk
to H = i. Note that tan(α/2) = q′/(1 + q) and cot(α/2) =
q′/(1 − q). For the special case W = H of the square,
q = q′ = 1/

√
2, α = π/4, and tan(α/2) = tan(π/8) =

1/(
√

2 + 1).
This rectangle is related to the one in Eq. (B1) by zM =

z − (H + iW )/2. However, the simple detour via the circular
disk provides useful insight, since the disk shares more sym-
metries with the rectangle than the upper half plane: Mirror
imaging a point w about the u or v axis translates to mirror
imaging the corresponding point zM about the xM or yM axis.
In particular, the center and midlines of the rectangle on the
real and imaginary axes are mapped to the center of the disk
and the real and imaginary axes inside the disk. Accordingly,
the configurational symmetry of the corner images on the
circumference of the disk resembles that of the corners of the
rectangle.

The horizontal midlines ZM = XM of the rectangle and w =
u of the circular disk are mapped onto the imaginary axis H =
iJ, J > 0 in the half plane, while the vertical midlines are
mapped onto the upper unit circle |H | = i exp(iψ ), −π/2 <

ψ < π/2 in the half plane. The corresponding explicit forms

ZM(u(J )) ≡ XM(u(J )) = 1

2
F

(
J2 − 1

J2 + 1
, q

)
, q ≡ cos α,

(B14)

and

ZM(iv(ψ ))/i ≡ YM(v(ψ )) = 1
2 F (sin ψ, q′), q′ ≡ sin α,

(B15)

of the inverse mapping follow from Eq. (B11) with u = (J −
1)/(J + 1) and from Eq. (B12) with v = tan(ψ/2), respec-
tively.

Finally recall the transformation formula (2.2) of the den-
sities of primary operators φ = ε or σ under a conformal
mapping, which in the case considered here reads

〈φ(xM, yM)〉 =
∣∣∣∣ dw

dzM

∣∣∣∣xφ

× 〈φ(u, v)〉

=
∣∣∣∣ dw

dzM

dH

dw

∣∣∣∣xφ

× 〈φ(G, J )〉. (B16)

Together with the relations (B7) and (B13), this allows us to
evaluate 〈φ(xM, yM)〉 once 〈φ(G, J )〉 is known. In the simplest
case of a uniform boundary condition a,

〈φ(G, J〉a = A(φ)
a × J−xφ

〈φ(u, v)〉a = A(φ)
a ×

(
2

1 − u2 − v2

)xφ

,

〈φ(xM, yM〉a = A(φ)
a ×

(
2




|dn2 − q2sn2cn2|
|cn2| − |sn2dn2|

)xφ

, (B17)
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where sn = sn((xM + iyM)/
, q), etc. One checks that for the square with q2 = 1/2 and H = W ≡ L the last expression in
Eq. (B17) is consistent with the result (4.54) on taking the 45 degree rotation into account [48].

For arbitrary mixed boundary conditions the center xM = yM = 0 of the rectangle maps onto u = v = 0 and onto G = 0,

J = 1, so that

〈φ(xM = 0, yM = 0)〉 = 
−xφ 〈φ(u = 0, v = 0)〉 = (2/
)xφ 〈φ(G = 0, J = 1)〉, (B18)

with the length 
 from Eq. (B2), since in this case |dw/dZM| = 1 and |dH/dw| = 2.
The Schwarzian derivative SM(zM) of the transformation H (w(ZM(zM))) reads

SM(zM) = ŠM(ZM)/
2, (B19)

where

ŠM(ZM) = w′′′w′ − (3/2)(w′′)2

(w′)2
= −2

(2q2 − 1)(1 + q4sn8) + 4q2(q2 − 2)(1 + q2sn4)sn2 − 2q2(2q4 − 5)sn4

1 + q4sn8 − 4q2(1 + q2sn4)sn2 + 2q2(2q2 + 1)sn4
, (B20)

with the primes denoting derivatives wrt ZM and
sn ≡ sn(ZM, q). Here one uses that the Schwarzian of
the Moebius transformation H (w) vanishes. Note that
ŠM(−ZM) = ŠM(ZM), ŠM(0) = 2(1 − 2q2) = 2(q′2 − q2) =
−2 cos(2α), and the relation

Š

(
Z = K(q) + iK(q′)

2
+ ZM

)
= ŠM(ZM) (B21)

between Eqs. (B6) and (B20).
The Schwarzian derivative in Eqs. (B19) and (B20) de-

termines the stress tensor for uniform boundary conditions,
cf. Ref. [23], which we now evaluate at the centerpoints
zM = ±H/2 and zM = ±iW/2 of the vertical and horizon-
tal sides of the rectangle, which correspond to the points
ZM = ±K(q)/2 and ZM = ±iK(q′)/2. In the more complete
notation ŠM(ZM, q) for the rhs of Eq. (B20) this expression
yields

ŠM(±K(q)/2, q) = 2(1 + q2),

ŠM(±iK(q′)/2, q) = −2(2 − q2) ≡ −2(1 + q′2)

= −[ŠM(±K(q)/2, q)]q↔q′ , (B22)

where the relations sn2(±K(q)/2, q) = 1/(1 + q′) and
sn2(±iK(q′)/2, q) = −1/q have been used. With the help of
Eqs. (B19) and (B2), one arrives at

W2 〈T (zM = ±H/2)〉uniform = 2(1 + q2) K2(q′) ĉ/12,

H2 〈T (zM = ±iW/2)〉uniform = −2(1 + q′2) K2(q)ĉ/12

= −[W2 〈T (zM = ±H/2)〉uniform]q↔q′ . (B23)

The expected limiting behavior for q → 1 and q → 0 is
easily checked. For example, the rhs of the first equa-
tion in Eq. (B23) tends to π2ĉ/12 and (W/H)2 × π2ĉ/24
for q → 1 and q → 0, respectively. This is consistent
with the result (2.8) in the semi-infinite strip extending
in horizontal direction and with the result H2〈T (zM)〉 =
π2ĉ/24 in an infinite strip extending in vertical direction,
respectively, when both objects have a uniform boundary
condition.

For the mixed boundary conditions considered in
Sec. III, one uses the transformation formula (compare

Ref. [23])

〈T (zM)〉 = (dH/dzM)2 〈T (H )〉 + 〈T (zM)〉uniform (B24)

for the centerpoints zM = [−H/2, −iW/2] of the W and S
sides of the rectangle, where according to Eqs. (B7) and (3.1),

(dH/dzM)2 = 
−2[−q′2, 4q2],

〈T (H )〉 = [〈T (H = 0), 〈T (H = 1)〉〉]. (B25)

For the two rectangles in the Ising model (ĉ = 1/2) with
mixed boundary conditions considered in Secs. III A and III B,
the stress tensors 〈T (H )〉 follow from Eqs. (2.53) and (2.49)
in Ref. [9] on replacing z by H and, as described in our
Eq. (3.2), on putting the switching points ζ1, ζ2, ζ3, ζ4 equal
to −t−1, −t, t, t−1. For the rectangle with horizontal − and
vertical + boundaries in Sec. III A, one finds

〈T (H = 0)〉 = 1 + q2

q′2
4q2

1 − q2q′2 ,

〈T (H = 1)〉 = (1 + q′2)q′2

(1 − q2q′2)q2
, (B26)

which together with Eqs. (B23)–(B25) yields

W2〈T (zM= − H/2)〉 = (1 + q2)K2(q′)
(

1

12
− 4q2

1 − q2q′2

)
,

H2 〈T (zM = −iW/2)〉 = −[W2 〈T (zM = −H/2)〉]q↔q′ .

(B27)

The first line in Eq. (B27) implies that 〈T (zM = −H/2)〉
changes sign on varying the aspect ratio. It is positive and
negative for q2 < q2

0 and q2 > q2
0, where

q2
0 = [49 −

√
492 − 4]/2 = 0.0204, (B28)

corresponding to H/W smaller and larger than (H/W )0 =
0.4721, respectively.

The relation in the second line of Eq. (B27) has the same
form as in Eq. (B23) as expected, since the change q ↔ q′ to-
gether with the stress-tensor preserving change + ↔ − leads
merely to a rotation of our rectangle by 90 degrees.

Now consider the rectangle with horizontal f and vertical
+ boundaries, i.e., ABCD = f + f +. Except for the limit of
the semi-infinite (and infinite) strip, where Eq. (2.11) holds,
T is not invariant under + ↔ f and a relation corresponding

044133-26



CRITICAL BEHAVIOR IN RECTANGLES WITH MIXED … PHYSICAL REVIEW E 108, 044133 (2023)

to the second equation in Eq. (B27) does not apply. Here one
finds

〈T (H = 0)〉 = 1 − q′

q′2 , 〈T (H = 1)〉 = q′

4q2
, (B29)

which yields

W2 〈T (zM = −H/2)〉 = K2(q′)
(

1 + q2

12
− 1 + q′

)
,

H2 〈T (zM = −iW/2)〉 = −K2(q)

(
1 + q′2

12
− q′

)
. (B30)

Indeed it is only in the two limits q = 1 and q = 0, where
[−1 + q′]q↔q′ ≡ −1 + q equals −q′, that the relation in
Eq. (B27) applies to the expressions in Eq. (B30).

As in the discussion of Eq. (B23), for q → 1 the two ex-
pressions for 〈T (zM = −H/2)〉 in Eqs. (B27) and (B30) must
reduce to the semi-infinite strip results (π/W )2[(ĉ/12) −
4tAB] in Eq. (2.8) for ABC = − + − and ABC = f + f , re-
spectively, which for ĉ = 1/2 are given by (π/W )2[(1/24) −
2] and (π/W )2[(1/24) − (1/4)]. For q → 0 these two ex-
pressions must be independent of the distant horizontal −
or f boundaries and lead to the result 〈T (zM = −H/2)〉 =
(π/H)2/48 for a vertical infinite strip with uniform boundary
condition. All this is easily checked.

In the special case q = q′ = 1/
√

2, in which the rectangle
becomes a square with H = W ≡ L, the above expressions
yield

L2 〈T (zM = −L/2)〉 = −K2(1/
√

2) × 31/8 = −13.321,

L2 〈T (zM = −iL/2)〉 = 13.321 (B31)

for horizontal − and vertical + boundaries and

L2〈T (zM = −L/2)〉 = K2(1/
√

2)

(
−7

8
+ 1√

2

)
= −0.577,

L2 〈T (zM = −iL/2)〉 = −K2(1/
√

2)

(
1

8
− 1√

2

)
= 2.001,

(B32)

for horizontal f and vertical + boundaries. The effect of the
− boundaries on the stress tensor in the + boundary and
vice versa are considerably stronger than the effect of the
f boundaries on the stress tensor in the + boundary and
of the + boundaries on the stress tensor in the f boundary.
These findings are quite plausible. That the influence of the +
boundaries on the stress tensor in the f boundary is stronger
than the effect of the f boundaries on the stress tensor in
the + boundary is consistent with the property that + dom-
inates f that we found in Sec. III B 1 a. That the two effects
be of equal strength, i.e., that [(1 + q2)/12] − 1 + q′ equals
[(1 + q′2)/12] − q′ and thus 〈T (zM = −H/2)〉 = −〈T (zM =
−iW/2)〉, requires q′ = 6 − [

√
122/2] = 0.4773, which is

smaller than 1/
√

2, so that the length H of the f side must
be longer by a factor K(q)/K(q′) = 1.313 than the length W
of the + side.

Another quantity of interest is the stress tensor in the center
of the rectangle. Proceeding like above one finds the model
independent result


2〈T (zM = 0)〉uniform = 2(q′2 − q2)ĉ/12 (B33)

for uniform boundary conditions. For mixed boundary condi-
tions in the Ising model the result is


2〈T (zM = 0)〉 = q′2 − q2

12
+ 16q2q′2 q′2 − q2

(q′2 − q2)2 + 3

(B34)

for ABCD = − + −+ and


2〈T (zM = 0)〉 = q′2 − q2

12
+ q′(1 − q′) (B35)

for ABCD = f + f +. See Appendix E for an application.

3. Square L × L with corners at zD = ±L/
√

2 and ±iL/
√

2

The conformal transformation

wD(ZD) = sn(ZD, q)√
2 dn(ZD, q)

,
dwD

dZD
= cn(ZD, q)√

2dn2(ZD, q)
,

q = 1√
2
, (B36)

with

ZD = zD

√
2 K(q)/L (B37)

maps the L × L square in the zD plane with corners at zD =
(1, i,−1,−i) × L/

√
2 and the center at zD = 0 onto the inte-

rior of the unit circle in the wD plane, with corner images at
wD = 1, i,−1,−i on its boundary and its center at wD = 0.
The subscript D on z and w is a reminder that the diagonals
of the square and their images in the circular disk lie on
the coordinate axes. In the following we often suppress the
modulus q = 1/

√
2 in K(1/

√
2) ≡ 1.85407 and the Jacobian

functions.
The final mapping to the upper half H plane is the

same Moebius mapping H (wD) = i(1 + wD)/(1 − wD) as in
Eq. (B13), so that the corner images are at H = −∞,−1, 0, 1.

The mapping considered here is most convenient for evalu-
ating the behavior of the profiles along the horizontal diagonal
of the square from its counterpart along the imaginary axis of
the upper half H plane.

The Schwarzian derivative SD(zD) of the transformation
H{wD[ZD(zD)]} reads

SD(zD) = ŠD(ZD) 2(K/L)2, (B38)

where

ŠD(ZD) = w′′′
D w′

D−(3/2)(w′′
D)2

(w′
D)2

= −3

8

sn2ZD (1 + cn2ZD)2

cn2ZD dn2ZD

= S (ZD + K) = S (ZD − K),

S (Z ) ≡ −3

2

cn2(Z )

sn2(Z ) dn2(Z )
(B39)

with the primes denoting derivatives wrt ZD. Here the vanish-
ing of the Schwarzian of the Moebius transformation H (wD)
was used, and the result follows from Eq. (B36) via derivatives
and functional relations of the Jacobian elliptic functions as
given, e.g., in 8.158, 8.154, and 8.151.2 in Gradsteyn and
Ryshik. Related useful properties are ŠD(ZD + 2K) = ŠD(ZD)
and

ŠD(ZD) = −ŠD(iZD) = ŠD(−ZD), (B40)
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reflecting the invariance of the stress tensor 〈T (zD)〉 =
(ĉ/12)SD(zD) in a square with uniform boundary condition
when rotated by 90 and 180 degrees, compare Ref. [23]. The
expansions of the Schwarzian derivative about the left and
right corners of the square where |ZD + K| and |ZD − K| are
small, respectively, follow from the expansion

S (Z ) → −3

2

1

Z2
+ 3

10
Z2 + O(Z4). (B41)

The form of the stress tensor 〈T (zD)〉 near the left and
right corner of the square with uniform boundary conditions
follows from Eqs. (B37)–(B39) and (B41) and is given by

〈T (zD)〉 → ĉ

12

[
−3

2

(
zD ± L√

2

)−2

+ 3

10

(
zD± L√

2

)2

×
(

2K2

L2

)2]
, zD → ∓ L√

2
,

(B42)

to leading and next-to-leading order. By a rotation
z = exp(iπ/4) × (zD + L/

√
2) or z = exp(−3iπ/4) × (zD −

L/
√

2) the square we are considering turns into the square in
the z plane with corners at z = 0, L, (1 + i)L, iL, i.e., into
the rectangle of Appendix B 1 with H = W = L and (B42)
yields the behavior

〈T (z)〉 → ĉ

12

[
−3

2
z−2 − 3

10
z2 ×

(
2K2

L2

)2]
, |z| 
 L,

(B43)

of the stress tensor near its lower left corner. With the defini-
tion (4.5) this implies

〈T 〉 = − ĉ

40

(
K
L

)4

(B44)

for the average of the corner operator for the L × L square,
consistent with the expression (4.66) for the rectangle. This
should be compared with the corresponding average in
Eq. (4.25) for the semi-infinite strip of width W with a uni-
form boundary. For L = W the average for the square is larger
by a factor 12(K/π )4 ≈ 1.45 than for the semi-infinite strip,
indicating that the square more strongly perturbs the infinite
wedge near its apex than the semi-infinite strip.

Dropping the restriction to the neighborhood of corners
and allowing arbitrary positions inside the square, we note
that the quantity ŠD is related to ŠM in Eq. (B20) and Š in
Eq. (B6) in the limit q2 = 1/2 of the square by

ŠD(ZD) = i

2
ŠM

(
ZM = 1 + i

2
ZD

)
≡ i

2
ŠM

(
ZM = −1 + i

2
ZD

)
= i

2
Š

(
Z = 1 + i

2
(K + ZD)

)
≡ i

2
Š

(
Z = 1 + i

2
(K − ZD)

)
. (B45)

The reason is (i) that the square in the zD plane is related
by a rotation of 45 degrees to the square in the zM plane

of Appendix B 2 and (ii) the relation between ŠM and Š
given in Eq. (B19). In the relations (Z, ZM, ZD) = (K/L) ×
(z, zM,

√
2zD) between the arguments of the Jacobian func-

tions and the side length L of the square following from
Eqs. (B4), (B8), and (B37), note in the last case the additional
factor

√
2 and a corresponding additional factor 2 in the re-

lations (S, SM, SD) = (K/L)2 × (Š, ŠM, 2ŠD) following from
Eqs. (B5), (B19), and (B38).

APPENDIX C: DERIVATION OF AVERAGES OF
CORNER OPERATORS AND CONFIRMATION

OF THE COE FOR RECTANGLES

To derive the averages of corner operators for rectangles
presented in Sec. IV F from known stress tensor averages in
the upper half H plane, we use the conformal transformation
in Appendix B 1. Here the combination AB|CD of boundary
conditions for the rectangle introduced at the beginning of
Sec. IV F is transformed to the combination B,C, D, and A for
the intervals −∞ < G < 0, 0 < G < 1, 1 < G < 1/q2, and
1/q2 < G < +∞, respectively, onto the real axis of the upper
H = G + iJ plane.

In the following it is convenient to rewrite the usual trans-
formation law of the stress tensor given in Ref. [23] in the
form

〈T (z)〉
2 = 〈T (Z )〉 =
(

dH

dZ

)2

〈T (H )〉 + ĉ

12
Š(Z ), (C1)

where Š(Z ) is the Schwarzian derivative of H (Z ) given in
Eq. (B6).

1. Rectangle with uniform boundary condition

For rectangles with a uniform boundary condition
〈T (H )〉 = 0, and

〈T (Z )〉 → − ĉ

8 Z2
− ĉ

15
(1 + q4 + q′4) Z2 + O(Z4), (C2)

where q′ =
√

1 − q2. Equations (C1) and (C2) together with
the form of 〈T (z)〉a|a given below Eq. (4.7) yield the result
(4.66).

Checking the COE (4.5) requires evaluating the leading
and next-to-leading contributions to the profile 〈φ(x, y)〉 near
the corner z = 0 of the rectangle, which follow from

〈φ(x, y)〉 =
∣∣∣∣ 1




dH

dZ

1

J

∣∣∣∣xφ

A(φ)
a

≡
∣∣∣∣ 1




cn dn

sn
× sn2

Im sn2

∣∣∣∣xφ

2xφ A(φ)
a , (C3)

on substituting the Jacobian functions sn ≡ sn(Z, q), etc., and
expanding them for small Z . Equation (C3) is obtained by
proceeding like in Eqs. (2.2) and (2.3) and using Eqs. (B3)
and (B4). It is easy to see that in leading order the rhs
of Eq. (C3) reproduces the profile 〈φ(x, y)〉a|a given below
Eq. (4.7), which is ∝ |Z|−xφ , and that the next term ∝ |Z|2−xφ

vanishes. This is consistent with the COE (4.5) which predicts
the next-to-leading term to be ∝ |Z|4−xφ and will prove useful
below for calculating the profiles for mixed boundary condi-
tions. Verifying the explicit form of the next-to-leading term is
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quite instructive, and we present some details. First, one finds
that

cn dn

sn
→ Z−1(1 + AZ2 + BZ4),

A = −(1 + q2)/3, B = −(1 − 16q2 + q4)/45. (C4)

Assuming for simplicity that Z = |Z| exp(iπ/4) so that ϑ =
π/4, sin 2ϑ = 1 [49], yields∣∣∣∣cn dn

sn

∣∣∣∣ → 1

|Z|
[

1 + |Z|4
90

(7 − 22q2 + 7q4)

]
,

|sn2|
Im sn2

→ 1 + (1 + q2)2

18
|Z|4, (C5)

which on substituting in Eq. (C3) yields an expression which
is consistent with the COE (4.5) with sin 2ϑ = 1 in F (φ)

a and
with 〈T 〉 from Eq. (4.66).

2. Rectangle with aa|bb boundary conditions

To check the prediction of the COE (4.20) we consider
the energy density φ = ε in our aa|bb rectangle for a = +
and b = f . The corresponding boundary conditions in the
upper half H plane are + for −∞ < G < 0, f for 0 <

G < 1/q2, and + for 1/q2 < G < +∞, for which the profile
reads

〈ε(G, J )〉 = 1

2J

1 − |1 − 2q2H |√
[1 − |1 − 2q2H |]2 + 4(2q2J )2

. (C6)

Equation (C6) follows from the single switch expression in
Eq. (4.1) in Ref. [6] for the energy density in a similar way
as described in Ref. [24]. Transforming the profile to the
rectangle geometry by means of Eq. (B3) and expanding for
small |Z| in leading and next-to-leading order and using the
expression (4.67) for 〈Y〉 one verifies the validity of the COE
determined by the +| f expressions in Eqs. (4.17) and (4.15)
for the energy density.

The form (4.67) of 〈Y〉 follows on inserting(
dH

dZ

)2

〈T (H )〉 = 4tab

(
cn dn

sn

)2

×
[

1 + (q sn)2

1 − (q sn)2

]2

(C7)

in Eq. (C1) and on expanding the result up to order Z0 with
the help of Eq. (C4). To obtain Eq. (C7), one uses the form
of 〈T (H )〉 for the two switches at H = 0 and H = 1/q2 that
follows from Eq. (1.2) in Ref. [9].

3. Rectangle with boundary conditions f + | f+
a. Deriving the average of the corner operator

Here the average 〈Y〉 of the a|b corner operator Y is de-
rived for the f + | f + rectangle of Sec. IV F 4. In the upper
half H plane this corresponds to boundary conditions + for
−∞ < G < 0, f for 0 < G < 1, + for 1 < G < 1/q2, and f

for 1/q2 < G < +∞. The corresponding stress tensor

〈T (H )〉 = 1

16

(
1

H
− 1

H − 1

)2

+ 1

16

(
1

H − 1/q2

)2

+ 1

8

1 − q′

1 + q′

(
1

H
− 1

H − 1

)
1

H − 1/q2
(C8)

follows from Eq. (2.49) in Ref. [9] on setting ζ1, ζ2, ζ3,

ζ4 ≡ GI, GII, GIII, GIV equal to 0, 1, 1/q2, ∞. Using
Eqs. (B3) and (C1) and expanding for small Z , one finds

〈T (Z )〉 − ĉ

12
Š(Z ) ≡ (dH/dZ )2〈T (H )〉

→ 1

4Z2
+ q′ − 1 + q′2

3
+ O(Z2). (C9)

On using ĉ = 1/2, the expansion (B6) of S(Z ), and the expres-
sion (4.19) for 〈T (Z )〉+| f , as well as the dilatation relations
(B4) and (C1), the above relation (C9) leads to the result
(4.69) for 〈Y〉.

b. Confirming the COE for the energy density

The corresponding energy and order parameter densities in
the upper half plane follow from Eqs. (3.36) and (3.37) on
inserting the expressions

[CII,I, SII,I] = [−(G − |H |2), J]/
√

(G − |H |2)2 + J2,

[CIV,III, SIV,III] = [1 − q2G, q2J]/|1 − q2H |, (C10)

� = (q′ − 1)/(q′ + 1),

determined by Eqs. (3.38) and (3.39) for our switching points
given below Eq. (C8). For the energy density this yields

〈ε(G, J )〉 = − 1

2J

1√
(|H |2 − G)2 + J2

1

|1 − q2H |
× [(|H |2 − G)(1 − q2G) − J2(1 − q′)2]. (C11)

For the expansion for small distance |z| from the rectangle’s
corner one needs the expansion for small distance |H | from
the upper half plane’s switch point H = 0 for which (C11)
yields in leading and next-to-leading order

〈ε(G, J )〉 → 1

2|H |
[

G

J
− J (2q′ − q′2)

]
≡ 〈ε(G, J )〉+| f + F (ε)

+ f (G, J ) × 〈ϒ(H = 0)〉.
(C12)

This expansion is consistent with the boundary-operator
expansion about the switching point H = 0 [9], as we
indicate in the last expression in Eq. (C12). Indeed,
−J/(2|H |) = F (ε)

+ f (G, J )/8, cf. Eqs. (3.28) and (3.29) in
Ref. [9], and the average 〈ϒ(H = 0)〉 = (2q′ − q′2)/8 of
the boundary operator ϒ follows from the stress ten-
sor in Eq. (C8) via 〈T (H )〉 − 〈T (H )〉+ f → 〈ϒ(H = 0)〉/H
as H → 0.

For the energy density 〈ε(x, y)〉 in the rectangle, the
transformation (B3) and (B4) together with Eq. (C12)
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yields

〈ε(x, y)〉
 = 2|cn dn| × |sn| 〈ε(G, J )〉

→ cot(2ϑ )

|Z| − 2|Z| sin(2ϑ ) ×
(

q′ − 1 + q′2

3

)
.

(C13)

Comparing with Eqs. (4.17), (4.15), and (4.69) confirms the
COE (4.20) for the boundary conditions considered here.

c. Confirming the COE for the order parameter

Inserting the expansions

√
1 ± CII,I →

√
|H | ∓ G

|H |
(

1 ± 1

2

J2

|H | ∓ G

)
,√

1 + CIV,III → 21/2 + O(J2),
√

1 − CIV,III → 2−1/2 Jq2

(C14)

to leading and next-to-leading order, which follow from
Eq. (C10), into Eq. (3.37) yields the expected BOE

〈σ (G, J )〉 → 〈σ (G, J )〉+| f + F (σ )
+ f (G, J ) × 〈ϒ(H = 0)〉

(C15)

close to the switching point H = 0. Here we have used the
form of 〈ϒ(H = 0)〉 given below Eq. (C12) and the identities(

2

J

)1/8

2−1/4

( |H | − G

|H |
)1/4

=
(

2

|H | sin ϕ

)1/8

(sin(ϕ/2)
)1/2 = 〈σ (G, J )〉+| f ,(

2

J

)1/8

2−1/4 2J (|H | + G)1/2

[|H |(|H | − G)]1/4

= 4|H |7/8 (sin(ϕ/2))3/8 (cos(ϕ/2))15/8 = F (σ )
+ f (G, J ),

(C16)

which follow from H = G + iJ = |H | exp(iϕ) and from
Eqs. (4.17) and (4.15) when g = 1, z → H , and ϑ → ϕ.

To evaluate the small |z| behavior of 〈σ (x, y)〉 from
Eq. (C15) by means of the transformation (B3), we expand
the Jacobian functions, obtaining


−1/8

∣∣∣∣dH

dZ

∣∣∣∣1/8

〈σ (G, J )〉+| f

→ 〈σ (x, y)〉+| f − (
F (σ )

+| f (x, y)/4
)

−2 2 − q′2

6
,


−1/8

∣∣∣∣dH

dZ

∣∣∣∣1/8

F (σ )
+ f (G, J ) × 〈ϒ(H = 0)〉

→ (
F (σ )

+| f (x, y)/4
)

−2 2q′ − q′2

2
, (C17)

where F (σ )
+| f (x, y)/4 = 21/8|Z
|2−1/8 sin3/8 ϑ cos15/8 ϑ fol-

lows from Eq. (4.15) for g = 2. The sum of the two

expressions confirms the COE (4.20) since

−2 − q′2

6
+ 2q′ − q′2

2
= q′ − q′2 + 1

3
= 4〈Y〉
2, (C18)

compare Eq. (4.69).

APPENDIX D: ISING LATTICE MODEL
FOR MONTE CARLO SIMULATION

Consider the usual Ising model on a square lattice with
ferromagnetic nearest-neighbor interaction for which the bulk
Hamiltonian reads

H = −β
∑
{n}

Sn(Sn+e1 + Sn+e2 ), (D1)

with spins Sn = ±1 on the lattice sites n = (n1, n2), where
the two components n1 and n2 in horizontal and vertical di-
rections are integers and e1 = (1, 0), e2 = (0, 1) lead to the
right and upper nearest-neighbor sites of n. The interaction
constant J is absorbed into the dimensionless inverse tem-
perature β so that at the critical point β = βc = J/(kBTc) =
ln(

√
2 + 1)/2 � 0.44068 . . . .

To express the primary operators φ(r) in terms of the spin
variables, place the spins Sn at the position rn = λn in the
r plane which does not affect their interaction (D1). Here
λ is a microscopic length. For the energy density ε(r) this
expression reads

ε(nλ) = π

λ
En, En ≡ −SnSn′ + 〈SnSn′ 〉bulk, (D2)

where n′ is a nearest neighbor of n. The relation applies inside
averages with the necessary condition that the distance of
the position nλ from boundaries and other operators is much
larger than λ. In this limit it does not matter which one of the
four nearest neighbors n′ is chosen.

The prefactor π/λ provides the required normal-
ization [21] in the bulk, 〈ε(nλ)ε(0)〉bulk = 1/(|n|λ)2 ≡
1/(distance)2xε with xε = 1. This follows from the asymp-
totic behavior 〈EnE0〉bulk → 1/(π |n|)2 for |n| � 1 on the
Ising lattice derived, e.g., by R. Hecht [Phys. Rev. 158, 557
(1967)], see his Eqs. (3.1), (3.3), and (3.14b) and the remark
below Eq. (3.13), and is confirmed in the simulations of
Ref. [19].

For the systems in Sec. III inside a rectangular region
in the r plane with horizontal and vertical sides of length
H and W , respectively, the corresponding lattice consists
of W/λ rows and H/λ columns. A simple choice fol-
lowed in Ref. [19] to microscopically realize the boundary
conditions is as follows: For the two vertical sides with
boundary condition + one freezes the spins in the left-
most and rightmost column in the up direction S = 1 while
for the upper and lower horizontal sides with boundary
condition − or f the spins in the top and bottom rows
are frozen in the down direction S = −1 or can freely
flip, respectively. In any case the corner spins of the lat-
tice are allowed to flip freely. Unlike the bulk, in the
bounded system 〈En〉 and 〈ε(rn〉 are nonvanishing. Since
the scale-invariant expression introduced in Eq. (3.22) can
be expressed in terms of a product of quantities in the lat-
tice model as (HW )

1/2 〈ε(rn〉 = π × ((H/λ)(W/λ))
1/2 〈En〉,
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where λ drops out, it can be evaluated by means of lat-
tice Monte-Carlo simulations. We also note a corresponding
relation A(ε)

a ≡ n2λ〈ε(nλ)〉a = π × n2〈En〉a for the ampli-
tudes of the energy density profiles in the upper half
plane with uniform boundary conditions a = +,−, f given
in Eq. (2.12).

The simulations in Ref. [19] were performed at the crit-
ical point β = βc. One Monte Carlo (MC) step consists
of the Wolff cluster update followed by H/λ × W/λ sin-
gle spin Metropolis updates. The bulk energy per bond
−〈SnSn′ 〉bulk was computed for the square system of size
2000 × 2000 with periodic boundary conditions, the average
taken over 106 MC steps and over the bulk of the system.
To calculate 〈En〉 for the rectangular system with prescribed
boundary conditions the necessary averages −〈SnSn′ 〉 were
taken over 106 MC steps for Fig. 2 and over 108 MC steps for
Fig. 4.

APPENDIX E: A SMALL JANUS PARTICLE
IN THE CENTER OF THE RECTANGLE

As an example for an embedded particle consider a cir-
cular “Janus” particle of radius R with boundary conditions
+ and − on its surface segments that extend counterclock-
wise from R exp(iαJ ) to −R exp(iαJ ) and from R exp(−iαJ )
to R exp(iαJ ), respectively. Compare Fig. 11(a) in Ref. [43]
where αJ was denoted by α. The angle αJ characterizes
the orientation of the Janus particle via its two switch-
ing points and should not be confused with our variable
α that characterizes the aspect ratio H/W of the em-
bedding rectangle. Placing the center of the Janus at the
center of the rectangles considered in Sec. III the free en-
ergy of interaction that depends on the orientation αJ is
given by

Forientation → −16R2 cos(2αJ ) 〈T (zM = 0)〉 (E1)

if R is much smaller than H and W , see Eqs. (3.4) and (4.2)
in Ref. [43]. Using the results for the stress tensor given in

Eqs. (B33)–(B35) yields

Forientation → 4

3

R2

HW cos(2αJ ) × τ (α),

τ (α) ≡ K(cos α)K(sin α)

× cos(2α)

[
1, 1 + 48

(sin 2α)2

(cos 2α)2 + 3
,

1 − 12
sin α (1 − sin α)

cos 2α

]
(E2)

for the embedding rectangles with boundary conditions
[uniform, −+−+, f + f +].

For the uniform and −+−+ rectangles the function τ (α) is
antisymmetric about α = π/4, i.e., on exchanging the values
of H and W it keeps its value but changes its sign. It is positive
and negative for 0 < α < π/4 and π/4 < α < π/2, i.e., for
∞ > H/W > 1 and 1 > H/W > 0, respectively. While for
the uniform boundary conditions τ is a monotonic function of
α, for −+−+ it is not and shows maxima and minima. For
the boundary condition f + f +, however, τ (α) displays no
antisymmetry. It is nonmonotonic and changes from positive
to negative at α = arcsin[(6 − √

26)/10] < π/4, requiring
the horizontal f sides of length H to be longer by a factor
of 2.4135 than the length W of the + sides. Thus, on min-
imizing the free energy Forientation, the switch points of the
Janus turn to the closer sides of the rectangle in all cases
except for an f + f + rectangle with aspect ratio in the interval
1 < H/W < 2.4135. Here the switches turn to the + sides
although they are further apart than the f sides. This confirms
the supremacy of + over f found in Sec. III B above, see
Sec. III B 1 a.

While the functions τ are quite different for the three
boundary conditions, their leading behavior for α → 0 (as
well as that for α → π/2) is the same. This reflects the fact
that for an infinite strip with ++ and f f boundary conditions
the value of the stress tensor is the same. As expected, the
leading behavior of Forientation in Eq. (E2) for α → 0 repro-
duces the form Forientation → cos(2αJ ) × (πR/W )2/3 for an
infinite horizontal strip with equal boundary conditions known
from Ref. [43].
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σ (x, y) → const|z|gxs−xσ (sin ϑg)xs−xσ × S,

where S is a corner operator of scaling dimension gxs. For the
example mentioned below Eq. (4.3) of an f | f wedge with an
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)1/8[
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M

]1/4

,

M = (1 − 2k cos ϑg + k2)1/2, k =
( |z|

ζ

)g

in the Ising model and by expanding the numerator inside the
square bracket for small k yields

〈σ (x, y)〉 → (g/8)1/8|z|(g/2)−(1/8)(sin ϑg)3/8 × ζ−g/2

in agreement with the COE above. For 〈σ 〉 close to an f | f
corner in other geometries considered in the main text—like
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(H∂H + W∂W )F (H,W ) = 8tab − ĉ

4

as noted and numerically confirmed for ab = ++, f f , +−, + f
in Ref. [15]. The above expression is independent of the size
and aspect ratio of the rectangle and for the Ising model given
by (−1, −1, 31, 3)/8.

[39] For ZD = |ZD| × exp(±iπ/4) varying along the midlines (par-
allel to the sides) of the square, Eq. (4.54) yields

Q =
√

cn4 + sn4dn4/M, M ≡ 1 − 2sn2 + (1/2)sn4,

where the Jacobi functions have the arguments |ZD|/√2. On
approaching the ends ZD = (K/

√
2) × exp(±iπ/4) of the mid-

lines at the centers of the NE or SE boundary sides of the square,
the Jacobi arguments approach K/2 where M vanishes so that
Q and the profiles 〈φ〉 diverge as expected. To leading order
M → 2[(K/

√
2) − |ZD|]/(

√
2 + 1) yielding

〈φ(xD = |zD|/
√

2, yD = ±|zD|/
√

2)〉 → A(φ)
a (1/d )xO ,

d ≡ (L/2) − |zD|,
which reproduces the well known behavior on perpendicularly
approaching a straight line boundary. In the center of the square

zD = ZD = 0 so that Q = 1 and 〈φ(xD, yD)〉 = A(φ)
a (2K/L)

xφ

.
[40] The mere fact that the expansion of Eq. (4.60) about J = 0

does not contain the contribution ∝ J0 and that the expansion of
Eq. (4.61) about the left corner,

〈ε(xD, yD = 0)〉 → 3

x̂D
[1 + O(x̂D

4)], x̂D ≡ xD + L√
2
,

does not contain the contribution ∝ x̂D does not imply by
itself that 〈ϒ〉 and 〈Y〉 necessarily vanish, since F (ε)

+− and
F (ε)

+|− vanish for the directions ψ = 0 and ϕ = 0, respec-
tively. (To derive the above expansion from Eq. (4.61) one
uses that cn(XD) ≡ cn(−K + X̂D) = 2−1/2sn(X̂D)/dn(X̂D) →
2−1/2X̂D[1 + O(X̂D

4
)].)

[41] For a +− wedge with an opening angle of π , this order-disorder
effect is contained in Eq. (4.1) of Ref. [6].

[42] It would be interesting to know whether or not the domination of
+ over f is connected with the instability in the half plane of f
against a small + perturbation which leads to a renormalization
flow from f to +, compare, e.g., Ref. [4].
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[43] A. Squarcini, A. Maciolek, E. Eisenriegler, and S. Dietrich,
J. Stat. Mech. (2020) 043208.

[44] A simple way to understand the different signs of T in Eqs. (A1)
and (A2) is by joining together the positive horizontal and ver-
tical boundaries to the boundary of a wedge extending over the
first quadrant of the H = G + iJ plane. For uniform boundary
conditions 〈φ(G, J )〉 remains invariant against mirror imaging
about the diagonal J = G of the wedge while the form 〈T (G +
iJ )〉 ∝ 1/(G + iJ )2 implies that 〈T (i|H |)〉 = −〈T (|H |)〉, i.e.,
when mirror imaging the location of the boundary operator T ,
its average remains invariant except for a minus sign which has
to be corrected for in the BOE.

[45] In the limit H → ∞ with W fixed of the semi-infinite strip the
corresponding mapping Eqs. (B3) and (B4) with q = 1, q′ = 0
takes the form

H (Z ) = sn2(Z, 1) = tanh2(Z ) = (cosh z̃ − 1)/(cosh z̃ + 1),

since, due to Eqs. (B1) and (B2), Z = z̃/2 with z̃ = πz/W .
Thus, the mapping equals the mapping (2.1) apart from a con-
formal transformation H ↔ (H − 1)/(H + 1) that maps the
upper half plane onto itself.

[46] The transformation w(ZM) ≡ w(ZM, q) in Eq. (B7) obeys

w(Z∗
M, q) = (w(ZM, q))∗, w(−ZM, q) = −w(ZM, q),

preserving the mirror symmetries about the coordinate axes and

w(iZM, q′) = iw(ZM, q),

relating corresponding positions in a rectangle and its partner
with the inverse aspect ratio and same size to those in the cor-
responding circular disks. Likewise, the local dilatation factor
R(ZM, q) ≡ |dw(ZM, q)/dZM|, compare Eq. (B16), obeys

R(Z∗
M, q) = R(−ZM, q) = R(ZM, q) = R(iZM, q′).

[47] Using the new integration variable ω = s
√

Q in the integral
representation of F given below Eq. (B12) and identifying
Q = exp(±2iα) leads to the two alternative forms

ZM(w) = e±iαF (we∓iα, e±2iα )

of the transformation (B10) in terms of the elliptic function F .
[48] The consistency of Eq. (B17) with Eq. (4.54) follows

from the identity |dn2 − (1/2)sn2cn2|/[|cn2| − |sn2dn2|] =
|cn|/[|dn2| − (1/2)|sn2|], where the arguments of the Jacobi
functions on the lhs are (ZM, q = 1/

√
2) and those on the rhs

are ((1 + i)ZM, q = 1/
√

2).
[49] We explicitly verify the COE for arbitrary angle ϑ in Sec. IV D

in case of the semi-infinite strip and in Sec. IV E in case of the
square, see Eqs. (4.57) and (4.58) in particular.
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