Journal Articles
2023
- Fehlemann, N., Aguilera, A.L.S., Sandfeld, S., Bexter, F., Neite, M., Lenz, D., Könemann, M. and Münstermann, S. Identification of martensite bands in dual phase steels – a deep learning object detection approach using Faster R-CNN. Steel Research Int. (2023) https://doi.org/10.1002/srin.202200836
- Nguyen, B. D., Roder, A., Danilewsky, A., Steiner, J., Wellmann, P., Sandfeld S. Automated analysis of X-ray topography of 4H-SiC wafers: Image analysis, numerical computations, and artificial intelligence approaches for locating and characterizing screw dislocations. Journal of Materials Research (2023). https://doi.org/10.1557/s43578-022-00880-z
- Steinberger, D., Issa, I., Strobl, R., Imrich, P.J., Kiener, D., Sandfeld, S. Data-mining of in-situ TEM experiments: Towards understanding nanoscale fracture. Computational Materials Science 216, 111830 (2023) https://doi.org/10.1016/j.commatsci.2022.111830
2022
- Prakash, A., Sandfeld, S. Automated Analysis of Continuum Fields from Atomistic Simulations Using Statistical Machine Learning. Advanced Engineering Materials 2200574 (2022), https://doi.org/10.1002/adem.202200574
- Roy, S., Prakash, A., Sandfeld, S. Sintering of alumina nanoparticles: comparison of interatomic potentials, molecular dynamics simulations, and data analysis. Modelling and Simulation in Materials Science and Engineering 30(6), 065009 (2022), https://doi.org/10.1088/1361-651X/ac8172
- Schlenz, H., Sandfeld, S. Applications of Machine Learning to the Study of Crystalline Materials. Crystals 12(8), 1070 (2022), https://www.mdpi.com/2073-4352/12/8/1070
- Wallburg, F., Kuna, M., Budnitzki. M., Schoenfelder, S. A material removal coefficient for diamond wire sawing of silicon. Wear 504-505, 204400 (2022), https://doi.org/10.1016/j.wear.2022.204400
- Wellmann, P.J., Arzig, M., Ihle, J., Kollmuss, M., Steiner, J., Mauceri, M., Crippa, D., La Via, F., Salamon, M., Uhlmann, N., Roder, M., Danilewsky, A.N., Nguyen, B.D., Sandfeld, S. Review of Sublimation Growth of SiC Bulk Crystals. Materials Science Forum 1062, 104-112 (2022), https://doi.org/10.4028/p-05sz3.
- Vimala, M., Sandfeld, S., Prakash, A. Grain segmentation in atomistic simulations using orientation-based iterative self-organizing data analysis. Materialia 21, 2589-1529 (2022), https://www.sciencedirect.com/science/article/pii/S2589152922000011?via%3Dihub
- Steiner, J., Nguyen, B.D., Roder, M., Danilewsky, A.N., Sandfeld, S., Wellmann, P.J. Applicability of a Flat-Bed Birefringence Setup for the Determination of Threading Dislocations of Silicon Carbide Wafers. Materials Science Forum 1062 (2022), 113-118 https://doi.org/10.4028/p-y8n42h
- Laschet, G., Abouridouane, M., Fernandéz, M., Budnitzki, M., Bergs, T. Microstructure impact on the machining of two gear steels. Part 1: Derivation of effective flow curves. Materials Science and Engineering: A 845, 143125 (2022), https://doi.org/10.1016/j.msea.2022.143125
- Roy, S., Wille, S., Mordehai, M., Volkert, C. A. Investigating Nanoscale Contact Using AFM-Based Indentation and Molecular Dynamics Simulations. Metals, 12(3), 489 (2022) https://doi.org/10.3390/met12030489
- Hu, J., Song H., Sandfeld, S., Liu X., Wei Y. Breakdown of Archard law due to transition of wear mechanism from plasticity to fracture. Tribology International 173, 107660 (2022) https://doi.org/10.1016/j.triboint.2022.107660
- Zhang, C., Song, H., Oliveros, D., Fraczkiewicz, A., Legros, M., Sandfeld, S. Data-Mining of In-Situ TEM Experiments: On the Dynamics of Dislocations in CoCrFeMnNi Alloys. Acta Materialia 241, 118394 (2022), https://doi.org/10.1016/j.actamat.2022.118394
2021
- Oliveros, D. ; Fraczkiewicz, A. ; Dlouhy, A. ; Zhang, C. ; Song, H. ; Sandfeld, S. ; Legros, M. Orientation-related twinning and dislocation glide in a cantor high entropy alloy at room and cryogenic temperature studied by in situ TEM straining. Materials Chemistry and Physics 272, 124955 (2021) https://doi.org/10.1016/j.matchemphys.2021.124955
- Serrao, P. H. ; Sandfeld, S. ; Prakash, A. OptiMic: A tool to generate optimized polycrystalline microstructures for materials simulations. SoftwareX 15, 100708 (2021) https://doi.org/10.1016/j.softx.2021.100708
- Trampert, P.; Rubinstein, D. ; Boughorbel, F. ; Schlinkmann, C. ; Luschkova, M. ; Slusallek, P. ; Dahmen, T. ; Sandfeld, S. Deep Neural Networks for Analysis of Microscopy Images—Synthetic Data Generation and Adaptive Sampling. Crystals 11, 258 (2021) https://doi.org/10.3390/cryst11030258
- Song, H. ; Gunkelmann, N. ; Po, G. ; Sandfeld, S. Data-mining of dislocation microstructures: concepts for coarse-graining of internal energies. Modelling and Simulation in Materials Science and Engineering 29, 035005 (2021) https://doi.org/10.1088/1361-651x/abdc6b
- Hu, J. ; Song, H. ; Sandfeld, S. ; Liu, X. ; Wei, Y. Multiscale study of the dynamic friction coefficient due to asperity plowing. Friction 9, 822–839 (2021) https://doi.org/10.1007/s40544-020-0438-4
- Budnitzki, M. ; Sandfeld, S. A model for the interaction of dislocations with planar defects based on Allen–Cahn type microstructure evolution coupled to strain gradient elasticity. Journal of the Mechanics and Physics of Solids 150, 104222 (2021) https://doi.org/10.1016/j.jmps.2020.10422
2020
- T. Pflug, C. Wuestefeld, M. Motylenko, S. Sandfeld, D. Rafaja, A. Horn. Hydrodynamic modeling and time-resovled imaging refectometry of the ultrafast laser-induced ablation of a thin gold film. Optics and Lasers in Engineering, 129, 106067 (2020) https://doi.org/10.1016/j.optlaseng.2020.106067
- V. Samaee, S. Sandfeld, H. Idrissi, J. Groten, T. Pardoen, R. Schwaiger, D. Schryvers. Dislocation microstructure and the role of grain boundaries in cyclically deformed Ni micropillars. Materials Science and Engineering: A(769), 138295 (2020) https://doi.org/10.1016/j.msea.2019.138295
- Nguyen, B.D., Rausch A.M., Steiner, J., Wellmann, P., Sandfeld, S. On the importance of dislocation flow in continuum plasticity models for semiconductor materials. Journal of Crystal Growth 532, 125414 (2020) https://doi.org/10.1016/j.jcrysgro.2019.125414
Last Modified: 13.02.2023