Rhein-Ruhr Zentrum für wissenschaftliche Datenkompetenz (DKZ.2R)

National Collaborations

The Rhine-Ruhr Center for Scientific Data Literacy (DKZ.2R) focuses on implementing methodological data literacy in a “holistic” manner and will actively support domain scientist in their research. The focus of DKZ.2R lies on Data Science and Machine Learning (DS/ML), High Performance Cumputing (HPC) and Research Data Management (RDM). The key domains are mathematics and computer science, life and natural sciences as well as engineering sciences.DKZ.2R consists of a number of strong project partners: Forschungszentrum Jülich GmbH, RWTH Aachen University, FH Aachen - University of Applied Sciences, Universität Bonn, Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS), Hochschule Bonn-Rhein-Sieg - University of Applied Sciences, University of Cologne, Ruhr-University Bochum, and University Duisburg-Essen, and benefits from a close connection to the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE), the German National Research Data Infrastructure (NFDI), the LAMARR Institute for Machine Learning and Artificial Intelligence, the state initiative for research data management (fdm.nrw), and many more.

NFDI-MatWerk

Since industrialization, our social and economic progress depends on the mastery of materials. From the very beginning, materials science and materials engineering – in German: Materialwissenschaften und Werkstofftechnik = MatWerk – have been key technologies of their time. Due to their versatility, these two interdisciplinary fields hold a wealth of innovative solutions to meet societal challenges in the future fields of energy, mobility, environment, etc., thus making a significant contribution to the sustainable use of our finite resources. One challenge here is the many structural scales and thus the various experimental and numerical methods. In turn, materials’ mechanical and functional properties are determined by their microstructure and thus also by likely changes due to their process and load histories. The development of a database infrastructure is a community-driven process. To this end, NFDI-MatWerk aims to seamlessly integrate decentralized data and metadata, experimental and numerical workflows, and a materials ontology to maximize interoperability and reproducibility of research data processing. To this end, data use profiles of Participant Projects from different sub-disciplines are analyzed to identify the most relevant scientific scenarios within MatWerk. The resulting Infrastructure Use Cases help in the continuous community-driven development and review of the infrastructure.

Control of the microstructure of thin multilayer systems by ultrashort pulsed laser irradiation - process understanding by complementary in situ and ex situ characterizations and multiscale simulations

National Collaborations

The aim of this DFG research grant is to contribute to the understanding of laser-induced changes in the microstructure of thin metallic films and to the description of the effect of microstructure on the materials characteristics, which are relevant for the laser processes, e.g., absorption of the laser beam, electron-phonon coupling, heat transfer, etc. This aim should be achieved by combining in situ (ultrafast ellipsometry and reflectometry during the laser irradiation) and ex situ experiments (scanning and transmission electron microscopy, X-ray and electron spectroscopy) with simulations using mesoscopic (hydrodynamics) and microscopic (molecular dynamics) approaches. The evaluation of the electron micrographs will be supported by a multimodal analysis based on deep learning. The information obtained from the molecular dynamic simulations will complement the ex situ microstructure studies by providing, e.g., the atomic positions for the in situ microstructure analyses during the laser irradiation.The materials proposed for this study are single layers (Cr, Mo, Ti, Fe) and bilayers (Au/Cr, Mo/Ti, Au/Fe) consisting of unary metallic phases with different melting points, different sequences of high-temperature and high-pressure phases, and with different mutual solubilities and diffusivities in the respective binary system. Experimentally observed phase transitions and concentration profiles will be used as “sensors” for the temperatures and pressures induced by the laser irradiation. The effect of the microstructure on the laser process will be studied in samples having different grain size and preferred orientation of crystallites in the original state. ng the laser irradiation.The materials proposed for this study are single layers (Cr, Mo, Ti, Fe) and bilayers (Au/Cr, Mo/Ti, Au/Fe) consisting of unary metallic phases with different melting points, different sequences of high-temperature and high-pressure phases, and with different mutual solubilities and diffusivities in the respective binary system. Experimentally observed phase transitions and concentration profiles will be used as “sensors” for the temperatures and pressures induced by the laser irradiation. The effect of the microstructure on the laser process will be studied in samples having different grain size and preferred orientation of crystallites in the original state.

Past Collaborations

Tailored agglomeration to increase separation efficiency (subproject of SFB 920)

Experimental and stochastic investigations of the influence of the inclusions on the fatigue life (subproject of SFB 920)

High-resolution X-ray microscopy for correlative tomography, fast screening and in situ mechanical testing of structural and functional materials (DFG Major Instrumentation Initiatives )

CDD as a Mesoscopic Field Theory: Dynamic Closure and Multiphysics Extension (subproject of FOR 1650 )

Quantitative characterization and prediction of dislocation behaviour in high-purity SiC (DFG Research Grant)

Microstructural mechanisms within the steel matrix - the interplay of dislocation plasticity, phase transformation and mechanical twinning (subproject of SFB799 )

Last Modified: 30.11.2023