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Abstract

We discuss the depletion interaction between a wall and a mesoscopic particle of ellipsoidal shape

induced by long, flexible, nonadsorbing polymer chains. Both a force and a torque are exerted on

the particle. We concentrate on the case in which the particle size is much smaller than typical

polymer lengths, such as the radius of gyration Rg, where a rigid polymer approximation of the

Asakura-Oosawa type cannot be applied. Explicit analytical results are obtained for ideal polymers.

For particle-wall distances z large compared to Rg an orientation of the ellipsoid perpendicular to

the wall is favored. For z small compared to Rg (but z still large compared to the particle size),

parallel orientation is favored. The perturbation of the polymer system due to the small particle is

represented by a series of point-operators in the corresponding field theory, with next-to-next-to-

leading anisotropic derivative-operators characterizing the particle orientation. For the interaction

between a spherical particle and a wall the simple analytical results predicted by the proposed

small particle expansion beyond leading order display an interesting structure which is confirmed

by direct numerical computation.
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I. INTRODUCTION

Colloid science covers a broad class of substances encompassing milk, blood, and paints. A

major goal is to understand the effective interactions between mesoscopic colloidal particles.

These can be tuned in various ways by manipulating the solvent. One way is by adding

nonadsorbing free polymer chains. For entropic reasons nonadsorbing chains avoid the space

between two particles, leading to an unbalanced pressure which pushes the two particles

towards each other. Depletion forces for an isolated pair of immersed particles or for a

single immersed particle near a wall were measured in recent experiments1–3. The polymer

depletion interaction is also of relevance for the separation of proteins4–6.

The polymer depletion interaction depends on the degree of inter-chain overlap and on

the size ratio between the colloidal particle and the polymer chains. For a dilute solution of

polymer chains with radius of gyrationRg much smaller than the particle size, a qualitatively

correct description is obtained by viewing the polymer coils as non-deformable hard spheres7,

with a radius of the order of Rg. This approach has been applied both to large spherical

colloidal particles and to anisotropic particles such as disks or platelets8,9. However, for

particle size much smaller than Rg (but much larger than the polymer persistence length),

polymer conformations coiling around the particle are important, and the above Asakura-

Oosawa treatment does not apply.

Polymer depletion near small mesoscopic particles is of interest for protein solutions

and has first been discussed by de Gennes10. Odijk has given a mean-field discussion for

spherical11 and ellipsoidal12 small particles in a semidilute polymer solution. Recent com-

puter simulations investigated the effective depletion interaction between small spherical

particles13 or between a sphere and a wall14 in the presence of the excluded volume inter-

action between chain monomers. In Refs. 15–18 it was pointed out that the perturbation

of the polymer system due to a small spherical particle can, in leading order, be viewed as

a δ function potential repelling the chain-monomers with an amplitude that equals a uni-

versal number times the particle radius raised to a universal exponent. The exponent is10

the scaling dimension d − 1/ν of the monomer density with d the dimension of space and
ν the Flory exponent. This is an operator relationship similar in spirit to operator-product

expansions in field theory19. Since the amplitude is independent of distant perturbations,

such as other particles or a wall, the same power of the radius and the same universal
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number appear in the free energy of immersing a particle in bulk polymer solution and in

the effective interaction between two particles or between a particle and a wall. Moreover,

replacing the mesoscopic particle acting via boundary conditions on the polymer system

by a simple density operator considerably simplifies the evaluation of these interactions, by

relating them to the density-density correlation function in bulk polymer solution or to the

density profile in a polymer solution in the half space bounded by a wall17,18. Similar point-

operator representations or ‘small particle expansions’ have proven useful in other examples

of boundary critical phenomena, such as mesoscopic particles immersed in a critical fluid

mixture20–23. For a discussion of the close relation between long flexible polymer chains and

critical behavior, in particular, between polymers near surfaces and boundary critical phe-

nomena, see Refs. 24–26 and 27, respectively. Boundary critical phenomena are reviewed

in Refs. 28 and 29.

In the present paper we extend the small particle expansion to anisotropic particles of

ellipsoidal shape in a polymer solution. The anisotropic effects of small particles, such as the

prolate or oblate ellipsoids of revolution shown in Fig. 1, are related to operators containing

anisotropic spatial derivatives. These have a higher scaling dimension than the monomer

density operator, which is isotropic, and thus are accompanied by the particle size raised to

a greater power than the exponent d − 1/ν of de Gennes. In order to consider anisotropy,
the small particle expansion must be extended beyond the leading order.

Here we study the simplest case of an ellipsoidal particle in a solution of ideal polymers.

This is a first step toward the more realistic case of ‘real’ polymers with excluded volume

interaction between chain monomers or the marginal behavior with ‘logarithmic corrections’

of polymers at the theta point24–27. As we shall see, for ideal nonadsorbing polymers the

scaling dimension of the leading anisotropic operators is d, and thus the anisotropic effects

of, e.g., a small circular disk in three dimensions, are proportional to the third power of the

radius of the disk. There are also isotropic operators beyond the leading density operator.

The dominant operators are the next-to-leading operator with a scaling dimension 2(d− 2),
a higher operator with dimension 3(d− 2), and two others with dimension d. Thus in d = 3
there are three next-to-next-to-leading isotropic operators of scaling dimension 3. These

higher isotropic operators survive, even in the special case of a spherical particle, in which

the amplitudes of the anisotropic operators vanish, and describe corrections in the physical

properties which are of higher order in the radius of the sphere.
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FIG. 1: Prolate (cigar-shaped) and oblate (pancake-shaped) ellipsoids of revolution with long axis

l and short axis s. For s¿ l the cigar reduces to a needle and the pancake to a circular disk.

In Sec. II we first consider a single spherical particle and determine the above-mentioned

higher isotropic operators and their amplitudes. In addition we find a ‘contact term’ between

the polymer ends and the particle. Corresponding terms are also known from operator-

product expansions19. From this we then predict, in three dimensions, the leading, next-to-

leading, and next-to-next-to-leading contributions to the polymer-induced interaction be-

tween the small sphere and a wall which are of order R, R2, and R3, respectively, in the

sphere radius R. The predictions are compared with the numerical calculation of the inter-

action for arbitrary size ratio R/Rg in Ref. 17. Since each order of the interaction involves

a different nontrivial functional dependence on zS/Rg, with zS the particle-wall distance,

this is an interesting and important check of the operator expansion. The expansion yields

analytic expressions for the numerical results17 of the higher order distance-dependencies of

the particle-wall interaction. Finally we consider the interaction between two spheres30 and

calculate the next-to-leading contribution for small particle radii.

In Sec. III we discuss the expansion for small prolate and oblate ellipsoidal particles.

Again we determine operators and amplitudes from single-particle properties and we find
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that the particle-wall interaction depends on both the particle-wall distance zE and the

orientation of the particle with respect to the wall. Interestingly, the preferred orientation

changes from perpendicular to parallel to the wall on decreasing zE from large to small

values compared to the polymer size Rg.

II. DEPLETION EFFECTS FOR A SMALL SPHERICAL PARTICLE

BEYOND LEADING ORDER

Here we consider mesoscopic particles of spherical shape. Besides a single spherical par-

ticle interacting with a nonadsorbing ideal polymer chain, we discuss the polymer-induced

depletion interaction between a particle and a wall and between two particles and generalize

previous results beyond leading order in the particle size. This also serves to introduce the

‘small particle expansion’ in its simplest form.

A basic quantity in the conformational statistics of ideal polymer chains is the partition

function Z(L; r1, r2) of a single chain
24 with the two ends fixed at r1, r2. Here the length of

the chain, i.e. the number of monomers, is specified by the quantity

L = R2
ee/(2d) = 3R2

g/d , (2.1)

where R2
ee is the mean square end-to-end distance, and R2

g is the mean square radius of

gyration of the fluctuating chain in the absence of boundaries.

Our goal is to determine Z in the presence of impenetrable and nonadsorbing mesoscopic

particles. If the polymer size Rg and the particle sizes are much larger than the polymer per-

sistence length and the extrapolation lengths of the particle surfaces, the partition function

of the random-walk like ideal polymer satisfies24 the diffusion equation

( ∂

∂L
−∆r1

)

Z(L; r1, r2) = 0 , (2.2)

where L plays the role of time, with ‘initial condition’

Z(L; r1, r2) = δ(r1 − r2) for L→ 0 , (2.3)

and boundary conditions

Z(L; r1, r2) → 0 for r1 → σ or r2 → σ (2.4)
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on the nonadsorbing surfaces σ of the particles.

The small particle expansion is stated most easily in terms of the ‘magnetic’ (or field

theory) analogue of the polymer system24. The Laplace transform

G(t; r1, r2) =
∫ ∞

0
dL e−Lt Z(L; r1, r2) (2.5)

of the ideal chain partition function Z with respect to L, which satisfies an ‘Ornstein Zernicke

equation’

( t − ∆r1
)G(t; r1, r2) = δ(r1 − r2) , (2.6)

equals the order-parameter correlation function in a Ginzburg-Landau field theory. With

the notation

ϕ1,2 = Φ(r1) Φ(r2) (2.7)

for the product of Ginzburg Landau fields Φ,

G(t; r1, r2) = 〈ϕ1,2〉 . (2.8)

In the case of ideal polymers the angular brackets denote an average with a Gaussian thermal

weight exp(−H[Φ]), where H is the quadratic Hamiltonian

H =
∫

dr
[1

2
(∇Φ)2 + t

2
Φ2
]

+
∫

dσ
c

2
Φ2 . (2.9)

Here
∫

dr is an integration over the volume outside the particles, i.e. the volume accessible

to the polymers, and the integral
∫

dσ extends over the surfaces of the particles, with the

limit c→∞ taken so that 〈ϕ1,2〉 vanishes if r1 or r2 approaches a particle surface.

The small particle expansion allows one to express the correlation function in the presence

of a small particle in terms of correlation functions without the particle. For example,

consider two particles P and S, where S is a sphere centered at rS with a radius R large

on a microscopic scale but much smaller than Rg (i.e. R much smaller than 1/
√
t) and the

smallest distance between rS and the surface of P . We also assume that the distances of r1

and r2 from rS are much larger than R. However, no restrictions are imposed on the length

ratios |r1,2 − rS|/Rg or on the ratio of Rg and the smallest distance between rS and the

surface of P . Similar to operator-product expansions19 the perturbation S of small spatial

extent can be represented by a series of point-operators and the expansion reads

〈ϕ1,2〉P,S = 〈ϕ1,2 · [1 −
∑

j

wj]〉P , (2.10)
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with

wj = Aj R
dj Oj(rS) . (2.11)

Here the Oj are the local operators

(OI , OII , OIII , OIV , OV , ... ) =
( 1

2
Φ2 ,

1

4!
Φ4 ,

1

2
tΦ2 ,

1

2
(∇Φ)2 , 1

6!
Φ6 , ...

)

, (2.12)

which are even in Φ and spatially isotropic and the dj are the dimensions

( dI , dII , dIII , dIV , dV , ... ) = ( d− 2 , 2(d− 2) , d , d , 3(d− 2) , ... ) (2.13)

of the operators. The dimensionless amplitudes Aj are given by

(AI , AII , AIII , AIV , AV , ... ) =
( 4πd/2

Γ(α)
, −2A2

I ,
πd/2

Γ(α)

( 1

α + 1
+

1

α− 1
)

,
2πd/2

αΓ(α)
, 8A3

I , ...
)

,

(2.14)

as we show in Sec. II.A below. Γ is the Gamma function31 and

α = (d− 2)/2 , (2.15)

i.e., the amplitudes only depend on the space dimension d. The brackets 〈 〉P,S and 〈 〉P on
the left and right sides of Eq. (2.10) denote averages with two particles P and S present

and with only one particle P present, respectively. The quantities 〈ϕ1,2 · Oj〉P on the rhs
denote Wick-decompositions into factors 〈ΦΦ〉, which correspond to connected diagrams.
For example

〈ϕ1,2 ·OV〉P =
1

8
〈Φ(r1)Φ(rS)〉P 〈Φ(r2)Φ(rS)〉P (〈Φ(rS)Φ(rS)〉P )2 . (2.16)

Finally it is understood that ultraviolet-sensitive quantities such as the ‘closed loops’

〈Φ(rS)Φ(rS)〉P are to be evaluated in dimensional regularization32.

The partition function ZP,S(L; r1, r2) for a chain with the two ends fixed and with two

particles P, S present follows from (2.10) by inverting the Laplace transform in Eq. (2.5).

Volume-integrals of the partition function are also of interest. For example, the bulk-

normalized density profile of chain ends in the polymer solution EP,S in the presence of

two particles is given by

EP,S(L; r1) =
∫

dr2 ZP,S(L; r1, r2) , (2.17)

where the r2-integration extends over all space except the volume occupied by the two

particles. Equivalently one may define ZP,S to vanish for r1 or r2 inside P or inside S and
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integrate over all space. Of particular interest is the free energy (δSF )P it costs to immerse

the sphere S in the polymer solution in the presence of particle P . This is given by17

(δSF )P = p0

∫

dr1

∫

dr2 [ZP (L; r1, r2) − ZP,S(L; r1, r2)] , (2.18)

where p0 = nkBT is the ideal gas pressure of the ideal polymer solution with chain density

n. Here the r1 and r2-integrations extend over all space, ZP vanishes inside P , and ZP,S

vanishes inside P and S.

For a small sphere S the volume-integrals appearing in the end-density (2.17) and the

free energy (2.18) can be evaluated by means of slightly modified forms19 of the expansion

(2.10). These read

∫

dr2 〈ϕ1,2〉P,S =
∫

dr2 { 〈ϕ1,2 · [1 −
∑

j

wj]〉P + DP (r1, r2) } (2.19)

for |r1 − rS| À R and

∫

dr1

∫

dr2[ 〈ϕ1,2〉P,S − 〈ϕ1,2〉P ] =
∫

dr1

∫

dr2 { 〈ϕ1,2 ·(−)
∑

j

wj〉P +DP (r1, r2) } . (2.20)

Here the integrations on the right hand side extend over all space except the volume occupied

by the particle P , and D is the contact-term

DP (r1 , r2) = 〈ϕ1,2〉P aRd [δ(r1 − rS) + δ(r2 − rS)] , (2.21)

with

a =
πd/2

Γ(α)

1

α + 1
, (2.22)

which only depends on the spatial dimension d. In the language of magnetism the lhs of Eq.

(2.19) is the local susceptibility χP,S(t; r1) in the presence of P and S, and the lhs of (2.20)

is the change (δSΞ(t))P in total susceptibility on introducing the sphere S in the presence

of P .

For the sake of generality and in order to disentangle33 the contributions of the various

operators, we have presented the expansion for arbitrary spatial dimension d > 2. Our main

interest is in d = 3 dimensions, and for later reference we note the corresponding dimensions

( dI , dII , dIII , dIV , dV ) = ( 1 , 2 , 3 , 3 , 3 ) (2.23)

and amplitudes

(AI , AII , AIII , AIV , AV ) = ( 4π , −32π2 , −4π/3 , 4π , 512π3 ) (2.24)
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of the operators (2.12), as well as the corresponding contact amplitude a = 2π/3. Thus

for nonadsorbing ideal polymers in d = 3, the depletion properties of a small spherical

particle, such as the end density profile or the free energy it costs to immerse the particle,

can be expanded in integer powers of the radius R, with the leading order contribution ∝ R

determined by the operator OI, the next-to-leading order ∝ R2 by OII, and the next-to-next-

to leading order ∝ R3 by the three operators OIII, OIV, OV and the contact term.

A. Single spherical particle in a polymer solution

In this simplest case the partition function ZS, the end density ES, and the free energy
cost (δSF )bulk have been calculated for arbitrary size ratio R/Rg in closed analytic form,

see e.g. Ref. 15. As we shall see, these results confirm the small sphere expansions (2.10),

(2.19), and (2.20) and allow one to obtain the results for the amplitudes Aj and a given in

Eqs. (2.14) and (2.22) above. The single-sphere case is recovered from the system of two

particles P, S by moving particle P to infinity. For the averages in Eqs. (2.10), (2.19), and

(2.20), this implies

〈 〉P,S → 〈 〉S , 〈 〉P → 〈 〉bulk , (2.25)

while the amplitudes Aj and a remain unchanged. Here the subscript S denotes a system

with a single embedded spherical particle and the subscript ‘bulk’ a system in an unbounded

volume without a particle. We choose a coordinate system with origin at the center of the

sphere.

We start with a discussion of Eq. (2.10). Its left hand side is given, for arbitrary length

ratios R/r1,2 and R
√
t, by15,16

〈ϕ1,2〉S = 〈ϕ1,2〉bulk + δSG(t; r1, r2) , (2.26)

with

δSG(t; r1, r2) = −
∞
∑

n=0

W (α)
n (θ)

1

(r1r2)α
Iα+n(R

√
t)

Kα+n(R
√
t)
Kα+n(r1

√
t)Kα+n(r2

√
t) , (2.27)

where

W (α)
n (θ) =

1

2πd/2
Γ(α) (n+ α)C(α)

n (cosθ) (2.28)

depends on the angle θ between r1 and r2. Here I,K are modified Bessel functions, and Cn

ultraspherical Gegenbauer polynomials31.
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On expanding the θ-independent term n = 0 in Eq. (2.27) for small R
√
t, one finds

contributions of increasing order RdI , RdII , RdIII , RdV , which can be identified with the terms

j = I, II, III, V on the right hand side of (2.10), provided the amplitudes Aj are chosen as

in Eq. (2.14). Here one uses that

〈Φ(0)Φ(r)〉bulk =
1

(2π)d/2

(√
t

r

)α

Kα(r
√
t) , (2.29)

and

〈Φ(0)Φ(0)〉bulk = tα
Γ(−α)
2dπd/2

(2.30)

in dimensional regularization. The term n = 1 in Eq. (2.27) contributes, in leading order,

an expression proportional to cos θ · RdIV , which can be identified with the term j = IV on

the rhs of (2.10), provided AIV is chosen as in (2.14).

Next we consider the end density profile in Eq. (2.17) and its Laplace transform χS(t; r1),

given by the lhs of Eq. (2.19) with the replacements (2.25). For arbitrary15 length ratios

R/r1, R
√
t,

∫

dr2 〈ϕ1,2〉S ≡ χS =
1

t

[

1 −
(

R

r1

)α
Kα(r1

√
t)

Kα(R
√
t)

]

. (2.31)

The R-independent leading contribution 1/t on the rhs equals the first term
∫

dr2 〈ϕ1,2〉bulk

in the small R expansion on the rhs of Eq. (2.19). Expanding the second term on the rhs

of (2.31) for small R
√
t, one finds contributions of order RdI , RdII , and RdV , which can be

identified with the terms j = I, II, V on the rhs of (2.19). There is also a contribution of

order Rd on the rhs of (2.31). This has the structure of the j = III term on the rhs of (2.19)

but a different amplitude. Here the contact-term comes to our aid, which has the same

structure and ensures the validity of Eq. (2.19) in order Rd, provided the amplitude a is

chosen as in (2.22). Note that the derivative operator OIV in (2.12) does not contribute to

Eq. (2.19) in the single sphere case, since the quantity
∫

dr2 〈Φ(rS)Φ(r2)〉bulk is independent

of rS.

Finally consider the free energy cost and the corresponding Laplace transform δSΞ on

the lhs of Eq. (2.20) with the replacements (2.25). For15 arbitrary R
√
t,

∫

dr1

∫

dr2[ 〈ϕ1,2〉S − 〈ϕ1,2〉bulk ] ≡ δSΞ = −RdΩd

d

1

t
− Rd−1Ωd

Kα+1(R
√
t)

t3/2Kα(R
√
t)
, (2.32)

where

Ω =
2πd/2

Γ(d/2)
(2.33)
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is the surface of the d-dimensional sphere with radius unity. The first term on the rhs of Eq.

(2.32) is proportional to the volume of the spherical particle and dominates if the particle is

large. The second term arises from the depletion layer around the particle. It dominates in

the small particle case and, apart from contributions of order RdI , RdII , and RdV , which are

identical to the j = I, II, V terms in the small radius expansion on the rhs of (2.20), also

contains a contribution of order Rd. The sum of the two Rd-contributions in (2.32) can be

identified with the sum of the j = III term and the contact term on the rhs of Eq. (2.20).

Again the derivative operator OIV does not contribute to the rhs of (2.20).

We give more details for the case d = 3, in which the expansion proceeds in integer powers

of R. Then34 the end density profile ES(L; r1) equals 1 − (R/r1)erfc((r1 − R)/(2Rg)), and

its Laplace transform, the local susceptibility on the right hand side of (2.31), is given by

χS =
1

t

[

1 − R

r1
e−(r1−R)

√
t

]

=
1

t

[

1 − 1

r1
e−r1

√
t

(

R + R2
√
t +

1

2
R3t + ...

)]

. (2.34)

In the change of total susceptibility

δSΞ = −
4π

t2

(

R + R2
√
t +

1

3
R3t

)

, (2.35)

which, apart from the sign, is the Laplace transform of the free energy cost δSF/p0 equal
15,35

to 4πR2
g(R+(2/

√
π)R2/Rg+(1/3)R

3/R2
g), the terms of order R

3(d−2) and Rd from Eq. (2.32)

cancel, and there are no contributions higher than R3. The R3-contributions on the right

hand sides of Eqs. (2.34) and (2.35) arise from the linear combinations of terms due to

OIII, OV, and the contact term in the operator expansions on the right hand sides of Eqs.

(2.19) and (2.20) as follows: The factor 1
2
in front of R3 in Eq. (2.34) is reproduced in the

form
1

4π

(

AIII +
AV

128π2
− a

)

=
1

2
(2.36)

and the factor 1
3
in front of R3 in Eq. (2.35) in the form

1

4π

(

AIII +
AV

128π2
− 2a

)

=
1

3
. (2.37)

This discussion of single sphere properties has familiarized us with the expansion and

yielded the amplitudes Aj and a. We now use the expansion to predict new analytic results

for the interaction between a sphere and a wall and between two spheres.
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B. Interaction between a sphere and a wall

Here we evaluate the free energy (δSF )W it costs to immerse a small sphere with its

center at a distance zS from a planar wall which is much larger than the sphere radius. We

concentrate on d = 3 dimensions, where

(δSF )W / p0 = Rg1 + R2 g2 + R3 g3 + ... . (2.38)

The term of order R is known17, and we calculate the contributions of order R2 and R3.

The expansion of the free energy follows from

(δSF )W / p0 = −L
∫

dr1

∫

dr2 [ 〈ϕ1,2〉h\S − 〈ϕ1,2〉h ] (2.39)

on substituting Eq. (2.20) on the right hand side. To obtain Eq. (2.39) we have used Eq.

(2.18) and (2.5), (2.8). Here L denotes the inverse of the Laplace transform in (2.5). The
planar wall at z = 0 can be viewed as the surface of a huge particle P which occupies the

entire half space z < 0. The volume available for the polymers is the entire half space h

with z > 0, if the sphere is absent, and the half space minus the volume occupied by the

sphere, h \ S, if the sphere is present . We have changed the notation

〈 〉P,S → 〈 〉h\S , 〈 〉P → 〈 〉h (2.40)

correspondingly.

Substituting this version of the small sphere expansion (2.20) on the rhs of (2.39) and

applying Wick’s theorem leads to

g1 = AI L [χh(zS)]
2 , (2.41)

g2 = (AII/2)L eh(zS) [χh(zS)]
2 , (2.42)

and

g3 = g3,III + g3,IV + g3,V + g3,D , (2.43)

with

g3,III = AIII L t [χh(zS)]
2 , (2.44)

g3,IV = AIV L [∂zS
χh(zS)]

2 , (2.45)

g3,V = (AV/8)L [eh(zS)χh(zS)]
2 , (2.46)
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g3,D = − 2aLχh(zS) . (2.47)

Here

χh(zS) ≡
∫

dr1 〈Φ(r1) Φ(rS)〉h =
1

t

(

1 − e−zS

√
t

)

, (2.48)

where the r1-integration extends over the half space h, is the local susceptibility in the half

space, and

eh(zS) ≡ 〈Φ(rS) Φ(rS)〉h = −
√
t

4π

(

1 +
1

2zS
√
t
e−2zS

√
t

)

(2.49)

is the contribution from the closed loop in dimensional regularization. For zS → ∞ the

quantities χh and eh approach their bulk expressions 1/t and −
√
t/(4π), see Eq. (2.30).

Inserting the expressions (2.48) and (2.49) for χh and eh into Eqs. (2.41), (2.42), and

(2.44)-(2.47) and performing the inverse Laplace transforms leads to the known result

g1 = 4πR2
gMh , (2.50)

where

Mh = 1 + 4 [−2ε2(y/2) + ε2(y)] (2.51)

is the bulk normalized monomer density profile in the half space27, and to the new results

g2 = 8πRg

{

1√
π
− 2ε1(y/2) + ε1(y)

+
1

y

[

ε2(y) − 2ε2(3y/2) + ε2(2y)

]}

(2.52)

and

g3 = 2π

{

2

3
− 2ε0(y/2) +

10

3
ε0(y)

+
4

y

[

ε1(y) − 2ε1(3y/2) + ε1(2y)

]

+
2

y2

[

ε2(2y) − 2ε2(5y/2) + ε2(3y)

]}

. (2.53)

Here we have introduced the scaled distance

y = zS/Rg (2.54)

of the sphere center from the wall and the notation

εn(x) = i
n erfc(x) (2.55)

13



for the n-fold iterated complementary error function31. For small y

g3 → 2π { 5/2 − 31y/(6
√
π) + ... } . (2.56)

0

0.5

1.0

0 0.5 1.0 1.5 2.0

zS /
√

2Rg

(
δ S

F
) W

/(
4π

k
B
T

n
R

2 g
R

)

FIG. 2: Free energy cost (δSF )W of immersing a small spherical particle at a distance zS from

a planar wall. In the case shown, with the particle radius smaller by a factor twenty than the

polymer radius of gyration, the sum (squares) of the leading order contribution proportional to

R (circles) and the next to leading order contribution proportional to R2 which follow from Eqs.

(2.38) and (2.50)-(2.52) is nearly indistinguishable from the complete result (full line), obtained

numerically by the multiple scattering method of Ref. 17.

Our results imply the finite limit36

(δSF )W / p0 → π R z2
S [ 4 + 2R/zS + 5 (R/zS)

2 + ... ] (2.57)

of the immersion free energy for Rg → ∞. The expansion on the right hand side of (2.57)
applies for small R/zS and is in agreement with the finite limit expression for arbitrary R/zS

14



given in Eqs. (2.3) and (2.14a,b) of Ref. 17 where (δSF )W , p0, and zS have been denoted

by F , p, and D +R, respectively.

0

1

2

0 0.5 1.0 1.5 2.0

zS /
√

2Rg

g 3
/(

2π
)

FIG. 3: Next-to-next-to-leading contribution of the free energy cost (δSF )W of immersing a small

spherical particle near a planar wall, which is proportional to R3 and characterized by the function

g3 in Eq. (2.38). The analytic prediction (2.53) of the operator expansion (full line) is compared

with a direct numerical evaluation of the free energy expression (2.39) following the method of Ref.

17 for size ratios R/Rg = 0.05 (squares), 0.0125 (circles), and 0.0031 (asterisks). For R ¿ zS ,Rg

the data convincingly collapse onto the predicted curve. Note that the ranges of numerical data

shown shrink proportional to R. This is due to subtraction errors which begin at a constant ratio

R/zS .

In Figs. 2 and 3 we compare the analytic expressions (2.52) and (2.53) for the free energy

cost (2.38) in next-to- and next-to-next-to-leading order in the particle size with a numerical

calculation using a multiple scattering formalism17 in order to solve the diffusion equation.

The agreement is excellent and indicates that the proposed operator expansion is a reliable

15



and useful tool to describe the small particle behavior even beyond the leading order. Note

the interesting non-monotonic dependence of g3 on zS/Rg. In the next chapter we apply

the operator expansion approach to the case of small anisotropic particles, where numerical

results are not available.

C. Interaction between two spheres

In this section we consider the free energy of interaction Fint of two small spheres S and

S ′ with radii R and R′, which is induced by ideal, free, nonadsorbing polymer chains and

evaluate the next correction to the known16 leading-order result. These are the contributions

σl = −L
∫

dr1

∫

dr2 〈ϕ1,2 · wI · w′I〉bulk

= −(RR′)2αA2
I 2L

1

t2
Gb(r) (2.58)

and

σnl = −L
∫

dr1

∫

dr2 〈ϕ1,2 · [wI · w′II + wII · w′I ]〉bulk

= −(RR′)2α (R2α + (R′)2α)AIAII L
1

t2

[

Gb(r)〈Φ(0)Φ(0)〉bulk +
1

2
G2

b(r)
]

. (2.59)

to

Fint/p0 = σl + σnl + ... . (2.60)

Here w′j follows from wj in Eq. (2.11) on replacing the radius R by R
′ and the sphere center

rS by rS′ , where

r = |rS − rS′ | (2.61)

is the distance between the sphere centers which is much larger than R and R′ and

Gb(r) = 〈Φ(rS) Φ(rS′)〉bulk (2.62)

is the order parameter correlation function in unbounded bulk. Eqs. (2.58) and (2.59) can

be derived from Eqs. (2.18) and (2.20) by replacing the particle P by the second sphere S ′,

using Wick’s theorem, and expanding the S ′-averages 〈Φ(r1,2)Φ(rS)〉S′ and 〈Φ(rS)Φ(rS)〉S′

for small R′ in a small sphere expansion for S ′.

In the case of d = 3 dimensions, where

Gb(r) =
1

4πr
e−r

√
t , (2.63)
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one obtains

σl = −RR′R2
g

32π

r
ε2
( r

2Rg

)

(2.64)

for the leading contribution, known from Eqs. (1.16a), (3.9), (3.10) in Ref. 16, and for the

next-to-leading contribution the new result

σnl = RR′(R +R′) 16π

[

−Rg

r
ε1
( r

2Rg

)

+
R2

g

r2
ε2
( r

Rg

)

]

, (2.65)

with the error functions εn defined in Eq. (2.55) above. We give the limiting behavior

σl + σnl → −8π RR′
R2

g

r

[

1 − 1
2

R +R′

r

]

(2.66)

for r ¿ Rg and

σl + σnl → −64
√
π RR′

R5
g

r4

[

1 +
1

4

(R +R′)r

R2
g

]

e−r2/(4R2
g) (2.67)

for r À Rg. Note that σnl, which is of third order in the particle radii, changes sign on

increasing r/Rg. Thus the next-to-leading contribution weakens the attraction between

spheres for r ¿ Rg and strengthens it for r À Rg.

Eq. (2.66) provides the first two terms in an expansion for R,R′ ¿ r of the finite limit

of Fint/(p0R2
g) for Rg →∞. For R = R′ the expansion is in agreement with the finite limit

expression for arbitrary R/r given in Eqs. (3.13), (3.15), and (3.18a,b) of Ref. 16 where

Fint/p0 and r have been denoted by f
(2)
A,B and rA,B, respectively. AD,DR

D−1/νR1/ν
x in Eq.

(3.13) of Ref. 16 equals 4πRR2
g for ideal polymers in d = 3 dimensions .

III. DEPLETION FOR A SMALL ANISOTROPIC PARTICLE

Consider a particle with the shape of a prolate or oblate ellipsoid of revolution in d = 3

dimensions, as shown in Fig. 1. We introduce the interfocal distance 2f , which is related to

the long and short axes l and s of the ellipsoid by

l2 − s2 = (2f)2 , (3.1)

and a dimensionless parameter

ξ = ( l , s )/(2f) for (prolate , oblate) (3.2)

17



characterizing the degree of shape anisotropy of the particle. For ξ →∞ the prolate or oblate
ellipsoid becomes a sphere of radius l/2 = s/2, for ξ → 1 the prolate ellipsoid becomes an

infinitely thin needle of length l = 2f , and for ξ → 0 the oblate ellipsoid becomes an

infinitely thin circular disk of radius l/2 = f . The parameter ξ also appears on introducing

spheroidal coordinate systems37.

For a small ellipsoid with l and s much smaller than the other mesoscopic lengths, a small

particle expansion again applies. However anisotropic operators such as

OVI =
1

2
(∂‖Φ)

2 , OVII =
1

2
Φ (∂2

‖ Φ) (3.3)

with dimensions

dVI = dVII = 3 (3.4)

also contribute. Here

∂‖ =
3
∑

α=1

ρα ∂α (3.5)

is a derivative along the axis of revolution of the ellipsoid characterized by the unit vector

~ρ. Note that other uniaxially anisotropic operators such as ∂2
‖ Φ

2 or Φ∆⊥Φ can be reduced

to combinations of OVI and OVII or of OVII and an isotropic operator. With f as the length

unit for the particle size, the weights wj, which are the counterparts for the ellipsoid of the

expressions (2.11) for the sphere, take the form

wj = Bj(ξ) f
dj Oj(rE) , (3.6)

with amplitudes B which are functions of the anisotropy parameter ξ.

The most important amplitudes are those of the leading isotropic operator OI in (2.12),

with dI = 1 given in (2.23), and of the leading anisotropic operators OVI and OVII in (3.3),

for which one finds

BI = 4π

(

1

Q0(ξ)
,
−i

Q0(iξ)

)

(3.7)

and

BVI =
4π

3

(

P1(ξ)

Q1(ξ)
+ 2

P 1
1 (ξ)

Q1
1(ξ)

, i
P1(iξ)

Q1(iξ)
+ 2i

P 1
1 (iξ)

Q1
1(iξ)

)

(3.8)

BVII =
1

3
(BI , −BI ) (3.9)

in the (prolate , oblate) cases, respectively, as we show in Sec. III.A below. Here P and Q

are Legendre functions of the first and second kind, as defined in Chap. 8 of Ref. 31. We

18



give the simple representations

4π/BI =

(

1

2
ln
ξ + 1

ξ − 1 , arctan
1

ξ

)

=

(

Arcosh
l

s
, arccos

s

l

)

(3.10)

of the positive amplitudes BI.

We note important special cases of Eqs. (3.7)-(3.9). (i) In the limit ξ → ∞ of a weakly

deformed sphere of (prolate , oblate) shape, Eq. (3.7) yields

BI · f → 4π ξ (1 , 1) · f → 4π R (1 , 1) , (3.11)

where in the last step we have used that the radius R of the sphere equals ξf , see Eq. (3.2).

Comparing Eq. (3.6) with (2.11) shows that this is consistent with the value AI = 4π in Eq.

(2.24) of the small sphere expansion in Sec. II. In the limit ξ →∞ Eqs. (3.8), (3.9) give

BVI · f 3 → 12π

5
ξ (1 , −1) · f 3 → 12π

5
R2 (l − s) (1 , −1) (3.12)

and

BVII · f 3 → 4π

3
ξ (1 , −1) · f 3 → 4π

3
R2 (l − s) (1 , −1) (3.13)

for the amplitudes of the anisotropic operators, where Eqs. (3.1), (3.2) have been used in

the last steps. As expected, the couplings to the anisotropic operators have opposite signs

for weakly deformed spheres of prolate and oblate shape and vanish in the spherical limit

l = s.

(ii) For a thin needle, i.e. for ξ → 1 in the prolate case, Eq. (3.7) leads to

BI · f →
4π

1
2
ln 2

ξ−1

· f → 2πl

ln(2l/s)
, (3.14)

where Eqs. (3.1) and (3.2) have been used in the last step. The anisotropy amplitudes follow

in the same way from Eqs. (3.8) and (3.9) and are given by

BVI · f 3 → 4π/3
1
2
ln 2

ξ−1
− 1 · f

3 → π

6

l3

ln(2l/s)− 1 (3.15)

and

BVII · f 3 → 4π/3
1
2
ln 2

ξ−1

· f 3 → π

6

l3

ln(2l/s)
. (3.16)
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Note that the Bj vanish logarithmically as s/l tends to zero. The reason is that an infinitely

thin needle does not affect the polymer conformations in three spatial dimensions. This is

different for the case of an infinitely thin disk, to which we now turn.

(iii) For a circular disk, i.e. for ξ → 0 in the oblate case, Eq. (3.7) implies

BI · f → 8 · f → 8Rdisk , (3.17)

and Eqs. (3.8) and (3.9) yield

BVI · f 3 → −16
3
· f 3 → −16

3
R3

disk (3.18)

and

BVII · f 3 → −8
3
· f 3 → −8

3
R3

disk , (3.19)

where Rdisk is the radius of the disk.

A. A single ellipsoid

We first describe how the results (3.7) and (3.8), (3.9) for the amplitudes BI and BVI,

BVII can be obtained from the order-parameter correlation function 〈ϕ1,2〉E outside a single
ellipsoid E. In this subsection it is convenient to use a coordinate system with the origin

at the center and the z-axis along the axis of revolution of the ellipsoid. For the two points

r1 , r2 with Cartesian coordinates
38

rk = ( rk,⊥ cosϕk , rk,⊥ sinϕk , zk ) ; k = 1 , 2 (3.20)

we introduce spheroidal coordinates ξk and ηk which are related to the distances rk,⊥ from

the z-axis and the z-components zk as in Ref. 37. For the prolate case with the foci located

on the z-axis at z = ±f ,
2f ξk = rk,+ + rk,− (3.21)

2f ηk = rk,+ − rk,− , (3.22)

with

rk,± =
√

r2
k,⊥ + (zk ± f)2 . (3.23)

For the oblate case

2f
√

1 + ξ2
k = rk,+ + rk,− (3.24)
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2f
√

1 − η2
k = rk,+ − rk,− , (3.25)

with

rk,± =
√

z2
k + (rk,⊥ ± f)2 . (3.26)

The form of

〈ϕ1,2〉E = 〈ϕ1,2〉bulk + δEG , (3.27)

which satisfies the Ornstein Zernicke equation (2.6) outside the ellipsoid, i.e. for ξ1 > ξ, ξ2 >

ξ, and vanishes for r1 or r2 on its surface, i.e. for ξ1 = ξ or ξ2 = ξ, can also be obtained

with the help of Ref. 37. In order to determine BI and BVI, BVII it is sufficient to consider

〈ϕ1,2〉E right at the critical point t = 0, where

δEG = −
∑

m,n

γm,n (3.28)

with

γm,n = Cm,n P
m
n (η1)P

m
n (η2) cos(m(ϕ1 − ϕ2)) · β . (3.29)

Here

β =
Pm

n (ξ)

Qm
n (ξ)

Qm
n (ξ1)Q

m
n (ξ2) (3.30)

in the prolate case, while

β = i
Pm

n (iξ)

Qm
n (iξ)

Qm
n (iξ1)Q

m
n (iξ2) (3.31)

in the oblate case. The double sum in Eq. (3.28) is over all integer values m,n obeying

0 ≤ m ≤ n, P and Q are Legendre functions31, and the coefficients Cm,n are given by

Cm,n =
1

f
(−)m

(

(n−m)!
(n+m)!

)

2n+ 1

2π
(3.32)

for m = 1, 2, 3, .. and

C0,n =
1

f

2n+ 1

4π
(3.33)

for m = 0.

The amplitudes BI and BVI, BVII follow from δEG for small f/r1, f/r2, i.e. for small

1

ξk
=

f

rk

[

1 ∓ f 2

2r2
k

(1 − cos2θk) + ...

]

. (3.34)

Here the upper and lower signs apply in the prolate and oblate cases,

cos θk = zk/rk (3.35)
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determines the azimuthal angles θk, and Eqs. (3.21), (3.24) have been used to derive

(3.34). The two factors Qm
n (ξk) or Q

m
n (iξk) in (3.30) or (3.31) must be expanded for large

arguments31, and the orders f and f 3 of δEG which we need are contained in the three

contributions γ0,0, γ0,1, and γ1,1. On using

ηk = cos θk + ... , (3.36)

which follows from (3.22), (3.25), the expansion yields

γ0,0 → BI f τI + BVII f
3 τVII , (3.37)

with BI and BVII from (3.7) and (3.9),

τI =
1

4πr1 4πr2
= 〈ϕ1,2 ·OI〉bulk , (3.38)

and

τVII = −
1

2

1

4πr1 4πr2

{

1

r2
1

[ 1 − 3cos2θ1] + ( 1 → 2 )

}

= 〈ϕ1,2 ·OVII〉bulk . (3.39)

Moreover,

γ0,1 → (BIV + BVI) f
3 τVI , (3.40)

and

γ1,1 → BIV f
3 τ , (3.41)

with

BIV = −
8π

3

(

P 1
1 (ξ)

Q1
1(ξ)

, i
P 1

1 (iξ)

Q1
1(iξ)

)

(3.42)

for the (prolate , oblate) case and BVI given in Eq. (3.8), and with

τVI =
cos θ1 cos θ2

4πr2
1 4πr

2
2

= 〈ϕ1,2 ·OVI〉bulk (3.43)

and

τ =
sin θ1 sin θ2 cos (ϕ1 − ϕ2)

4πr2
1 4πr

2
2

= 〈ϕ1,2 · (OIV − OVI〉bulk . (3.44)

BIV in (3.42) is indeed the amplitude in Eq. (3.6) corresponding to the derivative operator

OIV in (2.12), since the sum γ0,1 + γ1,1 equals f
3〈ϕ1,2 · (BIV OIV + BVIOVI)〉bulk.

For t > 0 the expansion of 〈ϕ1,2〉E also contains contributions from the operators OII,

OIII, and OV in Eq. (2.12), and one finds, for example, that BII = −2B2
I . For most of the
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quantities of interest considered below we only discuss the leading isotropic and anisotropic

contributions, for which BII, ... , BV and the counterpart b(ξ)f
3 for the ellipsoid of the

quantity aRd for the sphere in the contact-term D in (2.21) do not contribute.

Next we consider the bulk-normalized density EE(L; r1) of polymer ends around a single

ellipsoidal particle. This is given by the inverse Laplace transform of Eq. (2.19), with the

averages 〈 〉P,S and 〈 〉P replaced by 〈 〉E and 〈 〉bulk and the amplitudes AjR
dj and aRd in wj

and D by Bjf
dj and bf 3. The leading contribution

[EE(L; r1) − 1]leading isotropic = −
BI f

4πr1
erfc

r1
2Rg

; l, s ¿ r1,Rg (3.45)

is isotropic and determined by the operator OI, and the leading anisotropic contribution

[EE(L; r1) − 1]leading anisotropic = −
BVII f

3

8π
κ ; l, s ¿ r1,Rg (3.46)

is determined only by OVII, since the contribution of OVI to EE vanishes. Here

κ =

[

∂2
z1

(

1

r1
erfc

r1
2Rg

)]

anisotropic

= λ cos2θ1 (3.47)

with

λ =
1

(2Rg)3

[

3

%3
1

erfc%1 +
4√
π
e−%2

1

(

1 +
3

2

1

%2
1

)]

, (3.48)

%1 =
r1
2Rg

, (3.49)

and θ1 is the angle between r1 and the axis of revolution as in Eq. (3.35). We note the limits

λ →
(

3

r3
1

[

1− 8

15
√
π
%5

1 + ...

]

,
1

2
√
πR3

g

e−%2

1

)

for (r1 ¿ Rg , r1 À Rg) . (3.50)

Since BVII is (positive, negative) for the (prolate, oblate) cases, Eq. (3.46) implies that EE
in these cases is (smaller, larger) on the axis of revolution with θ1 = 0 than in the plane

θ1 = π/2 perpendicular to the axis and intersecting it in the center of the particle. Thus EE
is smaller along those directions θ1 for which the particle surface is further away from the

particle center. Since EE vanishes on the particle surface, this is a plausible result.
Eqs. (3.45) and (3.46), which apply for l, s ¿ r1,Rg, can be compared with the expres-

sions

EE(L =∞; r1) =

(

1 − Q0(ξ1)

Q0(ξ)
, 1 − Q0(iξ1)

Q0(iξ)

)

(3.51)

for the (prolate, oblate) cases, which apply for l, s, r1 ¿ Rg. Eqs. (3.51) follow since

the finite limit on the left hand side due to (2.2) satisfies the Laplace equation, and
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(Q0(ξ1) , Q0(iξ1)/i) with ξ1 defined in Eqs. (3.21) and (3.24) are indeed solutions of the

Laplace equation which vanish for ξ1 → ∞ and have constant values (Q0(ξ) , Q0(iξ)/i) on

the surface ξ1 = ξ of the (prolate, oblate) ellipsoid. A more explicit form of EE(∞; r1)

follows by inserting Eqs. (3.10) into (3.51), see also Ref. 12. In particular for E equal to

the circular disk with radius Rdisk = f ,

Edisk(∞; (0, z1)) = 1 −
2

π
arctan

f

z1

(3.52)

along the axis of revolution and

Edisk(∞; (r1,⊥, 0)) = 1 −
2

π
arcsin

f

r1,⊥
(3.53)

along the radial direction within the plane of the disk. These expressions also determine the

bulk normalized monomer densityM, sinceME = E2
E for Rg → ∞. Expanding (3.51) for

l, s¿ r1 with the help of (3.34) and using the expressions (3.7) and (3.9) for the amplitudes

BI and BVII, one obtains

EE(∞; r1) = 1 −
BI f

4π r1
+
BVII f

3

8π r3
1

(1 − 3 cos2 θ1) ; l, s¿ r1 . (3.54)

This is consistent with the leading isotropic and anisotropic contributions (3.45) and (3.46)

in the regime l, s¿ r1 ¿ Rg, for which both types of expressions are valid.

We defer a discussion of the free energy cost δEF to immerse the ellipsoid in the polymer

solution to the next subsection.

B. Interaction between an ellipsoid and a wall

The evaluation of the free energy (δEF )W required to immerse the small ellipsoid with

its center at a distance zE from a planar wall proceeds as in Section II.B. First consider the

leading contribution

[(δEF )W ]leading/p0 = fBI L[χh(zE)]
2 = fBIR2

gMh(zE/Rg) , (3.55)

which is of first order in the particle size and arises from the isotropic operator OI. The

right hand side of (3.55) equals the contribution Rg1 in (2.38) except that RAI → fBI and

Mh is the monomer density in the half space of Eq. (2.51), with zS replaced by zE.

The free energy cost [δEF ]leading to immerse the small ellipsoid in unbounded bulk is given

by (3.55) withMh = 1. Explicit results for the special cases of a weakly deformed sphere, a
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needle, and a circular disk follow by substituting the expressions for fBI from Eqs. (3.11),

(3.14), and (3.17). Note that the free energy cost for a disk is smaller (by a factor of 2/π)

than for a sphere with the same radius, as expected since the polymer depletion is weaker

in the former case. A small prolate ellipsoid in a solution in unbounded bulk was considered

in Ref. 12 where fBI was denoted by 8πE.

z
E

prolate

ϑ

oblate

ϑ

FIG. 4: Particles of prolate and oblate ellipsoidal shape near a planar wall. The ellipsoid is oriented

parallel to the wall for ϑ = π/2 in the prolate case and for ϑ = 0 in the oblate case.

The leading anisotropic contribution to (δEF )W arises from the two anisotropic operators

OVI and OVII. The calculation is similar to that of the term g3,IV in Eq. (2.45) and leads to

[(δEF )W ]leading anisotropic/p0 = f 3 L{BVI [∂‖χh(z)]
2 + BVII χh(z) [∂

2
‖χh(z)]}z=zE

= (cos2 ϑ) f 3A(zE/Rg) , (3.56)

with χh given in (2.48), and

A = (BVI +BVII) erfc
zE
Rg

− BVII erfc
zE
2Rg

. (3.57)

Here ϑ is the angle between the axis of revolution of the ellipsoid and the surface normal

of the wall at z = 0, as shown in Figure 4. The factor cosϑ arises from the derivative ∂‖
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defined in (3.5) via ∂‖ψ(z) = ρzψ
′(z), with ρz = cosϑ the component of ~ρ perpendicular to

the wall.

The function A has the limits

A(zE/Rg) →
{

BVI

[

1 −
(

2 +
BVII

BVI

)

zE√
πRg

]

, −BVII
2Rg√
πzE

e−
1

4
(zE/Rg)2

}

(3.58)

for ( zE/Rg ¿ 1 , zE/Rg À 1 ) , and in the intermediate regime changes sign at a scaled

distance zE/Rg = ζ0(l/s) which depends on the aspect ratio l/s. For the special case of a

circular disk with a radius Rdisk = f , the quantity

A = Adisk ≡ 8
(

− erfc zERg

+
1

3
erfc

zE
2Rg

)

(3.59)

is shown in Fig. 5.

Since BVI and BVII are both (positive, negative) for (prolate, oblate) ellipsoids, the free

energy (δEF )W for larger particle-wall separations zE/Rg > ζ0 is lowest if the ellipsoid

is aligned perpendicular to the wall with ϑ = (0, π/2), and for the smaller separations

zE/Rg < ζ0 if it is aligned parallel to the wall with ϑ = (π/2, 0).

This behavior is suggested by the following crude argument: First consider the situation

without a small particle and replace the bulk-normalized monomer density profile in the half

space Mh with its point of inflection by a step function θ(z − ζ̃0Rg) which jumps from 0

to 1 on increasing the distance z from the wall beyond a certain value ζ̃0Rg. Then insert

a small uniaxially anisotropic particle such as a rod of length l and align it parallel to the

wall. If the center of the rod is at a distance from the wall that is larger than ζ̃0Rg (but

smaller than ζ̃0Rg+ l/2), it is advantageous to turn the rod around its center perpendicular

to the wall since then a part of the rod enters the region z < ζ̃0Rg which is already polymer

depleted. Conversely, if the distance of the center of the rod from the wall is smaller than

ζ̃0Rg (but larger than ζ̃0Rg− l/2), turning the rod perpendicular to the wall is unfavourable,
since then a part of the rod enters the region z > ζ̃0Rg which is not depleted by the wall.

IV. SUMMARY AND CONCLUDING REMARKS

We have considered polymer depletion effects for mesoscopic colloidal particles with a size

much smaller than the mesoscopic polymer lengths, such as the polymer radius of gyration

Rg. Extending the small particle expansion which applies in this ‘protein limit’ beyond
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FIG. 5: The amplitude A which specifies the dependence (3.56) of the free energy of immersion

(δEF )W on the orientation of the small ellipsoidal particle with respect to the planar wall. The

case A = Adisk of a circular disk of radius Rdisk = f with Adisk given in Eq. (3.59) is shown. On

decreasing the distance zE between the center of the disk and the wall, Adisk passes through a

maximum value of 0.501 at zE/Rg = 1.55, changes sign at zE/Rg = ζ0,disk = 0.99, and drops to a

value of −16/3 for zE/Rg ¿ 1. For zE/Rg > ζ0,disk and < ζ0,disk the most favorable orientation

of the disk is perpendicular and parallel to the wall with cosϑ = 0 and 1, respectively, see Eq.

(3.56) and Fig. 4. For a general prolate or oblate small ellipsoid the qualitative form of A is that

of −Adisk or Adisk, respectively.

the leading order has enabled us to evaluate the orientation-dependent effective depletion

interaction, mediated by a solution of free nonadsorbing ideal polymer chains, between a

small ellipsoidal particle and a wall. Effects beyond leading order in the interaction between

a spherical particle and a wall and between two spherical particles have also been discussed.

Here is a summary of our main results:
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For ideal polymers interacting with a small spherical particle in three dimensions, we

have derived the small radius expansion up to third order in the particle radius. Up to this

order the perturbation of the polymer system due to the particle corresponds to the five

local operators given in Eq. (2.12) of the Gaussian Ginzburg-Landau field theory that is the

‘magnetic analogue’24 of the polymer system. The operators are multiplied by the particle

radius raised to the scaling dimensions (2.13) or (2.23) and by the universal amplitudes

(2.14) or (2.24), which are independent of the particular lattice or off-lattice realization of

the random-walk like ideal polymer chains and of distant perturbations such as a wall or

other particles. For quantities involving an integration over the polymer end positions, such

as the end density profile (2.17) or the free energy (2.18) it costs to immerse the particle,

there is a contact-term (see Eqs. (2.19)-(2.21)), in third order, with amplitude (2.22), that

is also universal and independent of distant perturbations.

This expansion not only reproduces known results15,34,35 for the polymer partition func-

tion, the density profile of chain ends, and the free energy of immersion for the case of a single

spherical particle, see Sec. IIA, but also allows us to predict the form of the interactions

between a particle and a wall (Sec. IIB) and between two particles (Sec. IIC).

Our analytical results (2.38), (2.52)-(2.55) for the next-to-leading and next-to-next-to-

leading contributions to the particle-wall interaction show an interesting dependence on the

particle-wall distance and are in excellent agreement with a direct numerical calculation

based on the multiple scattering method of Ref. 17, see Figs. 2 and 3.

We have checked that the new results (2.52), (2.53) and (2.65) for the polymer-induced

interactions between a sphere and a wall and between two spheres beyond leading order

in the sphere radius R show for Rg much larger than the sphere-wall and sphere-sphere

separations the correct limiting behaviors that are known from Refs. 17 and 16, compare

the discussions near Eq. (2.57) and at the end of section IIC.

The small particle expansion can be generalized to anisotropic particles by including

anisotropic derivative-operators. For a small particle of prolate or oblate ellipsoidal shape

with large axis l and small axis s, as in Fig. 1, the leading operators are the two given in

Eq. (3.3). It is convenient to use half of the interfocal distance as the length unit for the

particle size (see Eq. (3.6)). The corresponding universal amplitudes, which depend on the

aspect ratio l/s of the ellipsoid, are given in Eqs. (3.7)-(3.9) for the leading isotropic and

anisotropic operators, with limiting forms for a weakly deformed sphere, a needle, and a
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circular disk in Eqs. (3.11)-(3.19).

For a single ellipsoid the expansion leads to the new results (3.45) and (3.46)-(3.49) for

the leading isotropic and anisotropic parts of the end-density profile. These are valid for

distances r1 from the ellipsoid center satisfying l, s ¿ r1,Rg and correctly merge with the

results (3.51)-(3.53) for the region l, s, r1 ¿ Rg for which the diffusion equation (2.2) of the

random-walk like ideal polymers24 reduces to Laplace’s equation.

For a small ellipsoid at a distance zE from a planar wall, we obtain the leading contribution

(3.55) to the particle-wall interaction, which is of first order in the size and independent of

the orientation of the particle, and the leading dependence on orientation given by Eqs.

(3.56) and (3.57). The latter is of third order in the particle size and depends on the angle ϑ

between the axis of revolution of the ellipsoid and the surface normal of the wall, shown in

Fig. 4, in the form of cos2 ϑ multiplied by a function A(zE/Rg) which has different signs for

zE/Rg À 1 and zE/Rg ¿ 1. For a disk the function A is shown in Fig. 5. The lowest free
energy of interaction is attained on aligning the prolate or oblate ellipsoid perpendicular to

the wall for the larger particle-wall distances zE/Rg > ζ0 and parallel to the wall for the

smaller distances zE/Rg < ζ0, where ζ0 depends on the aspect ratio l/s.

The case of a small particle considered here should be compared with that of a large

particle, in which the characteristic length scale of the embedding solution (such as Rg in

case of a dilute polymer solution) is much smaller than the particle size. An interesting

example of the latter case, studied recently in Ref. 39, consists of a rod-like particle close to

a wall in a solution of colloidal hard spheres, with a size of the order of the width of the rod

and much smaller than its length. As discussed above, for a small needle the change in the

most favorable particle orientation from perpendicular to parallel to the wall on decreasing

the particle-wall distance occurs at a distance of the order of Rg, which is much larger than

the size of the needle, i.e. when the needle is still far from the wall. In the large particle

case the change takes place when the rod is already touching the wall at one end.

It would be interesting to generalize our work to include excluded volume interactions

between chain-monomers and to study the case of an anisotropic particle in a critical fluid

mixture. Computer simulations of anisotropic particles of arbitrary size in solutions of

flexible polymers would be valuable.
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