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Load-Balancing Simulator 
•  Implementation and test of different load balancing 

strategies usually not possible without major code 
surgery 

•  Development of a software engineering tool that 
facilitates comparison of different load-balancing 
strategies via simulation 

•  An initial simulation estimates that an alternative 
partitioning of sea ice would result in a speedup of 2.7 
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Automated Performance Modeling 

•  Applications may entail latent performance limitations, 
which would show only on larger scale  

•  Performance models enable sophisticated analysis 
and extrapolation of performance properties, but their 
manual generation is very laborious 

•  Tool developed to automate model-building process [1] 

•  Automated modeling revealed two scalability issues in 
HOMME, the dynamical core of the Community 
Atmospheric Model (CESM-CAM) 

Performance Analysis 
•  Parallel efficiency and scalability crucial for climate 

simulations that run for months on high core counts 
•  Usage of performance analysis tools, e.g. Scalasca 
•  Identified computational load imbalance as root cause 

for poor scalability of some communication routines 
within the ocean and sea ice model 

Table 4: Models of the kernels of HOMME derived from smaller and larger-scale input configurations. The predictive error
refers to the target scale of pt = 130k.

Kernel
P4(pi ≤ 15, 000) P5(pi ≤ 43, 350)

Model [s] Predictive Model [s] Predictive
t = f(p) error [%] t = f(p) error [%]

box_rearrange → MPI_Reduce 0.026 + 2.53 · 10−6 · p√p + 1.24 · 10−12 · p3 57.02 3.63 · 10−6 · p√p + 7.21 · 10−13 · p3 30.34
vlaplace_sphere_wk 49.53 99.32 24.44 + 2.26 · 10−7 · p2 4.28
laplace_sphere_wk 44.08 99.32 21.84 + 1.96 · 10−7 · p2 2.34
biharmonic_wk 34.40 99.33 17.92 + 1.57 · 10−7 · p2 3.43
divergence_sphere_wk 16.88 99.31 8.02 + 7.56 · 10−8 · p2 4.25
vorticity_sphere 9.74 99.55 6.51 + 7.09 · 10−8 · p2 8.66
divergence_sphere 15.36 99.33 7.74 + 6.91 · 10−8 · p2 0.95
gradient_sphere 14.77 99.33 6.33 + 6.88 · 10−8 · p2 5.17
advance_hypervis 9.76 99.25 5.5 + 3.91 · 10−8 · p2 1.47
compute_and_apply_rhs 48.68 1.65 49.09 0.83
euler_step 28.08 0.51 28.13 0.33

their asymptotic runtime (pt → ∞). It shows the mod-
els produced for two different sets of input configurations.
The first one includes data points at the scales P4 =
[600, 1176, 4056, 7776, 13824, 14406, 15000], the second P5 =
P4 ∪ [15606, 16224, 23814, 31974, 43350] adds more measure-
ments to the initial set. The order in the table is based
on models determined using P5. The models derived from
P4 show constant runtimes for all kernels except for the re-
duce in box rearrange, which grows with p3. Deriving the
models from the larger set introduces a dependence on p2

(with a small factor) for all but one of the hitherto constant
kernels. Obviously, the enlarged set exposes a phenomenon
not visible in the smaller set. With the number of processes
chosen large enough, both the quadratic and the cubic terms
will turn into serious bottlenecks, contradicting our initial
expectation the code would scale well. The table also shows
the predictive error, which characterizes the deviation of the
prediction from measurement at the taget scale pt = 130k,
highlighting the benefits of including the extra data points.

After looking at the number of times any of the quadratic
kernels was visited at runtime, a metric we measure and
model as well, the quadratic growth was found to be the
consequence of an increasing number of iterations inside a
particular subroutine. Interestingly, the formula by which
the number of iterations is computed contained a ceiling
term that limits the number of iterations to one for up to and
including 15k processes. Beyond this threshold, a term de-
pending quadratically on the process count causes the num-
ber of iterations being executed to grow rapidly, causing a
significant drop in performance. It turned out, the devel-
opers were aware of this issue and had already developed a
temporary solution, involving manual adjustments of their
production code configurations. Specifically, they fix the
number of iterations and carefully tune other configuration
parameters to ensure numerical stability. Nevertheless, the
issue was correctly detected by our tool. Given the tuning
necessary to ensure numerical stability, a weak scaling anal-
ysis of the workaround is beyond the scope of this paper.

In contrast to the previous problem, the cubic growth of the
time spent in the reduce function was previously unknown.
The reduce is needed to funnel data to dedicated I/O pro-
cesses. The coefficient of the dominant term at scale is very
small (i.e., in the order of 10−13). While not being visible

at smaller scales, it will have an explosive effect on perfor-
mance at larger scales, becoming significant even if executed
just once. [alex: Due to noise in the data the value of such
small coefficients might not be exact leading to errors in the
prediction, but accuracy is secondary to locating scalability
bottlenecks.] The reason why this phenomenon remained
unnoticed until today is that it belongs to the initialization
phase of the code that was not assumed to be performance
relevant in larger production runs. While still not yet crip-
pling in terms of the overall runtime, which is in the order of
days for production runs, the issue costed already more than
one hour in the large-scale experiments we conducted. The
problem was reported back to the developers at NCAR, who
are currently working on a solution. The example demon-
strates the advantage of modeling the entire application vs.
only selected candidate kernels expected to be time inten-
sive. Some problems simply might escape attention because
non-linear relationships make our intuition less reliable at
larger scales.

Figure 4 summarizes our two findings and compares our pre-
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Figure 4: Runtime of selected kernels in HOMME as a func-
tion of the number of processes. The graph compares predic-
tions (dashed or contiguous lines) to measurements (small
triangles, squares, and circles).

HOMME 

Scalasca performance analysis of a sea ice simulation run on Jugene using 23’404 cores. 
Communication time spent in function MPI_Waitall indicates long wait time at the border to 
sea ice regions. Courtesy: John M. Dennis (NCAR)	
   Automatically generated performance model of the atmospheric model reveals two latent 

scalability bottlenecks, one of them previously unknown. Experiments on Juqueen.	
  

 
Initial partitioning of the sea ice model shows high load imbalance (front), while 
alternative partitioning improves load balance (back). Experiments on Juropa.   	
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