The hadronic contribution to the muon anomalous magnetic moment

Zoltan Fodor[‡] *, Eric B. Gregory[‡], Christian Hoelbling[‡], Stefan Krieg[‡] *, Laurent Lellouch^{# \$}, Rehan Malak^{# \$}, Craig McNeile^{‡ #}, Alfonso Sastre[‡], Kalman Szabo[‡]

We present preliminary lattice results for the leading-order hadronic contribution to the muon anomalous magnetic moment, calculated with HEX-smeared clover fermions. In our calculation we include 2+1-flavor ensembles with pions at the physical mass.

BERGISCHE UNIVERSITÄT **WUPPERTAL**

[‡]University of Wuppertal, *Forschungszentrum Jülich, [‡]Aix-Marseille Universitè, ^{\$}Universitè de Toulon, [†]University of Plymouth

Introduction: What is $g_{\mu} - 2$?

The *q*-factor is a dimensionless proportionality factor relating a particle's magnetic moment $\vec{\mu}$ to its angular momentum J:

 $\vec{\mu} = \frac{q}{2m}\vec{J}$

For a classical ring with charge q and mass m:

$$|\vec{\mu}| = IA = \left(\frac{qv}{2\pi r}\right)\left(\pi r^2\right) = \frac{qvr}{2}$$

Does the Standard Model explain measured $g_{\mu} - 2?$

- The Standard Model (SM) describes the known particles which compose the matter in the universe: quarks, leptons, neutrinos, the Higgs boson, and gauge bosons which mediate the electromagnetic, weak and strong interactions.
- The SM has been exceptionally successful at describing the results of experiments, but it is thought that it may someday be replaced by a more fundamental theory, incorporating a quantum description of gravity and perhaps currently unknown particles and interactions.

- = mvr
- $\vec{\mu} = \frac{q}{2m} \vec{J} \rightarrow g = 1$

No r- or v-dependence, so a classical rotating charged sphere also has q = 1

• Dirac's equation for relativistic quantum mechanics of fermions predicts spinparticles such as electrons and muons have *intrinsic spin*, a type of angular momentum which is *twice* as effective at producing magnetic moment, *i.e.*, g = 2!

• Quantum Field Theory gives a more complete picture, describing a soup of virtual particle-antiparticle pairs fluctuating in and out of existence and interacting with the μ (or e) and contributing to its magnetic moment. Thus $g_{\mu} = 2.002....!$

 $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$ is known as the muon anomalous magnetic moment.

- The LHC has so far failed to find direct evidence of "Beyond Standard Model" (BSM) particles or interactions.
- A viable BSM theory must explain experimental results for which the SM fails.

- a_{μ} is determined both experimentally and theoretically to ~ 500 ppb.
- Is $a_{\mu}^{\exp} a_{\mu}^{SM} = 287(63)(49) \times 10^{-11}$ a hint of BSM physics? Or noise?
- Experimental precision will improve to 140 ppb with "Muon $g_{\mu} - 2$ " experiment at Fermilab.

Calculating a_{μ} from the Standard Model

 $a_{\mu}^{\rm SM}$ is calculated as the sum of contributions from electromagnetic, weak and strong forces to the interaction between a photon γ and muon μ .

$$a_{\mu}^{\rm SM} \equiv \frac{g_{\mu} - 2}{2} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm had}$$

We can list contributing interactions with Feynman Diagrams:

$a_{\mu}^{had,LO}$ from Lattice QCD

Recipe for leading order contribution, called hadronic vacuum polarization (HVP):

$$Y_{\mu} \longrightarrow Y_{\nu} \equiv \Pi_{\mu\nu}(Q) = \sum_{x-y} e^{iQ(x-y)} \langle J_{\mu}(x) J_{\nu}(y) \rangle$$

★ Generate statistical ensemble of lattice gauge field configurations

* On each configuration, measure correlators of electromagnetic current operators

 $\mu = \mu + \frac{\gamma}{m_{m}} + \frac{\gamma}{m_{m}} + \frac{\gamma}{m_{m}} + \frac{\gamma}{m_{m}} + \frac{\gamma}{m_{m}} + \cdots$

At $\sim 1\%$ precision, calculation of the hadronic contribution a_{μ}^{had} seems precise, but hadronic interactions contribute:

• 0.006% of $a_{\mu}^{\rm SM}$

• 99.98% of the uncertainty of $a_{\mu}^{\rm SM}$

Current calculations of a_{μ}^{had} are based on phenomenology. Can Lattice QCD do better?

In the right-most diagram above, *we* represents all possible quark and gluon interactions connecting two photons, the hadronic vacuum polarization $\hat{\Pi}(Q^2)$. can be calculated on the lattice to give the *leading-order hadronic contribution* $a_{\mu}^{had,LO}$.

- $J_{\nu}(x) \sum_{i=1}^{N_f} Q_i \overline{\psi}^i(x) \gamma_{\mu} \psi^i(x)$ (which couple to photons).
- Fourier transform to get a function $\Pi_{\mu\nu}(Q)$ of discrete lattice momentum Q,
- Calculate the vacuum-subtracted HVP scalar through:

 $\Pi_{\mu\nu}(Q) = \left(Q^2 \delta_{\mu\nu} - Q_\mu Q_\nu\right) \Pi(Q^2)$

• Fit the discrete data points $\Pi(Q^2)$ to a smooth function $\Pi_{
m sm}(Q^2)$, subtract the $Q^2 = 0$ value to get $\hat{\Pi}_{sm}(Q^2) \equiv 4\pi\alpha \left[\Pi_{sm}(Q^2) - \Pi_{sm}(0)\right]$ and integrate:

$a_{\mu}^{\mathrm{had,LO}}$ from Lattice QCD						
Configuration Parameters						
		$am_{ud}^{\rm bare}$	$2 ext{-HE} am_s^{ ext{bare}}$	$\mathbf{X} \ (N_f = 2 + 1)$ volume	# cfgs	M_{π} (GeV)
-	$\beta = 3.31, \ a^{-1} = 1.697 \text{ GeV}$					
	*	-0.09933	-0.0400	$48^3 \times 48$	928	0.136(2)
		-0.09300	-0.0400	$24^3 \times 48$	210	0.255(2)
-	$\beta = 3.5, \ a^{-1} = 2.131 \ {\rm GeV}$					
	*	-0.05294	-0.0060	$64^3 \times 64$	83	0.130(2)
	†	-0.04900	-0.0120	$32^3 \times 64$	216	0.250(2)

Results & future plans

¹M. Davier, *et al.*(2011) ²K. Hagiwara, *et al.*(2011) ⁶C. Aubin and T. Blum (2007) ⁴P. Boyle,*et al.*(2012) ⁵X. Feng, *et al.* (2011)

Results as a function of pion mass M_{π} compared to other lattice calculations.

Conclusions

Our results from physical pion mass simulations compared to other lattice and phe-

nomenological determinations.

• We have made a preliminary calculation of the connected part of $a_{\mu}^{had,LO}$ on the lattice with pions at the physical mass.

• Results are consistent with phenomenological determinations from e^+e^- and τ decay data.

• Preliminary results presented at Lattice 2013 conference and in ¹.

- Results from further ensembles are forthcoming, as are estimates of the "disconnected diagram" contribution" to $a_{\mu}^{had,LO}$
- ¹ E. B. Gregory, *et al.*, "Leading-order hadronic contributions to $g_{\mu} 2$,", PoS(LATTICE 2013)302, arXiv:1311.4446.