

Enabling Climate Simulation at Extreme Scale - Performance Analysis and Modeling -Monika Lücke, Alexandru Calotoiu, Prof. Felix Wolf

Performance Analysis

- Parallel efficiency and scalability crucial for climate simulations that run for months on high core counts
- Usage of performance analysis tools, e.g. Scalasca

Automated Performance Modeling

- Applications may entail latent performance limitations, which would show only on larger scale
- Performance models enable sophisticated analysis and extrapolation of performance properties, but their manual generation is very laborious
- Identified computational load imbalance as root cause for poor scalability of some communication routines within the ocean and sea ice model

bsolute	Absolute	Peer distribution
Metric tree	Call tree Flat view	System tree Box Plot Topology 0 earth
 0.00 Time 3.40e7 Execution 0.00 MPl 0.00 Communication 1.29e5 Point-to-point 2.63e4 Collective 1.10e6 Init/Exit 2.02e4 Overhead 4.54e10 Visits 0 Synchronizations 0 Communications 0 Point-to-point 1.87e9 Sends 1.87e9 Receives 5.88e7 Collective 1.59e13 Bytes transferred 0.00 Computational imbalance 4.89e5 Overload 5.12e5 Underload 1.77e5 Non-participation 0.00 Singularity 	 □ 0.00 MAIN(0.00%) □ 0.00 ccsm_comp_mod.ccsm_pre_init_(0.00%) □ 0.00 ice_comp_mct.ice_run_mct_(0.00%) □ 5483.71 ice_comp_mct.ice_import_mct_ □ 5057.45 ice_step_mod.step_therm2_ □ 0.00 ice_step_mod.step_dynamics_(0.00%) □ 5922.44 ice_boundary.ice_haloupdate2di4_ □ 68049.93 ice_grid.t2ugrid_vector_ □ 3325.61 ice_boundary.ice_haloupdate2dr8_ □ 0.00 ice_boundary.ice_haloupdate3dr8_ □ 1449.66 MPI_Isend □ 2.38e4 MPI_Waitall □ 30.74 ice_boundary.ice_haloupdate2dr8_ □ 0.00 ice_grid.u2tgrid_vector_(0.00%) □ 0.00 ice_boundary.ice_haloupdate2dr8_ □ 1.294 MPI_Irecv □ 49.87 MPI_Isend □ 1.32e4 ice_transport_driver.transport_remap_ □ 1.13e4 ice_state_bound_state_ □ 3757.25 cice_runmod.coupling_prep_ 	
.00 1.29e5 (0.37%) 3.52e7	0.00 1.72e4 (13.34%) 1.29e5	0.00 0.00 100

Scalasca performance analysis of a sea ice simulation run on Jugene using 23'404 cores. Communication time spent in function MPI_Waitall indicates long wait time at the border to sea ice regions. Courtesy: John M. Dennis (NCAR)

- Tool developed to automate model-building process ^[1]
- Automated modeling revealed two scalability issues in HOMME, the dynamical core of the Community Atmospheric Model (CESM-CAM)

Automatically generated performance model of the atmospheric model reveals two latent scalability bottlenecks, one of them previously unknown. Experiments on Juqueen.

Load-Balancing Simulator

- Implementation and test of different load balancing strategies usually not possible without major code surgery
- Development of a software engineering tool that facilitates comparison of different load-balancing strategies via simulation
- An initial simulation estimates that an alternative partitioning of sea ice would result in a speedup of 2.7

[1] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes. In Proc. of the ACM/ IEEE Conference on Supercomputing (SC13), Denver, CO, USA, ACM, 11/2013.

Project Funding

G8 Research Councils Initiative on Multilateral Research, Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues

Partners

- INRIA (France)
- Barcelona Supercomputing Center (Spain)
- National Center for Atmospheric Research (USA)
- National Center for Supercomputing Applications (USA)

Initial partitioning of the sea ice model shows high load imbalance (front), while alternative partitioning improves load balance (back). Experiments on Juropa.

- German Research School for Simulation Sciences (Germany)
- University of Illinois at Urbana Champaign (USA)
- University of Tennessee (USA)
- University of Victoria (Canada)
- Tokyo Tech and University of Tsukuba (Japan)

