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The theoretical concepts of quantum computation in the idealized and undisturbed case are well 
understood. However, in practice, all quantum computation devices do suffer from decoherence 
effects as well as from operational imprecisions. This work assesses the power of error-prone 
quantum computation devices using large-scale numerical simulations on parallel supercomput-
ers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that 
simulates a generic quantum computer on gate level. The robustness of various algorithms in the 
presence of noise has been analyzed. The simulation results show that for large system sizes and 
long computations it is imperative to actively correct errors by means of fault-tolerant quantum 
error correction. Fault-tolerant methods require the single qubit error rate to be below a certain 
threshold. We determined this threshold numerically for Steane’s 7-qubit code. Using the depolar-
izing channel as the source of decoherence, we find a threshold error rate of (5.2 w 0.2) · 10–

 
6. 

For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 
0.0431 w 0.0002. We can conclude that quantum error correction is especially well suited for the 
correction of operational imprecisions and systematic over-rotations.

For realistic simulations of specific quantum computation devices we extend the generic model  
to dynamic simulations of realistic hardware models. We focus on today’s most advanced technology,  
i.e. ion trap quantum computation. We developed the Dynamic Quantum Computer Simulator for 
Ion Traps (DyQCSI). Starting from a microscopic Hamiltonian, it does not rely on approximations 
that are usually necessary for an analytical approach. We show that the effects due to these 
approximations are significant. We present several ways for the visualization of the state of the 
system during its time evolution and demonstrated the benefit of the simulation approach for 
parameter optimizations.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part  
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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Abstract

The theoretical concepts of quantum computation in the idealized and undisturbed case are

well understood. However, in practice, all quantum computation devices do suffer from

decoherence effects as well as from operational imprecisions.

This work assesses the power of error-prone quantum computation devices using large-

scale numerical simulations on parallel supercomputers. We present the Juelich Massively
Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quan-

tum computer on gate level. It comprises an error model for decoherence and operational

errors. The robustness of various algorithms in the presence of noise has been analyzed.

The simulation results show that for large system sizes and long computations it is imper-

ative to actively correct errors by means of quantum error correction. We implemented

the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using

error-prone correction circuits with non-fault-tolerant quantum error correction will always

fail, because more errors are introduced than being corrected. Fault-tolerant methods can

overcome this problem, provided that the single qubit error rate is below a certain threshold.

We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using

Steane’s 7-qubit code and determined this threshold numerically. Using the depolarizing

channel as the source of decoherence, we find a threshold error rate of (5.2 ± 0.2) · 10−6.

For Gaussian distributed operational over-rotations the threshold lies at a standard deviation

of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited

for the correction of operational imprecisions and systematic over-rotations.

For realistic simulations of specific quantum computation devices we need to extend the

generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of re-

alistic hardware models. We focus on today’s most advanced technology, i.e. ion trap quan-

tum computation. We developed the Dynamic Quantum Computer Simulator for Ion Traps
(DyQCSI). Starting from a microscopic Hamiltonian, it does not rely on approximations

that are usually necessary for an analytical approach. We show that the effects due to these

approximations are significant. We present several ways for the visualization of the state

of the system during its time evolution and demonstrated the benefit of the simulation ap-

proach for parameter optimizations.
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Chapter 1

Introduction and Overview

. . . it seems that the laws of
physics present no barrier to
reducing the size of
computers until bits are the
size of atoms, and quantum
behavior holds dominant
sway.
(Richard P. Feynman, 1985)

Since the first ideas of using quantum mechanical systems to store and manipulate informa-

tion about quantum mechanical systems were formulated [Feynman, 1982; Benioff, 1982],

the field of quantum computation and quantum information processing has been evolving

rapidly. It has gained several boosts, especially due to the discovery of Shor’s prime fac-

torization algorithm [Shor, 1994], which showed the ability of quantum computers to solve

computationally hard problems efficiently, and Grover’s search algorithm [Grover, 1996],

which can search databases faster than classical computers. Quantum computers will most

probably be used for the simulation of quantum mechanical systems, which is not possible

with classical computers in an efficient manner [Feynman, 1982; Lloyd, 1996; Leibfried

et al., 2002; Porras and Cirac, 2004; Byrnes and Yamamoto, 2006]. Quantum computers

have actually been realized in the lab based on many different technologies, like nuclear

magnetic resonance (NMR) [Gershenfeld and Chuang, 1997], cavity quantum electrody-

namics (QED) [Raimond et al., 2001], trapped ions [Monroe et al., 1995; Wineland et al.,

1998; Leibfried et al., 2003a] or solid state systems [Loss and DiVincenzo, 1998; Petta

et al., 2005]. Although the first proofs of concept have been realized using liquid NMR

techniques, very soon it became clear, that such kind of approaches will not be scalable to

large systems. However, ion trap quantum computation is a promising candidate technology

for large-scale quantum computation [Hughes, 2004], and up to now the largest quantum

computer built in the lab comprises eight quantum bits [Häffner et al., 2005]. Critical com-

ments about the power of quantum computers in the presence of noise [Landauer, 1995;

1



CHAPTER 1. INTRODUCTION AND OVERVIEW

Unruh, 1995] were invalidated with the development of quantum error correction proce-

dures [Shor, 1995; Steane, 1996a,b] and, more importantly, fault-tolerant quantum error

correction schemes [Shor, 1996; Aharonov and Ben-Or, 1996; Knill et al., 1996; Preskill,

1998; Gottesman, 1998].

This thesis deals with the issues of error-prone quantum computation devices. A simulation

code has been developed, that is named Juelich Massively Parallel Ideal Quantum Com-
puter Simulator (JUMPIQCS). Starting from an error-free ideal quantum computer simu-

lator, which simulates a quantum computer on gate level using the quantum circuit model

[Deutsch, 1989], next, an error model is introduced, which includes both imperfect quan-

tum operations as well as interactions with the environment (section 2.2.1). The robustness

of different quantum algorithms is analyzed for the given error model.

A practical quantum computer will necessarily incorporate some type of quantum error cor-

rection [Preskill, 1998]. After integration of the error model into JUMPIQCS, we extend

our analyses to the case of quantum error correction (QEC) (section 2.3). The quantum

error correction code involves different correction schemes, i.e. the 5-qubit code, where

one logical qubit is encoded into 5 physical ones [Laflamme et al., 1996], Steane’s 7-qubit

code [Steane, 1996b] and Shor’s 9-qubit code [Shor, 1995]. The analyses compare the-

oretically ideal quantum error correction (section 2.3.1) with error-prone quantum error

correction (section 2.3.2), where the correction steps themselves are also prone to error.

Our results reinforce that straightforward ideal quantum error correction schemes break

down if the correction circuit is also prone to error. Thus, fault-tolerant quantum error

correction schemes are mandatory for a successful application of quantum error correction

(section 2.3.3). Fault-tolerant quantum error correction requires the single qubit gate error

probability to be below a certain threshold. We determine this threshold numerically.

For realistic simulations of specific quantum computation devices, one needs to extend

the gate model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of

realistic hardware models. We focus on today’s most advanced technology, i.e. ion trap

quantum computation (chapter 3), and simulate this system by solving the time-dependent

Schrödinger equation for a chain of trapped ions coupled by a common vibrational phonon

mode. The simulation package Dynamic Quantum Computer Simulator for Ion Traps
(DyQCSI) involves all the basic operations needed for the simulation of an ion trap quan-

tum computer. In a first stage, the model Hamiltonian will be fine-tuned to the experimental

situation and, in the future, one can use the simulation as a tool to guide the optimization of

the error-prone experimental ion trap quantum computer.

2



Chapter 2

Gate Level Simulations

Nowadays, classical computers work with a well defined computational model, namely ma-

nipulation of bits by means of Boolean logic. By contrast, in quantum computation there are

several different models of computation, like adiabatic quantum computation [Farhi et al.,

2000], cluster state quantum computation [Raussendorf and Briegel, 2001] or topological

quantum computation [Kitaev, 1997b]. The most common model of quantum computa-

tion today is the quantum circuit model [Deutsch, 1989]. In analogy to classical circuits

where bits and logic gates are used to form a circuit, a quantum computer circuit consists

of quantum bits (qubits) and quantum gates, which operate on those qubits.

This chapter of the thesis stays within the framework of the quantum circuit model. The first

section deals with idealized quantum computation, i.e., all gate operations are assumed to be

error-free. It is followed by a section where analyses are made for the case of non-ideal, i.e.

error-prone gate operations. After examining the behavior of quantum algorithms under the

influence of errors in the second section, the third section explains how quantum algorithms,

that are prone to error, can be actively improved by using quantum error correction.

2.1 Ideal Quantum Computer Simulations

We will briefly describe the basics of quantum computation in the quantum circuit model

and the two most important quantum algorithms, namely Shor’s algorithm [Shor, 1994]

and Grover’s algorithm [Grover, 1996]. These are the algorithms that are examined with

the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS).

2.1.1 The Circuit Model of Quantum Computation

The quantum bit In contrast to a classical bit, which can only be in the state 0 or 1, a

quantum bit consists of a quantum-mechanical two-level system with basis states |0〉 and

3



CHAPTER 2. GATE LEVEL SIMULATIONS

Figure 2.1 – Bloch sphere representation of a single qubit. The state of a single qubit can be
represented by a vector on the Bloch sphere. The state |0〉 can be chosen to point to the top, |1〉
then points down. A qubit can be in an arbitrary superposition of these states, each represented
by a point on the surface of this unit sphere. Mixed states are represented by vectors of length
smaller than one within the Bloch sphere.

|1〉. According to the laws of quantum mechanics the quantum bit can be in a superposition

of both states,

|ψ〉 = α |0〉 + β |1〉 =̂

(
α
β

)
, (2.1)

with

α, β ∈ C, |α|2 + |β|2 = 1. (2.2)

Every single qubit can be represented by a vector on the Bloch sphere. Because of the

normalization equation (2.2), the qubit can be written as

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 , (2.3)

where θ and ϕ are real numbers and therefore define a point on the Bloch sphere (see

figure 2.1). A global phase factor can be omitted, so that the |0〉-axis can be chosen to be

real.

4



2.1. IDEAL QUANTUM COMPUTER SIMULATIONS

Multiple quantum bits and entanglement Multiple quantum bits, say n qubits, can be

described by a 2n-dimensional complex vector, e.g., the state of two qubits is described by

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 =̂

⎛⎜⎜⎝
α00

α01

α10

α11

⎞⎟⎟⎠ ,

αij ∈ C,
∑

|αij|2 = 1.

(2.4)

Unlike in classical computation, multiple qubits can be in an entangled state [Schrödinger,

1935], which exhibits unique quantum correlations between its constituents. The overall

state cannot be described by specifying the state of the individual qubits separately. For

example, the two qubit system

|ψ〉 =
1√
2

(|00〉 + |11〉) (2.5)

is a maximally entangled state. It does not have a representation as a product of independent

single qubit states. For arbitrary qubits

|ψ1〉 = α1 |0〉 + β1 |1〉 (2.6)

and

|ψ2〉 = α2 |0〉 + β2 |1〉 , (2.7)

with α1, β1, α2, β2 ∈ C, the product gives

|ψ1〉 ⊗ |ψ2〉 = α1α2 |00〉 + α1β2 |01〉 + α2β1 |10〉 + β1β2 |11〉 , (2.8)

and it is impossible to choose the coefficients to give the entangled state |ψ〉 (equation (2.5)).

This entangled state exhibits a perfect correlation between its individual components. If

one qubit is measured, the measurement of the second one will always give the same result.

These quantum correlations are exploited directly in quantum communication processes

and can be regarded as a resource for quantum computation.

Quantum computation The behavior of a quantum mechanical system is governed by

the Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 , (2.9)

where |ψ〉 is the wave function describing the state of the system, t is the time variable, H
is the hermitian Hamiltonian of the system, and � is Planck’s constant.

From the normalization condition

〈ψ|ψ〉 = 1 (2.10)
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it follows immediately that quantum operations are defined by reversible unitary operators.

The time evolution of the system is given by the time evolution operator

U(t2, t1) = Te−
i
�

R t2
t1

H(t) dt, (2.11)

where the time order operator T is needed if the commutator [H(t′), H(t′′)] �= 0.

Thus, a quantum computer takes some complex vector and computes the output, another

complex vector of the same dimension, by applying a linear unitary operatorU . In principle,

this is just a complex-valued matrix-vector multiplication:⎛⎜⎜⎜⎝
α′

1

α′
2
...

α′
2n

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
u11 u12 . . . u12n

u21 u22 . . . u22n

...
...

. . .
...

u2n1 u2n2 . . . u2n2n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

α1

α2
...

α2n

⎞⎟⎟⎟⎠ . (2.12)

The size of the state vector as well as the unitary matrix describing the time evolution grow

exponentially with the number of qubits.

In the circuit model of quantum computation the evolution is decomposed into a sequence

of unitary operators acting only on a subspace of the whole Hilbert space. These operators

are called quantum gates and an n-qubit gate is represented by a 2n × 2n unitary matrix.

The graphical representation of a quantum circuit uses well defined schematic symbols. It

uses wires and gates to depict the time evolution of the quantum system. Here, each qubit

is represented by a horizontal line going from left to right indicating the time evolution, i.e.,

the complete circuit is loop free. Vertical lines connect different qubits of the system. A

bullet specifies a qubit that controls an operation on a connected qubit. See appendix A for

a complete list of symbols used.

The most common 1-qubit gates in quantum computation are shown in figure 2.2. The Pauli

matrices are the generators of rotations on the Bloch sphere, while the Hadamard gate turns

a well defined qubit into a superposition state. The T -gate, also called π/8-gate, can be

used as a basic gate in a set of gates that can provide universal quantum computation. The

S-gate or phase-gate can actually be constructed from two T -gates.

Interactions between qubits are realized with gates which act on at least two qubits. The

most commonly used one is the controlled-NOT (CNOT) gate (see figure 2.3), which is the

quantum analogue to the classical XOR gate. The CNOT gate flips the state of the target

qubit conditioned on the state of the control qubit.

Universal Quantum Computation It has been proven, that a universal quantum com-

puter can simulate any Turing machine [Deutsch, 1985] and any local quantum system

[Lloyd, 1996]. A set of gates is called universal if any unitary operation can be approxi-

mated to arbitrary accuracy by a quantum circuit consisting of those gates only.

6



2.1. IDEAL QUANTUM COMPUTER SIMULATIONS

Pauli-X X

(
0 1
1 0

)

Pauli-Y Y

(
0 −i
i 0

)

Pauli-Z Z

(
1 0
0 −1

)

Phase S

(
1 0
0 i

)

π/8 T

(
1 0
0 eiπ/4

)

Hadamard H 1√
2

(
1 1
1 −1

)
Figure 2.2 – Single qubit gates used in quantum computation. The Pauli-X gate corresponds
to the classical NOT gate.

CNOT
|c〉 • |c〉
|t〉 �������	 |t⊕ c〉

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
Figure 2.3 – The controlled-NOT (CNOT) gate is the quantum generalization of the classical
XOR gate. It flips the target qubit t conditioned on the control qubit c. It does the transforma-
tion |c〉 |t〉 → |c〉 |t ⊕ c〉, where ⊕ means addition modulo two. The effect on the computational
basis states is: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, and |11〉 → |10〉.

It has been shown ([DiVincenzo, 1995]) that any unitary operation can be approximated to

arbitrary accuracy by using only single qubit gates and the CNOT gate. Moreover, it has

been proven that a discrete set of gates, e.g. the Hadamard, phase, CNOT and π/8-gate, is

sufficient for universal quantum computation [Barenco et al., 1995]. Another possible uni-

versal set of quantum gates consists of the Hadamard, phase and Toffoli gate1 [Nielsen and

Chuang, 2000]. However, there are cases where the overhead or the amount of gates used

for this approximation grows exponentially. The aim of quantum computation in the quan-

tum circuit model is to take advantage of algorithms that can be performed efficiently. The

restriction to a discrete set will be exploited for fault-tolerant quantum computation (sec-

tion 2.3), where it is sufficient to construct this set of gates fault-tolerantly using quantum

error correction codes.

1The Toffoli gate, a three qubit gate, can be regarded as generalized CNOT gate with two control bits and one

target bit. The target bit is flipped if and only if both control bits are set to one (see appendix A).
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2.1.2 Quantum Algorithms

2.1.2.1 Shor’s Algorithm for Prime Factorization

Due to Shor’s algorithm for prime factorization [Shor, 1994] the research area of quantum

information gained a significant boost, since this algorithm provides evidence, that quan-

tum computers are able to solve tasks efficiently, that are considered intractable on classical

computers. This has great impact on the reliability of today’s encryption schemes, because

they mostly rely on the hardness of prime factorization. Prime factorization is a problem

from the complexity class NP, i.e. Non-deterministic Polynomial time. This is the class of

problems for which solutions are hard to find, but easy to verify. Since there is no known

classical algorithm for prime factorization which works in polynomial time, Shor’s algo-

rithm gives an exponential speedup. Quantum computers are considered to be in principle

inherently more powerful than classical ones.

Factoring can be regarded as an application of the order-finding algorithm, also known as

period-finding, because it searches for the period of a modular exponential function. Order-

finding can be done efficiently by using the phase estimation procedure, which relies on the

quantum Fourier transform (QFT). We will explain Shor’s algorithm for prime factorization,

by describing its kernel, i.e. the quantum Fourier transform, then how this is used for doing

a phase estimation and how that can be applied to accomplish order-finding. In the last step

we briefly describe how factoring can be reduced to order-finding. The following is a brief

summary of a more detailed description given in [Nielsen and Chuang, 2000].

Quantum Fourier transform The core routine of Shor’s algorithm is the quantum

Fourier transform, which performs the Fourier transform of quantum mechanical ampli-

tudes. In analogy to the classical discrete Fourier transform

yk =
1√
N

N−1∑
j=0

xje
2πijk/N , (2.13)

which transforms an input vector of complex numbers, x0, . . . xN−1 to an output vector

y0, . . . , yN−1, the quantum Fourier transform does exactly the same for an orthonormal

basis |0〉 , . . . , |N − 1〉, i.e.,

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉 . (2.14)

An arbitrary state is transformed as

N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk |k〉 , (2.15)

8
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|j1〉 H P2 · · · Pn−1 Pn × 1√
2
(|0〉 + e2πi0.jn |1〉)

|j2〉 • · · · H · · · Pn−2 Pn−1 · · · × 1√
2
(|0〉 + e2πi0.jn−1jn |1〉)

...
...

...

|jn−1〉 • • · · · H P2 × 1√
2
(|0〉 + e2πi0.j2...jn |1〉)

|jn〉 • • · · · • H × 1√
2
(|0〉 + e2πi0.j1...jn |1〉)

Figure 2.4 – Quantum circuit for the quantum Fourier transform. The circuit can be derived
from the product representation of the quantum Fourier transform (equation (2.16)). The oper-
ations Pk are phase rotations defined in equation (2.17). Swap gates (see appendix A) at the
end of the circuit reverse the order of the qubits.

with yk being the discrete Fourier transforms of the amplitudes xj .

Using the binary representation j = j12
n−1 + j22

n−2 + . . . + jn20 = j1j2 . . . jn and the

notation for the binary fraction jl/2 + jl+1/4 + . . . + jm/2
m−l+1 = 0.jljl+1 . . . jm, the

quantum Fourier transform can be written in product representation [Nielsen and Chuang,

2000]:

|j1 . . . jn〉 → (|0〉 + e2πi0.jn |1〉)(|0〉 + e2πi0.jn−1jn |1〉) . . . (|0〉 + e2πi0.j1j2...jn |1〉)
2n/2

. (2.16)

Using the definition of phase rotations

Pk =

(
1 0

0 e2πi/2k

)
, (2.17)

the product representation leads to the construction scheme for the QFT circuit (see fig-

ure 2.4).

Starting with |j1 . . . jn〉 and applying a Hadamard gate on the first qubits gives

1

21/2

(|0〉 + e2πi0.j1 |1〉) |j2 . . . jn〉 . (2.18)

The controlled-P2 leads to

1

21/2

(|0〉 + e2πi0.j1j2 |1〉) |j2 . . . jn〉 (2.19)

and subsequent controlled-Pk gates produce the state

1

21/2

(|0〉 + e2πi0.j1j2...jn |1〉) |j2 . . . jn〉 . (2.20)

The procedure on the second qubit then leads to

1

22/2

(|0〉 + e2πi0.j1j2...jn |1〉) (|0〉 + e2πi0.j2...jn |1〉) |j3 . . . jn〉 (2.21)

9
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|0〉 /t H⊗t |j〉 • QFT †

�

���

|u〉 / U j |u〉

Figure 2.5 – Overview of the phase estimation procedure. The first register consists of t qubits
to represent the phase φ. The second register holds the eigenstate |u〉. The step before measure-
ment is an inverse quantum Fourier transform. The controlled-U j gate takes the state |j〉 |u〉 to
|j〉U j |u〉 and can also be represented by the decomposition shown in figure 2.6.

and on the remaining qubits finally gives

1

2n/2

(|0〉 + e2πi0.j1j2...jn |1〉) (|0〉 + e2πi0.j2...jn |1〉) . . . (|0〉 + e2πi0.jn |1〉) . (2.22)

After reversal of the qubits, indicated by the swap gates (see appendix A) at the end of the

circuit, the state is the Fourier transform of the initial state (equation (2.16)).

A look at the resource requirement, with N = 2n, shows that the circuit needs n + (n −
1) + . . . + 1 = n(n + 1)/2 gates plus n/2 additional swap gates (which can be build

from three CNOT gates as shown in figure 2.26). In total this is a O(n2) algorithm for

performing the Fourier transform. In contrast to that, the best known classical algorithm for

the Fourier transform, the fast Fourier transform (FFT) needs O(n2n) gates to compute the

Fourier transform of 2n elements. Although it seems as if the QFT provides an exponential

speedup over the FFT for doing a discrete Fourier transform, this is not the case, because

there is no way to directly access all of the transformed amplitudes by measurement. There

are more sophisticated ways to exploit the power of the QFT. This will be explained in the

following paragraph.

Phase estimation The QFT can be used for phase estimation. Suppose there is a given

unitary operator U with an eigenstate |u〉 and eigenvalue e2πiφ. Then the phase φ can be de-

termined efficiently by the phase estimation algorithm schematically depicted in figure 2.5.

Two registers are needed, the first holding t qubits to represent the phase φ, the second

containing the eigenstate |u〉. After applying the controlled-U j gate shown in figures 2.5

and 2.6 the first register is in the state

1

2t/2

(
|0〉 + e2πi2t−1φ |1〉

)(
|0〉 + e2πi2t−2φ |1〉

)
. . .

(
|0〉 + e2πi20φ |1〉

)
=

1

2t/2

2t−1∑
k=0

e2πiφk |k〉 . (2.23)

If φ can be expressed exactly in t bits, i.e. φ = 0.φ1 . . . φt, equation (2.23) can be written as

1

2t/2

(|0〉 + e2πi0.φt |1〉) (|0〉 + e2πi0.φt−1φt |1〉) . . . (|0〉 + e2πi0.φ1φ2...φt |1〉) . (2.24)

10
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/t
|j〉

• · · · •

...
...

|j〉 • · · ·

≡ • · · ·

• · · ·

/ U j / U20
U21

U22 · · · U2t−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Figure 2.6 – The controlled-U j gate used during the phase estimation algorithm (figure 2.5)
can be decomposed into a sequence of controlled gates of U raised to successive powers of
two. If the positive integer j is represented by t bits, i.e. j =

∑t−1
k=0 jk2k, U j can be written as

U j = U jt−12t−1
. . . U j020

.

After application of the inverse Fourier transform (see equation (2.16)) the final state of the

first register will be |φ1 · · ·φt〉 exactly.

The generalization to the case where the phase φ cannot be exactly expressed with a t
bit binary expansion is covered in detail in [Nielsen and Chuang, 2000]. In that case the

estimated phase will be a good approximation to the exact phase.

Order-finding The order-finding problem is defined as the problem of finding the small-

est positive integer number r such that

xr = 1 (mod N), (2.25)

for positive integers x and N , that have no common factors and where x < N .

The order-finding problem can be solved by applying the phase estimation algorithm to the

unitary transformation

U |y〉 = |xy (mod N)〉 , (2.26)

with y ∈ {0, 1}L and L ≡ �log(N)� being the number of bits needed to specify N .

The eigenstates we are interested in are

|us〉 =
1√
r

r−1∑
k=0

e
−2πisk

r

∣∣xk (mod N)
〉
, (2.27)

11
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|0〉 /t H⊗t |j〉 • QFT †

�

���

|1〉 /L xj mod N

Figure 2.7 – Overview of the order finding algorithm.

with integer s, 0 ≤ s ≤ r − 1, and

U |us〉 = e
2πis

r |us〉 . (2.28)

The phase estimation algorithm determines the eigenvalue e2πis/r from which the order r
can be derived.

Two requirements have to be met: An efficient implementation of the controlled-U2j
opera-

tions for any integer j and the efficient preparation of the eigenstate |us〉. The controlled-U j

operation can be efficiently performed by using the modular exponentiation technique using

O(L3) gates (see [Nielsen and Chuang, 2000]). The preparation of |us〉 seems to require r
to be known in advance, but considering the fact that (see [Nielsen and Chuang, 2000])

1√
r

r−1∑
s=0

|us〉 = |1〉 , (2.29)

we can prepare two registers, the first one (with t = 2L+ 1 + �log(2 + 1/(2ε))� qubits) in

the state |0〉 and the second one in |1〉, so that for each s, 0 ≤ s ≤ r− 1, the phase φ ≈ s/r
will be estimated with an accuracy of 2L+1 bits and probability greater than (1− ε)/r (see

figure 2.7). From the phase φ ≈ s/r the order r can be efficiently (O(L3)) derived by using

the continued fraction expansion, that describes real numbers in terms of integers [Nielsen

and Chuang, 2000]:

[a0, . . . , aM ] = a0 +
1

a1 + 1
a2+ 1

...+ 1
M

(2.30)

For rational numbers this algorithm terminates after a finite number of steps, otherwise

[a0, . . . , am], 0 ≤ m ≤M is defined as the mth convergent.

Factoring Factoring is one application of the order-finding algorithm. The procedure

goes as follows: One starts with a composite number N . If N is even, 2 is a trivial factor.

If N = ab, with a ≥ 1 and b ≥ 2, a is a factor. Otherwise choose a random x, 1 ≤
x ≤ N − 1 and calculate gcd(x,N). If this is greater than one, we have found a factor.

So far the algorithm is purely classical. Now, use the order-finding subroutine to find the

order r of x mod N (equation (2.25)). This is the quantum part of the algorithm. From

number theoretical considerations it follows that if r is even and xr/2 �= −1 (mod N) (the

probability for that is guaranteed to be at least 1/2), gcd(xr/2 − 1, N) and gcd(xr/2 + 1, N)

12
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are possible candidates for being a non-trivial factor. This can be easily checked, since

factoring is an NP-problem. If this step does not give a non-trivial factor, the algorithm fails

and one has to restart. The final result is a non-trivial factor of N with success probability

of O(1) using O((logN)3) operations.

13
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2.1.2.2 Grover’s Search Algorithm

Grover’s algorithm [Grover, 1996] exploits quantum mechanics to carry out a fast database

search. Searching through a database with N elements requires only O(
√
N) operations,

whereas in the classical case one needs O(N) operations.

This section is based on the description given in [Nielsen and Chuang, 2000]. Given a

search space of N = 2n elements, we search through the indices from 0 to N − 1, which

can be stored in n qubits. We assume that the search problem hasM solutions, 1 ≤M ≤ N .

These solutions are described by a function f :

f(x) =

{
1 if x is a solution

0 if x is not a solution.
(2.31)

Grover’s algorithm works with a unitary operator O called the oracle function, which is

defined by

|x〉 |q〉 O→ |x〉 |q ⊕ f(x)〉 , (2.32)

where |x〉 is the n qubit index register and |q〉 is an additional qubit, called the oracle qubit.

The first step is to prepare the first register in a uniform superposition by applying H⊗n to

|0〉⊗n
and the oracle qubit in 2−1/2 (|0〉 − |1〉) by applying HX to |0〉, so that we get the

state

1√
2n

2n−1∑
x=0

|x〉
( |0〉 − |1〉√

2

)
. (2.33)

The oracle marks elements of the solution by inverting their phases (see figure 2.8),

|x〉 O→ (−1)f(x) |x〉 . (2.34)

The oracle qubit remains in the state 2−1/2 (|0〉 − |1〉) throughout the rest of the algorithm.

Grover’s algorithm consists of repeated applications of Grover iterations G defined as

G = H⊗n
(
2 |0〉 〈0| − I

)
H⊗nO =

(
2 |ψ〉 〈ψ| − I

)
O, (2.35)

where |ψ〉 = 2−n/2
∑2n−1

x=0 |x〉 is the state of uniform superposition. The Grover iteration

G is an oracle call followed by the operator (2 |ψ〉 〈ψ| − I). The oracle call flips the phase

of the amplitudes of the solution elements and the subsequent operator does an inversion

about the mean (see figure 2.8).

Geometric visualization of the Grover iteration The Grover iteration step

G = (2 |ψ〉 〈ψ| − I)O can be regarded as a two-dimensional rotation in the plane spanned

14
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Figure 2.8 – Grover’s algorithm: Phase inversion of the oracle and subsequent inversion about
the mean. In this example there is only a single solution element.

by the starting vector of uniform superposition |ψ〉 and the vector of equal superposition of

solution elements.

We define the set of solutions S = {x|f(x) = 1} and the normalized states

|α〉 =
1√

N −M

∑
x �∈S

|x〉 (2.36)

15



CHAPTER 2. GATE LEVEL SIMULATIONS

and

|β〉 =
1√
M

∑
x∈S

|x〉 , (2.37)

so that

|ψ〉 =

√
N −M

N
|α〉 +

√
M

N
|β〉 . (2.38)

The effect of the oracle O is to reflect the start vector about the vector |α〉 in the plane

spanned by |α〉 and |β〉, whereas (2 |ψ〉 〈ψ| − I) is a reflection about |ψ〉. Altogether, a

Grover iteration rotates the state in the space spanned by |α〉 and |β〉. With the definition

cos
θ

2
=

√
N −M

N
, (2.39)

|ψ〉 can be expressed as

|ψ〉 = cos
θ

2
|α〉 + sin

θ

2
|β〉 , (2.40)

and

G |ψ〉 = cos
3θ

2
|α〉 + sin

3θ

2
|β〉. (2.41)

Repeated application of the Grover iteration leads to

Gk |ψ〉 = cos

(
2k + 1

2
θ

)
|α〉 + sin

(
2k + 1

2
θ

)
|β〉 . (2.42)

This means that the start vector is rotated towards the space of the solutions |β〉 (see fig-

ure 2.9). The essence is to rotate |ψ〉 close to |β〉 by doing a well defined number of Grover

iterations. According to equation (2.38), a rotation about the angle arccos
(
(M/N)1/2

)
takes the vector |ψ〉 to the state |β〉. That means, repeating the Grover iteration R times,

with

R =

⎢⎢⎢⎣⎛⎝arccos
√

M
N

θ

⎞⎠+ 0.5

⎥⎥⎥⎦ , (2.43)

takes the system close to |β〉 with a deviation of at most θ/2.

For M � N we have θ ≈ sin θ ≈ 2
√
M/N and the error is at most θ/2 ≈ √

M/N , so

that the largest possible probability of error is M/N .

An upper bound for the number of necessary iterations can be derived from the lower bound

on θ (see equation (2.43)), i.e. R ≤ �π/(2θ)�, so that (assuming M ≤ N/2)

θ

2
≥ sin

θ

2
=

√
M

N
. (2.44)
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Figure 2.9 – Geometric visualization of a Grover iteration. Starting from the state of uniform
superposition |ψ〉, the oracle operation O reflects this state about the equal superposition of
non-solutions |α〉, followed by a reflection about |ψ〉. That is, a Grover iteration is equal to a
rotation by θ. Repeated application of the Grover iteration rotates the state towards the space
of solutions |β〉. One has to make sure to do a well defined number of iterations, so that the
vector stops close to the vector of solutions. Figure modified from [Nielsen and Chuang, 2000].

In total, we get an upper bound of

R ≤
⌈
π

4

√
N

M

⌉
, (2.45)

which is of the order O(
√
N/M) and therefore gives a quadratic speedup compared to the

classical search.
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2.1.3 Juelich Massively Parallel Ideal Quantum Computer Simulator
(JUMPIQCS)

I think there is a world
market for maybe five
computers.
(Thomas Watson, chairman

of IBM, 1943)

The Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS) is a soft-

ware package for simulating a quantum computer using the quantum circuit model (sec-

tion 2.1.1). It has been created during the work on this thesis. First ideas for a quantum

computer simulator are taken from [De Raedt et al., 2007]. The program code has been

written from scratch using the C programming language, following the goal to reach a high

performance on various computing architectures, especially High Performance Computing

(HPC) systems. Therefore, the code uses optimization techniques, e.g. special memory

access schemes, that are described in this section.

JUMPIQCS is:

• universal: All basic operations for the simulation of any arbitrary quantum algorithm

are available.

• efficient: The program code is highly optimized for low memory consumption and

high computing performance. It works massively parallel on suitable hardware and

shows a very good scaling behavior.

• portable: Written in C it runs on various kinds of hardware ranging from single PCs

to high-end parallel supercomputers with distributed and/or shared memory and is

also compatible to several software environments (Linux, AIX,...). Standard Message

Passing Interface (MPI) [Gropp et al., 1994] is used for communication and option-

ally OpenMP [Chapman et al., 2007] can be used for parallel processing within each

MPI process using multiple threads.

For demonstration purposes a set of algorithms, such as bit adders or the quantum Fourier

transform algorithm, are also included in the software package.

JUMPIQCS has been run and tested on different computer architectures, such as the IBM

Regatta P690+, the IBM BlueGene/L, and the IBM BlueGene/P. It has been run on the

JUMP supercomputer (Jülich Multi Processor) with a maximum system size of 37 simu-

lated qubits using 1024 processors and 3 TB of memory. On the JUGENE system (Jülich

BlueGene), the simulation included up to 40 qubits using 49152 processors and 24 TB of

memory. To our knowledge, this is currently the largest system size that has been simulated

without using approximate methods.

During the course of this work, JUMPIQCS has been gradually extended to simulate non-

ideal, error-prone systems (section 2.2) as well as to use quantum error correction tech-

niques (section 2.3).
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Figure 2.10 – Example state vector of a system with n=4 qubits, distributed over L=2 MPI
tasks, each containing 2M = 23 = 8 complex-valued amplitudes.

Technical implementation The simulation of a quantum computer can be done with sev-

eral approaches. In this work, we deal with pure states, so that the state vector contains

the complete information about the quantum state. Since the state vector grows exponen-

tially with the number of qubits, the memory requirements pose a hard limit on possible

simulations.

A system with n qubits has a state vector with N = 2n complex-valued amplitudes. Using

double precision numbers of 8 bytes length for each the real and the imaginary part, the

memory requirement for storing the state vector is 2n+4 bytes.

On computer systems with distributed memory, the state vector is distributed over different

memory locations and each processor has access to the local part of the memory only.

Message passing is required to gain access to specific parts of the state vector. In this

case the 2n complex-valued amplitudes of the state vector are distributed to local memory

parts, each containing 2M amplitudes, so that we deal with L = 2n/2M MPI processes (see

figure 2.10).

Single qubit operations As described in section 2.1.1, a single qubit operation on a sys-

tem of n qubits acts on one qubit only, while leaving the other qubits untouched. A quantum

operation on qubit K does the transformation

UK = 1l ⊗ . . .⊗ 1l ⊗ UK ⊗ 1l ⊗ . . .⊗ 1l. (2.46)

Fortunately, it is not necessary to construct the 2n × 2n-dimensional matrix UK ; the update

of the state vector elements can be done sequentially or in parallel on multi-processor sys-

tems. The unitary operation UK is decomposed into pairs of two-level unitary gates. It is

important to understand that the single qubit operation will usually act non-trivially on all

2n state vector components.
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Let us start with the single processor case, where the whole state vector fits into local

memory. The state vector |ψ〉 is given by2

|ψ〉 = α0 |0〉 + . . .+ αN−1 |N − 1〉 =

⎛⎜⎝ α0
...

αN−1

⎞⎟⎠ , (2.47)

with the complex-valued amplitudes αi and the computational basis states |0〉 , . . . , |N − 1〉.
Using binary notation this can be written as

|ψ〉 =

⎛⎜⎜⎜⎜⎜⎝
α00...00

α00...01
...

α11...10

α11...11

⎞⎟⎟⎟⎟⎟⎠ . (2.48)

We introduce the notation α∗...∗jK∗...∗, where the asterisks stand for bits that do not change

while jK ∈ {0, 1}.

An arbitrary unitary operation on qubit K,

UK =

(
u11 u12

u21 u22

)
, (2.49)

processes all 2n elements of the state vector, i.e.

UK |ψ〉 = |ψ′〉 =

⎛⎜⎜⎜⎜⎜⎝
α′

00...00

α′
00...01

...

α′
11...10

α′
11...11

⎞⎟⎟⎟⎟⎟⎠ , (2.50)

where

α′
∗...∗0K∗...∗ = u11 · α∗...∗0K∗...∗ + u12 · α∗...∗1K∗...∗ (2.51)

and

α′
∗...∗1K∗...∗ = u21 · α∗...∗0K∗...∗ + u22 · α∗...∗1K∗...∗. (2.52)

If UK is diagonal, each α′
∗...∗0K∗...∗ is only dependent on α∗...∗0K∗...∗ and each α′

∗...∗1K∗...∗
only on α∗...∗1K∗...∗. In the case of the phase gate S = ( 1 0

0 i ) for example, u11 = 1, and only

half of the state vector elements have to be processed.

The state vector is stored sequentially in memory. The distance or stride between element

α∗...∗0K∗...∗ and α∗...∗1K∗...∗ is 2K . Figure 2.11 shows an example with n = 3 qubits and

UK = HK = 2−1/2 ( 1 1
1 −1 ).

2In the following, we will work with the standard basis. We will identify the abstract representation of a vector

with its coordinate representation and a linear map with its transformation matrix using the chosen basis.
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(a) Hadamard operation on qubit 0: All elements of the state

vector have to be processed pairwise.

H(2) H(1) H(0)

even - even even - even even - odd

odd - odd odd - odd

(b) Hadamard operation on qubits 2, 1 and 0.

Figure 2.11 – Memory access scheme for the example of a Hadamard operation on a three
qubit system. The state vector is stored and indexed sequentially in memory. The operation can
be decomposed into pairwise two-level operations (a). The memory access stride between two
pairs of state vector elements depends on the target qubit of the operation (b). The operation on
qubit 0 combines successive elements of the state vector, whereas operations on higher qubits
link even numbered elements with even numbered ones and odd numbered state vector elements
with odd numbered ones only.

Figure 2.12 shows the different pairs of state vector elements that have to be processed for

a general single qubit operation on a system of n = 4 qubits. In the case of a distributed

memory system, where the state vector is distributed over L > 1 processes, two different

cases have to be taken into consideration. The first one is 2K ≤ 2M or K ≤ M , so that

elements which have to be combined all lie on the same local memory. If K > M , two

elements from distant local memories have to be combined and communication is necessary.

Figure 2.13 shows a small example with n = 4 qubits.
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Figure 2.12 – State vector example for n=4 qubits. Pairs of state vector elements that are
combined are connected by lines. The pattern changes with the target qubit of the operation.

Figure 2.13 – State vector example for n=4 qubits on a distributed memory system with L = 4
processes. Pairs of state vector elements that are combined can lie on the same local memory
(operation on qubit 0 or 1) or on remote memory locations (operation on qubit 2 or 3), so that
communication becomes necessary.
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Figure 2.14 – Communication scheme for the exchange of distributed memory parts. Each MPI
task sends half of its local memory to the proper communication partner. After computation
involving only local memory, the updated information is sent back.

If K > M , we use the following communication scheme: Communication is always pair-

wise, but instead of sending single state vector elements to each other, which substantially

increases the communication overhead, blocks of data are sent. Each MPI task sends half

of its local memory to the proper communication partner. The two-level operations can

then be done locally and the result is communicated back. By using this scheme a native

load balancing is achieved, since the computational effort is evenly distributed to the dif-

ferent processes. In general, each single qubit operation involves 2L pairwise exchanges of

data blocks, each with 2M−1 entries (see figure 2.14). Besides of 2n+4 bytes for storing the

state vector information, we need an additional temporary storage of 2n+3 bytes for doing

operations, so that our simulator needs 3 · 2n+3 bytes altogether for its operation.

The corresponding communication partners can be determined from the stride 2K be-

tween elements of the state vector, the size 2n of the state vector and the number of tasks

L = 2n/2M . The distance between corresponding tasks is then given by 2K−M . The core

algorithm for looping over every task is given in listing D.1 (see appendix D). This routine

ensures that each task finds its correct corresponding communication partner, accounting

for possible interleaving patterns of communication processes (see figure 2.12).

Even/odd-splitting speedup Note that a single qubit operation on qubit 0 connects suc-

cessive elements of the state vector, whereas operations on higher qubits link even num-

bered elements with even numbered ones and odd ones with other odd numbered elements

of the state vector only (see figure 2.11). The performance of the code can be improved

by splitting up the state vector into two consecutive parts, one containing only the even

numbered elements of the state vector and the other containing the odd numbered ones (see

figure 2.15). This immediately minimizes the memory access stride by a factor of two for

all operations except the ones on qubit 0 and therefore resulting in an average speedup of

about 30% in run-time.3

3Measurement of single qubit operations on specific hardware, in this case the Jülich Multi Processor (JUMP)

system.
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even all odd⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αe[0]

αe[1]

αe[2]
...

αe[2
N−1 − 1]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

←−

←−

←−

←−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α[0]
α[1]
α[2]
α[3]
α[4]
α[5]

...

α[2N − 1]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

−→

−→

−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αo[0]

αo[1]

αo[2]
...

αo[2
N−1 − 1]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 2.15 – Splitting of the state vector in even and odd parts reduces the access strides in
memory and saves about 30% of run-time on average.

Two qubit operations: the controlled-NOT gate The most important two qubit gate

is the controlled-NOT (CNOT) gate, which in conjunction with single qubit operations is

sufficient for universal quantum computation (see section 2.1.1). The implementation of

the CNOT gate in the JUMPIQCS library is similar to that of single qubit gates. We denote

a CNOT operation with control qubit C and target qubit T with CNOT(C, T ). Then

CNOT(C, T ) |ψ〉 = |ψ′〉 =

⎛⎜⎜⎜⎜⎜⎝
α′

00...00

α′
00...01

...

α′
11...10

α′
11...11

⎞⎟⎟⎟⎟⎟⎠ , (2.53)

where the updated amplitudes α′ are calculated according to

α′
∗...∗0C∗...∗0T ∗...∗ = α∗...∗0C∗...∗0T ∗...∗, (2.54)

α′
∗...∗0C∗...∗1T ∗...∗ = α∗...∗0C∗...∗1T ∗...∗, (2.55)

α′
∗...∗1C∗...∗0T ∗...∗ = α∗...∗1C∗...∗1T ∗...∗, (2.56)

α′
∗...∗1C∗...∗1T ∗...∗ = α∗...∗1C∗...∗0T ∗...∗. (2.57)

Equations (2.54) and (2.55) denote the identity operation, since the state of the control qubit

is not changed, whereas equations (2.56) and (2.57) describe the flip of the target qubit.

The description above is sufficient for the determination of the proper amplitudes of the

state vector which have to be modified. Nevertheless, one can exploit the regular access

structure of the state vector amplitudes to optimize memory access. An optimized version

of the CNOT gate has been developed as part of this thesis.

There are regular patterns which depend on the following parameters:

• Number of qubits n.
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2.1. IDEAL QUANTUM COMPUTER SIMULATIONS

• Number of MPI tasks L.

• Control qubit C.

• Target qubit T .

By analyzing the occurring patterns, an efficient CNOT implementation can be derived. A

CNOT operation leaves half of the 2n state vector elements untouched, while interchanging

the 2n−1 amplitudes of the other half. By skipping over the irrelevant state vector entries

in advance and working on the others blockwise a significant speedup of the manipulations

is achievable. An aggravating circumstance is that these patterns depend on several pa-

rameters, so that one has to distinguish several cases. Figure 2.16 gives an overview of all

possible cases.
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A. First of all, the stride between two elements, that have to be interchanged, is always

2T . If M > T , i.e., if the size of the local memory blocks are larger than this stride,

there is no MPI communication necessary and all operations can be done locally. The

core routine for this case is a double nested loop, which can completely describe the

occurring access patterns (listing D.2, appendix D). The loop counter variables are

denoted k, l and m and the notation i1 = 2T and j1 = 2C is used. This ensures an

access pattern that works as much as possible on consecutive memory areas to speed up

calculation time. The explicit distinction between T = 0 and T �= 0 is necessary due to

our even/odd-splitting scheme.

The optimal algorithm distinguishes between the cases:

1. The control qubit is larger than the target qubit, C > T . Depending on the size of

the local memory, one still has to distinguish between:

a. T < C < M : In this case kstart = j1, kmax = 2M−2C and lmax = 2C−2∗2T .

b. T < M < C: In this case the double nested loop reduces to a single nested loop,

but there are tasks that are idling and can be skipped. The MPI tasks with ranks

myrank, which fulfill the condition

(myrank/(2C−M))%2 == 0 (2.58)

can be leaped over, while the other tasks just execute the k-loop once with the

parameter lmax = 2M − 2 ∗ 2T .

2. The control qubit is smaller than the target qubit, C < T , while T < M , so this case

simplifies to the fact that every task has to do the same calculations on different parts

of the state vector. Again, one has to account for operations with qubit 0 involved,

because of the even/odd-splitting scheme. The core loop in this case is found in

listing D.3.

B. In the other case, if M ≤ T , MPI communication between different tasks is unavoid-

able. Again, we have to distinguish two sub-cases:

1. M < T < C: Here no loops are necessary. The only task is to determine the proper

communication partners. The check for T = 0 is not necessary, because that case is

covered by case A.1. We have to distinguish three kinds of tasks, those where nothing

has to be done and those which send and receive data among each other, labeled

first and second communication partner. Those can be determined efficiently with a

nested if-case as the code segment in listing D.4 shows (with notation: sw = 2C−M

and sw2 = 2T−M ).

2. C < T : This case comprises two subcases. Both can be dealt with by using the dou-

ble nested loop structure and interleaving it with the algorithm for the determination

of the communication partners as shown before in listing D.4.

a. C < M < T : Set kstart = j1, kmax = j1, lmax = 2M − 2 ∗ j1, mmax =
j1 − 1;
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CHAPTER 2. GATE LEVEL SIMULATIONS

Figure 2.17 – Toffoli gate and decomposition into one- and two-qubit gates.

b. M ≤ C < T : Set kmax = 0, lmax = 0,mmax = 2M−1 and if (myrank/sw)%2

== 0 set kstart = j1 (k-loop is omitted) and otherwise set kstart = 0 (do a single

k-iteration). The relevant code section is shown in listing D.5.

By using this implementation which exploits the regular structure of the operations on the

state vector an average performance increase of 25% could be gained compared to earlier

implementations of the CNOT gate [Pomplun, 2005]. The benchmark results are shown in

section 2.1.3.

Three qubit operations: the Toffoli gate Although single qubit operations and the

controlled-NOT gate are sufficient for universal quantum computation, the performance

of quantum circuits can be improved by using a 3-qubit gate called Toffoli gate. The Toffoli

gate is similar to the CNOT gate, but uses two control bits and one target bit. Sometimes

it is denoted as C2NOT gate and corresponding generalizations are called CnNOT gates.

Figure 2.17 shows the Toffoli gate and how it can be composed out of CNOT and single

qubit gates. The unitary matrix describing a Toffoli gate operation is given by

C2NOT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.59)

A Toffoli gate flips the target qubit if and only if both control qubits are set to one.

The restriction to single qubit operations and the CNOT gate for universal quantum com-

putation is sufficient, but for some problem cases it is much more convenient to choose

another set of basic gates, such as the Toffoli gate and single qubit gates. Taking into ac-

count three qubit gates can simplify quantum computations, when complex sequences of

two-qubit gates can be replaced by three qubit Toffoli gates. Therefore, the Toffoli gate has

also been implemented into the JUMPIQCS package.
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The Toffoli gate with control qubits C1 and C2 and target qubit T works on an arbitrary

state vector according to

C2NOT (C1, C2, T ) |ψ〉 = |ψ′〉 =

⎛⎜⎜⎜⎜⎜⎝
α′

00...00

α′
00...01

...

α′
11...10

α′
11...11

⎞⎟⎟⎟⎟⎟⎠ , (2.60)

where the new amplitudes are given by

α′
∗...∗0C1

∗...∗0C2
∗...∗0T ∗...∗ = α∗...∗0C1

∗...∗0C2
∗...∗0T ∗...∗, (2.61)

α′
∗...∗0C1

∗...∗0C2
∗...∗1T ∗...∗ = α∗...∗0C1

∗...∗0C2
∗...∗1T ∗...∗, (2.62)

α′
∗...∗0C1

∗...∗1C2
∗...∗0T ∗...∗ = α∗...∗0C1

∗...∗1C2
∗...∗0T ∗...∗, (2.63)

α′
∗...∗0C1

∗...∗1C2
∗...∗1T ∗...∗ = α∗...∗0C1

∗...∗1C2
∗...∗1T ∗...∗, (2.64)

α′
∗...∗1C1

∗...∗0C2
∗...∗0T ∗...∗ = α∗...∗1C1

∗...∗0C2
∗...∗0T ∗...∗, (2.65)

α′
∗...∗1C1

∗...∗0C2
∗...∗1T ∗...∗ = α∗...∗1C1

∗...∗0C2
∗...∗1T ∗...∗, (2.66)

α′
∗...∗1C1

∗...∗1C2
∗...∗0T ∗...∗ = α∗...∗1C1

∗...∗1C2
∗...∗1T ∗...∗, (2.67)

α′
∗...∗1C1

∗...∗1C2
∗...∗1T ∗...∗ = α∗...∗1C1

∗...∗1C2
∗...∗0T ∗...∗, (2.68)

again using the asterisks to indicate bits of fixed value.

The implementation of the Toffoli gate in the JUMPIQCS library is similar to the imple-

mentation of the CNOT operation. The Toffoli gate performs non-trivial operations only on

a fourth of the state vector amplitudes. Determining the position of these amplitudes, i.e.

the MPI tasks and positions within these tasks, is more complicated than in the CNOT case,

because there are more variants of memory access pattern, due to the additional control

qubit. The algorithm depends on the control qubits C1 and C2, the target qubit T , M , which

determines the size of the MPI tasks, and their relations to each other. Assuming, without

loss of generality, that the control qubits C1 and C2 fulfill the condition C1 > C2, one has

to distinguish between two main cases:

1. M > T , where no communication is needed and

2. M ≤ T , where communication is necessary,

and subcases thereof. The tree of possibilities shown in figure 2.18 gives a summary of the

possible cases, each leading to a different memory access scheme. For the sake of clarity

the distinction between the lowest value equal to zero or non-zero is being omitted. In order

to realize even/odd-splitting these cases must be distinguished in the code.

29



CHAPTER 2. GATE LEVEL SIMULATIONS

Fi
gu

re
2.

18
–

Po
ss

ib
le

ca
se

s
of

di
ffe

re
nt

m
em

or
y

ac
ce

ss
sc

he
m

es
fo

r
th

e
To

ffo
li

ga
te

de
pe

nd
in

g
on

th
e

va
lu

es
of

th
e

pa
ra

m
et

er
s

fo
r

co
nt

ro
lq

ub
its

C
1

an
d

C
2
,t

ar
ge

tq
ub

it
T

an
d

m
em

or
y

si
ze

of
a

si
ng

le
M

P
It

as
k

2M
an

d
th

e
re

la
tio

ns
be

tw
ee

n
th

em
.

30



2.1. IDEAL QUANTUM COMPUTER SIMULATIONS

Benchmarking the CNOT operation The run-time of the CNOT operation depends

heavily on the chosen parameters. Therefore, an exact description of the chosen param-

eters is required. In general, operations involving lower qubits are faster than operations

involving higher qubits, because of different memory access strides. In our simulator the

differences in runtime are intrinsic and cannot be avoided.

Benchmarks have been run on the JUMP system (Jülich Multi Processor) of the Jülich Su-

percomputing Centre. The JUMP system4 is a cluster computer consisting of 41 IBM p690+

racks each containing 32 IBM Power4+ CPUs running at 1.7 GHz. Its peak performance

is 8.9 Teraflop/s and it has an aggregated main memory of 5.2 TB. There are two Power4+

processors on one chip and four chips form a Multi Chip Module (MCM). Four MCMs

form a SMP5 node, where each processor has access to the shared memory of 128 GB.

The 41 racks are connected by IBM’s High Performance Federation Switch [Johnston and

King-Smith, 2005].

Figure 2.19 shows a benchmark where the wall clock time has been measured depending

on the target qubit for several system sizes. This is a weak scaling benchmark, where the

local system size has been fixed to the maximal possible system size. In case of the JUMP

system this is equivalent to 27 qubits on one processor. The state vector of a 27 qubit system

has 227 complex-valued amplitudes, which are saved as double precision real numbers for

each the real and the imaginary part. This means that the storage of a 27 qubit system

state vector requires 227+3+1 Bytes, i.e. 2 GB of memory. An additional 1 GB of memory

is needed for doing operations on the state vector. In total, a single processor of the JUMP

system can operate on a system of 27 qubits and each additional qubit doubles the resources

that are required. Since the control qubit does also influence the memory access patterns

and therefore the measured timings, the measurement result for each target qubit is actually

an average over multiple measurements with all possible combinations of the control qubit

while keeping the target qubit fixed. The plot shows results for various system sizes. The

increase in runtime depending on the system size is due to the non-perfect scaling of the

JUMPIQCS CNOT code on the JUMP system. The slight increase of the wall clock time

depending on the target qubit can be related to the increasing memory access stride. Inter-

processor communication (necessary for target qubits 27 to 31) does not slow down the

performance for system sizes up to 31 qubits. An increase of the wall clock time can be

seen for system sizes larger than 31 qubits. The huge increase going from target qubit 31

to target qubit 32 is a result of the non-uniform memory access architecture of the JUMP

system. Up to target qubit 31 only intra-node communication is necessary, while going to

target qubit 32 requires inter-node communication, i.e. communication spanning over two

physical racks using the IBM HPS Cluster interconnect [Johnston and King-Smith, 2005].

4During the work on this thesis, the system has been replaced by another intermediate supercomputer, while

retaining the name JUMP. The new system is a IBM Power6 575 system with 14 SMP nodes, each with 32

SMT processors. The peak performance is 8.4 Teraflop/s and it has an aggregated memory of 1.8 TB.
5Symmetric multiprocessing
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Figure 2.19 – Benchmark results for the controlled-NOT operation on the JUMP IBM p690+.
The dependency of the wall clock time on the target qubit is shown, where each measurement
point is the average over multiple measurements with all possible parameters for the control
qubit. The plot shows the results for various system sizes. Lines are guides to the eye.

The measured6 minimal latency between two MPI tasks residing on the same physical node

is 2.1μs, whereas the measured inter-node latency is 5.8μs. The measured maximum intra-

node uni-directional MPI bandwidth is 3.1 GB/s, while the inter-node MPI bandwidth is

slower at 2.7 GB/s only. Minor fluctuations are most probably related to cache effects.

Figure 2.20 shows a similar plot, but this time depending on the control qubit and averaging

the timings over all possible target qubits. The dependency on the control qubit is evident

and again, the jumps at qubit 27 and qubit 32 are due to the non-uniform memory archi-

tecture of the JUMP system. The differences in run-time can be related to differences in

memory access patterns in combination with cache effects.

Since the timings depend significantly on the parameters chosen for control and target qubit

an averaging over all possible combinations of control and target qubits has been performed

and the results are shown in figure 2.21. Since this is a weak scaling benchmark, the ideal

case would be a constant, while in reality the times increase slightly with every doubling

6Measurements were done using the Pallas MPI Benchmarks Suite V2.2 (now called Intel R©MPI Benchmarks)

32



2.1. IDEAL QUANTUM COMPUTER SIMULATIONS

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35

tim
e 

[s
]

control qubit

Wall clock time per CNOT operation (average over all possible target qubits)

27
28
29
30
31
32
33
34
35
36

Figure 2.20 – Benchmark results for the controlled-NOT operation on the JUMP IBM p690+.
The dependency of the wall clock time on the control qubit is shown, where each measurement
point is the average over multiple measurements with all possible parameters for the target
qubit. The plot shows the results for various system sizes. Lines are guides to the eye.

of processors and memory. To show that this increase is mainly due to the inter-node

communication, the same analysis as in figure 2.21 has been done again, but this time the

target qubits are broken down into intervals (see figure 2.22). This plot shows that the

increase in runtime is mainly due to the operations on target qubits larger than 31 leading

to a memory access scheme with a large stride involving inter-node communication.

In order to see the actual dependency of the run-time on the individual parameters of control

and target bit, one example has been included, where no averaging over control or target

qubit has been done (figure 2.23). It becomes evident that the dependency on the target

qubit, which defines the memory access stride, has the strongest impact, especially when it

comes to inter-node communication.

The benchmark results show that the controlled-NOT operation does not exhibit an ideal

scaling behavior. The performance depends considerably on the parameters for control

and target qubit. Usually operations on lower target qubit values are faster, so in the fol-

lowing, we construct our quantum algorithms in such a way, that we favor operations on

lower-valued qubits. Especially on non-uniform memory access architectures the drops in
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Figure 2.21 – Benchmark results for the controlled-NOT operation on the JUMP IBM p690+.
The dependency on the system size is shown, where each measurement point is the average over
multiple measurements with all possible parameters for the control qubit and the target qubit.
The error bars indicate the standard deviation of the occurring execution times (for different
values of the control qubit and the target qubit). The line is a guide to the eye.

performance can be considerable at certain limits. This has to be taken into consideration

when optimizing quantum algorithms for high performance.
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Figure 2.22 – Benchmark results for the controlled-NOT operation on the JUMP IBM p690+.
The dependency on the system size is shown, while it has been averaged over the measurement
times of all possible combinations for the control qubit and the target qubit. The analysis
has been done for different intervals of the target qubit. The error bars indicate the standard
deviation of the occurring execution times. The increase in runtime can be mainly related to
operations on target qubits larger than 31, because this results in memory access patterns with
large stride involving inter-node communication.
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Figure 2.23 – Benchmark results for the controlled-NOT operation on the JUMP IBM p690+.
Dependency of the wall clock time on the parameters for the control qubit and the target qubit.
The operation time is mainly defined by the value of the target qubit, which specifies the mem-
ory access pattern. Especially for a non-uniform memory access architecture like the JUMP
system, certain operations are considerably slower when involving communication between
processors on different nodes.
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2.2 Error-Prone Quantum Computer Simulations

The JUMPIQCS library is a complete simulator for an ideal quantum computer. In this case

the internal method of operation for each component does not impact the logical operation

of the whole quantum computer. However, for a realistic quantum computation device it

is important to consider the physics of the basic building blocks of that device. In the ide-

alized case, each operation is done instantaneously and with no error at all. An operation

on a single qubit does not affect other qubits of the overall system. In the real world there

are deviations from perfect spin rotations as well as unwanted interactions through spin-

spin couplings and couplings to the environment. The loss of quantum coherence, i.e. the

transition from quantum states to classical states, is called decoherence. It occurs whenever

a system interacts with additional external degrees of freedom, and this is the main obsta-

cle in the construction of large-scale quantum computers. Therefore, realistic simulations

that involve decoherence are essential for the verification and optimization of real quantum

computation devices.

One possibility is to use a device-specific Hamiltonian for the simulation of a particular

quantum computation device. Such an approach is used in chapter 3 for analyzing the

dynamics of an ion trap quantum computation device. However, in this chapter, we take

another approach, i.e., we extend the gate level simulator JUMPIQCS with an error model

(section 2.2.1), that describes possible errors at the level of single quantum gates.

Many problems are too complex to be solved with theoretical analytical methods (with-

out making unrealistic simplifications and concentrating on very special cases). Computer

simulations can cope with this problem. Here, we are using the JUMPIQCS code with er-

ror model extension to analyze the behavior of a noisy quantum computer by studying the

robustness of several algorithms prone to noise.

2.2.1 Error Model

As an extension to the Juelich Massively Parallel Ideal Quantum Computer Simulator
(JUMPIQCS) we implement an error model for operational imperfections and decoherence.

The error model is integrated into the JUMPIQCS. It stays within the gate level simulation

framework.

Decoherence Decoherence is a problem that will affect every quantum computation de-

vice. The superposition states that every quantum computer deals with are fragile and any

interaction with the environment will lead to a decay of quantum information and therefore

to errors in the computation. Since no device can be perfectly isolated from the environment

decoherence as a source of error is in principle inevitable.
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We implemented the so-called depolarizing channel [Nielsen and Chuang, 2000] as a suit-

able error model for the simulation of decoherence. In this model general errors are de-

scribed as linear combinations of basic errors, given by the Pauli matrices σx, σy and σz. A

σx-error, σx = ( 0 1
1 0 ), can be identified as a bit flip, a σz-error, σz = ( 1 0

0 −1 ), as a phase flip

and −iσy = σxσz can be characterized as a combined bit and phase flip.

The depolarizing channel assumes an equal probability of p/3 for the occurrence of each

error and an error-free evolution with probability 1 − p. The occurring errors are locally

and sequentially independent.

We use this error model to account for decoherence affecting our system, so we introduce

a timescale defined by the single qubit operation time δt and let the decoherence operation

affect each qubit after each timestep δt.

Since decoherence results in mixed states, but our simulator deals with pure states only, we

have to sample many runs using statistically independent random number sequences. The

random numbers are drawn from a uniform distribution using the GNU Scientific Library

with the Mersenne Twister MT19937 algorithm [Galassi et al., 2006]. The result is an

ensemble of pure states weighted by their corresponding probabilities of occurrence. The

use of stochastically independent error locations is justified by the observation that the

behavior of a quantum network can be represented as a mixed sum of networks with linear

error operators placed at each error location. This approach is also known as error expansion

[Knill et al., 1998b].

Operational imprecisions Every experiment in the lab will suffer from operational im-

precisions, as quantum superpositions deal with continuous variables and one cannot con-

trol quantum operations with infinite accuracy and precision. We implemented a model for

operational imprecisions that includes unitary over-rotations7 to resemble the errors occur-

ring in the lab. It is not specific to a certain realization of a quantum computation device,

but its parameters can be adapted to a range of experimental setups.

The Pauli matrices σx, σy and σz are the generators of rotations on the Bloch sphere and

each single qubit operation can be written as an element of the complex rotational group

SU(2),

R�n(θ) = e−iθ�n·�σ/2 = cos

(
θ

2

)
1l − i sin

(
θ

2

)
(nxσx + nyσy + nzσz), (2.69)

with n being a three dimensional unit vector, σ the three component vector of Pauli matri-

ces, and θ denoting the rotation angle.

There are several choices for decomposing a general rotation into a product of rotations

about the axes. For example one could decompose a general rotation into a product of

7We use the term over-rotation in the sense of imperfect rotation for both over- and under-rotations.
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rotations about the three axes,

R�n(θ) = Rx(θx)Ry(θy)Rz(θz), (2.70)

or one could choose the Euler angle convention with

R�n(θ) = Rz(θ
′
z)Ry(θy)Rz(θz). (2.71)

For our simulations we chose a model similar to that in [Niwa, 2002] where we only con-

sider plane rotations around the y-axis and the z-axis, i.e., each single qubit quantum oper-

ation can be constructed from plane rotations in the x-z-plane,

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (2.72)

and phase shifts

P (φ) =

(
1 0
0 eiφ

)
. (2.73)

This is a restriction of generality, but it is still sufficient to generate every possible rotation

on the Bloch sphere. The Hadamard operation for example can be decomposed into

H =
1√
2

(
1 1
1 −1

)
= R

(π
4

)
P (π). (2.74)

This decomposition allows to introduce errors ε in the rotation angles:

θ′ = θ + εθ, (2.75)

φ′ = φ+ εφ. (2.76)

These angle and phase errors ε are generated from a Gaussian distribution ρ with mean μ
and standard deviation σ:

ρ(ε) =
1

σ
√

2π
e−(ε−μ)2/(2σ2). (2.77)

The Gaussian distribution is generated by the GNU Scientific Library, which uses the Box-

Muller algorithm, with the previously mentioned random number generator as an underly-

ing source of randomness [Galassi et al., 2006]. This gives uncorrelated stochastic errors.

One should be aware that the results of our simulations were generated with equal Gaussian

distributions for the errors around both axes, i.e. εθ = εφ = ε, but since we used the

definition for our y-rotations as in equation (2.72) (to allow for a comparison of our results

with those in [Niwa, 2002]), the errors for this rotational direction are chosen twice as

large as for the z-rotations. Actually, the relation between the precision of phase gates and

y-rotations depends on the experimental realization, so there is no justification that both

errors have to be necessarily of the same size.
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The handling of operational errors for two-qubit gates follows a similar path and in our

simulation runs we decided to introduce an error of the same size on the target qubit while

leaving the control qubit untouched. For future runs there is also the possibility to introduce

errors in both the control and target qubit. Again this choice depends on specific experimen-

tal realizations and for example in the case of ion trap qubits, a controlled-NOT operation

severely affects the control qubit through coupling to the target qubit via the phonon bus

(see section 3.1). The analyses we made in this section are for a rather general abstract

model which does not account for a specific experimental realization.

Interplay of error sources Our error model covers both decoherence errors and opera-

tional errors, the main sources of noise in quantum computation. In appendix B we proof

that, for a single qubit, both error approaches are actually equivalent to each other for cer-

tain choices of parameters. Nevertheless, the motivation to use both sorts of errors stems

from the resemblance to real experiments. It is easier to differentiate between errors that

are induced by doing operations on a qubit and errors due to interaction with the environ-

ment. The strength of each error source can be quite different from each other, so that

differentiating between those errors is sensible. The main difference is that the locations of

error occurrences within a quantum circuit will differ from each other: While operational

errors affect only those qubits on which operations are done, decoherence affects all qubits

at each timestep of the algorithm. The error locations within a quantum circuit can differ

substantially depending on the quantum algorithm (see sections 2.2.3 and 2.2.4).
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2.2.2 H2k-Algorithm

The first verification of our error model was made by looking at a very simple algorithm,

i.e. a sequence of Hadamard operations. For this simple algorithm the evolution of the

density matrix, respectively the state vector, can be determined analytically even under the

influence of a single sort of noise.

The Hadamard operation (equation (2.74)) is an involution, i.e., the repeated application of

the Hadamard operation gives the identity for an even number of repetitions:

H ◦H = 1l. (2.78)

In the error-free case the repeated application of H2 does not change the state vector at all.

As described in [Niwa, 2002] we calculate the decrease of the fidelity under the influence

of either decoherence errors or rotational errors. The fidelity for two pure states |ψ〉 and |φ〉
is defined as

F = |〈ψ|φ〉|2, (2.79)

and describes the overlap between two quantum states, giving a distance measure.8 Our

simulations including the noise model rely on statistical distributions of single gate errors,

so due to the statistical description our readout is not a single shot readout, but averaged

over many experiments. All calculations were made by starting with a well-defined pure

state vector. The behavior to noise is then determined by running the algorithm many times

with a sample of statistically independent random error events and evaluating the averaged

final state. Thus, the fidelity we are measuring is given by

F =
1

m

m∑
i=1

|〈ψC |ψi〉|2, (2.80)

where m is the number of experiments, each starting with a different initial seed for the

random number generator, |ψC〉 is the correct output state vector in the error-free case and

|ψi〉 are the single output state vectors of each statistical run.

The density matrix for the sequence of Hadamard operations under the influence of the

depolarizing channel at each step l evolves according to

ρl+1 = (1 − p)HρlH
† +

p

3

(
σxHρlH

†σ†
x + σyHρlH

†σ†
y + σzHρlH

†σ†
z

)
. (2.81)

In case we start with the input state |00 . . . 00〉, i.e. all qubits set to zero, we can calculate the

decrease in fidelity analytically. For the single qubit case the density matrix at the beginning

ρ0 is just

ρ0 =

(
1 0
0 0

)
, (2.82)

8There is also an alternative definition of the fidelity F where the square root is taken, so that it has no

interpretation as a transition probability any more (e.g. in [Nielsen and Chuang, 2000]). We will call this√
F the square root fidelity.
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and after 2k Hadamard operations it is

ρ2k =
1

2

(
1 +

(
1 − 4

3
p
)2k

0

0 1 − (
1 − 4

3
p
)2k

)
. (2.83)

For the input vector |0〉 the entry ρ00 of the density matrix is equal to the fidelity (equa-

tion (2.79)).

The generalization to n qubits gives

ρ
(2k)
00 =

(
1 +

(
1 − 4

3
p
)2k

2

)n

(2.84)

for the ρ00 element of the density matrix, which is equal to the fidelity in this case, after 2k
iterations of the Hadamard operation.

A similar analysis can be carried out for isolated operational errors. For a single qubit the

density matrix after application of the error-prone Hadamard gates is

ρl+1 =

∫ ∞

−∞

∫ ∞

−∞
H(εθ, εφ)ρlH(εθ, εφ)†p(εθ)p(εφ) dεθ dεφ, (2.85)

with the central Gauss distribution

p(ε) =
1

σ
√

2π
e−ε2/(2σ2). (2.86)

For the input state vector |0〉 this leads to

ρ2k =
1

2

(
1 + e−

9
4
σ22k 0

0 1 − e−
9
4
σ22k

)
. (2.87)

Again, the generalization to n qubits gives the fidelity for repeated application of error-

prone Hadamard operations:

ρ2k
00 =

(
1 + e−

9
4
σ22k

2

)n

. (2.88)

We ran our simulations with this artificial algorithm to assess our simulation package. A

simulation result for the depolarizing channel error can be seen in figure 2.24, a result for

the unitary over-rotations is shown in figure 2.25. The agreement between the simulation

output and the analytical results is very good and verifies our simulation code with included

error model.

In the next two sections we use our gate level simulator with verified error model included

to analyze two of the most important quantum algorithms: The quantum Fourier transform,

which is at the heart of Shor’s prime factorization algorithm, and Grover’s search algo-

rithm. We examine how these algorithms perform under noisy conditions, investigate their

sensitivity and robustness to noise and study how the performance scales with system size.
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Figure 2.24 – Fidelity for a sequence of Hadamard operations depending on the iteration num-
ber under the influence of depolarizing channel noise. Results for various error probabilities
p and a system size of n = 24 qubits are shown. Data points are simulation results, while the
lines indicate analytical expressions (equation (2.84)). The numerical simulations are well in
agreement with the analytical results.
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Figure 2.25 – Fidelity for a sequence of Hadamard operations depending on the iteration
number under the influence of unitary operational error noise. The system size is n = 24
qubits. Results for various values of the standard deviation of the Gaussian distributed errors
σ are shown. Data points are simulation results, while the lines indicate analytical expressions
(equation (2.88)). The numerical simulations are well in agreement with the analytical results.
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2.2.3 Quantum Fourier Transform

The quantum Fourier transform (QFT) is the kernel of Shor’s prime factorization algorithm.

A detailed description of the ideal case algorithm can be found in section 2.1.2, and the

quantum circuit is shown in figure 2.4.

The error-prone Hadamard gates are implemented analogously to equation (2.74) as

Hε = R
(π

4
+ εθ

)
P (π + εφ), (2.89)

and the controlled phase shifts are realized as effective single qubit phase shifts with rotation

angle φ = 2π/2k:

Pk = P

(
2π

2k
+ εφ

)
. (2.90)

Each swap gate at the end of the algorithm is realized as a sequence of three CNOT gates

using the identity shown in figure 2.26.

× • �������	 •
≡

× �������	 • �������	
Figure 2.26 – Decomposition of the swap gate into three subsequent CNOT gates.

An effective NOT gate (bit flip σx) is decomposed into

σx = R
(π

2
+ εθ

)
P (π + εφ) (2.91)

to allow for operational deviations.

We use this model to study the QFT with a set of different parameters and analyze the

robustness of the QFT to errors. As a measure of “correctness” of the output state vector

we use the error norm e2, which is defined as9

e2 = ‖(|ψ〉 − |ψC〉)‖2 = 〈ψ − ψC |ψ − ψC〉. (2.92)

The output state |ψ〉 is compared to the correct output state |ψC〉 that would occur in the

error-free case. Again, our measurement result is the average of many individual events, so

in fact the error norm of a run with a statistical sampling size m is

e2 =
1

m

m∑
i=1

‖(|ψi〉 − |ψC〉)‖2 =
1

m

m∑
i=1

〈ψi − ψC |ψi − ψC〉. (2.93)

9Note that we call e2 the error norm without taking the square root.
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The input vector of the QFT routine is set to |00 . . . 00〉 =̂ (10 . . . 00)T , so that the output

state vector in the ideal case is the uniform superposition |ψC〉 =̂ 2−n/2(11 . . . 11)T .

We analyze the system sizes n = 8 and n = 16 qubits using m = 105 statistical repeti-

tions and n = 24 using m = 104 repetitions in dependence of the decoherence probability

parameter p and the standard deviation σ of the Gaussian distributed operational inaccura-

cies. The results can be found in figure 2.27. The simulation results show that the quantum

Fourier transform is rather robust against operational errors up to a level of σ ≈ 10−2 (≈ 0.6
degrees). Within the resolution of the statistical fluctuations there is no significant differ-

ence between the error-free case and the case with σ = 10−2, even for the largest system

that we have examined. In contrast, the error norm increases considerably with increasing

system size when σ > 10−2. Figure 2.27 also indicates a sort of plateau behavior, i.e., the

error norm gradient is rather flat over a wide range of decoherence probabilities p and at

some point the error norm increases substantially up to the maximum error norm of 2.10,11

A quantitative analysis of the system size dependency of decoherence errors is shown in

figure 2.28. We did also run a simulation for a system of n = 32 qubits with a statistical

sample size of m = 1000. This plot suggests that for the evaluated system sizes a doubling

of the system size leads to the necessity of bringing down the error probability about one

order of magnitude to maintain a constant error norm level.

Visualization of the effects of errors on the QFT algorithm Using scalar observables

such as the error norm or the fidelity is a good way to quantify the impact of noise on the

output state vector. To get a more detailed insight into the propagation of errors during the

QFT algorithm and to visualize the effect of noise we evaluate the expectation values 〈σx〉,
〈σy〉 and 〈σz〉 and plot the resulting vector into the Bloch sphere. This is especially helpful

for the prediction of projective measurement results.

Using the notation

|ψ〉 = α0 |0〉 + α1 |1〉 (2.94)

10e2 = ‖(|ψ〉 − |ψC〉)‖2 = 〈ψ − ψC |ψ − ψC〉 = ‖ψ‖2 + ‖ψC‖2 − 〈ψ|ψC〉 − 〈ψC |ψ〉, i.e., the error norm

is zero if and only if both states are identical, and it is 2 if both state vectors are orthogonal or maximally

different. In the noisy limit and for large systems the part of the equally distributed random state vector in

the direction of the correct solution is arbitrarily small, so that 〈ψ|ψC〉 → 0 and e2 → 2.
11Actually, the error norm does contain information about global phase differences, in contrast to the fidelity,

which discards any information about global phases. The error norm e2 can actually take values up to 4,

e.g. for |ψ〉 = − |ψC〉. Global phases do not have a physical meaning and both states must be considered

equal. Nevertheless, for the analyses in this section we can use the error norm, because none of the quan-

tum operations in the algorithm will introduce global phases. Later on, for the analyses of quantum error

correction codes, we have to take the fidelity as a measure of distance, because we have to omit information

about global phases which do occur then.
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Figure 2.27 – Error norm e2 for the error-prone quantum Fourier transform with varying de-
coherence probability p and array parameter σ, the standard deviation of Gaussian distributed
operational inaccuracies. Lines are guides to the eye. The curves for σ = 0 and σ = 10−2 are
nearly identical for all system sizes considered.
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Figure 2.28 – Error norm for the quantum Fourier transform depending on the decoherence
rate p for various system sizes. Operational errors are switched off (σ = 0). Lines are guides
to the eye.

Figure 2.29 – Output state for an eight qubit system after a QFT has been done on the input
state |00000000〉. The error model has been driven with the parameters σ = 10−2 and p =
5 · 10−3. Each statistical iteration gives a yellow dot, the ensemble average is represented by
the yellow arrow.

the expectation values are given by

〈σx〉 = α∗
0α1 + α0α

∗
1 (2.95)

〈σy〉 = iα0α
∗
1 − iα∗

0α1 (2.96)

〈σz〉 = α0α
∗
0 − α1α

∗
1. (2.97)

Each statistical repetition of the experiment gives one output state vector which is depicted

as a yellow dot on the Bloch sphere and the ensemble average is represented by a yellow

arrow.

We visualize the QFT output for an example with eight qubits starting in the initial state

|00000000〉. The state of the final qubit register can be seen in figure 2.29. The error

parameters for this run were σ = 10−2 and p = 5 · 10−3, and m = 1000000 statistical

iterations were done. For illustration purposes only each 10th result is plotted. With these

error parameters the overall error norm is quite small as can be seen in figure 2.27(a), so

that the final vector is not supposed to have a large deviation from the ideal, error-free case.

Starting with all qubits in the zero state, the ideal QFT transforms this input state to the
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uniform superposition state, i.e., the expectation values for each qubit are supposed to be

〈σx〉 = 1, 〈σy〉 = 0 and 〈σz〉 = 0. Figure 2.29 shows, that the ensemble averages all lie

in the direction of the positive x-axis (with minor deviations). A more detailed look at the

single experiments reveals how the yellow patches and structured patterns can occur. Let us

retrace for example the transformation of the two lowest qubits to understand the evolution

of the regular patterns around the equator. As described in figure 2.4 the first qubit (i.e. the

last before the final swap operations) starts from |0〉 and undergoes a Hadamard transform.

That is, starting from (0, 0, 1) the Hadamard gate transforms the state to (1, 0, 0). The

subsequent decoherence operation (∈ {I, σx, σy, σz}) either leaves the state untouched (I
or σx) or transforms it into 2−1/2(|0〉 − |1〉) (σy or σz). In the unit sphere this corresponds

to staying in (1, 0, 0) or a flip to (-1, 0, 0). That is why there are two yellow patches on

opposite sites on the equator of the sphere. Qubit number two is additionally subject to a

phase rotation about the angle 2π/22 = π/2. This can additionally lead to the vectors (0,

1, 0) and (0, -1, 0). Possible subsequent decoherence errors don’t move the vector out of

the set of already mentioned vectors. By continuing this observation for the higher qubits,

where the Hadamard operation on qubit q is followed by n − q controlled phase rotations,

the doubling of the patches around the equator and the formation of the stable symmetric

structure is understandable.

The operational errors, i.e. unitary over-rotations, cause a smearing of the resulting clusters,

where the scattering grows with larger σ. Subsequent noisy operations can propagate those

errors further.

Starting with the sixth qubit the possible locations of state vector endpoints around the

equator from different error paths may overlap, so that it comes to an interference effect,

where certain endpoint probabilities are more pronounced and one can see specific patterns

emerging as for example clearly visible for the last qubit.

In summary, we can say that the quantum Fourier transform, due to its regular structure,

shows an inherent robustness against decoherence and operational errors (compared to

Grover’s algorithm; see section 2.2.4). We found a threshold behavior for the magnitude of

operational errors, which shows no significant dependency on the system size. For decoher-

ence errors this is not the case and the conclusion is that doubling the system size requires

a decrement of one order of magnitude in the gate error probability to keep a constant error

norm.
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2.2.4 Grover’s Search Algorithm

The ideal version of Grover’s search algorithm is described in detail in section 2.1.2. We

assess Grover’s algorithm in case of non-ideal operations and under the influence of de-

coherence. Here we concentrate on the case of a single solution to the search problem

(M = 1). We use the error model described in section 2.2.1.

Although the oracle function is usually implemented as a black box, we describe our im-

plementation of the oracle call in more detail, because the way of its implementation is

essential for the results produced. The phase inversion of the solution element and the in-

version about the mean is realized by using an oracle qubit as described in section 2.1.2,

equations (2.32) – (2.34). The oracle function (equation (2.32)) can be implemented with

a generalization of the CnNOT gate, that uses both control-on-one and control-on-zero for

the control qubits (see appendix A). The control qubits represent the binary encoding of the

solution element (see figure 2.30). In principle, the CnNOT gate could be build from O(n)
elementary gates (see [Nielsen and Chuang, 2000]), but here we use a direct implementa-

tion of the CnNOT gate. The NOT operation on the target qubit is error-prone, whereas the

control qubits are assumed to be error-free. That means that our black box oracle flips the

phase of the solution element by conditionally flipping the oracle qubit. Of course, this sort

of hard-coded oracle is not applicable for solving real problems, but here this gives us an

efficient implementation of a black box oracle, which is suitable for our analyses. A proof

that an efficient implementation can always be constructed can be found in [Nielsen and

Chuang, 2000].

The operator (2 |0〉 〈0| − I), which does the inversion about the mean (see equation (2.35)),
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Figure 2.30 – Implementation of the black box oracle for Grover’s search algorithm to find the
single solution of the search problem. It uses a generalized CnNOT gate.
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Figure 2.31 – Implementation of the operator (2 |0〉 〈0|−I) in Grover’s search algorithm using
a generalized CnNOT gate.

can be implemented (up to a global phase of -1, which is irrelevant) similarly to the oracle

call with the binary encoding of the CnNOT set to the solution element |0〉 as shown in

figure 2.31.

The simulation results for the system sizes12 n′ = 8 + 1, n′ = 16 + 1 and n′ = 23 + 1 of

the error-prone Grover algorithm are plotted in figure 2.32.13 We are evaluating the square

root fidelity depending on the number of Grover iterations. As explained in section 2.1.2,

the optimal number of Grover iterations for the error free case is given by equation (2.43).

For the system sizes n′ = 8 + 1, n′ = 16 + 1 and n′ = 23 + 1 the ideal number of iterations

l, i.e., where the first maximum is expected, are l = 12, l = 201 and l = 2274. The number

of statistical iterations has been chosen according to the computational effort, so that for the

n′ = 8+1 qubit system m = 105 iterations were done, for the n′ = 16+1 system m = 104

and for the n′ = 23 + 1 system m = 100. The simulations were run on the JUMP system

with a 256 processors and on JUBL14 with a partition size of 2048 processors.

The maximum probability of finding the right element decreases with larger errors, while

the number of Grover iterations necessary to reach the first maximum shifts to smaller val-

ues with increasing error rates. The left shift of the maximum is due to the exponential

damping of the oscillating amplitude [Salas, 2008]. This means that less computational

effort is needed to reach the maximum. Nevertheless, a careful examination shows that the

12The size n′ of the overall system is written as n + 1 indicating the additional oracle qubit. The number of

database qubits n defines the size of the search space N = 2n.
13The size n′ = 23 + 1 was chosen as the largest system size, because the computational effort to simulate

that system already required 35 · 106 quantum operations to collect statistics from m = 100 runs.
14Jülich BlueGene/L: This was an 8 rack system with a total of 8192 compute nodes, each with dual PowerPC

440 700 MHz processors. The peak performance was 45.8 Teraflop/s and it had an aggregated memory of

4.1 TB. Meanwhile, JUBL has been replaced with the Jülich BlueGene/P (JUGENE).
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Figure 2.32 – Simulation results of Grover’s algorithm with decoherence errors (left column)
and operational errors (right column).

decrease of the amplitude outweighs the shift of the maximum to lower iteration numbers

[Peschina, 2008]. It is not possible to gain a benefit by increasing the level of noise. How-

ever, if a system is suffering from noise, stopping at lower Grover iteration numbers can

save computational effort as well as increase the probability to find the correct solution.
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Figure 2.33 – Maximum probability of finding the correct database entry with Grover’s algo-
rithm in the presence of decoherence (a) or operational errors (b). The probability is evaluated
at the position l′ of the actual respective maximum (see figure 2.32). Lines are guides to the
eye.

The sensitivity to decoherence and operational errors are very different in the chosen param-

eterization, but with a well-chosen parameter range both sorts of errors yield a qualitatively

similar behavior. This is not surprising, since both error model approaches can be converted

into each other for a single qubit (see section B).

The probability of finding the correct database entry for different system sizes in case of

decoherence errors or operational errors can be found in figure 2.33. Grover’s algorithm

exhibits a stronger system size dependency than the QFT algorithm. As figure 2.33(a)

indicates, a doubling of the system size requires a reduction of the single qubit decoherence

probability of almost two orders of magnitude to keep a constant probability of success of

the Grover search.

To compare the error sensitivity of Grover’s algorithm to that of the quantum Fourier trans-

form we examine the error norm (equation (2.92)) for the system sizes n′ = 8 + 1 and

n′ = 16 + 1 qubits (figure 2.34). In contrast to the quantum Fourier transform where

the threshold behavior for operational errors is nearly independent of the system size (sec-

tion 2.2.3, figure 2.27), here we see an explicit dependency of this threshold, which de-

creases significantly with system size. For values below this threshold operational errors

have only marginal impact on the error norm, while for values above this threshold the error

norm increases dramatically.

A visualization of the effects of both sorts of errors is depicted in figure 2.35. It clearly in-

dicates the qualitatively different behavior of Grover’s algorithm suffering from operational

errors above and below the numerically derived threshold of σ = 10−2 for n′ = 8+1 qubits.

Each yellow dot is the result of a single run of the stochastic error model and the yellow ar-

row is the ensemble average. The leftmost qubit represents the ancilla qubit, which should

be in the state of an equal superposition throughout the whole runtime of the algorithm.
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Figure 2.34 – Error norm in Grover’s algorithm in the presence of both decoherence and
operational errors. There is a system size dependent threshold, which is σ ≈ 10−2 for the
n′ = 8 + 1 system and σ ≈ 10−3 for n′ = 16 + 1 qubits. Lines are guides to the eye.

(a) σ = 10−2

(b) σ = 5 · 10−2

Figure 2.35 – Grover’s algorithm with n′ = 8 + 1 qubits. Each yellow dot represents the
final state of Grover’s algorithm after l=12 Grover iterations. The yellow arrow represents the
ensemble average of all runs with our statistical error model. The single qubit decoherence
probability is set to p = 10−4 and the standard deviation of the operational errors are chosen
to be σ = 10−2 (a) and σ = 5 · 10−2 (b). The difference in error norm between these two
cases can be found in figure 2.34(a), which already indicates a qualitatively different behavior.
The leftmost qubit depicts the ancillary qubit used in Grover’s algorithm, while the other eight
qubits encode the solution database element, which in this case has been chosen to be k = 17.
The least significant bit is on the left. Note that the axes have been inverted in this picture, so
that |0〉 points down and |1〉 points up. The yellow arrows indicate that in the first case the
binary encoding of the solution is found with only minor deviations (a), whereas in the second
case a clear deviation from the expected ideal solution can be seen (b).
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The other eight qubits should encode the solution element k = 17 of the database search,

beginning with the least significant bit on the left. While the single qubit decoherence rate

p = 10−4 is kept constant, a value of σ = 10−2 (figure 2.35(a)) leads to end vectors that

mostly lie approximately within a plane dominated by decoherence errors, whereas a value

of σ = 5 · 10−2 exhibits a different behavior. Here the smearing due to operational errors

dominates. Let us also emphasize the role of the ancilla qubit here. The ancilla qubit should

be in the state 2−1/2(|0〉 − |1〉) during the execution of the algorithm. Any deviation from

this state will lead to an erroneous phase inversion of the solution element as well as an

erroneous phase inversion about the mean (see section 2.1.2.2). Therefore the ancilla qubit

is especially important for the correct operation of Grover’s algorithm and in section 2.3 we

analyze the case where the ancilla qubit is stabilized using a quantum error correction code.

The analysis of Grover’s algorithm under noisy conditions shows that this algorithm is more

fragile towards decoherence errors as well as operational errors than for example the quan-

tum Fourier transform for comparable system sizes. Especially the threshold for operational

errors is clearly dependent on the system size, so that a successful run of Grover’s algorithm

requires an extraordinarily good control of operational errors. Nevertheless, a non-perfect

run (within certain error ranges) can still give acceptable results with high probability if

the damping and therefore the shift of the maximum amplitude of the solution is taken into

account. With our simulations we can quantify this resulting shift and therefore help to

save computational effort while increasing the probability of finding the right solution for a

noisy system.
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2.3 Simulation of Quantum Error Correction

Building upon the algorithmic foundations of [Shor, 1994], [Grover, 1996] and many others

it has been proven that quantum computers can in principle solve certain types of problems

more efficiently than classical computers – neglecting decoherence phenomena and oper-

ational imprecisions. Yet, in reality every quantum computation device will suffer from

decoherence as well as operational imprecisions. In section 2.2 we have analyzed the ro-

bustness of the most important algorithms against both sorts of errors and we can quantify

the decrease in fidelity for certain amounts of noise. The question arises, if a practical

quantum computation device can be built to overcome these inherent problems.

After some critical objections that the power of quantum computers cannot be harnessed

for realistic error-prone devices [Landauer, 1995; Unruh, 1995], the discovery of quantum

error correction schemes [Shor, 1995; Steane, 1996a,b] showed a way to overcome these

objections and the future prospects for quantum computation gained a tremendous boost.

Nevertheless, staying in the quantum circuit model, the encoding and recovery circuits are

again inevitably suffering from errors themselves, so that a careful evaluation of error prop-

agation is necessary. The combination of quantum error correction with fault-tolerant state

recovery, fault-tolerant encoding of quantum logic operations and the principle of concate-

nation of quantum error correction codes culminates in the accuracy threshold theorem

[Aharonov and Ben-Or, 1996]. This proves that arbitrarily long quantum calculations are

possible if the single qubit error rate is below a certain threshold. This promising idea

led to comprehensive research and development striving for a working scalable quantum

computer.

The advances in the field of fault-tolerant quantum error correction led to the insight, that

there is no fundamental barrier to realizing a large-scale quantum computer, although prac-

tical difficulties remain even today. Since quantum error correction and especially fault-

tolerant quantum error correction need much more resources than simple error-correction-

free quantum computations, it seems unlikely that fault-tolerant quantum error correction

will be implemented for the first generations of quantum computers. But quantum error

correction will play an important role for the long term storage of quantum information and

for sending quantum information over noisy channels. One can be sure that future large-

scale quantum computers will incorporate some sort of quantum error correction [Preskill,

1998]. Thus, modelling the effectiveness of quantum error correction codes is an important

task for evaluating future quantum computing architectures.

The standard fault-tolerant theory of quantum error correction gives proofs for the existence

of such a threshold, but the estimations for such a threshold range from 10−7 to 10−2,

depending on more or less realistic assumptions15 [Zalka, 1996; Knill et al., 1996, 1998a;

Steane, 2003; Aliferis et al., 2005; Knill, 2005; Reichardt, 2006].

15For example, the threshold of 10−2 [Knill, 2005] requires about 106 physical qubits to encode a single

logical qubit.
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We answer the question for a realistic number of available qubits (i.e. a single level of

concatenation; see section 2.3.3) and give a numerical threshold for the success of quantum

error correction within the limits of our error model. Additionally, we quantify the effects

of fighting operational errors within this quantum error correction framework. Standard

fault-tolerant theory does not provide estimates for these unitary over-rotations, which can

add up to significantly larger errors throughout the course of any quantum algorithm. With

our simulations we can clear up doubts about the efficiency of Shor’s algorithm in the

presence of operational imprecisions formulated by [Hill and Viamontes, 2008]. We show

that fault-tolerant quantum error correction is especially well suited for the correction of

over-rotations. Usually no statement is made in the literature about the combination of

both error types. Our simulations also provide the analysis of the interplay between both

sources of error, idling qubits suffering from decoherence and noisy logic gate operations.

Our numerical thresholds refer to actual solutions of practical problems and substantiate the

existence proofs of the analytical works [Aharonov and Ben-Or, 1996; Knill et al., 1996;

Kitaev, 1997a].

2.3.1 Quantum Error Correction Codes

Error correction in general is accomplished by redundantly encoding information. The sim-

plest classical example is duplicating the information several times and recover any error by

doing a majority voting. However, in the quantum realm this approach is unfeasible. The

first obstacle is the no-cloning theorem [Wootters and Zurek, 1982], which states that in the

quantum world it is not possible to make a perfect copy of an arbitrary unknown quantum

state. Secondly, a straightforward evaluation of the majority voting is not possible, because

a direct measurement would destroy any coherent quantum superposition. Finally, classical

error correction has to deal with a single type of error only, namely a flip of a bit, whereas

quantum states can suffer from a continuum of possible errors, that can even add up over

time. That renders classical error correction techniques useless. However Shor [Shor, 1995]

and Steane [Steane, 1996a,b] discovered a way to overcome these objections. The key idea

is to encode a quantum state in a highly entangled state of additional supporting qubits.

Thus, a small subspace of the system’s Hilbert space is defined as the code subspace. This

is chosen such that possible errors move the code subspace to mutually orthogonal error

subspaces of the system. To avoid collapse of the quantum superposition by measurement

operations it is necessary to extract the error information, that indicates a potential error,

by partial measurement. The measurement result is called the error syndrome and gives

information about the error only, without revealing information about the data itself. Linear

combinations of correctable error are also correctable in the sense that the syndrome mea-

surement projects the state into a well defined error subspace which can then be corrected

by applying the appropriate unitary transformation which reverses the effect of the error. It

is fundamental to quantum error correction that the ability to correct a discrete set of errors

suffices to correct a much larger, even continuous class of errors.
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Over time many different quantum error correction codes (QECC) had been developed.

They are classified as [[n, k, d]] QECCs where k logical qubits are encoded in n physi-

cal qubits protecting against errors of distance d. The Hamming distance d comes from

classical coding theory and states that going from any codeword in the code to any other

codeword requires a flip of at least d bits. A linear code with distance of at least 2t+ 1 can

correct errors on up to t bits [Nielsen and Chuang, 2000].

We will concentrate on codes with k = 1 and distance d = 3, which can correct an arbitrary

error on a single logical qubit. An analysis of the performance of higher distance codes

can be found in [Steane, 2003]. The first QECC that we describe is Shor’s 9-qubit code

[Shor, 1995], which first showed a way out of the conundrum of effective quantum error

correction. Even more important is Steane’s 7-qubit code [Steane, 1996a], because it plays a

role in fault-tolerant quantum computation. It belongs to the most important class of codes,

the so called stabilizer codes [Gottesman, 1997] (see section C) which are generalizations

of the CSS codes (named after Calderbank, Shor and Steane) [Calderbank and Shor, 1996].

Another important quantum error correction code is Laflamme’s 5-qubit code [Laflamme

et al., 1996; DiVincenzo and Shor, 1996], which uses the smallest possible number of qubits

to protect against any single qubit error.

A protection against a single qubit error means that we can enhance the fidelity F of an

unknown quantum state that suffers from a single qubit error with probability p from F =
1− p to F = 1−O(p2), assuming uncorrelated errors between qubits of an encoded block

and more importantly, perfect encoding, decoding and recovery operations. In section 2.3.3

we will see, how the second assumption can be relaxed by going to fault-tolerant quantum

error correction and how it is possible to push the fidelity limit by using concatenated codes.

2.3.1.1 Shor’s 9-Qubit Quantum Error Correction Code

In 1995 Shor devised the first quantum error correction code [Shor, 1995] that circumvents

the obstacles of error correction applied to quantum states. The main building block of

Shor’s 9-qubit code is the 3-qubit bit flip code which encodes a logical qubit using three

qubits. The logical qubit can be protected against a single bit flip σx. An arbitrary single

qubit state is encoded according to

α |0〉 + β |1〉 → α |0L〉 + β |1L〉 = α |000〉 + β |111〉 (2.98)

where |0L〉 and |1L〉 denote the logical states instead of the physical ones. A circuit for

doing this encoding is depicted in figure 2.36.

If one qubit of the encoded system is flipped accidentally, this can be detected in a first

step and corrected afterwards by flipping back the corresponding qubit. For the detection, a

measurement has to be done that indicates what error, if any, has occurred. The result of this

measurement is called the error syndrome. The syndrome can be measured by observing
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|ψ〉 • •
|0〉 �������	

|0〉 �������	

Figure 2.36 – Encoding circuit for the 3-qubit bit flip code.

the following projection operators:

P0 = |000〉 〈000| + |111〉 〈111| , (2.99)

P1 = |100〉 〈100| + |011〉 〈011| , (2.100)

P2 = |010〉 〈010| + |101〉 〈101| , (2.101)

P3 = |001〉 〈001| + |110〉 〈110| . (2.102)

The expectation value

〈ψ|Pi |ψ〉 = 1, i ∈ {0, 1, 2, 3} (2.103)

indicates the location i of the bit which has possibly suffered a bit flip (with i = 0 indicating

the error-free case). This is independent of the actual state of the qubit, i.e. independent

of the complex amplitudes α and β describing the state. A generic feature of syndrome

measurements is that no information about the protected state is obtained, i.e., one cannot

infer anything about the values of α and β from this measurement.

Since a measurement of the four projection operators defined in equations (2.99)–(2.102)

is equivalent to measuring the two observables Z1Z2 (which is Z ⊗ Z ⊗ 1l) and Z2Z3

(1l ⊗ Z ⊗ Z)16 [Nielsen and Chuang, 2000], often the syndrome is extracted by doing

these two measurements: Each observable has two eigenvalues ±1, so that measuring both

observables gives four possible outcomes, the syndromes. The measurement of one observ-

able can be regarded as a measurement of the parity of the two corresponding qubits, i.e.

a comparison to see if two qubits have the same value. The corresponding syndrome mea-

surement circuit consists of two pairwise measurements of the parity using an additional

ancilla qubit. (figure 2.37). An even parity of qubits 1 and 2 corresponds to a measure-

ment result of 0 for the ancilla qubit (figure 2.37(a)) as well as an eigenvalue of +1 for

the observable Z1Z2. It tells us, that both qubits have the same value. An odd parity or

a measurement result of 1 for the ancilla or an eigenvalue of −1 for the observable Z1Z2

shows that both qubits have different values. From the result of both measurements (fig-

ures 2.37(a) and 2.37(b)) one can easily deduce which qubit, if any, has suffered a bit flip:

If the measurement result is 0 in both cases, no bit has been flipped, if the result of the first

measurement (figure 2.37(a)) is 0 and the result of the second measurement (figure 2.37(b))

is 1, we know that the third qubit must have been flipped. In case the first measurement

gives 1 and the second gives 0, we know that qubit 1 must have suffered a bit flip and if

16Z1Z2 and Z2Z3 are arbitrarily chosen. Any other combination between different qubits, such as Z1Z2 and

Z1Z3 or the combination Z1Z3 and Z2Z3 is also possible.
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Figure 2.37 – Syndrome measurement circuit for the 3-qubit bit flip code. Two measurements
have to be done to locate the position of a potential bit flip. Each measurement compares
the state of two qubits and involves an ancilla qubit that is prepared in the state |0〉. The
combination of both measurement results (a) and (b) gives unique information about a potential
single bit flip.

|ψ〉 • • H

|0〉 �������	 H

|0〉 �������	 H

Figure 2.38 – Encoding circuit for the 3-qubit phase flip code.

both measurement are 1, the second qubit has been flipped. Knowing which bit has flipped,

a recovery operation can be done by flipping the same qubit back.

Phase flips can be dealt with by going to the rotated basis |+〉 = 2−1/2(|0〉 + |1〉) and

|−〉 = 2−1/2(|0〉 − |1〉). A phase flip takes |+〉 to |−〉 and vice versa, i.e., it acts like a bit

flip with respect to the rotated basis. That means that qubits can be protected from phase

flips by encoding them with the encoding circuit in figure 2.38.

Shor’s 9-qubit code is just the concatenation of the bit flip with the phase flip code, so that

the qubit is protected against both kinds of errors and therefore against arbitrary errors on a

single qubit. The left side of figure 2.39 shows the encoding and the right side the decoding

circuit.

In principle, the decoding circuit is just the encoding circuit run in reverse, but here we

use a variant, where the recovery step is done implicitly during the decoding. This has

the advantage that the circuits become simpler and less operations have to be done, thus

reducing the error-proneness. The following example for the 3-qubit bit flip code explains

why this procedure is justified: A general state α |0〉+β |1〉 is encoded into α |000〉+β |111〉.
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Consider the cases

α |000〉 + β |111〉 error→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α |000〉 + β |111〉 if no error has occured

α |100〉 + β |011〉 if qubit 1 has flipped

α |010〉 + β |101〉 if qubit 2 has flipped

α |001〉 + β |110〉 if qubit 3 has flipped.

(2.104)

The decoding circuit transforms these states into

decode→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α |000〉 + β |100〉 = (α |0〉 + β |1〉) |00〉
α |111〉 + β |011〉 = (α |1〉 + β |0〉) |11〉
α |010〉 + β |110〉 = (α |0〉 + β |1〉) |10〉
α |001〉 + β |101〉 = (α |0〉 + β |1〉) |01〉 .

(2.105)

The Toffoli gate of the recovery step turns the possible states into

recovery→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α |0〉 + β |1〉) |00〉
(α |0〉 + β |1〉) |11〉
(α |0〉 + β |1〉) |10〉
(α |0〉 + β |1〉) |01〉 .

(2.106)

This means that the original state of the qubit has been restored. The only difference to the

recovery after syndrome measurement is that the state of the additional qubits (qubits 2 and

3) is not necessarily restored to |00〉, but they can remain in any combination of basis states.

Since their state is not of interest after the qubit has been decoded, they can be measured

later on or reset prior to using them again.

The code space in Shor’s 9-qubit code is spanned by the logical states

|0〉 → |0L〉 =
1

2
√

2

(
|000〉 + |111〉

)(
|000〉 + |111〉

)(
|000〉 + |111〉

)
(2.107)

and

|1〉 → |1L〉 =
1

2
√

2

(
|000〉 − |111〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
. (2.108)

Altogether, Shor’s 9-qubit code uses nine qubits for one logical qubit and protects that

logical qubit against an arbitrary error on a single qubit.

2.3.1.2 Steane’s 7-Qubit Quantum Error Correction Code

Steane’s 7-qubit code [Steane, 1996a,b] is probably the most interesting quantum error

correction code for protecting a single qubit against arbitrary errors, especially because it is
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|ψ〉 • • H • • · · · · · · • • �������	 H • • �������	 |ψ〉
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|0〉 �������	 · · · · · · �������	 •
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|0〉 �������	 · · · · · · �������	 •

|0〉 �������	 · · · · · · �������	 •
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Figure 2.39 – Encoding, recovery and decoding circuit for Shor’s 9-qubit code. The left part
shows the encoding circuit, which is a concatenation of the 3-qubit bit flip code with the 3-qubit
phase flip code. In principle, the decoding circuit is just the encoding circuit run in reverse.
Here, we show a variant where the syndrome measurement and recovery step is done implicitly
during decoding (dashed boxes).

well suited for fault-tolerant approaches, as we will see in section 2.3.3. For this reason we

will study this particular code in more detail.

Steane’s 7-qubit code [[7, 1, 3]] is closely related to the classical [7, 4, 3] Hamming code

[MacWilliams and Sloane, 1977]. For the understanding of Steane’s code it is helpful to

have a look at the classical Hamming code first, which uses n = 7 bits to encode k = 4
bits of classical data. There are 2k strings of length n that are valid codewords. These

codewords v satisfy

Hv = 0 (mod 2), (2.109)

with H being the n− k by n parity check matrix

H =

⎛⎝ 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞⎠ . (2.110)

The code is defined to be the kernel of H , which must be k-dimensional. That is, H has

three linearly independent rows and the kernel is spanned by four linearly independent n-

element vectors.
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The parity check matrix formulation offers an obvious way to apply error correction. It is

now possible to determine the position of a possible error, i.e. a single bit flip at an unknown

position, in a valid but unknown codeword. This is done by applying the parity check matrix

to the n-bit string. Suppose an error occurs on the ith bit of the string, i.e.

v′ = v ⊕ ei, (2.111)

with ei being the unit vector with entry 1 in the ith component and “⊕” denoting bitwise

addition modulo 2. Applying the parity check matrix H ,

Hv′ = H(v ⊕ ei) = Hei, (2.112)

gives the ith column of the matrix, from which the error position can be inferred directly,

as it gives the binary representation of i. Correcting the error is done by flipping back the

ith bit. Notice that the position of a possible error is revealed, but no information about the

encoded data itself.

Steane’s [[7, 1, 3]] code is a generalization of this classical code to a quantum code (compare

equation (2.110) and table C.5, p. 156). It uses the logical codewords

|0L〉 =
1√
8

( |0000000〉 + |0001111〉 + |0110011〉 + |0111100〉
+ |1010101〉 + |1011010〉 + |1100110〉 + |1101001〉 ), (2.113)

the superposition of all even weight Hamming codewords, and

|1L〉 =
1√
8

( |1111111〉 + |1110000〉 + |1001100〉 + |1000011〉
+ |0101010〉 + |0100101〉 + |0011001〉 + |0010110〉 ), (2.114)

the superposition of all odd weight Hamming codewords.

From the parity check matrix (equation (2.110)) the (non-fault-tolerant) syndrome measure-

ment circuit can immediately be derived (figure 2.40).

In Steane’s code the recovery is done in two steps. Figure 2.40 shows the bit flip correction

part of Steane’s recovery circuit. The whole circuit has to be applied a second time in the

rotated basis, i.e. enclosed in Hadamard operations on all qubits at the beginning and at the

end of the circuit. It is easy to check, that Hadamard operations applied to all qubits also

rotate the logical basis states,

|0L〉 H⊗7→ 1√
2
(|0L〉 + |1L〉), (2.115)

and

|1L〉 H⊗7→ 1√
2
(|0L〉 − |1L〉). (2.116)
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Figure 2.40 – Syndrome measurement circuit for Steane’s 7-qubit code. Additional ancilla
qubits are needed to extract the syndrome information. The syndrome s2s1s0 gives the location
of a possible bit flip error in binary notation. The recovery operation would be a bit flip on the
s2s1s0

th qubit.
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Figure 2.41 – Syndrome measurement and recovery in Steane’s code is done in two steps. First
bit flip errors are corrected, then phase flip errors and therefore possible combinations thereof.

Therefore, a recovery of bit flip errors in the rotated basis does the same as a recovery of

phase flip errors in the original basis. A full recovery step is depicted in figure 2.41.17

An unknown quantum state |ψ〉 = α |0〉+β |1〉 can be encoded by using the circuit shown in

figure 2.42. The operation of the encoding circuit can be understood by using an alternative

17Actually, this circuit does not only correct an arbitrary error on a single qubit, but it can also recover one bit
flip error and one phase flip error on different qubits.
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α |0〉 + β |1〉 • �������	 �������	

|0〉 �������	 �������	 �������	

|0〉 �������	 �������	 �������	

|0〉 �������	 �������	 �������	 α |0L〉 + β |1L〉

|0〉 H •

|0〉 H •

|0〉 H •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 2.42 – Encoding circuit for Steane’s 7-qubit code. The decoding circuit is just the
encoding circuit in reverse.

expression of the Hamming parity check matrix (equation (2.110)) with a re-ordering of the

columns,

H ′ =

⎛⎝ 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

⎞⎠ . (2.117)

The logical zero (equation (2.113)) is just the space spanned by the rows of H and in the

representation of H ′ the first three qubits contain the information in the subcode. The addi-

tional four qubits are parity qubits, which add the required redundancy to protect the state

from errors. The first and second CNOT gates create the state α |0000000〉 + β |0000111〉,
the Hadamard rotations create the equal superposition of all eight possible values for the

highest qubits and the following CNOT gates set the parity bits according to the parity

check matrix H ′.18 The decoding circuit is just the encoding circuit run in reverse.

2.3.1.3 5-Qubit Quantum Error Correction Code

It can be shown that using five qubits to encode a quantum state is the minimal number of

qubits to protect a quantum state against a single qubit error [Nielsen and Chuang, 2000].

18Actually, this creates logical states, where the logical codewords are not exactly those given by equa-

tions (2.113) and (2.114), but the qubits are numbered in reverse order, i.e., the least significant bit is

on the right and the most significant bit on the left. This is just another convention, e.g. used in [Gottesman,

1997]. Still, the logical zero is the superposition of all even weight codewords and the logical one consists

of all odd weight codewords.
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α |0〉 + β |1〉 • Y �������	 �������	 Y

|0〉 Z Z Z H • Z

|0〉 Z H • Z α |0L〉 + β |1L〉

|0〉 Z H • Z

|0〉 −Z H • Z Z Z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 2.43 – Encoding circuit for the 5-qubit code. The decoding circuit is just the encoding
circuit in reverse.

The logical codewords of the five qubit code [Laflamme et al., 1996; DiVincenzo and Shor,

1996] are

|0L〉 =
1

4

( |00000〉 + |10010〉 + |01001〉 + |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉 )

(2.118)

and

|1L〉 =
1

4

( |11111〉 + |01101〉 + |10110〉 + |01011〉
+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉 + |11010〉 ).

(2.119)

A possible encoding circuit is shown in figure 2.43 [Niwa et al., 2002].

A (non-fault-tolerant) syndrome measurement and recovery circuit is shown in figure 2.44.

The recovery circuit can be derived directly from the stabilizers19 of the 5-qubit code (see

appendix C, table C.6). We use the same circuit as in [Niwa et al., 2002]. From the circuit it

can be deduced that they chose another representation of the stabilizer with the generators

found in table 2.1. The necessary correction operation, denoted by U in figure 2.44, can

be determined from those generators. The four syndrome bits uniquely define what kind of

error has occurred, either a bit flip, a phase flip, or a combined bit and phase flip, and on

which of the five qubits the error has happened.

19A brief introduction into the stabilizer formalism [Gottesman, 1997] is given in appendix C.
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Figure 2.44 – Syndrome measurement and recovery circuit for the 5-qubit code (non-fault-
tolerant). The recovery operation U reverses a possible error, a bit flip, a phase flip or a
combined bit and phase flip on one of the qubits, depending on the measured syndrome. The
operation U can be derived from table 2.1.

��������������

syndrome
bits

qubit

1 2 3 4 5

s3 Z Z X I X

s2 I X Z Z X

s1 Z X I X Z

s0 X Z Z X I

Table 2.1 – Generators of the 5-qubit code and corresponding syndromes. If all syndrome
bits are zero, no error has occurred. If a bit flip error has occurred on one of the qubits, the
syndrome bits of the corresponding column will be set where an Z is found. For a phase flip
the same applies to the operator X. This might seem counterintuitive at first, but remember that
measuring the observable Z detects bit flips and measuring the observable X detects phase flips
(see figure 2.37). Combinations of bit and phase flips are also possible. For example, if qubit
3 was affected by a combined bit and phase flip, the syndrome measurement would give the
syndrome s3s2s1s0 = 1101 as a binary number. A measured syndrome of s3s2s1s0 = 0110,
for instance, would indicate a phase flip on qubit 2, whereas a bit flip on qubit 2 would result
in the syndrome s3s2s1s0 = 1001. The recovery operation U flips the erroneous qubit back by
doing the same flip operation a second time.
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2.3.2 Simulation Results of Ideal and Error-Prone Quantum Error
Correction

As a first step we implemented the error correction schemes described in section 2.3.1. We

compare the performance of these codes with that of the unencoded case. The first checks

of the simulation code were done by running the simulations with ideal error-free quantum

error correction, i.e., the original quantum circuit is prone to error, while the quantum error

correction circuits are assumed to be error-free. The quantum algorithm considered in this

case is the H2k-algorithm for which a robustness analysis for the unprotected case has

already been done (section 2.2.2).

From theoretical considerations (section 2.3.1) we already know that we can correct any

single qubit error within a block if we assume the error correction circuit to be error free.

Therefore, a quantum error correction step will never degrade the fidelity of a quantum

state. The first analysis is part of the verification of the correct implementation of the

different quantum error correction schemes. We just give a brief summary for the error-free

quantum error correction and will concentrate our analyses on the realistic case, where the

error correction circuits are also prone to error (section 2.3.3).

Figure 2.45 shows an example of error-free quantum error correction. The length of the

quantum algorithm has been chosen to be 100 H2 operations. The number of statistical

iterations is m = 105 for the unencoded case and m = 103 for the encoded runs. Here we

show only a single parameter set with p = 10−4 and σ = 10−2.

Examining the 5-, 7-, and 9-qubit quantum error correction codes, all these codes show the

ability to protect against decoherence noise. For the protection of quantum memory, i.e.

idling qubits, all codes are equally well suited (in the case of ideal quantum error correc-

tion). Yet, going to quantum computation requires the ability to do operations on encoded

states, because even in the ideal case a decoding with subsequent gate operation and re-

encoding leaves the qubit temporarily unprotected. Additionally, unwanted unitary over-

rotations, cannot be detected and corrected, because an unwanted additional rotation angle

on the temporarily unencoded qubit is indistinguishable from an intended rotation. Doing

logical operations directly on encoded states requires additional considerations. The spe-

cial structure of the 7-qubit quantum error correction code allows the realization of encoded

operations (see section 2.3.3). With logical operations on encoded states, it is possible to

distinguish the exact logical operation from an imprecise rotation. Therefore, the 7-qubit

code is able to correct operational over-rotations, when using operations on encoded states.

Actually, the assumption that the error correction circuits are error-free is completely un-

realistic, since they consist of quantum gates themselves, which are in fact just as prone

to error as the circuits they are supposed to protect. The question arises, if quantum error

correction can still improve the performance of quantum algorithms, when the correction

circuits do also suffer from noise. It might be that the correction circuits introduce more

noise into the system than they are able to remove, so that quantum error correction is

doomed to fail.
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Figure 2.45 – Example for error-free quantum error correction: 1 logical qubit is encoded into
5, 7 or 9 qubits. All codes perform equally well. They can correct any single qubit error, and
a failure of two qubits within the encoded block of qubits is so unlikely in this decoherence
region, that this event has not occurred during these simulations. The decrease in fidelity
can be attributed to the operational imprecisions: Because we do not correct unitary over-
rotations when operating on the unencoded qubit, these over-rotations accumulate over time
and lead to the decrease in fidelity. In other words (see section B): The unprotected state
will be susceptible to noise. In this setup we do not only stabilize qubits in memory, but we
want to do computations, i.e., we want to do operations on them. For doing so, the state has
to be decoded, then the operation is done and the state is re-encoded. Although no explicit
decoherence operation takes place between the gate operation and the reencoding, the state
is not protected against unitary over-rotations. For clarification, the 7-qubit encoding, where
operations on encoded states are done, is also shown in this plot (see section 2.3.3, figure 2.49).
In this case the fidelity stays constantly at 1. All errors, including operational errors can be
corrected.

It turns out that error-prone quantum error correction indeed makes things even worse if

applied straightforwardly (see figure 2.46). The analysis has been done again for the same

parameters as in figure 2.45, the only difference being that the error correction circuits are

now prone to error.

The quintessence of this analysis is that using non-fault-tolerant quantum error correction
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Figure 2.46 – Error-prone quantum error correction. If the correction circuits (non-fault-
tolerant) are prone to errors, they introduce more noise than they can take out of the system,
so the fidelity with quantum error correction is worse than the fidelity when leaving the qubit
unprotected. The simulation results shown here were generated with the same parameter set
as the results shown in figure 2.45. The only difference is that the error correction circuits are
error-prone in this case. The 9-qubit code shows a better performance than the other codes,
because the correction circuit is much shorter (see figure 2.39), thus introducing less errors.
The key message is: Going to fault-tolerant quantum error correction is mandatory.

is futile, because it will introduce more errors than it can correct. Therefore, the only rea-

sonable approach will be the extension of quantum error correction codes to fault-tolerant

methods (section 2.3.3).
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2.3.3 Fault-Tolerant Quantum Error Correction

In section 2.3.2 we have shown, that quantum error correction requires fault-tolerant meth-

ods, to be useful. That means, the quantum error correction process has to be able to remove

more noise from the system than it generates, although the process is itself imperfect.

Theoretically it is proven that arbitrarily long quantum computations can be done reliably

if the error rate is below a certain threshold and if there are abundant qubits available to

concatenate error correction schemes. Nevertheless, today’s quantum computing devices

and those of the near future are and will be very limited in the number of available qubits as

well as in the achievable minimum error rates. Thus, the question arises, if quantum error

correction is possible, not only in theory, but also in practice, and what the thresholds for

fault-tolerant quantum error correction are.

Our analyses are made for several different setups of quantum error correction. Active

and passive stabilization of qubits have been examined as well as quantum operations on

encoded qubits, which are necessary if not only error-protected quantum memory, but also

fault-tolerant computation is required.

Our results show clear evidence that one can benefit from quantum error correction if done

in a proper way, i.e. fault-tolerantly, even on limited resources, as long as the error rates

are below a certain threshold. We can also make statements on the required accuracies and

resources individually for specific quantum algorithms.

2.3.3.1 Theoretical Principles

We describe the basic ideas of fault-tolerant quantum error correction for [[n,1,3]] codes,

that encode only one single qubit into a block of n qubits. This block is then protected

against a single qubit error within this block. If two errors happen in a given block, that

block may fail and a decoding may result in a wrong quantum state. However, if we assume

a small single qubit error rate of the order O(p), the probability of two simultaneous errors

will be of the order O(p2). In other words, a fault-tolerant quantum error correction code

can convert a small physical error rate into an even smaller logical error rate.

The results of section 2.3.2 show that a non-fault-tolerant quantum error correction code

by itself is only useful under the unrealistic assumption that the gates for the correction

perform perfectly. If this is not the case, and this holds for all but the smallest quantum

computations, a QECC will introduce more errors than it is able to correct.

Therefore, we need to encode the information according to fault-tolerant protocols. The

main goal of a fault-tolerant protocol is to keep the propagation of errors under control.

Obviously, a faulty single qubit gate can cause an error in the qubit involved and an erro-
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(b) Phase errors propagate backwards

Figure 2.47 – Example for error-propagation: A perfect CNOT gate can propagate errors to
both qubits and thus can lead to a spreading of errors.

neous two-qubit gate can induce errors in at most two qubits.20 However, and this is even

more important, a perfect two-qubit gate can propagate a pre-existing error to both qubits

and thus leading to a spreading of errors. Figure 2.47 shows an example for the propagation

of errors. A pre-existing bit flip error on the control qubit of a CNOT gate leads to a false

flipping of the target qubit, so the error propagates through the CNOT and the final state

is equal to a perfect CNOT followed by both a bit flip error on the control and the target

qubit. Phase-flip errors on the target qubit are propagated to the control qubit, as we can

immediately verify by multiplying21

CNOT(0, 1)(I ⊗ Z) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ = (Z ⊗ Z)CNOT(0, 1). (2.120)

The third kind of error, a combined bit and phase flip, Y = XZ, propagates through a

CNOT gate as

CNOT(0, 1)(Y ⊗ I) = CNOT(0, 1)(X ⊗ I)(Z ⊗ I)

= (X ⊗X)CNOT(0, 1)(Z ⊗ I)

= (X ⊗X)(Z ⊗ I)CNOT(0, 1)

= (Y ⊗X)CNOT(0, 1),

(2.121)

20This depends of course on the quantum computation device architecture. For example, this does not hold

for ion trap quantum computation, where a two qubit gate is realized via a common vibration of all qubit

ions (see chapter 3).
21Remember that quantum circuits are executed from left to right, while matrix multiplication is done from

right to left.
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and

CNOT(0, 1)(I ⊗ Y ) = (Z ⊗ Y )CNOT(0, 1). (2.122)

From the commutator relations of the Pauli and Clifford group22 elements the error propa-

gation for other types of errors and gates can be determined exactly.23

Concatenation and the threshold theorem As long as only one single error occurs

within an encoded block, distance-3 codes, such as the 7-qubit code, can successfully cor-

rect those errors. If more than one error occurs, either directly or by propagation from

another block, the block will fail. If we assume a small single qubit error rate of p for a

gate or a timestep, the probability of two qubit failures in two qubits is p2. By using a fault-

tolerant protocol we can assure that a failure of a block is of the order O(p2). The coefficient

c in cp2 will depend on the code and the fault-tolerant methods, but it will be independent

of the length of the overall computation. It connects the single qubit failure probability with

the block failure probability. Apparently, the logical qubit gives an improvement over the

single qubit if p < 1/c. In the other case, the additional qubits and gates for the quantum

error correction code introduce more errors than they can correct. The improvement from

p to cp2 can be driven further by going to concatenated codes (figure 2.48). This means

that a logical bit is not only encoded in n physical bits, but in n logical bits, which are

themselves encoded using n physical bits, so that in overall the logical bit is encoded using

n2 qubits. This would lead to a suppression of the error probability to c(cp2)2 = c3p4. This

can be generalized to k levels of concatenation, leading to an effective error probability for

a logical qubit of

pk = c2
k−1p2k

, (2.123)

or in terms of the threshold p0,

pk = p0(
p

p0

)2k

, (2.124)

where p0 = 1/c is called the threshold for fault-tolerant quantum error correction. In prin-

ciple, the logical error probability can be made arbitrarily small if the single qubit error

probability is below the threshold, i.e. if p < p0. A major problem is that the number of

qubits needed for multiple levels of concatenation grows exponentially with the number of

concatenation levels. Nevertheless, if we want to achieve an effective error rate ε, from

equation (2.123) it follows that we need O(log(log(1/ε))) levels of concatenation. In over-

all, we need O(poly(log(1/ε))) extra qubits to achieve an effective error rate of ε. The

resources for achieving an arbitrarily small error rate grow only polylogarithmically. The

question what the precise value of p0 actually is, is answered by numerical simulations in

this work in section 2.3.3.2.

22See section C for a definition of the Pauli and Clifford group.
23Global phases can be neglected.
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Figure 2.48 – Concatenated codes: A logical qubit is fault-tolerantly encoded using multiple
qubits, which can be encoded logical qubits themselves. When the unencoded qubit error prob-
ability is p, using k levels of concatenation brings down the logical qubit error probability to
pk = c2k−1p2k

.

Operations on encoded states using transversal gates For the protection of quantum

memory, i.e. fault-tolerant storing of quantum information, all quantum error correction

codes considered are well suited if applied fault-tolerantly. Thus, using the 5-qubit code

[Laflamme et al., 1996] may be advisable, since it uses the smallest number of additional

qubits, but when going to fault-tolerant computation, we also need fault-tolerant imple-

mentations of a universal set of quantum gates. The necessity for doing operations on

encoded logical states arises in fault-tolerant computation, because a decoding with subse-

quent operation and re-encoding would not only temporarily remove the protection, but it

will even introduce more errors. Steane’s 7-qubit code, as described in section 2.3.1 and

appendix C, is especially well suited for fault-tolerant quantum computation, because there

are simple transversal gates for the Pauli and Clifford group elements [Gottesman, 1997]

(see figure 2.49). For two qubit gates, transversal means that the ith qubit within an encoded

block interacts only with the ith qubit of another encoded block of qubits. In consequence,

a single error anywhere in the system can only spread to a single error per block, which can

be dealt with by doing a recovery operation. Of course, two errors within a block can cause

a failure of the whole block of qubits.
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Figure 2.49 – Transversal gates using Steane’s 7-qubit code. Due to the algebraic properties of
the code (see appendix C and [Gottesman, 1997]), there are simple transversal representations
for the logical gates. This is a specific feature of Steane’s 7-qubit code. Such straightforward
transversal gates are not possible for the 5-qubit and the 9-qubit code.
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Figure 2.50 – Part of a possible syndrome extraction circuit using four ancilla qubits instead of
a single one. This procedure does not work, however, because the ancillas have been entangled
not only with the error information but also with the encoded data. The measurement of the
ancilla qubits gives information about the data itself and destroys the superposition of the
basis states (equations (2.113) and (2.114)). The circuit shown actually measures the last four
qubits of the block. If we obtain, e.g. |0000〉 for the ancilla qubits, we have projected |0L〉 to
|0000000〉 and |1L〉 to |1110000〉.

Fault-tolerant recovery methods (using Steane’s 7-qubit code) Fault-tolerant recovery

is essential for the success of quantum error correction codes. Syndrome extraction as

described in section 2.3.1 is not fault-tolerant. Apparently, an error on one of the ancilla

qubits used for the syndrome extraction can propagate to many qubits of the encoded block

of information (see figures 2.40 and 2.47(b)). Therefore, more sophisticated methods for

syndrome extraction are needed [Shor, 1996; Steane, 1997].

The idea is to use multiple ancilla qubits to extract the syndrome, so that each ancilla qubit

interacts only once with one of the data qubits. This restricts the propagation of errors from

a faulty ancilla qubit to multiple data qubits. The parity of the measured ancilla qubits

gives the syndrome bit (figure 2.50). Nevertheless, the straightforward approach, as shown
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discard and start over if measurement

outcome is 1

Figure 2.51 – Creation of the Shor state for the fault-tolerant syndrome extraction. The first
Hadamard gate and the three subsequent CNOT gates create the cat state 2−1/2(|0000〉 +
|1111〉), the Hadamard gates rotate the cat state into the Shor state (equation (2.125)).

in figure 2.50, is not feasible, because the ancillas have been entangled with the data in

such a way, that a measurement of the ancilla qubits does also give information about the

data qubits themselves and thereby destroys the superposition of the logical codewords |0L〉
and |1L〉. Let us consider the example, where the four ancillas are |0000〉 after measure-

ment. It follows that |0L〉, which has been in the superpostion of all even weight Hamming

codewords, is projected to |0000000〉, and |1L〉 is projected to |1110000〉.
Therefore using multiple ancilla qubits is necessary, but not sufficient for fault-tolerant syn-

drome extraction. Additionally, we have to use appropriate ancilla states, that do not destroy

the coherence of the data. One possible way of doing this is to use an equal superposition

of all even weight strings as proposed by [Shor, 1996]:

|Shor〉 =
1√
8

∑
even v

|v〉

= |0000〉 + |0011〉 + |0101〉 + |0110〉
+ |1001〉 + |1010〉 + |1100〉 + |1111〉 .

(2.125)

If the corresponding syndrome bit we are measuring is zero, an additional even weight

string is added to the Shor state, leaving it unchanged. If the syndrome bit is one, the Shor

state is transformed into the equal superposition of all odd weight strings. The parity of

the ancilla qubit measurement gives the error syndrome bit, but this time we do not learn

anything about the data itself while extracting the error information.

An additional obstacle to overcome is the potentially erroneous creation of the Shor state,

which is depicted in figure 2.51. The circuit would not be fully fault-tolerant if only four

qubits were used. A single error during the creation of the Shor state can propagate to two

qubits of the Shor state and in case of two phase flip errors, they can feed back into the data

block through back propagation. That is why an additional verification with the help of a
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fifth ancilla qubit is necessary, which tests for multiple phase errors. Using the rules of error

propagation it is easy to check, that the only way that a single error in the circuit can lead

to two phase errors in the final Shor state is a bit flip error that happens between the second

and third CNOT gate. Instead of getting a correct so called cat state, |cat〉 = 2−1/2(|0000〉+
|1111〉), the state before the final Hadamard rotations, 2−1/2(|0011〉+ |1100〉), has suffered

from two bit flip errors, that result in two phase flip errors after the Hadamard operations.24

Instead of getting a Shor state (equation (2.125)) we end up with the state

|Shorerror〉 = |0000〉 + |0011〉 − |0101〉 − |0110〉
− |1001〉 − |1010〉 + |1100〉 + |1111〉 , (2.126)

which has suffered from two phase flip errors.25 To catch these multiple bit flip errors

(phase flip errors) in the cat state (Shor state), it is sufficient to verify that the first and last

bit of the cat state do agree.26 This is done with the help of the fifth qubit and the fourth

and fifth CNOT gates. Altogether, this approach ensures that the probability for two phase

errors in the Shor state, which can damage the data, is of the order O(p2).

We have not yet considered bit flip errors in the Shor state, but those are not critical, be-

cause, while they indeed lead to a faulty syndrome measurement, they cannot feed back to

damage the data. In the worst case a wrong extraction of the syndrome will lead to a faulty

correction step causing further damage instead of correcting the error, so additionally, the

syndrome measurement must be performed multiple times to ensure the correctness of the

syndrome determination up to the order O(p2).27 A (non-trivial) syndrome is considered

correct (probability of failure of order O(p2)) if it is measured twice in a row. A trivial

syndrome may be mistakenly accepted, but since it requires no recovery action, there is no

danger of erroneously introducing two errors into the block and the error can be reliably

detected in a future round of error correction. The (non-fault-tolerant) syndrome extraction

depicted in figure 2.40 is extended to a fault-tolerant version (figure 2.52) by using Shor

state ancilla qubits instead of single ones.

All precautions and measures described above will ensure that the recovery can only fail if

two independent errors occur, but the probability for that is of order O(p2).

The extraction of the phase flip syndrome can be simplified [Preskill, 1998] to a less com-

plex circuit by using the identity in figure 2.53. The creation of the Shor state involves a

24The symmetry of the Shor state simplifies the analysis, because the cases of the cat state with one or three

bit flip errors all lead to a Shor state with effectively a single phase flip error and a cat state with all four bits

flipped does not change at all.
25Again, symmetry does not tell if these are qubits 0 and 1 or qubits 2 and 3.
26This will additionally catch the one and three error cases.
27Keep in mind that during the ancilla preparation, ancilla verification, syndrome extraction and syndrome

verification the data qubits will suffer from decoherence. Nevertheless, if done correctly, i.e. fault-tolerantly,

we can still ensure the improvement of the block error rate to O(p2) compared to the single qubit error rate

of O(p), provided that we are below the threshold. This indeed becomes smaller as the complexity of the

recovery circuit increases.
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Figure 2.52 – Fault-tolerant syndrome measurement circuit for Steane’s 7-qubit code. The
creation and verification of the Shor state is depicted in figure 2.51. The syndrome bits si are
given by the parity of the four ancilla qubits each. Shown here is the determination of s2. The
syndrome bits s1 and s0 are extracted analogous to the scheme in figure 2.40 using verified Shor
states instead of a single ancilla qubit. Note that the syndrome extraction is possibly repeated
multiple times.

H • H �������	

≡

H �������	 H •

Figure 2.53 – Hadamard rotations rotate the basis, such that the control and target qubit of a
CNOT are interchanged.
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Figure 2.54 – The extraction of a single bit of the phase flip syndrome is depicted schemat-
ically. The Hadamard gates are transversal gates operating on 7 and 4 qubits. The CNOT
consists of four basic CNOT operations according to figure 2.40. The simplified circuit saves
the transformation of the data qubits into the Hadamard rotated basis.

creation of a cat state with subsequent rotation into the Shor state (figure 2.51). For the

phase flip syndrome measurement the identity shown in figure 2.54 can be exploited.

Fault-tolerant encoding/decoding methods (using Steane’s 7-qubit code) We are able

to do a fault-tolerant recovery, but the question how to do a fault-tolerant encoding/decoding

still remains. If the task would be to create a known encoded quantum state, such as |0L〉
or |1L〉, a recovery operation and verified measurement will project the state into one of the

desired states (with optional bit flip of the logical state). But if we are forced to encode

an unknown quantum state, we must use the encoding circuit (figure 2.42), and since no

measurement can verify the encoding, the fidelity of the encoded state will inevitably be

F = 1 − O(p). This is the reason, why quantum error correction can only be efficient for

algorithms which are not too short. An encoded memory qubit that suffers a fidelity loss

due to the encoding can still be protected for a long time in contrast to the unencoded qubit.

With the help of encoded operations fault-tolerant operations can be done while the qubit

remains protected, which would not be possible for an unencoded qubit. The encoding step

will unavoidably be associated with a fidelity loss of O(p), but nevertheless, an algorithm

can benefit from keeping the qubits encoded and protected during its execution. If we

want to measure a qubit at the end of an algorithm, this can be done by decoding (with

F = 1 − O(p)) and subsequent measuring or with a parity measurement to decide if the

state is |0L〉 or |1L〉. Since a single error can lead to a faulty parity measurement, this

procedure has to be repeated twice to ensure a failure probability of O(p2).
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2.3.3.2 Numerical Simulations

With our universal quantum computer simulator at hand, which has been extended to quan-

tum error correction capabilities and especially fault-tolerant methods, we are able to an-

alyze the performance of quantum error correction. Our analyses showed that only fault-

tolerant approaches can give any advantage over non-error corrected circuits, so here we

concentrate our studies on Steane’s 7-qubit quantum error correction code, where we have

a collection of fault-tolerantly implemented gates. We focus on algorithms where only gates

of the Clifford group are used and leave the very complex fault-tolerant implementation of

the T gate and the Toffoli gate for future work.28 The basic ideas of fault-tolerant quantum

computation and threshold determination were formulated in section 2.3.3.1.

Threshold determinations from numerical simulations have been done by several people

[Zalka, 1996; Steane, 2003; Aliferis et al., 2005; Reichardt, 2006], but all of these simula-

tions were based on tracking the error propagation instead of following the evolution of the

state vector. This leads to many oversimplifications, e.g. missing the relevance of the ancilla

qubits or other unrealistic assumptions. More importantly, it is not easily possible in such

an approach to deal with operator imprecision and systematic errors in such a straightfor-

ward way as our simulation can do. Our simulation is based on a well defined constructive

procedure (see section 2.3.3), that also allows for the adoption to a variety of experimental

setups.

Assumptions made for the simulations We need to emphasize the physically reason-

able assumptions made for the simulations, since any statement about thresholds depends

substantially on these assumptions. We have chosen an error model with statistically inde-

pendent random errors that are assumed to be uncorrelated. Depending on what physical

realization is chosen, it might be possible that nearby qubits are more likely affected by cor-

related errors. This is not taken into consideration in our general error model. Furthermore,

we define our error rate independent of the system size.29

We also will assume maximal parallelism, i.e., we can execute many gates in parallel in a

single timestep. This is essential in the determination of our threshold. Without parallelism

the fault-tolerant threshold condition becomes practically impossible to achieve, because

errors accumulate faster than error correction can correct them. In ion trap quantum com-

puters for example, parallelism is hard to achieve, because all qubits couple via a common

phonon bus (see section 3.1). A possible exploitation of different phonon modes could at

least provide some parallelism, however.

Another assumption we made is that we can perform two-qubit gates on any distant pair of

qubits. For some architectures that use nearest neighbor interactions, this assumption does

28A proposal for a fault-tolerant implementation of the T gate can be found in [Fowler, 2005]. For a fault-

tolerant implementation of the Toffoli gate see for example [Preskill, 1998].
29Depending on specific hardware architectures, e.g. for ions in a single trap, the error rate will exhibit a

system size dependency.
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not hold. However, a promising future quantum computer architecture should allow for

arbitrary two-qubit operations. Both issues mentioned can be considered as a requirement

for future quantum computing architectures.

We do not make the unrealistic assumption that we have a large or even unlimited resource

of fresh ancilla qubits available. So the determination of the syndrome bits (figure 2.40) is

done sequentially and not in parallel. Since six syndrome bits have to be determined for one

correction step, parallel extraction would require 30 qubits just for the ancillas. We extract

the syndrome bits one after the other and reuse our reset ancilla block each time.

Additionally, we assume that we can reset our ancillas in a single timestep. From a thermo-

dynamic point of view our ancillas carry entropy out of the system, so at some point they

have to be reset with a dissipative operation, so they can be reused. This reset operation

requires a cooling of any device and might take several timesteps depending on the device

architecture.

A similar question can be asked for a measurement process. Here we assume that a mea-

surement takes exactly one timestep. For slow measurements (≈ 100 timesteps) the thresh-

old may be one order of magnitude lower [Steane, 2003].

By using the depolarizing channel as our decoherence model we assume that bit flip and

phase flip errors occur with equal probability. If for a device in the lab these probabilities

would be non-equally distributed, one could tailor the correction schemes to the error model

and achieve a higher threshold.

Overall, we can say that in this analysis we choose a rather general approach, not referring to

a specific device architecture yet. Nevertheless, the simulation code can be easily adjusted

to physical device specifications.

Threshold Determination For the threshold determination the question is asked, under

which conditions a block of encoded qubits performs better than a single unencoded qubit.

We answer this question by examining the H2k-algorithm for a single qubit encoded with

Steane’s 7-qubit code into a block of seven qubits. For the syndrome extraction we decided

to use Shor state ancillas [Shor, 1996], because we are limited by the number of qubits that

we can simulate on our computers (just as experimentalists are limited by the number of

realizable qubits as well), and the Shor state offers a way to extract the syndrome fault-

tolerantly by using the minimum number of additional ancilla qubits. A Shor state consists

of 4 ancilla qubits, and one additional qubit is needed for the verification of the Shor state

(see figure 2.51 and equation (2.125)). A logical data qubit consists of 7 single qubits. An

encoded qubit with corresponding ancillas requires 7 + 5 = 12 physical qubits. In total, a

fully encoded system of nL logical qubits would require n = (7 + 5) ∗ nL qubits. With the

current status of the JUGENE system we are limited to n = 40 qubits. In order to allow

the simulation of larger systems, we reuse the ancilla memory space in our simulations and

assume that, in practice, the ancilla operations could be done in parallel on different logical
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Figure 2.55 – Decoherence on idling qubits. Example with two logical qubits. U denotes
a unitary logical gate operation and d indicates a decoherence operation. The correction
step does not always have a fixed length, because sometimes the syndrome extraction has to
be repeated or the ancilla preparation may fail and requires a repetition. Our simulation is
realistic in the sense that it accounts for idling qubits, that are affected by decoherence while
idling.

qubits. This is not a real sharing of ancilla qubits with each logical qubit, since this would

make parallel operations impossible, but it is rather a simulational dodge that saves memory

space, so that a simulation of nL logical qubits requires an effective memory storage of only

n = 7nL + 5 qubits.

The operations on different logical qubits are in fact done sequentially in the simulation,

but the timesteps are adjusted in such a way, as if the operations could be done in parallel.

If operations on one of the logical qubits take more time than on one of the others this is

realistically accounted for: All qubits are synchronized, so the idling qubits do suffer from

decoherence during their waiting time (see figure 2.55).

To ensure the correctness of the syndrome measurement we decided to run the syndrome

extraction loop until we measure the same syndrome twice in a row or until we measure the

syndrome 0. This makes sure that the probability of introducing two errors within a block is

of the order O(p2). In case the extraction of the syndrome 0 is faulty, we will not introduce

a second error by trying to correct for the wrong error, but the error is propagated further

and can be reliably detected in a future error correction step.

As described in section 2.2.1 our simulations are based on statistically independent error

locations. We have to make sure to gather sufficiently high statistics. “Sufficiently high”

depends on the single qubit error probability p, the length of the algorithm, the number of

qubits, the complexity of the algorithm, i.e. the phase space of the system, and of course on

the required accuracy of the result.

As an example, running the H2k-algorithm with the parameter set k = 1000, p = 10−7 and

fully fault-tolerant Steane encoding requires at leastm = 10000 statistical iterations to yield

a result with a relative error30 of less than 10−3 in the final fidelity.31 Running this system

on a single processor of the JUMP (Power4) system requires about two days of computation

30We take the standard deviation of the mean as a measure of statistical error.
31Note that we use the fidelity here as a measure of correctness, because error propagation might lead to global

phase factors. For example the Hadamard gate anti-commutes with the Pauli operators, {H,σi} = 0, i.e., if

an error is propagated through a Hadamard gate, we gather a global phase factor of -1.
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time for m = 10000 iterations. We will see that for an exact direct determination of the

threshold an even higher accuracy and therefore more statistical iterations are required.

Reset operation For the syndrome extraction additional ancilla qubits are used. As we

do not make the unrealistic assumption that we have an unlimited resource of fresh ancillas

available, we have to reuse our ancillas. This is done by resetting them to their original state.

A reset operation is a trivial task in classical computation, whereas in quantum computation

this has to be handled carefully. A reset operation carries away entropy out of the system

and is a non-unitary evolution of the system that cannot be handled in the usual manner. For

our simulations we assume that a reset operation requires the same time as a gate operation.

The reset operation is done in several steps. First, a projective measurement is done, clear-

ing the amplitudes of the state vector, which do not belong to the measurement outcome.

If the measurement outcome was 1, a flip of the ancilla qubit to the state 0 is necessary.

Finally, since the clearing of amplitudes is a non-unitary operation, a renormalization of the

state vector is necessary.

Rough estimation to determine interesting range of parameters We will concentrate

on Steane’s 7-qubit code using fault-tolerant methods, i.e. with 4 + 1 ancilla qubits, and

we will always use encoded operations. Using real fault-tolerant methods, the frequency

of error correction steps can be chosen to be maximal, which grants the best correction

performance. Obviously the best results are gained when decoding is completely avoided

during intermediate steps of the algorithm.

So the main two error parameters that have to be examined are the decoherence probability

p and the measure for the operational error imprecision σ. The maximum value of σ has

been set to σ = 0.1 =̂ 5.7◦, which is rather large, because most experimental setups can

perform better than this. The minimum value for sigma is set to σ = 10−3, because for

smaller values the difference to σ = 0 is negligible.

Unfortunately, the determination of the parameter range for p is not that easy. The param-

eter range chosen for the analyses in section 2.2 are magnitudes above the fault tolerant

threshold, so we first have to make an estimate for the magnitude of the threshold.

A rough estimate of the failure probability of a block of qubits can be done: Let p be the

error probability of a single qubit. If we look at a block of n qubits during m timesteps, i.e.,

if we look at the area size of n×m, we can ask for the probability of more than one failure

p>1 within this area. The probability pk for exactly k failures is given by

pk =

(
nm
k

)
pk(1 − p)nm−k. (2.127)

The probability p>1 is given by

p>1 = 1 − p0 − p1 = 1 − (1 − p)nm − nmp(1 − p)mn−1, (2.128)
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Figure 2.56 – Approximate block failure probability depending on the single qubit error prob-
ability p. Rough estimate of the expected range where the threshold is supposed to be found,
i.e., where the block failure probability becomes smaller than the single qubit error probability.
Loosely speaking, a block fails if more than a single error occurs within the block.

and a second order approximation yields

p>1 ≈ nm(nm− 1)p2. (2.129)

We can now estimate the probability of two errors occurring within this area of n qubits

in m timesteps. If we assume an encoding with Steane’s 7-qubit code with additional 5

ancilla qubits, i.e. n = 12, we can estimate the failure probability for the correction step

circuit. This is not a fixed time operation, because neither the ancilla state preparation nor

the syndrome extraction is deterministic. If we assume that the ancilla preparation into

the Shor state is always successful and the syndrome measurement is always performed

twice, a correction step takes about m = 130 timesteps, and we get the result shown in

figure 2.56. Note, that this is not a detailed analysis, but a rather rough estimate, where we

haven’t considered issues like:

• the preparation of the Shor state can fail,

• the syndrome measurement can be performed more or less than twice,

• we are not distinguishing between ancilla and data qubits,
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• the 7-qubit code can actually correct two X or Z errors, even on different qubits,

• and errors can even cancel out each other, e.g. XX=I.

A detailed analysis of error propagation has to be done, but analytically this is not feasible.

Therefore, we carry out simulations to give an answer to this problem. The rough estimate

shows, that we would need an error rate of the order of 8 · 10−7 for fault-tolerant quantum

error correction to perform better than using no quantum error correction at all. This is

supported by simulation runs with p being in the range 10−6 to 10−2 in section 2.2. In this

high error probability regime, it is definitely better to abandon quantum error correction.

The determination of the exact threshold without neglecting too many important issues is

done using numerical simulations.

Coarse estimate of the threshold For a coarse estimate of the threshold we ran our simu-

lations for several parameters of p both for the non-encoded and encoded case. Figure 2.57

shows two example runs with p = 10−5 and p = 10−6. By choosing to plot against the

number of H2-iterations we can use the smoothness of the fidelity curve as a consistency

check to ensure that we have collected enough statistics. The simulations with p = 10−5

were done with m = 10000 statistical iterations, those with p = 10−6 with m = 100000
iterations. The drawback of this method is that we have to decode the state intermittently

to measure the fidelity, but this decoding and re-encoding will have an effect on the fidelity

itself. We try to minimize this effect by decoding after each 100th H2 operation only. We

can be sure of the lower bound of p = 10−6 for the threshold, but the upper bound of

p = 10−5 can only be an approximation. Another approach would measure the fidelity only

at the end of the algorithm and use the standard deviation of the mean as a measure of the

stochastic relevance. A brief check reveals that this approach is indeed too coarse for an

exact determination of the threshold: If we assume a quadratic relation between the single

qubit error rate and the block error rate, peff(p) = cp2 (figure 2.56), we can calculate the

constant c and the threshold pthr = 1/c. Doing this for both cases reveals a threshold of

pthr1 = 1.1 · 10−6 for p = 10−6 and pthr2 = 4.5 · 10−6 for p = 10−5. Therefore, determining

an exact threshold requires to omit the intermediate decoding steps and to gain a higher

accuracy, which means that we need even more statistical iterations. We choose another

approach to determine the exact threshold, that is less prone to statistical fluctuations.

Fine determination of the threshold The effort to determine the exact threshold would

be enormous, if done straightforwardly, e.g. with nested intervals, because locating the

threshold with very high accuracy would require too many statistical iterations. Therefore,

we prefer another approach: For the H2k-algorithm we know, in principle, how the fidelity

decreases for an unprotected qubit (equation (2.84)):

f(k) =

(
1 +

(
1 − 4

3
p
)2k

2

)n

. (2.130)
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Figure 2.57 – H2k-experiment: Comparison of the single unencoded qubit case with Steane’s
7-qubit quantum error correction scheme. The fit gives an effective error rate peff for the en-
coded block. The plots demonstrate that the threshold is above p = 10−6 and probably below
p = 10−5. The effects of the intermittent measurements of the fidelity might lead to a decrease
in fidelity. The simulations with p = 10−5 were done with m = 10000 stochastic iterations,
those with p = 10−6 with m = 100000 iterations.
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Now we have a protected qubit with an effective error probability peff that degrades like

f̂(k) =

(
1 +

(
1 − 4

3
peff

)2k

2

)n

, (2.131)

with

peff = cp2, (2.132)

because we use a fault-tolerant design. We look at the gain g that we get by using quantum

error correction, i.e., we examine the ratio

g(p) =
f̂(k)

f(k)
(p) =

(
1 + (1 − 4

3
cp2)2k

1 + (1 − 4
3
p)2k

)n

. (2.133)

The threshold pthr is given by g = 1 or peff = p, i.e.

pthr =
1

c
. (2.134)

Note that the threshold pthr is independent of the system size n and the length of the algo-

rithm k. In contrast, the gain g, of course, depends on the length of the algorithm as well as

on the system size.

Choosing this approach we can run the simulations for a wide range of error rates p and

determine the constant c as well as the threshold pthr from a weighted fit to the data that also

accounts for the statistical uncertainties. The approach is outlined in figure 2.58. Depending

on the error rate pmore or less statistical iterations are necessary. For larger p the simulation

becomes less expensive whereas for smaller p a high number of statistical iterations is

needed and much of the simulation time goes into gathering enough statistics. Instead of

running many simulations around the range where the gain becomes 1, trying to locate

the threshold directly, we extend the analysis to a range of higher error rates, where the

simulation cost is lower. We just have to make sure that we don’t use data where the fidelity

is already saturated at f̂(p) = 0.5 as shown in figure 2.59. If this is the case, we cannot gain

information about the constant c, but the curve progression is determined by the fidelity of

the unencoded case only, while the encoded case results in complete noise.

Since we use a stochastic error model, we have to do many simulation runs to determine

a single data point in figures 2.58 and 2.61. The standard deviation of the mean fidelity

for the statistical fluctuations are an indicator for the deviation from the true value, but

since we cannot gather an infinite amount of statistics, we can only approximate the true

value. Taking the standard deviation of the mean as the error might underestimate the error:

Figure 2.60 shows an example of the mean fidelity and standard deviation of the mean

depending on the number of stochastic iterations. As one can see the (i+ j)th error interval

indicated by the standard deviation is not necessarily completely included in the ith error

interval, so stopping the iterations at the ith step and taking the standard deviation at that
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Figure 2.58 – Achievable gain by using fault-tolerant quantum error correction: The ratio be-
tween the fidelity with quantum error correction and without quantum error correction is plot-
ted against the single qubit error rate p. Two different algorithm lengths are shown. The data
points are results from numerical simulations, whereas the curves are weighted least squares
fits to the data (using equation (2.133)). The threshold can be determined from the intersection
with the dotted line. The interesting region is framed by the dotted box, which is also mag-
nified in the plot (small frame). A very high precision would be needed to locate the point of
intersection from datapoints only. This high precision can only be obtained by accumulating
very high statistics requiring excessive amounts of computing time. This can be avoided by
running simulations in the higher p region, which is computationally less expensive, and doing
a weighted least squares fit to determine the threshold. The threshold should be independent of
the algorithm length, i.e., the intersection point with the horizontal one axis should be the same
for any length of the algorithm.

point may underestimate the error. That is why for each point in figure 2.61 we always take

a look at the mean fidelity first and make sure that we gathered statistics high enough to be

in an area without high fluctuations and where the mean fidelity is close to the asymptotic

value.

Figure 2.61 summarizes the result of the threshold determination for decoherence errors.

Here the gain is plotted against the single qubit decoherence rate p. This plot contains the

results of three different lengths of the H2k-algorithm, k ∈ {100, 1000, 100000}. The gain

is a direct indicator for the range of parameters, where there is benefit from using quantum

error correction. In this plot, the interesting part is contained on the left side of the plot,

where the gain becomes larger than 1. The points on the right side, which are lower than 1,
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Figure 2.59 – Example of the gain for several parameter values of c (theoretical curves). For
the determination of the constant c, only measurements in the range, where the fidelity of the
encoded case has not yet reached noise saturation, can give information.

are nevertheless useful for the determination of the threshold as described before. But if p
is of this size, the use of quantum error correction is useless, because a non-encoded system

will always perform better. In this case, quantum error correction introduces more errors

than it can correct, even if done fault-tolerantly. The lines in figure 2.61 are fits through all

points of each fixed k H2k-iteration run (see equation (2.133)). This is possible, because we

know the theoretical decrease of fidelity for this algorithm depending on the effective error

rate, for which fault-tolerant approaches guarantee peff = cp2. The result of a weighted

least squares fit gives the unknown parameter c and thus the threshold pthr = 1/c. The in-

tersection of the curves with the g = 1 axis locates the threshold for fault-tolerant quantum

computation. Apparently, the exact intersection point is not easy to identify from the plot,

especially for the short algorithms, because the gain is marginal and barely rises above 1.

Straightforward determination by nested intervals would require a very high resolution in

y-direction and therefore a tremendous amount of statistical runs. By weighted fitting we

eliminate the necessity for a very high resolution. Keep in mind that each point is the result

of many statistical iterations and especially for low values of p the computational effort can

increase dramatically to gather sufficiently high statistics. The computational effort for go-

ing to longer algorithms increases linearly for this simple algorithm. That is why the error

bars for the runs with k = 100000 iterations are large, because the computational costs

prohibit the gathering of very high statistics.
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Figure 2.60 – Mean fidelity and its standard deviation against iteration number in a fault-
tolerantly protected H2k-experiment with k = 100000 and decoherence probability p = 4 ·
10−5: This is an example of how to obtain the fidelity for a single data point in figures 2.58 and
2.61. Our stochastic error model requires many simulation runs to gather enough statistics. We
have to make sure that the value we determine is close to the asymptotic value. The small box is
a magnification of the right part of the larger plot. It shows that taking the standard deviation
of the mean as the error might underestimate the error, because there are still fluctuations: For
example, stopping at iteration number 450 could have underestimated the error, because the
value for the mean fidelity at a higher iteration step, e.g. at iteration 580, could lie outside the
range indicated by the error bars at iteration 450.

The intersection point of the curves with the g = 1 axis should be independent of the

algorithm length as well as the system size (equations (2.133) and (2.134)). Indeed, the

curves of all three fits give almost the same result: They all intersect in one point (and of

course in the trivial point (0,1) ). Weighted least squares fits for three different algorithm

lengths k give the fit results c100 = 191934 ± 2249, c1000 = 186613 ± 2103 and c100000 =
195490 ± 7565, where the errors are the asymptotic standard errors of the least squares fit.

In terms of thresholds those values are pthr100 = (5.21 ± 0.07) · 10−6, pthr1000 = (5.35 ±
0.07) ·10−6 and pthr10000 = (5.12±0.1) ·10−6. The mean value is pthr = (5.23±0.14) ·10−6.

A conservative estimate for the threshold of fault-tolerant quantum error correction is

pthr = (5.2 ± 0.2) · 10−6. (2.135)

If we want to give a safe lower bound for the threshold we can state with confidence that

the threshold is 5.0 · 10−6, so that for any single qubit error rate less than this value we
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Figure 2.61 – Achievable gain by using 7-qubit fault-tolerant quantum error correction to
protect against decoherence errors. The ratio between the fidelities with and without quan-
tum error correction is plotted against the single qubit error rate. Each point corresponds to
a numerical simulation run of the H2k-experiment (k ∈ {100, 1000, 100000}) for each the
quantum error correction case and the unencoded case. The curves are the results of weighted
least squares fits using equation (2.133)). For a single logical qubit the fidelity reaches 0.5 in
the large noise limit, so the maximum gain is 2 in this case. The threshold for fault-tolerant
quantum computation is (5.2 ± 0.2) · 10−6. For smaller values of p quantum error correction
performs better than using unencoded qubits. For values above this threshold there is no ben-
efit from using quantum error correction at all. Apparently, the benefit becomes larger with
increasing algorithm length.

can assure that fault-tolerant quantum error correction will improve the reliability of the

quantum computer.

Correction of decoherence errors From the results of the H2k-experiment, we see that

the gain is marginal for algorithm lengths of k = 1000 and increases for longer algo-

rithms.32 This shows that long algorithms will especially profit from quantum error cor-

rection, while for rather short algorithms quantum error correction does work, but the gain

is rather marginal. Quantum error correction is especially well suited for the protection

of quantum memory over large periods of time. The effort of incorporating fault-tolerant

32The maximum gain is 2 for a single qubit, since the fidelity of a maximally noisy state is 0.5 (see equa-

tion (2.84))
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Figure 2.62 – Gain from using quantum error correction depending on the single qubit error
rate p. Analytical results for various algorithm lengths with the threshold set to 5 · 10−6. The
gain is higher for longer algorithms and the position of the maximum shifts to the left with
increasing algorithm length.

quantum error correction is only justified if there is a need to protect the quantum bit for a

long time period. Otherwise a non-protected qubit will perform only insignificantly worse.

We cannot only tell the position of the threshold but also the position of the optimal working

point, the point where the gain is maximal. It can be derived from the condition

dg

dp
!
= 0. (2.136)

This point, like the threshold, is independent of the system size n. Of course, it shifts with

the length of the algorithm.

Figure 2.62 shows the theoretical prediction of the gain for different algorithm lengths,

assuming a determined threshold of 5 · 10−6. While the maximal gain increases with the

algorithm length and the position of the maximum shifts towards smaller error rates, all

curves intersect in (5 · 10−6, 1).

Our simulation code can now be used to make statements about requirements, limits, and

thresholds and to determine optimal working points for quantum error correction for arbi-

trary quantum algorithms concerning decoherence errors. Yet, we will first use our simula-

tion for the analysis of operational imprecisions, which are often neglected in the analytical

work.
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Correction of operational errors We use the same setup as in the determination of the

threshold for decoherence errors. Our test algorithm is just a sequence of 2k Hadamard op-

erations. These operations involve unitary over-rotations as described in section 2.2.1. We

compare the unencoded case, where we know that the fidelity decays like (equation (2.88))

f(k) =

(
1 + e−

9
2
σ2k

2

)n

, (2.137)

with k being the number of H2-iterations, n the number of qubits and σ the standard devi-

ation of the Gaussian distributed over-rotations.

With the assumption that fault-tolerant quantum error correction will also lead to an effec-

tive decrease of operational errors according to33

σeff = cσ2, (2.138)

we can again look at the gain g, i.e. the ratio of the fidelity of the encoded case to the fidelity

of the unencoded case,

g(σ) =

(
1 + e−

9
2
(cσ2)2k

1 + e−
9
2
σ2k

)n

. (2.139)

Here we choose k ∈ {100; 1000}. Figure 2.63 shows the result of this evaluation. The

threshold for operational errors σthr = 1/c can be derived from the fit parameter c. The

numerical simulations give the result c100 = 23.19 ± 0.1 and c1000 = 23.18 ± 0.09 for runs

with 100 and 1000 H2-iterations, respectively. For the threshold this means that σ has to be

smaller than

σthr = 0.0431 ± 0.0002 (2.140)

for fault-tolerant quantum error correction to be useful. If σ is larger than σthr there is no

possibility to get an improvement by using quantum error correction. A Gaussian width of

σthr = 0.0431 ± 0.0002 corresponds to about 2.5◦, which is a rather large value.34

Figure 2.63 clearly shows the benefit from quantum error correction for the correction of

Gaussian distributed unitary operational imprecisions. For all points above one, running

the algorithm with quantum error correction performs better than using unencoded qubits.

Even for relatively short algorithm lengths the gain that comes from using quantum error

correction is high.35 Figure 2.63 does not only give us the threshold, but we can also identify

33Section B makes clear why this must be the case. Also, assuming a different functional relation does not

lead to an adequate fit.
34For comparison, ion trap quantum computation has to deal with pulse area errors (and therefore operational

over-rotations) of about 0.007(3) [Knill et al., 2008].
35Note, that the maximum gain is 2 in our case, because the completely random state results in a fidelity of

0.5. On the left hand side of figure 2.63 the gain is one, because in the absence of errors, using quantum

error correction makes no difference at all, and on the far right it becomes 1 again, when a maximally noisy

result (fidelity 0.5) is divided by another maximally noisy result.
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Figure 2.63 – Gain by using quantum error correction to correct for operational imprecisions
for a sequence of 100 and a sequence of 1000 H2-iterations depending on the error parameter
σ, i.e. the standard deviation of Gaussian distributed over-rotations. Quantum error correction
reduces the error parameter σ to an effective error parameter σeff = cσ2. The constant c is
determined from a least squares fit to the data points (using equation (2.139)). It shows that
even for short algorithms the benefit from quantum error correction is high. The gain is much
higher compared to the gain by protecting against decoherence. A similar threshold can be
derived for the correction of operational errors.

the regions, where the benefit from quantum error correction becomes large. The position

of the maximal gain can be determined from equation (2.139), once we have determined

the threshold σthr or the constant c.

Correction of decoherence and operational errors For algorithms of the same length

the gain from the correction of operational errors is much higher than the gain from the cor-

rection of decoherence errors. That means that quantum error correction is especially well

suited for the correction of operational errors. In other words: If operations on qubits have

to be done with a previously unattainable precision, it is possible to use logical operations

on encoded states to achieve effectively more precise quantum operations than the physical

apparatus is able to deliver for a single qubit. Quantum error correction is also well suited

for the protection of quantum memory, but the benefit is only large for the protection over

long periods of time.

95



CHAPTER 2. GATE LEVEL SIMULATIONS

Quantum error correction of decoherence errors and operational errors: gain (100 H2)
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Figure 2.64 – Assessment of fault-tolerant quantum error correction with Steane’s 7-qubit
quantum error correction code for simultaneous decoherence and operational errors. The gain
is plotted against the single qubit decoherence probability p and the operational error param-
eter σ. Since 100 H2 is a rather short algorithm the gain is not very large. Such a plot would
exhibit another structure for other algorithms, where the ratio between idling qubits and qubits
which are operated on is different. Nevertheless, this plot shows some interesting character-
istics: It tells us something about the “combined” threshold. Even if we are above the single
qubit error threshold we can benefit from quantum error correction for a certain σ range (lower
edge). But if σ is large (lower right corner), quantum error correction fails, as well as for very
small sigma values (lower left corner), where it is advisable, not to use quantum error cor-
rection. The 1-isoline tell us when there is benefit from using quantum error correction. We
have drawn another isoline for g = 1.05 to indicate a good working range for quantum error
correction.

With our simulation package we are now able to quantify the effect of fault-tolerant quan-

tum error correction for any parameter range. Thus, we can for example quantify optimal

working points in the presence of both decoherence and operational errors. Figure 2.64

shows how Steane’s 7-qubit code performs for an algorithm of short length while suffering

from errors of certain magnitudes. Again, the message is that in the presence of operational

errors and decoherence errors, one can benefit from using quantum error correction, al-

though the single qubit decoherence error rate might be above threshold. The improvement

from the protection against operational errors can outweigh the loss caused by decoherence

errors for a certain range of parameters. With numerical simulations we can determine a

sort of combined threshold and optimal working ranges.
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Correction of systematic operational errors So far we have used Gaussian distributed

operational imprecisions with zero mean μ (equation (2.77)). We can ask the question,

what happens if μ �= 0, i.e., an experimental device would systematically over-rotate each

operation by a small deviation. For this analysis we set the single qubit decoherence proba-

bility p to zero and concentrate on unitary operational errors only. Again, the algorithm we

examine is just a sequence of 200 Hadamard operations. We set up two different scenarios:

1. μ �= 0, σ = 0, p = 0
Here, there are only systematic errors, while the statistical variance is set to zero. For

the unencoded qubit this gives a fully deterministic development of the fidelity (which

just oscillates while accumulating an additional rotation angle after each operation).

For the quantum error correction case we still have to gather a certain amount of

statistics, although p and σ are set to zero, because the quantum error correction

scheme still uses probabilistic measurements.

2. μ �= 0, σ = 0.03, p = 0
This is a realistic case, where the statistical variance is still present, while the system

suffers from an additional systematic error. The value for σ has been chosen to lie

below the previously determined fault-tolerant threshold at a suitable working point

(see figure 2.63).

The results of the numerical simulations are plotted in figure 2.65. Each point is the result

of a simulation run of 100 H2-iterations. The fidelity is plotted against the systematic

operational deviation μ. For the unencoded cases the fidelity drops rapidly, while for the

cases with quantum error correction the fidelity stays high. The increase at values greater

than μ = 0.025 is due to the oscillatory behavior where after 100 H2 operations the over-

rotated state rotates closer to the expected value again.

Figure 2.66 gives another view on the same data. Here the gain, i.e. the ratio between the

achievable fidelity with and without quantum error correction is plotted against the system-

atic error μ. The plot shows that quantum error correction always gives an improvement

when used to correct for systematic errors, independent of any threshold. In a real quantum

computation device systematic errors are probably more easily identified and compensated

for than going to quantum error correction schemes. Nevertheless, if some kind of quantum

computing architecture exhibits systematic over-rotational errors, quantum error correction

can overcome this obstacle. Systematic over-rotational errors are not an invincible problem

for quantum error correction, as quantum error correction deals with this sort of problem

quite well.

Quantum teleportation with fault-tolerant quantum error correction An evaluation

of the performance of quantum error correction for a realistic scenario, namely quantum

teleportation [Bennett et al., 1993], has been done using the JUMPIQCS simulation pack-

age. We analyze the quantum teleportation algorithm that is shown in figure 2.67. The main

resource used in quantum teleportation is the entangled Bell pair. As such, our analysis is
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Figure 2.65 – Use of quantum error correction to correct for systematic over-rotations. Fideli-
ties with and without quantum error correction for the parameters μ �= 0, σ = 0, p = 0 and
μ �= 0, σ = 0.03, p = 0. The use of quantum error correction always gives better results than
dealing with unencoded qubits.

an evaluation of the preservation of quantum entanglement between two encoded logical

qubits. Quantum teleportation uses only gates of the Clifford group, so that we can use

fully fault-tolerant encoded quantum gate operations.

We initialize the original qubit in the equal superposition state 2−1/2 (|0〉 + |1〉) and com-

pare this to the resulting teleported state. A first analysis of the quantum teleportation

algorithm shows that the algorithm itself is so short, that quantum error correction does not

give any significant benefit at all. Theoretical descriptions of quantum teleportation usually

do not consider any errors. What is usually neglected is that the time during which the Bell

state qubits are being spatially separated, as well as the time to send the classical informa-

tion, can become significantly large. We name these times travel-time and message-time.

In a real world experiment the qubits, the original one as well as the qubits of the Bell state,

will suffer mainly from decoherence errors. Since no operations have to be done during

the travel-time and the message-time (except those of the quantum error correction steps),

this is mainly a problem of stabilizing quantum memory. The effect of protection against

operational errors is negligible.

It takes a certain time to move the target qubit from the initial to the final position. Going

to quantum error correction, there are two different scenarios conceivable. The travel-time

is divided into discrete timesteps.
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Figure 2.67 – Quantum teleportation circuit: After the creation of the Bell state, both qubits of
the Bell pair are spatially separated and used as a resource to transmit quantum information
over a classical channel. The separation of the qubits takes some time (travel-time) as well
as the transmission of the classical information about the measurement results (message-time).
During these times the (logical) qubits should be protected by quantum error correction.

1. In the first scenario the correction measures are taken in between each timestep. Al-

though each correction step takes many timesteps, the qubit does not move closer to

the final destination during correction. This can be thought of as flying qubits which

are relayed from station to station, where at each station a quantum error correction

step can be performed.
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Figure 2.68 – Relative speedup for the JUMPIQCS code using quantum error correction for
a system size of 26 qubits. The processors have been accessed in Virtual Node mode on the
JUGENE system, i.e., each processor is assigned to one MPI task.

2. The second case describes a qubit, where the whole apparatus is moving, so that

the correction steps can be done simultaneously while the qubit moves closer to the

destination. Here quantum error correction will yield better results.

We did a comparison using the first scenario for the parameter set p = 10−6, σ = 0,

travel-time = 10000 and message-time = 1000, each for the unencoded case and for the

protected case using Steane’s 7-qubit code. The non-encoded case gives a mean fidelity of

0.9796 ± 0.0005 using m = 100000 statistical iterations. For the quantum error correction

case that uses 3 logical qubits and that has to work on a state vector of a 26 qubit system,

we were not able to gather such high statistics. Nevertheless, on the JUGENE system using

2048 processors and a runtime of about 300 hours we could gather m = 100 statistical iter-

ations for this large system and very long algorithm length (considering the travel-time of

10000 timesteps and a correction step of about 1500 timesteps each time). The result is that

all potential errors during these m = 100 iterations could be perfectly corrected, so that the

resulting fidelity stays constantly at one. However, this statement has to be regarded cau-

tiously. Apparently, higher statistics may be gathered, once further computational resources

are available, and so we focus on scalability and efficiency of the simulation. After apply-

ing basic compiler optimizations along with platform specific adjustments, a performance

analysis reveals an almost linear relative speedup up to 4096 processors before the curve

begins to flatten (see figure 2.68). More simulation runs with various sets of parameters
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will be performed in the future.

In summary, we can say that quantum error correction can improve the teleportation pro-

cess by protecting an entangled encoded Bell pair. However, for relatively short travel- and

message-times the fidelity of unprotected qubits stays close to one, so that quantum error

correction is simply unnecessary. For longer travel- and message-times quantum error cor-

rection becomes more and more important for the protection of idling memory qubits as

expected. This aspect is often neglected in theoretical analyses of teleportation and must be

examined further.

Grover’s search algorithm using fault-tolerant quantum error correction The

JUMPIQCS package has also been used to analyze the behavior of Grover’s search al-

gorithm (see section 2.1.2.2) when including quantum error correction. The details can be

found in [Peschina, 2008]. Several approaches have been studied:

1. The first approach is motivated by the fact, that the ancilla qubit plays a major role in

Grover’s algorithm (see sections 2.1.2.2 and 2.2.4). Therefore, only this ancilla qubit

is encoded and protected by Steane’s 7-qubit code, while the other qubits remain

unencoded. With this approach, we can handle a much larger search space, since

it requires only logN + 7 + 5 qubits to deal with a search space of N elements;

logN qubits are needed for the storage of the search indices, 7 qubits for the storage

of the encoded ancilla qubit and 5 additional ones for the syndrome extraction of

the quantum error correction scheme. On the JUGENE system this limits the search

space to N = 228 elements.

2. The second approach uses a full encoding of all qubits of the system, i.e., for the same

search space of size N we need 7 logN + 7 + 5 qubits. With the current status of the

JUGENE system36 the memory limit would be reached at N = 24.

Unfortunately, it turns out that “it is not possible to correct the whole algorithm by only sta-

bilizing the ancilla qubit” [Peschina, 2008]. This result refutes our initial assumption that it

might be enough to protect the ancilla qubit to gain a benefit from quantum error correction.

Therefore, only a full encoding of all involved qubits can lead to an improvement.

Concerning the analysis of the fully encoded case, where all qubits are encoded using

Steane’s 7-qubit code, one has to specify the implementation of the oracle (figure 2.30).

Since a fully fault-tolerant π/8-gate has not yet been implemented into JUMPIQCS, that

would be required to decompose the CnNOT operation into elementary single- and two-

qubit gates, we have decided to take another approach. This is important for the conclu-

sions drawn from this analysis, so we emphasize this issue here. The procedure is to do an

ideal decoding step previous to the CnNOT operation followed by an ideal encoding step.

Ideal means that the decoding and encoding is done completely error free. Nevertheless this

36JUGENE is currently being upgraded. The 16 rack system with 65536 processors and 32 TB of memory

will be upgraded to 72 racks and a total memory size of 144 TB.
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method involves a sort of passive error correction. Although no correction step is done, a

projection of spurious amplitudes back into the code space happens with each decoding/en-

coding step. This might have a non-negligible effect on the outcome. The effect of this

passive stabilization has been estimated by comparing this to the case with active stabiliza-

tion steps, i.e. syndrome extraction and correction. The differences detected are marginal,

so we assume that a great part of the improvement can be related to the passive stabilization.

Simulation runs for a fully encoded system have been done for a search space of N = 4,

which equals to a total system size of 26 qubits.

The conclusion drawn from this analysis is that fault-tolerant quantum error correction is

able to improve the performance of Grover’s search algorithm. But this is not possible by

stabilizing the ancilla qubit only. A full encoding of all qubits is required, thus reducing

the practical problem sizes enormously. The benefit from using quantum error correction

applied to Grover’s search algorithm is marginal for the cases that have been examined.

This is not surprising, because a Grover search of N = 4 elements involves just one Grover

iteration to find the solution (see equation (2.43)). Thus, the algorithm length is minimal.

As we stated previously, quantum error correction gives more benefit when going to longer

algorithms. For larger search spaces more Grover iterations have to be done and so the al-

gorithm length increases, but for now, we are limited by the available memory resources, so

that we cannot study large search spaces with a full encoding of all qubits that are involved.

For details of this analysis refer to [Peschina, 2008].

2.3.3.3 Conclusion

For the cases that we have studied, the simulation results tell us how good the performance

of a useful quantum computer has to be. Even with the limited resources of the quantum

computation devices of the near future it might be helpful to use quantum error correction

both for the storage of quantum information as well as for doing computations.

We have determined a threshold for fault-tolerant quantum computation which is pthr =
(5.2 ± 0.2) · 10−6. Of course, an error rate of 5 · 10−6 is beyond the scope of today’s

quantum computation devices and for the near future this is surely an ambitious goal to

endeavor, but there is no physical limitation that prohibits to achieve this threshold.37 State-

of-the-art ion trap quantum computation can currently perform initialization, readout and

single qubit operations with error rates of the order 10−3 and two qubit operations with

error rates of 10−2 to 10−1 [Häffner et al., 2008].

If the single qubit error probabilities are above the threshold for fault-tolerant quantum error

correction, there would be no sense in doing quantum error correction at all, because all

attempts will necessarily introduce more errors than quantum error correction can correct.

37For comparison, in classical computation the error rates today are considerably (orders of magnitudes) lower

than 10−6.
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Yet, this statement can be relaxed considering the ability of quantum error correction to

protect against operational imprecisions by doing operations on encoded qubits.

Assuming that one can reach the threshold, fault-tolerant quantum error correction is es-

pecially well suited for the protection of quantum bits over long periods of time, e.g. in

quantum memory. For the protection over a short timeframe (� 1000 gate operations) we

cannot recommend using quantum error correction without reservation, because the benefit

does not justify the cost, although using fault-tolerant quantum error correction does not de-

grade the fidelity of the protected qubit. Nevertheless, the improvement by using quantum

error correction is only marginal.

The simulation results suggest that quantum error correction is especially well suited for the

correction of operational imprecisions. There is also a fault-tolerant threshold for this kind

of errors, that we can quantify as σthr = 0.043. With this we can eliminate doubts about the

performance of quantum error correction under unitary over-rotational errors. In disagree-

ment with [Hill and Viamontes, 2008], who made the statement that quantum error correc-

tion was not able to correct unitary over-rotations, and in consequence a realistic quantum

computer would never be able to run Shor’s algorithm, we could show that quantum er-

ror correction is indeed well suited for the correction of operational unitary over-rotation

errors.38

Another result of our simulations is that quantum error correction can also be used to protect

against systematic over-rotational errors. This is a problem that appears in many setups, for

example it is prominent in NMR quantum computation devices.39 At least in our examples

studied, we show that quantum error correction can be used to correct systematic over-

rotations independent of any threshold.

Although we have only analyzed a limited set of algorithms using JUMPIQCS, we have

developed a simulation package that can, in principle, be used to make statements about re-

quirements of future quantum computer architectures, to calculate limits and thresholds and

that can be applied to arbitrary quantum algorithms to determine optimal working points

for quantum error correction.

Remember that all statements apply to the general assumptions of our error model. For

a specific device in the lab one may tailor quantum error correction schemes to protect

against specific errors, so that this might allow a benefit from quantum error correction

even at higher error rates. Also going to higher levels of concatenation as described in

section 2.3.3 can also improve the performance significantly, provided that the necessary

amount of qubits will become available.

38They do not seem to have used a fully fault-tolerant approach, which probably explains their contradicting

result.
39Yet, NMR quantum computer devices will probably not scale up to large enough system sizes [Hughes,

2004] to incorporate quantum error correction. Here other techniques to correct for systematic errors are

used, e.g. composite pulses.
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Note, that there are also other paradigms of quantum computation beyond the quantum gate

model: Adiabatic quantum computation [Farhi et al., 2000] for example seems to incor-

porate some intrinsic stability against errors. Another theoretical proposal is topological

quantum computation that uses anyons for quantum computation [Kitaev, 2003]. But up to

now this is purely theoretical and has not yet been realized in the lab. The most common

quantum computational model today still relies on the quantum gate model. For this model

and the analyzed cases, we have shown under which conditions quantum error correction

can give a benefit.
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Chapter 3

Dynamic Simulations of Ion Trap
Quantum Computers

...we never experiment with
just one electron or atom or
small molecule.

(Erwin Schrödinger, 1952)

3.1 Theory of Ion Trap Quantum Computation

At this time the pursuit for the best quantum computing technology is not yet decided. Al-

though various technologies are competing and each has its own advantages and drawbacks

[Hughes, 2004], one of the most advanced candidates for realizing a scalable quantum

computer is ion trap quantum computation [Monroe et al., 1995; Wineland et al., 1998;

Leibfried et al., 2003a]. Certainly, it fulfills the criteria required for the realization of a

quantum computation device [DiVincenzo, 2000]:

• It has well defined representations of qubits which are scalable.

• Fiducial initial states can be prepared.

• The decoherence time is long compared to the gate operation time.

• A universal set of quantum gates can be realized.

• A qubit specific measurement of the output is possible.

For comparison, table 3.1 gives an estimate about the decoherence times of various tech-

nologies (taken from [Nielsen and Chuang, 2000]).1

1The decoherence time indicates the time period until a quantum state has completely decayed into a classical

state. It should not be confused with the threshold determined in section 2.3.3.2, which indicates how many

operations can be done until a single qubit error happens.
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System τQ [s] τop [s] nop

Nuclear spin 10−2 - 108 10−3 - 10−6 105 - 1014

Electron spin 10−3 10−7 104

Ion trap (In+) 10−1 10−14 1013

Electron - Au 10−8 10−14 106

Electron - GaAs 10−10 10−13 103

Quantum Dot 10−6 10−9 103

Optical cavity 10−5 10−14 109

Microwave cavity 100 10−4 104

Table 3.1 – Rough estimates for decoherence times τQ, operation times τop for a quantum oper-
ation, and the maximum number of operations nop = τQ/τop. As ion trap quantum computation
exhibits good decoherence times, it is a good candidate for handling quantum information.

Figure 3.1 – Sketch of linear Paul trap. Ions are confined to the trap axis by an oscillatory
potential. The end caps provide static confinement along trap axis.

We will give a brief overview of how qubits are realized, how initialization, control and

readout on ion trap quantum computers work and how the mentioned DiVincenzo criteria

are met. For comprehensive reviews refer to [Wineland et al., 1998; Leibfried et al., 2003a;

Häffner et al., 2008].

Physical apparatus An ion trap quantum computer uses a linear Paul trap [Paul, 1990]

to confine charged particles in three dimensions. Since a confinement with static elec-

tric fields in three dimensions is not possible according to Earnshaw’s theorem [Earnshaw,

1842], the particles are trapped by oscillating radiofrequency fields. Usually four cylin-

drical rod electrodes are used (figure 3.1) where diagonally opposite rods are driven by an

oscillating voltage. This gives rise to a ponderomotive potential that confines the ions in

radial direction. Additionally, DC electrodes at both ends of the trap confine the motion of

the ions in axial direction. For the equations of motion refer to [Wineland et al., 1998]. For

our studies it is sufficient to realize that the ions are confined by a harmonic pseudopoten-

tial in the radial direction and a static harmonic potential in the axial direction. The trap
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frequency in radial direction is chosen to be much larger than in axial direction forcing a

collection of cooled ions to line up along the axis of the trap. The non-equidistant spacings

of the equilibrium positions are defined by a balance between mutual Coulomb repulsion

and external force (see [Sasura and Buzek, 2002] for details). Nevertheless, to a good ap-

proximation, the result is a linear string of ions in a harmonic potential, where the ions can

be addressed individually by well tuned and directed laser beams. In our simulations we

will concentrate on the axial center of mass motion of the linear ion string for which the

harmonic approximation is valid.

Atomic structure of qubit ions Quantum computation with trapped ions has been real-

ized with various choices of ions, e.g. beryllium [Monroe et al., 1995; Wineland et al., 1998]

or calcium [Nägerl et al., 1998; Häffner et al., 2008]. The main criterion for a good candi-

date is a long decoherence time. This can be achieved by different techniques. While the

NIST group in Boulder [Monroe et al., 1995; Wineland et al., 1998] uses Be+-ions, where

the qubits are encoded via hyperfine transitions and qubits are manipulated via Raman tran-

sitions, the ion of choice that the Innsbruck group uses is 40Ca+ with metastable states and

optical transitions [Nägerl et al., 1998; Häffner et al., 2008]. More recently, experiments

with 43Ca+ are done [Benhelm, 2008], which use the ground state hyperfine structure. This

has the advantage of about a thousand times longer decoherence times, and it is less sus-

ceptible to environmental influences. As an example, figure 3.2 shows the level scheme of

the levels populated during an experiment with 40Ca+ [Gulde, 2003]. The levels S1/2 and

D5/2 are associated with the logical states |0〉 and |1〉, respectively. The metastable state

D5/2 has a long lifetime of about 1 s [Gulde, 2003]. Optical pumping on the S1/2 ↔ P1/2

transition is used for Doppler cooling of the ion and for the initialization in the S1/2 ground

state. The existence of another metastable state, D3/2, requires another pumping laser at

866 nm. A laser at 854 nm can be used to repump any D5/2 population to the S1/2 state.

The measurement of the qubits at the end of a quantum algorithm can be performed with

a fidelity of 99.9% [Gulde, 2003] by measuring the fluorescence while driving the S1/2 ↔
P1/2 and D3/2 ↔ P1/2 transition at 397 nm and 866 nm. If the ion is in the P1/2 state,

fluorescence will be detected, whereas the D5/2 state will remain dark.

So far, the DiVincenzo criteria for well defined qubits, initialization, readout and coher-

ence are fulfilled. Next, we will explain how explicit control over the system for doing

quantum operations can be exercised. In the following we will treat the ion trap system as

harmonically trapped two-level atoms. We first describe the situation for a single ion and

later on extend the model to the description of multiple ions, while limiting the model to

the collective center-of-mass motion only.

Hamiltonian of the ion trap system with laser-ion interaction The simplified model of

a single two level system in a harmonic potential addressed by a laser field is described by
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Figure 3.2 – Atomic energy levels of 40Ca+ with Zeeman substructure. The transitions indi-
cated by solid arrows are driven by laser radiation during the experiment. The levels S1/2

and D5/2 are associated with the logical states |0〉 and |1〉. We use the standard atomic level
notation n2S+1LJ , where n is the principal quantum number, S is the spin angular momentum,
L is the orbital angular momentum and J is the total angular momentum.

the Hamiltonian [Leibfried et al., 2003b]

H(t) =

H0︷ ︸︸ ︷
p2

2m
+
m

2
ω2

t x
2︸ ︷︷ ︸

harmonic oscillator

+
1

2
�ωaσz︸ ︷︷ ︸

spin part

+

H1︷ ︸︸ ︷
1

2
�Ω

(
σ+ + σ−) (ei(kx−ωlt+φ) + e−i(kx−ωlt+φ)

)
︸ ︷︷ ︸

laser-ion interaction

, (3.1)

with p and x being the momentum and position operator and m being the mass of the

ion. The trap frequency in axial direction is denoted by ωt, and ωa is the atomic transition

frequency. The symbol σz denotes the Pauli-Z matrix and σ± are the atomic raising and

lowering operators, the linear combination of the Pauli matrices σ± = 1
2
(σx ∓ iσy).

2 The

strength of the laser-ion interaction is described by the coupling constant Ω, which is called

the Rabi frequency. The parameters of the laser radiation are the wave number k, the laser

frequency ωl, and the phase of the laser φ.

While this Hamiltonian can be numerically solved, as we will explain in section 3.2, it is

beneficial for the understanding of the system to have a look at an approximative analytical

description. We follow the work presented in [Leibfried et al., 2003b]. The ion’s external

2Note, that σ+ is defined with a minus and vice versa. This is due to our previous definition (equation (2.1))

of |0〉 =̂
(

1
0

)
and |1〉 =̂

(
0
1

)
, so that σ+ |0〉 = |1〉 and σ− |1〉 = |0〉.
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degrees of freedom, i.e. harmonic oscillations, can be described quantum mechanically by

introducing the raising and lowering operators a† and a with

x =

√
�

2mωt

(
a† + a

)
, (3.2)

p = i

√
�mωt

2

(
a† − a

)
, (3.3)

and [a, a†] = 1, so that

H0 = �ωt(a
†a+

1

2
) +

1

2
�ωaσz. (3.4)

The expression
√

�/(2mωt) describes the size of the ground state wave function and we

introduce the Lamb-Dicke parameter

η = k

√
�

2mωt

, (3.5)

which describes the relation between the laser wavelength and the size of the ground state

wave function.3 With this notation the laser-ion interaction term of the Hamiltonian can be

written as

H1 =
1

2
�Ω(σ+ + σ−)

(
ei(η(a†+a)−ωlt+φ) + e−i(η(a†+a)−ωlt+φ

)
. (3.6)

Several approximations are applied4 to simplify this expression:

1. Assuming we are in the Lamb-Dicke regime η � 1, i.e., that the extension of the

atomic wave packet is much smaller than the wavelength of the transition, we can

make a first order expansion in η and get

H1 = �Ω(σ+ + σ−) [(1 + iη(a† + a))ei(−ωlt+φ)

+(1 − iη(a† + a))e−i(−ωlt+φ) ] +O(η2).
(3.7)

2. Going to the interaction picture (or Dirac picture) with U0 = e−
i
�

H0t and HI =
U †

0H1U0, we get the time-dependent operators

σ+(t) = σ+e
iωat, (3.8)

σ−(t) = σ−e−iωat, (3.9)

a†(t) = a†eiωtt, (3.10)

a(t) = ae−iωtt. (3.11)

Doing the rotating wave approximation, i.e. neglecting the rapidly oscillating terms

[Leibfried et al., 2003b], the interaction Hamiltonian HI can be further simplified.

3If the direction of the laser beam is at an angle β to the oscillation axis, the Lamb-Dicke parameter is defined

as η = k cos β
√

�/(2mωt).
4These approximations can be applied in any particular order.
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3. Assuming that the laser is tuned to resonant transitions, i.e.

ωl − ωa = nωt, (3.12)

with n ∈ {−1, 0, 1} only (neglecting higher order transitions), the interaction Hamil-

tonian HI can be simplified to three simple expressions.

The final interaction Hamiltonian is given by the following equations:

1. For ωl = ωa, i.e., when the laser is tuned to the atomic transition frequency:

Hcar
I =

1

2
�Ω(σ+e

iφ + σ−e−iφ). (3.13)

This is called a carrier transition.

2. For ωl = ωa − ω:

H rsb
I =

1

2
�ηΩ(aσ+e

iφ̂ + a†σ−e−iφ̂), (3.14)

with φ̂ = φ + π
2
. This is called the first red sideband transition. The atom absorbs

the laser radiation, which is tuned to the atomic transition frequency reduced by the

energy of a vibrational quantum. The atom interacts with the phonon mode and

changes the vibrational quantum number. This Hamiltonian is also well known from

cavity quantum electrodynamics as the Jaynes-Cummings Hamiltonian [Jaynes and

Cummings, 1963].

3. For ωl = ωa + ω:

Hbsb
I =

1

2
�ηΩ(a†σ+e

iφ̂ + aσ−e−iφ̂), (3.15)

with φ̂ = φ + π
2
. Here the excitation process is accompanied by an increase of the

vibrational quantum number and it is termed the first blue sideband excitation. This

Hamiltonian is also named anti-Jaynes-Cummings Hamiltonian.

Figure 3.3 visualizes these three cases.

Single qubit gates If the laser is driven with the resonance frequency of the atomic tran-

sition, ωl = ωa, the qubit state of the illuminated ion is rotated according to

Rcar(θ, φ) = e−
i
�

Hcar
I t = e−i θ

2
(σ+eiφ+σ−e−iφ), (3.16)

where the rotation angle θ is given by Ωt and the axis of rotation is defined by φ. If we

choose φ = 0, this results in

R(θ, 0) = e−i θ
2
σx = Rx(θ), (3.17)

which is a rotation around the x-axis. Choosing φ = π/2 gives

R(θ,
π

2
) = e−i θ

2
σy = Ry(θ), (3.18)
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Figure 3.3 – Energy levels for a two-level ion in a harmonic potential. The notation |q, n〉 is
used for a qubit with the internal state |q〉 and a vibrational quantum number of n. A carrier
transition changes just the occupation of the internal atomic levels. A blue sideband excitation
simultaneously increases the vibrational phonon number, whereas a red sideband excitation
decreases the phonon number.

a rotation around the y-axis. Rotations around the z-axis can be decomposed into rotations

around the other two axes.5 Thus, any arbitrary single qubit operation can be done with ion

trap quantum computation.

Rabi frequencies The coupling strengths will be varying depending on the detuning ωl −
ωa, and therefore on the coupling of certain internal and motional states according to the

interaction Hamiltonian. We use the notation |q, n〉 for a qubit with the internal state |q〉
and vibrational quantum number n. The transitions from |0, n〉 to |1, n+ s〉 take place with

the Rabi frequencies [Leibfried et al., 2003b]

Ωn,n+s = Ωn+s,n = Ω| 〈n+ s| eiη(a†+a) |n〉 |

= Ωe−
η2

2 η|s|
√
n<!

n>!
L|s|

n<
(η2),

(3.19)

where n< (n>) is the lesser (greater) of n+s and n, and Lα
n(X) is the generalized Laguerre

polynomial

Lα
n(X) =

n∑
m=0

(−1)m

(
n+ α
n−m

)
Xm

m!
. (3.20)

The interesting cases for ion trap quantum computation are:

Ωn,n = Ωe−
η2

2
η
1≈ Ω, (3.21)

5The error model introduced in section 2.2.1 uses a decomposition of general rotations into rotations around a

different pair of axes, namely the y-axis and the z-axis. Therefore, the error model does not directly resemble

errors occurring in ion trap quantum computation, where each rotation is decomposed into rotations around

the x-axis and the y-axis.
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(a) red sideband (b) blue sideband

Figure 3.4 – Coupling strengths of carrier and sideband transitions. Sideband transitions are
a factor of η (equation (3.5)) weaker than carrier transitions. Furthermore, the coupling of the
sideband transitions are dependent on the phonon number.

and

Ωn,n+1 =
√
n+ 1ηΩe−

η2

2
η
1≈ √

n+ 1ηΩ. (3.22)

This means that the sideband transitions are a factor of η weaker and therefore slower than

the carrier transition. Furthermore, the carrier transition coupling is independent of the

number of phonons, whereas the strength of the sideband transitions are sensitive to the

phonon number (see figure 3.4) . This is important for the realization of the composite

pulse CNOT gate (see below).

We have assumed that the laser will be exactly on resonance and that Rabi oscillations take

place that change the population of the two resonant levels periodically. However, if there is

a detuning δ from any resonant transition, this will result in incomplete population transfers

with lower amplitudes

Aδ =
Ω2

n,n+s

δ2 + Ω2
n,n+s

(3.23)

and higher frequencies

fδ =
√
δ2 + Ω2

n,n+s (3.24)

[Gulde, 2003].

Sideband rotations Rotations can also be done on the sideband, i.e., driving the laser

with the atomic frequency plus or minus the energy of the vibrational mode. A rotation on

the red sideband is described by

Rrsb(θ, φ) = e−
i
�

H rsb
I t = e−i θ

2
(σ+aeiφ+σ−a†e−iφ), (3.25)
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where the rotation angle θ is now defined by θ =
√
n+ 1ηΩt, and a blue sideband rotation

can be written accordingly as

Rbsb(θ, φ) = e−
i
�

Hbsb
I t = e−i θ

2
(σ+a†eiφ+σ−ae−iφ). (3.26)

Two-qubit operations (CNOT gate) The remaining DiVincenzo criterion that must be

met is the possibility to do any unitary quantum operation by having a universal set of gates

(see section 2.1.1). It has already been shown how single qubit rotations can be realized. For

universal quantum computation it is sufficient to show that an ion trap quantum computer

can perform a CNOT operation as well. Ion trap quantum computation became popular,

when [Cirac and Zoller, 1995] proposed how to perform a CNOT gate with ions in a Paul

trap.

First, we will briefly outline the original proposal by [Cirac and Zoller, 1995] and afterwards

we will show how to realize a CNOT gate with “composite pulses”.

In the Cirac-Zoller scheme the ions are coupled through a common vibrational phonon

mode. Interactions between any two of the ions within the string are possible by transferring

the quantum state information of any qubit to the vibrational mode of the so called phonon

bus. As this vibration is common to the whole string of ions, two (distant) qubits in the

string can interact via this phonon bus. The coupling between electronic and motional

degrees of freedom can be accomplished by driving sideband transitions as described.

The precondition for the Cirac-Zoller CNOT gate is a well defined vibrational state. Usu-

ally the ions are cooled to the quantum motional ground state, i.e., the vibrational quantum

number is 0. This scheme also requires an auxiliary third level that can be addressed indi-

vidually (see figure 3.5). The Cirac-Zoller scheme suggests the following steps:

1. A red sideband π-pulse on the first ion will move any population from the |1, 0〉 state

to the |0, 1〉 state.6 If the ion was in the |0, 0〉 state the laser pulse would not change its

state. The effect is a mapping of the internal state of the ion to the external motional

degree of freedom.

2. The motional state is coupled to the target ion by another red sideband pulse on the

second ion, but this time a 2π-pulse is done between the |0, 1〉 state and an auxiliary

level |a, 0〉. While the state |0, 1〉 acquires a phase7 of −1, the states |0, 0〉, |1, 0〉 and

|1, 1〉 are not affected, because there are no levels to which they can couple with this

transition energy.

3. Another red sideband π-pulse on the first ion, maps the vibrational state back to the

internal state of the first ion.

6Depending on the phase φ, i.e. on the rotation axis, the state may acquire a global phase, e.g. −i for a rotation

around the x-axis (φ = 0)
7This creates a significant local phase difference.
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(a) First ion or control qubit:

mapping to vibration.

(b) Second ion or target qubit:

conditional phase acquisi-

tion

(c) First ion or control qubit:

mapping from vibration to

ion

Figure 3.5 – Cirac-Zoller scheme for a controlled phase gate. The internal state of the control
ion is mapped to the vibrational quantum state (a), the target qubit acquires a phase flip (b)
conditioned on the vibrational mode and the motion is mapped back to the control ion (c).
Enclosed between two π/2-carrier rotations on the target qubit this gives a controlled-NOT
gate.

With the notation where the first factor of the tensor product denotes the first ion, the second

factor the second ion and the third factor the vibration, eventually, starting with the different

basis states, we have done the evolution

|0〉 |0〉 |0〉 → |0〉 |0〉 |0〉 → |0〉 |0〉 |0〉 → |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 → |0〉 |1〉 |0〉 → |0〉 |1〉 |0〉 → |0〉 |1〉 |0〉
|1〉 |0〉 |0〉 → −i |0〉 |0〉 |1〉 → i |0〉 |0〉 |1〉 → |1〉 |0〉 |0〉
|1〉 |1〉 |0〉 → −i |0〉 |1〉 |1〉 → −i |0〉 |1〉 |1〉 → − |1〉 |1〉 |0〉.

(3.27)

That is, if the control qubit is set to 1 the target qubit is subject to a phase flip. To make

a controlled-NOT from this controlled phase gate, remember that bit flips can be described

as phase flips in the Hadamard rotated basis, and therefore enclosing this sequence by

Hadamard gates on the target qubit would give a controlled-NOT gate. Since Hadamard

gates are not directly realizable with single pulses in ion trap quantum computation, in-

stead, the controlled phase gate can be enclosed by π/2-carrier pulses around the negative

and positive y-axis, which gives the same result here.8

Composite pulses CNOT gate The Cirac-Zoller CNOT gate requires an additional aux-

iliary atomic level. This requirement can be circumvented by using composite pulses, a

technique already used in NMR frameworks, now applied to ion trap quantum computation

[Childs and Chuang, 2001]. One possible pulse sequence for a controlled phase gate is

8It is easy to check that CNOT (1, 2) = (1l ⊗ Ry(π/2))CZ(1, 2)(1l ⊗ R−y(π/2)), with CZ denoting the

controlled phase gate.
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(a) First ion or control qubit:

mapping to vibration.

(b) Second ion or target qubit:

conditional phase acquisi-

tion

(c) First ion or control qubit:

mapping from vibration to

ion

Figure 3.6 – Composite pulses scheme for a controlled phase gate. The internal state of the
control ion is mapped to the vibrational quantum state (a), the target qubit acquires a phase flip
(b) conditioned on the vibrational mode and the motion is mapped back to the control ion (c).
Enclosed between two π/2-carrier rotations on the target qubit this gives a controlled-NOT
gate.

given by [Schmidt-Kaler et al., 2003b]. Here blue sideband pulses are used instead of red

sideband pulses (see figure 3.6).

1. The first step (figure 3.6(a)) is again the mapping of the internal state of the control ion

to the vibrational mode. This time a blue sideband π-pulse is used, that we denote as

Rbsb(π, 0), where the rotation angle is π and the rotation axis is defined by the phase

φ = 0 (see equation (3.26)). Any population in the state |0, 0〉 gets transferred to the

state |1, 1〉, while any population in the |1, 0〉 state does not change.

2. A composite pulse technique is being applied to the target ion in order to do 2π-

rotations between the states |0, 0〉 and |1, 1〉 as well as |0, 1〉 and |1, 2〉 (see fig-

ure 3.6(b)). The result is that the states |0, 0〉, |0, 1〉, and |1, 1〉 acquire a (local)

phase of −1, whereas the state |1, 0〉 remains unaffected. In order to realize this,

the composite pulse technique is needed. Remember that the coupling strength on

the sidebands depends on the vibrational quantum state (figure 3.4, equation (3.22)).

That is, driving a blue sideband pulse for a specific time or rotation angle on the

|0, 0〉 ↔ |1, 1〉 transition, the rotation angle in the |0, 1〉 ↔ |1, 2〉 subspace undergoes

a rotation that is scaled by a factor of
√

2. Thus, to achieve the same rotation on both

subspaces a composite pulse is applied, which is described later on in more detail.

3. The motional state is mapped back to the first ion with a Rbsb(π, π) pulse.

115



CHAPTER 3. DYNAMIC SIMULATIONS OF ION TRAP QUANTUM COMPUTERS

The development of the basis states goes according to

|0〉 |0〉 |0〉 → −i |1〉 |0〉 |1〉 → i |1〉 |0〉 |1〉 → − |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 → −i |1〉 |1〉 |1〉 → i |1〉 |1〉 |1〉 → − |0〉 |1〉 |0〉
|1〉 |0〉 |0〉 → |1〉 |0〉 |0〉 → − |1〉 |0〉 |0〉 → − |1〉 |0〉 |0〉
|1〉 |1〉 |0〉 → |1〉 |1〉 |0〉 → |1〉 |1〉 |0〉 → |1〉 |1〉 |0〉.

(3.28)

This realizes a controlled phase gate (up to a global phase factor of −1). To make this a

controlled-NOT gate this sequence can be enclosed by a Rcar(π
2
,−π

2
) (beforehand) and a

Rcar(π
2
, π

2
) pulse (afterwards).

Composite pulse phase gate Here we answer the question how a 2π-rotation can be

done simultaneously on both subspaces of different phonon numbers, although the coupling

strengths differ by a factor of
√

2. Instead of a single pulse, a composite pulse is done, which

consists of the pulse sequence [Schmidt-Kaler et al., 2003a]

Rphase = Rbsb
(
π
√
n+ 1, 0

)
Rbsb

(
π

√
n+ 1

2
,
π

2

)

Rbsb
(
π
√
n+ 1, 0

)
Rbsb

(
π

√
n+ 1

2
,
π

2

)
, (3.29)

where n denotes the smaller phonon number of the transition. In the |0, 0〉 ↔ |1, 1〉 sub-

space this gives

Rphase = Rbsb (π, 0)Rbsb

(
π√
2
,
π

2

)
Rbsb (π, 0)Rbsb

(
π√
2
,
π

2

)
, (3.30)

and in the |0, 1〉 ↔ |1, 2〉 subspace the result is

Rphase = Rbsb
(
π
√

2, 0
)
Rbsb

(
π,
π

2

)
Rbsb

(
π
√

2, 0
)
Rbsb

(
π,
π

2

)
. (3.31)

This sequence does an effective 2π-pulse in both subspaces and can best be understood by

looking at the trajectories on the Bloch sphere representation of both subspaces (figure 3.7).

The involved states follow different paths on the Bloch sphere due to different coupling

strengths, but eventually, they all acquire a phase of −1.

Summarizing the observations from above, we see how a universal set of quantum gates can

be realized in ion trap quantum computation. Together with long decoherence times and the

possibility to initialize and readout qubits, this shows that ion trap quantum computation

fulfills all criteria that are absolutely necessary for a promising quantum computer architec-

ture. The drawback is that it is not scalable to very high numbers of qubits in a single trap,
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x

y

z
R+(π/21/2, π/2)

R+(π, 0)

R+(π/21/2, π/2)

R+(π, 0)

(a) |0, 0〉 ↔ |1, 1〉 subspace

x

y

z
R+(π, π/2)

R+(21/2π, 0)

R+(π, π/2)

R+(21/2π, 0)

(b) |0, 1〉 ↔ |1, 2〉 subspace

Figure 3.7 – Representation of the composite pulse sequence on the Bloch sphere of the re-
spective subspace. Starting at the top, which represents the state |0, 0〉 (|0, 1〉) a π/

√
2-rotation

(π-rotation) around the y-axis is performed, followed by a π-rotation (
√

2π-rotation) around
the x-axis. This sequence is done twice. The result is that the basis states all get a phase shift
of −1. Although the coupling strengths and therefore the angles of rotation in both subspaces
differ by a factor of

√
2, it is possible to realize an effective 2π-rotation in both subspaces

simultaneously. Figure modified from [Häffner et al., 2008] with change of rotation axes.
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because the approximative description of a linear chain of ions in a harmonic potential will

fail (for detail see e.g. [Häffner et al., 2008]). That is why currently much effort is spent in

the development of segmented traps and methods for shuttling ions [Häffner et al., 2008].

There are also concepts for traps interconnected by photons [Cirac et al., 1997]. A very

interesting concept is to use distributed coupled ion traps, where in each trap a logical qubit

is encoded using quantum error correction techniques [Oi et al., 2006], giving a solution to

the scalable integration of fault-tolerant quantum error correction.9 Since trapped ions are

very delicate to noise and their handling is experimentally demanding, simulations can be

a valuable tool for the improvement of future ion trap quantum computation devices.

Possible generalizations of the model This section gives an outlook to possible general-

izations of the simulation model. Currently we are considering a one-dimensional system

only. We are looking at the axial direction, where the ions are confined by a harmonic poten-

tial. Furthermore, our model is limited to one vibrational mode only, i.e. the center-of-mass

mode of the string of ions. For more realistic simulations the radial directions should be

included as well as additional vibrational modes.

Three dimensional potential: As mentioned earlier, the static potential over the end caps

of the ion trap creates a harmonic potential in axial direction

Vax =
1

2
mω2

zz
2, (3.32)

with z being the axial direction. The potential in radial direction can be described as quasi

harmonic potential [Leibfried et al., 2003b],

Vrad =
1

2
mW (t)x2, (3.33)

with

W (t) =
ω2

rad

4
[ax + 2qx cos(ωradt)] . (3.34)

The parameters ax and qx are geometric device parameters of the individual ion trap and

ωrad is in the radio frequency regime. Although the Hamiltonian for the radial direction is

time-dependent and no stationary states exist, it can be described effectively as a harmonic

oscillator. The solution is a secular motion that is superimposed by a micromotion, which

can approximatively be neglected, since the operations of interest rely on resonant inter-

action at the secular frequencies, so it can be averaged over the (much higher frequency)

micromotion [Wineland et al., 1998; Leibfried et al., 2003b].

All three dimensions can be treated as a (pseudo-) harmonic potential and therefore the

problem is separable into three one-dimensional problems. Treating all three dimensions

9Still, the phonon bus limits parallel operations within a single trap, which are essential for fault-tolerant

quantum error correction (see section 2.3.3.2).
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would require replacing kx by the scalar product k · r and the operator eiη(a†+a) by ei�k·�r =∏
m e

iηm(a†
m+am), that allows processes that change all oscillators simultaneously.

At the moment our simulator considers a single dimension only. Although it can also deal

with the radial directions, the axial direction is actually the direction of interest for quantum

computation.

Multiple ions: So far, the description has been done for a single ion in a harmonic potential.

Going to multiple ions requires some modifications. The part of the Hamiltonian describing

the motion and the internal state H0 becomes

H0 =
∑

j

(
p2

j

2mj

+
mj

2
ω2

t x
2
j +

1

2
�ωa,jσz,j

)
, (3.35)

with j denoting the number of the ion. The interaction term H1 (see equation (3.6)) in the

general case becomes [Gulde, 2003]

H1 =
1

2
�

∑
j,m

Ωj(σ+,j+σ−,j)
(
ei(±ηj,m(a†

m+am)−ωlt+φj) + e−i(±ηj,m(a†
m+am)−ωlt+φj

)
, (3.36)

where j labels the ion and m describes the motional modes taken into account. The Lamb-

Dicke factors ηj,m are now defined by

ηj,m = k cos β

√
�

2Mωm

, (3.37)

where M is the total mass and ωm is the frequency of the respective mode (refer to [James,

1998] for a list of eigenvectors and eigenvalues for normal modes for up to 10 ions). The

sign of ηj,m depends on the mode as well as on the number j of the ion (where the eigen-

vector determines towards which direction the ion is moving).

Since in the experiment only a single ion is addressed at one time, we can drop the sum over

j in our simulations. In experiments usually the lowest energy eigenmode, the collective

center of mass motion is used. Therefore, currently, we limit our simulation to this mode

only, so that eventually, we end up with equation (3.6). Here we just have a factor of

N−1/2 for the Lamb-Dicke parameter and therefore in the occurring Rabi frequencies of the

sideband transitions.
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3.2 Dynamic Quantum Computer Simulator for Ion Traps
(DyQCSI)

We are developing a Dynamic Quantum Computer Simulator for Ion Traps (DyQCSI) with

the goal to support experimental groups working on ion trap quantum computation. Ex-

perimentalists have expressed the demand for simulational guidance for their experiments.

There is need for a quantification of error influences from different sources [Häffner et al.,

2008], because the stable operation of the ion trap quantum computation device is an exper-

imentally highly demanding task. Scalability requires optimal control, i.e., as a prerequisite

a good understanding of what effects various error sources are causing, and how large those

effects are. Another important task where numerical simulations can be an essential tool, is

pulse optimizations, i.e. pulse sequence optimizations as well as pulse shape optimizations.

We implement a numerical model that describes the relevant basic physics of the ion trap

quantum computer and we numerically solve the Schrödinger equation (equation (2.9)),

that describes the time evolution of the system (equation (2.11)). This simulation package

is a starting point and various extensions can be added successively to account for specific

physical phenomena.

As described in section 3.1, analytical examinations are always approximations to the real

experimental situation, that in some cases are oversimplified. For example, the rotating

wave approximation, assuming that only one transition at a time is relevant, is usually not

justified10 [Häffner et al., 2008]. With our numerical integration method we do not apply

such approximations and therefore, our simulation handles transitions correctly.

Simulation Hamiltonian The Hamiltonian we use for our simulation describes the center

of mass motion of a string of n ions, i.e. two-level quantum systems, in one dimension:

H(t) =
p2

2M︸︷︷︸
H1,1

+
M

2
W (t)x2︸ ︷︷ ︸
H1,2

+
�ωa

2

n∑
i=1

σ(i)
z︸ ︷︷ ︸

H2

+ �Ωσ(j)
x cos(kx− ωlt+ φ)︸ ︷︷ ︸

H3

. (3.38)

We group the Hamiltonian into different parts. H1,1 and H1,2 describe the kinetic and

potential term of the harmonic oscillator, with p being the momentum, M the total mass

of all ions, x describing the position of the center of mass and W (t) a (possibly time-

dependent) potential. For the axial direction of the trap W (t) = W = ω2
t , i.e., there is

only a time-independent harmonic potential. For the radial directions W (t) is given by

equation (3.34). A potential time-dependent error source could also be introduced at this

point. H2 is the spin part describing the internal electronic structure of the n ions as a

10This is because the Lamb-Dicke parameter η (equation (3.5)) is small and the carrier transition is stronger

than the sideband transition by a factor of 1/η.
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two-level quantum system with σz being the Pauli-Z matrix. H3 describes the laser-ion

interaction, where a laser with frequency ωl, wavenumber k and phase φ interacts with the

j th ion.11 Ω is the Rabi frequency, that is determined by the intensity of the laser amongst

other things and σ
(j)
x is the Pauli-X matrix acting on the j th ion.

We make the ansatz to solve the Schrödinger equation in position space. For that, we

discretize the one-dimensional space of the trap dimension into 2s sampling points. The

complete state vector of the system is described by s2n complex-valued amplitudes. We

store the state vector with s consecutive entries for each spin orientation.

For solving the Schrödinger equation we use the 2nd order Suzuki-Trotter formula [De Raedt,

1987], i.e., given the wave function at a time t, the wave function at the next timestep t+ τ
is determined by

|ψ(t+ τ)〉 = e−
i
�

H2
τ
2 e−

i
�

H3
τ
2 e−

i
�

H1,2
τ
2 e−

i
�

H1,1τ︸ ︷︷ ︸
use FFT

e−
i
�

H1,2
τ
2 e−

i
�

H3
τ
2 e−

i
�

H2
τ
2

|ψ(t)〉 + O(τ 3).

(3.39)

The overall error after the integration time T or T
τ

timesteps is of order O(τ 2).

For the kinetic termH1,1, that is put in the middle of the Suzuki-Trotter expansion, a change

to the eigenbasis is advisable, so that e−
i
�

H1,1τ becomes a diagonal transformation, i.e.

e−i τ
2�M

p2 |ψ〉 =
∑

k

e−i τ
2�M

p2 |k〉 〈k|ψ〉 (3.40)

and

p |k〉 = �k |k〉 . (3.41)

The transformation from the position space to the reciprocal space via fast Fourier transform

(FFT), the application of the momentum operator and the back transformation

e−i τ
2�M

p2

ψ(x) ≡ FFT−1(e−i τ
2�M

p2

FFT(ψ(x))) (3.42)

involve only O(2s log s) operations, compared to O(s2) operations for a direct integration

of the momentum operator. For the fast Fourier transform we use the FFTW library [Frigo

and Johnson, 2005].

The error coming from the Suzuki-Trotter expansion should be O(τ 2). Figure 3.8 shows

the shift of the first blue sideband resonance frequency (see figure 3.11) depending on the
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Figure 3.8 – First blue sideband resonance frequency deviation depending on the integration
timestep τ using the Suzuki-Trotter decomposition. The Rabi frequency has been set to Ω =
50 kHz. The second order Suzuki-Trotter decomposition is supposed to exhibit a quadratic error
behavior. This error behavior could be confirmed by looking at the resonance frequency. From
(a) it can be deduced how small the integration timestep τ has to be for a given precision, e.g.
1 kHz. In (b) the square root of the deviation is taken and the quadratic behavior is obvious.
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integration timestep τ .12 Within our simulations we make sure that the error coming from

the Suzuki-Trotter decomposition is sufficiently small for the analyses that we make.

Apparently, the AC Stark shift δAC , which is given by

δAC =
1

2

(
1 +

η2

2

)(
Ω

ωt

e−
η2

2

)2

ωt +
1

8

(
Ω

ωt

e−
η1

2

)4

ωt + · · · , (3.43)

has an effect that is non-negligible. Here η denotes the Lamb-Dicke parameter (equa-

tion (3.5)), Ω the Rabi frequency and ωt the trap frequency. Equation (3.43) is modified

from [Steane et al., 2000] to account for non-negligible η according to the Rabi frequencies

given in [Leibfried et al., 2003b]. In the Innsbruck ion trap experiment the AC Stark shift is

compensated by a far off-resonant laser of the same intensity as the control laser [Häffner

et al., 2008]. Our simulation deals with the effects of the AC Stark shift implicitly, since

this effect is included in the Hamiltonian (equation (3.38)).

A first verification of the DyQCSI code is performed by looking at simple Rabi oscillations

on the carrier transition and detuned from the carrier transition (figure 3.9). As parameters

for our simulator we took values that are close to those used in the Innsbruck ion trap

experiment [Häffner et al., 2008], i.e. we are using ions of mass m = 40 g/mol = 6.64 ·
10−26 kg (40Ca+), with an atomic transition frequency of λ = 729.147 nm. The axial trap

frequency is set to ωt = 2π ·0.9 MHz. The coupling strength is set to Ω = π/(1.3·10−5) Hz.

We evaluate our simulation with two ions in the trap with a total mass of M = 2m. The

simulation results are in very good agreement with the theoretical predictions given by

equations (3.23) and (3.24). This verifies the correct behavior of the simulation of the

internal spin part and the laser-ion interaction.

The coupling to the external phonon modes is examined in figure 3.10 and the correct

coupling strength on the sideband transition (equation (3.22)) can be confirmed. Being

able to do carrier and sideband excitations we are in principle able to do arbitrary quantum

operations.

Figure 3.11 shows a frequency scan of the system. The Hamiltonian (equation (3.38)) cov-

ers the relevant physics, including carrier transitions, sideband transitions, even of higher

orders, as well as Stark shifts of energy levels due to interaction with the laser field. We

11The laser is usually incoming under a certain angle θ to the motional axis. In fact, k is the projection of

the incoming wave vector k′ of the laser radiation along the motional axis, i.e. �k′ · �x = k′x cos θ = kx.

Otherwise, in a setup as depicted in figure 3.1 a direct addressing of an individual ion along the trap axis

would not be possible.
12The error behavior in frequency should be equal to that of the energy, provided that ωa+ωt ∝ H1,1+H1,2+

H2+H3. We know the energy eigenvalues of H1,1+H1,2, which is the spectrum of the harmonic oscillator,

En = �ωt

(
n + 1

2

) ∝ ωt. The energy eigenvalues of H2, that of a spin- 1
2 system is proportional to ωa. The

energy shift from H3 due to the laser-ion-interaction (AC Stark shift, equation (3.43)) has been corrected

for during the determination of the resonance frequencies. In total, the error behavior of the Suzuki-Trotter

decomposition (O(τ2))should be seen for the inspection of the resonance frequencies.
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Figure 3.9 – Rabi oscillations on the carrier transition and detuned from the carrier transition.
Here an ion trap quantum computer with two 40Ca+ ions (M = 80 g/mol) is driven within a
trap with axial frequency ωt = 2π ·0.9 MHz by a laser with frequency ωl = 2πc/(729.147 nm),
c being the speed of light. The resonant carrier transition Rabi frequency is set to Ω = π/(1.3 ·
10−5) Hz. The laser interacts with one of the ions and if the laser is exactly on resonance, we
see regular Rabi oscillations between the two states of the two-level system. If the laser is off-
resonant, i.e. detuned by δ, the frequency and amplitudes of the oscillation change according
to equations (3.23) and (3.24).

make sure that our simulator covers the basic physics of a system of two-level ions in a har-

monic potential interacting with monochromatic laser light. It does not need to make the

rotating wave approximation and does not rely on the Lamb-Dicke approximation. There-

fore, our simulation handles off-resonant excitations correctly and is exact except for the

Suzuki-Trotter expansion, but for this we can quantify the error (figure 3.8).

The geometry of the ion trap and the laser is accounted for by modifying the Lamb-Dicke

parameter (equation (3.5)). Figure 3.12 shows a laser that is tuned to the blue sideband

transition turned onto the ions under various incident angles to the trap axis. Apparently,

incoming radiation orthogonal to the trap axis is not able to excite any phonon mode. Radi-

ation along the trap axis is only theoretically possible for more than a single ion in the trap.

Experiments usually use a setup that ensures a small Lamb-Dicke factor η. A small Lamb-

Dicke factor will lead to long sideband pulses limiting the speed of operations, but there

are experimental constraints that require a small Lamb-Dicke factor (such as the sideband

cooling of the ions [Häffner et al., 2008]).

We now demonstrate how DyQCSI can be used to simulate the evolution of a controlled-
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Figure 3.10 – Rabi oscillation on the carrier transition and on the first blue sideband. The
same parameters are used as in figure 3.9. This results in a Lamb-Dicke parameter η = 0.07.
The coupling strength of the blue sideband transition is a factor of η weaker than the carrier
transition (equation (3.22)). Thus, pulses on the sidebands take much more time than carrier
pulses and are a limiting factor for the speed of ion trap quantum computation devices.

NOT gate. The simulation approach gives us the advantage, that we can access all parame-

ters during the execution of any algorithm. For example, figure 3.13 shows the development

of theD5/2 population during a CNOT gate operation. This plot is the result of a single sim-

ulation run. A similar plot with experimental results can be found in [Schmidt-Kaler et al.,

2003b].13 Note that for the experimental approach, each point is the result of 100 experi-

mental cycles [Schmidt-Kaler et al., 2003b] and for the observation of the time evolution

hundreds of points have to be measured. With figure 3.13 we have verified that our simula-

tor is capable of describing the dynamics of a controlled-NOT operation.

However, it should be pointed out that the given pulse sequences (see e.g. figure 3.13(a))

are derived from the simplified analytical expressions (equations (3.7)–(3.15)). Since the

simulation does not rely on these approximations, but uses the exact Hamiltonian (equa-

tion (3.1)), a deviation from the idealized case can be expected. Actually, we see a dif-

ference between the predictions of the simplified analytical expressions and our simulation

results. In particular, when doing a pulse sequence with changes from carrier excitation to

sideband excitation or vice versa, an additional phase shift manifests. But since we have

13[Schmidt-Kaler et al., 2003b] use the inverted sequence, so the time evolution of the population is inverted

in time.
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Figure 3.11 – Resonance frequencies of the coupled system of ions and phonons. Shown here
is the maximum probability of finding the addressed ion in the excited D5/2 state when starting
from the S1/2 ground state. The center peak is the carrier transition while the outer peaks
are sideband resonances. The resonances are found at detunings of multiple integers of the
trap frequency ωt, i.e. at frequencies inducing phononic (de-)excitations additional to atomic
transitions. The second order sideband transitions have very sharp resonance frequencies,
because the coupling is very weak (equation (3.19)).

full information about the state of our system, as we describe in the following, we used

that information to compensate for the deviation. Keep in mind that for the description of

the controlled-NOT gate in this section, this adjustment is done implicitly. A more detailed

analysis of these probably non-negligible effects will be done in the future.

With our simulator we are not confined to the observation of the D5/2 population, as in

experiment, but we can also have a look at the position space wave function. We will show

this for the controlled phase gate. The eigenstates of the quantum harmonic oscillator in

position space are given by [Cohen-Tannoudji et al., 1978]

〈x|ψn〉 = ψn(x) =

√
1

2nn!

(
Mωt

π�

) 1
4

e−
Mωt
2�

x2

Hn

(√
Mωt

�
x

)
, (3.44)

with total mass M and circular frequency ωt. The Hermite polynomials Hn are defined as

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (3.45)
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Figure 3.12 – Blue sideband pulse for various incident angles of laser radiation. The coupling
strength and thus the speed of Rabi oscillations depend on the angle of the incoming laser
radiation. Laser light orthogonal to the trap axis is not able to excite axial phonon modes. The
coupling becomes stronger the more the incident angle gets closer to the trap axis.

The coherent ground state of the harmonic oscillator is a Gaussian

〈x|ψ0〉 = ψ0(x) =

(
Mωt

π�

) 1
4

e−
Mωt
2�

x2

. (3.46)

The first and second excited states are given by

〈x|ψ1〉 = ψ1(x) =

(
4

π

(
Mωt

�

)3
) 1

4

xe−
Mωt
2�

x2

(3.47)

and

〈x|ψ2〉 = ψ2(x) =

(
Mωt

4π�

) 1
4
(

2
Mωt

�
x2 − 1

)
e−

Mωt
2�

x2

. (3.48)

For the visualization we look at all possible spin orientations of a two qubit system (fig-

ure 3.14). For each spin orientation the spatial probability distribution is examined sepa-

rately. In these plots one can follow the time evolution of the wave function in position

space, e.g., one can see the transformation of ψ0(x) to ψ1(x) and superpositions of those

states. We give an example for both the control and the target qubit starting in the |0〉 state.14

14We use the notation |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉.
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Figure 3.13 – Time evolution of the D5/2 population during a controlled-NOT gate.
(b) – (e) show all combinations of possible input basis states. Apparently this realizes a CNOT
gate. Our simulation gives a complete description of the state vector throughout the sequence.
By contrast, in a real experiment, each single data point can only be obtained by numerous
experimental runs.
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Figure 3.14 shows snapshots at the end of each pulse only. The simulation is in principle

able to output the state of the system at intermediate timesteps. The time evolution of the

controlled phase gate for other input basis states is available, but omitted here for the sake

of brevity.

Another possible way to illustrate the time evolution of the ion trap system is to look at the

expectation values of the state vector in the Bloch sphere representation (figure 3.15). Here

the Bloch spheres represent the subspaces |0, 0〉 ↔ |1, 0〉, |0, 1〉 ↔ |1, 1〉, |0, 0〉 ↔ |1, 1〉,
and |0, 1〉 ↔ |1, 2〉. Since we examine a two-qubit system with control and target qubit, the

state at each timestep can be described by eight Bloch spheres. Analogous to figure 3.14

we start with both qubits initialized to |0〉 and no phonon excitation and show snapshots at

the end of each pulse of the controlled phase gate. With our simulator we are able to give

the time evolution of the expectation values for all three axes. This sort of visualization will

be useful for the analysis of future simulation runs.

Additionally, our simulator offers the possibility to work with (squeezed) coherent states

resembling the classical motion of a harmonic oscillator. Our simulator can be initial-

ized with any arbitrary states, not necessarily energy eigenstates of the harmonic oscillator.

There are several proposals for doing ion trap quantum computation with coherent states,

e.g. by [Monroe et al., 1996; Munro et al., 2000]. Our simulator is also suitable for the

analysis of these states.

Summarizing the work that has been done so far, we have developed and verified the Dy-
namic Quantum Computer Simulator for Ion Traps (DyQCSI), that uses a microscopic

Hamiltonian that captures the relevant dynamics of an ion trap quantum computation de-

vice. Starting from first principles we are able to quantify the effects coming from physics

rather than approximations or experimental error sources. We have shown preliminary re-

sults for the functionality of the controlled-NOT gate and visualized the time evolution

in the Bloch sphere representation as well as in position space. Since DyQCSI works on

parallel machines the number of qubits considered in the simulation (up to 16 qubits on

JUGENE) can be significantly higher than the number of qubits in today’s state-of-the-art

quantum computation devices (8 qubits in Innsbruck).

Outlook To make DyQCSI a valuable tool for experimentalists, the simulator has to in-

clude experimental error sources. The most relevant ones according to [Häffner et al., 2008]

are

• AC-stark effect: This effect is already included in the Hamiltonian (equation (3.38)).

• Off-resonant excitations: These are also included in equation (3.38).

• Laser frequency noise: Fluctuations of the laser frequency can be directly included

into the simulation. At the moment we drive the simulation with monochromatic

laser light at exact carrier and sideband transition frequencies. This can be extended

to other frequencies and the laser can be tuned to arbitrary frequency fluctuation

behavior.
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(a) Initial state

(b) State of control qubit mapped to phonon mode

Figure 3.14 – Spatial probability distribution during a controlled phase gate. Each figure is
divided into four quadrants according to the possible spin orientations. Each quadrant shows
the part of the spatial probability distribution for the respective spin orientation. (a) The ground
state wave function is given by equation (3.46). (b) After a π-pulse on the blue sideband we
see how the population is mapped to the |1, 1〉 state. We see that the spin of the control qubit is
flipped while a phonon excitation has been created. The probability density is that of the first
excited state of the harmonic oscillator (equation (3.47)).
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(c) First composite pulse

(d) Second composite pulse

Figure 3.14 – (c) After the first pulse of the composite pulse sequence the population in |0, 1〉
is transferred to |1, 2〉, i.e. a state with two phonons (equation (3.48)). (d) The second pulse
leaves the state in a superposition of |0, 1〉 and |1, 2〉.
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(e) Third composite pulse

(f) Fourth composite pulse

Figure 3.14 – (e) The third pulse inverts the population of |0, 1〉 and |1, 2〉. (f) The fourth pulse
completes the composite pulse sequence. The state is again in |0, 1〉 and has acquired a phase
of −1 (which cannot be seen in the spatial probability distribution).
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(g) State of phonon mode is mapped back to control qubit

Figure 3.14 – (g) The last pulse maps the state of the phonon bus back to the control qubit. We
see how the simulation gives us the possibility to follow the time evolution of the wave function
in position space, that would not be possible in the experiment. This information might be
exploited to improve the performance of ion trap quantum computation devices in the lab.

• Laser intensity fluctuations: Since the Rabi frequencies depend on the intensity of

the laser, fluctuations of the laser intensity will result in pulse length errors. In our

simulation, this can be easily taken into account by introducing a time dependent

effective Rabi frequency and parameterizing the occurring fluctuations.

• Magnetic field noise: Fluctuations of the magnetic field are a major source of deco-

herence. They will lead to a fluctuating atomic resonance frequency and can therefore

be modeled by a variation of the effective Rabi frequency.

• Addressing errors: While addressing a specific ion, residual light can affect other

ions. This effect can be modeled by a variation of the effective Rabi frequencies.

However, we have to extend the laser-ion interaction term of the Hamiltonian (equa-

tion (3.38)) to a sum over all ions and consider complex Rabi frequencies for the ions

not targeted, because the phase of the laser light on those will be different.

• Imperfect ground state cooling: An averaging with different initial states can account

for this.

It is possible to implement the error sources into the microscopic Hamiltonian of our simu-

lator and gradually include more and more effects. The model can be extendend to include

more phonon modes and with the extension to two and three dimensions the simulator can
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(a) Initial state

(b) State of control qubit mapped to phonon mode

Figure 3.15 – Each figure shows the Hilbert subspaces |0, 0〉 ↔ |1, 0〉, |0, 1〉 ↔ |1, 1〉, |0, 0〉 ↔
|1, 1〉, and |0, 1〉 ↔ |1, 2〉 for each the control and the target qubit after each pulse of the
composite pulse controlled phase gate. (a) The initial state of both qubits is |0〉. (b) After a
π-pulse on the control qubit on the blue sideband we see how the population is mapped from
|0, 0〉 to the |1, 1〉 state. The target qubit keeps its internal state, but is now represented in the
Bloch sphere representing one phononic excitation.
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(c) First composite pulse

(d) Second composite pulse

Figure 3.15 – (c) After the first pulse of the composite pulse sequence the control and the target
qubit are the in the state |1〉, while the phonon bus is in the state |2〉 (compare figure 3.14(c)).
(d) The second pulse leaves the target qubit in a superposition of |0, 1〉 and |1, 2〉 (compare fig-
ures 3.14(d) and 3.7). The control qubit stays in the state |1〉, but the phonon number changes.
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(e) Third composite pulse

(f) Fourth composite pulse

Figure 3.15 – (e) The third and fourth pulse have been depicted theoretically in figure 3.7.

account for radial phonon modes which are a main source of decoherence in the current

experimental setup [Häffner et al., 2008].

We intend to implement the error sources into the simulator, so that it can be used to quan-

tify error influences and to examine interconnections between error sources. We want to
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(g) State of phonon mode is mapped back to control qubit

Figure 3.15 – (g) The last pulse maps the state of the phonon bus back to the control qubit.
As expected, we see the same population as in the initial state. The acquired phase of −1 can
not be seen in this representation. Minimal deviations are related to phase imprecisions and
therefore imprecisions in the choice of rotation axes.

have a tool, that can be used to minimize the sensitivity to control parameters. The advan-

tage of a simulator becomes obvious when it comes to finding optimal design parameters,

which would be difficult to determine through countless experimental runs. While in exper-

iment each point of a curve showing the time evolution is a result of numerous (100–1000)

experimental runs [Schmidt-Kaler et al., 2003b; Häffner et al., 2008] and gaining a curve

with hundreds of points is experimentally very expensive, a single simulation run will im-

mediately give all points of the curve. This will be very helpful for doing parameter studies

like pulse shape optimizations, where a single run of the simulator can reveal the effect

of a designed pulse shape, whereas in the lab the cost to try various parameters would be

extremely high. Besides pulse shape optimizations the simulator can be a useful tool for

evaluating designed pulse sequences (e.g. [Khaneja et al., 2005]).
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Chapter 4

Summary and Outlook

In this thesis the power of error-prone quantum computation devices has been assessed. The

instruments for performing these analyses have been developed and verified during the work

on this thesis. Two software packages have been created: The Juelich Massively Parallel
Ideal Quantum Computer Simulator (JUMPIQCS) and the Dynamic Quantum Computer
Simulator for Ion Traps (DyQCSI).

JUMPIQCS simulates the evolution of a generic universal quantum computer using the cir-

cuit model of quantum computation. Using a complete description of the quantum mechan-

ical system requires exponential resources. Thus, a parallel version for large-scale super-

computers has been developed and optimized for performance and scalability. JUMPIQCS

has been extended with an error model for decoherence errors as well as operational im-

precisions. This has been used to analyze the sensitivity and robustness to noise of two im-

portant quantum algorithms, the quantum Fourier transform, which is the quantum kernel

of Shor’s algorithm for prime factorization, and Grover’s search algorithm. The result from

these analyses is that a universal statement about the performance of a quantum computa-

tion device in a noisy environment cannot be given, as it depends on the specific quantum

algorithm. For the cases, that we have studied, numerical simulations showed that the quan-

tum Fourier transform is more robust to decoherence and operational errors than Grover’s

algorithm. We relate this to the regular structure of the quantum Fourier transform circuit.

The quantum Fourier transform exhibits a threshold like behavior for operational impreci-

sions, that shows no significant dependency on the system size. Concerning decoherence

errors, the numerical results show that the quantum Fourier transform requires a decrement

of about one order of magnitude in the single gate error probability when doubling the sys-

tem size to keep a constant total error level. Grover’s algorithm is more susceptible to noise

compared to the quantum Fourier transform for similar system sizes. Since no system size

independent threshold for operational imprecisions can be observed, the conclusion is that

going to larger system sizes proves difficult for Grover’s search algorithm unless extraor-

dinarily good control of operational errors is possible. We show how the performance loss
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of Grover’s algorithm due to noise can be attenuated by adjusting the number of Grover

iterations.

After quantifying the effects of errors on quantum computers, we have analyzed how errors

can be actively corrected. We have implemented various quantum error correction tech-

niques (5-, 7-, and 9-qubit scheme) into JUMPIQCS to simulate the effect of quantum error

correction circuits. While perfect error-free correction circuits are able to protect quantum

information from degrading, this case is unrealistic, because in reality, the correction cir-

cuits used are prone to error themselves. Our simulations confirm that using error-prone

correction circuits with standard quantum error correction techniques will always fail, i.e.,

they will introduce more errors than the scheme can correct.

Fault-tolerant quantum error correction techniques can overcome this problem. However,

this is not unconditionally true, but there is a necessary condition for the single qubit error

rate to be below a certain threshold for fault-tolerant quantum error correction. We incor-

porated fault-tolerant quantum error correction techniques using Steane’s 7-qubit quantum

error correction code into JUMPIQCS and used our simulator to determine this threshold

numerically. Our approach does make realistic assumptions about the number of available

qubits and uses explicit constructions for the correction circuits.

Studying the case of a sequence of logical Hadamard gates, we obtained numerical results

for the thresholds. Using the depolarizing channel as the error model, we found a numerical

threshold for fault-tolerant quantum error correction of pthr = (5.2±0.2)·10−6. If the single

qubit error rate is below this threshold, fault-tolerant quantum error correction guarantees

an improvement compared to the unprotected case. The other important source of error

is operational imprecision. We have numerically determined a threshold for the allowed

operational imprecision for fault-tolerant quantum error correction to be functional. For

Gaussian distributed operational over-rotations the threshold lies at a standard deviation of

σthr = 0.0431 ± 0.0002. This is a rather large value, so that we can conclude, that quan-

tum error correction is especially well suited for the correction of operational imprecisions.

In case of systematic over-rotations we have verified that fault-tolerant quantum error cor-

rection can always improve the performance of an error-prone device, independent of any

threshold.

An analysis of Grover’s search algorithm with only partially protected qubits indicates that

a partial encoding of the quantum system is not suitable for the protection of the whole

system. Errors from unprotected qubits will propagate to many qubits and thus render

quantum error correction useless.

By looking at the example of quantum teleportation we show how entanglement between

encoded qubits can be preserved. Additionally, this example reveals that the benefit from

quantum error correction will be large enough to justify the cost, only for long algorithms

or long storage times of quantum memory.

With JUMPIQCS we have a tool ready, that can be used for the analysis of quantum er-

ror correction. It allows to examine under which conditions quantum error correction can
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give a benefit and to find optimal working points for quantum error correction for arbitrary

quantum algorithms. Since future quantum computing devices will most probably incorpo-

rate some sort of quantum error correction, JUMPIQCS can also be used as a tool for the

assessment of future quantum computing architectures.

A possible extension of JUMPIQCS will be the inclusion of a fully fault-tolerant π/8-

gate, which would enable universal quantum computation in a fault-tolerant manner. The

fully encoded quantum Fourier transform has not yet been analyzed because of the missing

fault-tolerant implementation of the π/8-gate. It would be worth to follow approximative

approaches that truncate the precision of required rotations. There are indications that under

the presence of noise a limitation of rotation angles does not decrease the performance of the

quantum Fourier transform [Barenco et al., 1996]. Yet, it would be interesting to see how

quantum error correction performs in this situation. There is also an analysis showing the

“scalability of Shor’s algorithm with a limited set of rotation gates” [Fowler and Hollenberg,

2004]. This will help with the analysis of a fully encoded quantum Fourier transform.

While JUMPIQCS simulates a quantum computation device on a generic level, the other

simulation code that has been created during the work on this thesis, DyQCSI, deals with

the simulation of specific ion trap quantum computation devices. At the moment DyQCSI

covers all basic physics of an ion trap quantum computer. It starts from a microscopic

Hamiltonian and does not rely on approximations that are usually necessary for an analyt-

ical approach. We have demonstrated the basic functionality of DyQCSI by simulating a

controlled-NOT gate and we have shown several ways to visualize the state of the system

and its time evolution. The access to the complete state of the system during time evolution

gives a clear benefit when doing parameter optimizations. DyQCSI is still in development

and will be extended to include experimental error sources. We intend to use it as a tool for

finding optimal design parameters for ion trap quantum computation devices in the lab. We

expect pulse shape and pulse sequence optimizations to be the main application fields for

DyQCSI.
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Appendix A

Quantum Circuit Symbols

The graphical representation of a quantum circuit describing the time evolution of a quan-

tum system usually uses a certain set of symbols summarized in this section. The circuit

representation is read from left to right indicating the time evolution. The vertical dimen-

sion specifies the size of the system, i.e. the number of qubits.

The following table gives an overview of the graphical symbols used in this thesis. If

appropriate, the third column gives the matrix representation of the unitary transform acting

on the corresponding subspace of the system.

symbol description matrix

wire representing a single qubit (time goes

from left to right)
1l =

(
1 0
0 1

)

double wire representing a classical bit 1

/ wire summarizing multiple qubits 1l ⊗ . . .⊗ 1l

/n
wire summarizing n qubits 1l ⊗ . . .⊗ 1l︸ ︷︷ ︸

n times

U single qubit gate doing a unitary transforma-

tion U
U =

(
u11 u12

u21 u22

)

145



APPENDIX A. QUANTUM CIRCUIT SYMBOLS

symbol description matrix

•
U

controlled-U : controlled unitary operation;

vertical wires connect control and target

qubits; the bullet indicates the controlling

qubit; a filled bullet represents a control-on-

one, i.e., the operation on the target qubit is

done if the control qubit is set to one

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 u11 u12

0 0 u21 u22

⎞⎟⎟⎠

•
�������	

controlled-NOT (CNOT), which is a

controlled-U with U = X being the Pauli-X
matrix describing a bit-flip operation (see

figure 2.2)

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
�������

U

control-on-zero: an open bullet indicates a

controlled operation as well, but the operation

on the target qubit is done if the control qubit

is set to zero

⎛⎜⎜⎝
u11 u12 0 0
u21 u22 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
�������

�������	
zero-controlled-NOT: controlled-NOT with

control-on-zero

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
×
×

swap gate: swaps two qubits with each other

(see figure 2.26 for a decomposition into a se-

quence of three CNOT gates)

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠
•
•
�������	

Toffoli gate: this 3-qubit operation flips the

target qubit if both control qubits are set to

one

⎛⎜⎝
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎠
•
•
...

•
�������	

CnNOT gate: a generalization of the CNOT

(=C1NOT) and Toffoli (=C2NOT) gate, that

flips the target qubit if and only if all control

qubits are set to one

⎛⎜⎜⎜⎜⎝
1

1 0
...

1

0 1
0 1
1 0

⎞⎟⎟⎟⎟⎠


�
���

projective measurement: the result of this

non-unitary transformation is a classical bit
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Appendix B

Equivalence of Depolarizing Channel
and Unitary Over-Rotations

Our model includes a decoherence model, the depolarizing channel, as well as operational

errors, i.e. unitary over-rotations, and we can show that for a single qubit and certain pa-

rameter values both error approaches are equivalent to each other. We will show that the

choice of rotation angles will be relevant as well as the possibility to choose a non-equally

weighted error basis. Certainly for the circuit of a quantum algorithm we have to distinguish

between memory error locations and operational error locations. Memory error locations

occur on each qubit and at each timestep, with the time unit determined by the execution

time of a gate. Operational error locations only affect a qubit, when an operation is done

on that qubit. This approach is similar to an analysis made in [Steane, 2003], where two

error rates are used, the gate (γ) and memory (ε) failure rates, and thresholds are determined

depending on ε/γ.

For the proof it is necessary and sufficient to show that for both approaches each of the

expectation values for X, Y and Z agree. We start with the general case where a single

qubit is in an arbitrary state |ψ〉 = α |0〉 + β |1〉 and examine the expectation values 〈X〉,
〈Y 〉 and 〈Z〉. For the depolarizing channel we have

〈X〉 = (1 − p) 〈ψ|X |ψ〉 +
p

3

(〈ψ|X†XX |ψ〉 + 〈ψ|Y †XY |ψ〉 + 〈ψ|Z†XZ |ψ〉)
= . . .

= (αβ∗ + α∗β)

(
1 − 4

3
p

)
,

(B.1)

〈Y 〉 = (1 − p) 〈ψ|Y |ψ〉 +
p

3

(〈ψ|X†Y X |ψ〉 + 〈ψ|Y †Y Y |ψ〉 + 〈ψ|Z†Y Z |ψ〉)
= i(αβ∗ − α∗β)

(
1 − 4

3
p

)
,

(B.2)
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OVER-ROTATIONS

and

〈Z〉 = (1 − p) 〈ψ|Z |ψ〉 +
p

3

(〈ψ|X†ZX |ψ〉 + 〈ψ|Y †ZY |ψ〉 + 〈ψ|Z†ZZ |ψ〉)
= (|α|2 − |β|2)

(
1 − 4

3
p

)
.

(B.3)

Next, we determine the expectation values for the unitary over-rotations. We start with the

first case, where we use the Euler angle definition, i.e., we decompose an arbitrary rotation

R�n around an axis n using two rotational axes. In our error model we use plane rotations

around the y-axis Ry and phase rotations about the z-axis Rz:

R�n(ω) = Rz(φ
′)Ry(θ)Rz(φ), (B.4)

with the matrix representations

Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(B.5)

and

Rz(φ) =

(
1 0
0 eiφ

)
. (B.6)

If we assume small over-rotation errors εφ, εθ and εφ′ , the expectation value for the operator

O ∈ {X, Y, Z} is given by

〈O〉 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
〈ψ|R†

z(εφ)R†
y(εθ)R

†
z(εφ′)ORz(εφ′)Ry(εθ)Rz(εφ) |ψ〉

p(εφ)p(εθ)p(εφ′) dεφ dεθ dεφ′ ,

(B.7)

with

p(ε) =
1√
2πσ

e−ε/(2σ2) (B.8)

being the Gauss distribution with standard deviation σ.

Evaluating the integrand is a tedious but straightforward calculation. We get

〈X〉 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(|α|2 − |β|2)(cos εφ′ cos

εθ
2

sin
εθ
2

)

+α∗βeiφ(eiφ′
cos2 εθ

2
− e−iφ′

sin2 εθ
2

)

+αβ∗e−iφ(e−iφ′
cos2 εθ

2
− eiφ′

sin2 εθ
2

)

p(εφ)p(εθ)p(εφ′) dεφ dεθ dεφ′ ,

(B.9)
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and after some simplifications using trigonometric identities and paying attention to the fact

that the integral from minus infinity to plus infinity over an odd function equals zero, we

obtain

〈X〉 = α∗β
∫ ∞

−∞
eiεφp(εφ) dεφ(∫ ∞

−∞
eiεφ′p(εφ′) dεφ′ − 2

∫ ∞

−∞
cos εφ′p(εφ′) dεφ′

∫ ∞

−∞
sin2 εθ

2
p(εθ) dεθ

)
+αβ∗

∫ ∞

−∞
e−iεφp(εφ) dεφ(∫ ∞

−∞
e−iεφ′p(εφ′) dεφ′ − 2

∫ ∞

−∞
cos εφ′p(εφ′) dεφ′

∫ ∞

−∞
sin2 εθ

2
p(εθ) dεθ

)
.

(B.10)

After evaluating the remaining integrals and simplifying the expression we obtain

〈X〉 = (α∗β + αβ∗)e−
3
2
σ2

. (B.11)

In line with the evaluation of the first expectation value, the computation of the remaining

expectation values yield

〈Y 〉 = i(αβ∗ − α∗β)e−σ2

(B.12)

and

〈Z〉 = (|α|2 − |β|2)e− 1
2
σ2

. (B.13)

A comparison of equations (B.1), (B.2) and (B.3) with equations (B.11) , (B.12) and (B.13)

shows that, if we drive our error models with a single decoherence parameter p and a sin-

gle Gaussian width σ, there is no one-to-one transformation between depolarizing channel

errors and operational unitary over-rotations.1

Apparently, we have made a non-isotropic choice by using the Euler angles (equation (B.4))

for our rotations, so it is not a surprise to see different transformation rules for different

directions. To check if the anisotropy is just attributed to the choice of rotation angles,

we repeated the same calculations again, but this time starting with a decomposition of an

arbitrary rotation into a product of rotations around the three axes,

R�n(ω) = Rx(θx)Ry(θy)Rz(θz). (B.17)

1The fact that we used equation (B.5) instead of equation (2.72), where the rotation angle is twice as large,

does not change this conclusion. If we use equation (2.72) we get the results

〈X〉 = (α∗β + αβ∗)e−3σ2
, (B.14)

〈Y 〉 = i(αβ∗ − α∗β)e−σ2
(B.15)

〈Z〉 = (|α|2 − |β|2)e−2σ2
. (B.16)
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This time the calculation is even more laborious, because we have to evaluate

Rx(θx)Ry(θy)Rz(θz)

=

(
cos

θx

2
cos

θy

2
cos

θz

2
− sin

θx

2
sin

θy

2
sin

θz

2

)
1l

−i
(

cos
θy

2
cos

θz

2
sin

θx

2
+ cos

θx

2
sin

θy

2
sin

θz

2

)
X

−i
(

cos
θx

2
cos

θz

2
sin

θy

2
− cos

θy

2
sin

θx

2
sin

θz

2

)
Y

−i
(

cos
θz

2
sin

θx

2
sin

θy

2
+ cos

θx

2
cos

θy

2
sin

θz

2

)
Z,

(B.18)

the product R†
z(θz)R

†
y(θy)R

†
x(θx)ORx(θx)Ry(θy)Rz(θz) with O ∈ {X, Y, Z} and the ex-

pectation value thereof. Again, exploiting trigonometric identities and the knowledge about

integrals over odd functions and using the commutation relations of the Pauli matrices even-

tually yields

〈X〉 =(α∗β + αβ∗)
∫ ∞

−∞
(1 − 2 sin2 θy

2
)p(θy) dθy

∫ ∞

−∞
(1 − 2 sin2 θz

2
)p(θz) dθz

=(α∗β + αβ∗)e−σ2

,

(B.19)

〈Y 〉 =i(αβ∗ − α∗β)

∫ ∞

−∞
(1 − 2 sin2 θx

2
)p(θx) dθx

∫ ∞

−∞
(1 − 2 sin2 θz

2
)p(θz) dθz

=i(αβ∗ − α∗β)e−σ2

(B.20)

and

〈Z〉 =(|α|2 − |β|2)
∫ ∞

−∞
(1 − 2 sin2 θx

2
)p(θx) dθx

∫ ∞

−∞
(1 − 2 sin2 θy

2
)p(θy) dθy

=(|α|2 − |β|2)e−σ2

.

(B.21)

Comparing this result with equations (B.1), (B.2) and (B.3) leads to the conclusion that

there is a one-to-one correspondence between a depolarizing channel error probability p
and a unitary over-rotation with Gaussian distributed errors with standard deviation σ:

1 − 4

3
p = e−σ2

. (B.22)

On average a unitary over-rotation where the error is Gauss distributed with standard devia-

tion σ gives the same result as doing a perfect operation after which a discrete error happens

with probability p = 3/4
(
1 − e−σ2)

. If we obey this relation, each memory error location
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can be translated to a unitary over-rotation of the identity operation and each gate error im-

precision can be translated to a perfect operation with subsequent discrete error with a well

defined probability.

This analysis has also been verified by numerical simulations of a single qubit decohering.

A run with only decoherence errors and no operational errors gives exactly the same result

as the algorithm run with only unitary over-rotations and no decoherence errors. Both

results do agree with the analytically expected expectation values.

We found that under certain conditions the depolarizing channel error model and the uni-

tary over-rotational imprecisions model can be unified. If the discrete error model has an

unbiased error basis, like in the depolarizing channel, and the imprecisions are Gaussian

distributed in the over-rotations and if we further assume a decomposition of any rotation

into rotations around the three canonical axes of the coordinate system, then equation (B.22)

gives the relation between both error approaches. However this is not true anymore, when

we use Euler rotations, because this introduces an anisotropy and the corresponding ap-

proach would require an introduction of a biased discrete error basis, where the probabilities

for certain errors are not equal.

The use of both error models in our simulations is not only justified by this observation,

but especially the resemblance to the experimental constraints suggests using unitary over-

rotations as well in addition to the depolarizing channel that accounts for decoherence (see

section 2.2.1).
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Appendix C

Stabilizer Codes for Quantum Error
Correction

Stabilizer codes [Gottesman, 1997] form an important class of quantum codes. They utilize

the stabilizer formalism for doing quantum error correction. This section gives a brief

summary of the stabilizer formalism and shows how it can be used to deduce quantum error

correction codes. The description follows that of [Nielsen and Chuang, 2000].

Stabilizer formalism The basic idea of the stabilizer formalism is to describe quantum

states by operators that stabilize those states instead of describing the state vector directly.

For example the Bell State

|ψ〉 =
|00〉 + |11〉√

2
(C.1)

is an eigenstate of both operators X1X2 and Z1Z2:

X1X2 |ψ〉 = |ψ〉 (C.2)

and

Z1Z2 |ψ〉 = |ψ〉 . (C.3)

In fact, |ψ〉 is the unique state which is stabilized by X1X2 and Z1Z2.

The power of the stabilizer formalism can be exploited by using group theory. For a single

qubit the Pauli Group G1 is defined as

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (C.4)

The Pauli Group of n qubits is defined to consist of all n-fold tensor products of Pauli

matrices with multiplicative factors ±1 and ±i.
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Let S be a subgroup ofGn, then VS is defined to be the set of n qubit states that are stabilized

by every element of S. VS is called the vector space stabilized by the stabilizer S.

Any group G can be described by its generators g1, . . . , gl, i.e., any element of G can be

written as a product of elements from this list:

G = 〈g1, . . . , gl〉. (C.5)

A result from group theory is that a group of size |G| has a set of at most log(|G|) generators,

allowing a compact description of the group. Another important fact is that a vector is

stabilized by a group S if and only if it is stabilized by the generators of the group. S
stabilizes a non-trivial vector space VS if and only if the elements of S commute and −I is

not an element of S.1

Unitary gates in the stabilizer formalism The stabilizer formalism is not only useful for

the description of vector spaces, but also for describing the dynamics of those. Applying a

unitary operation U to a vector |ψ〉 in the vector space VS stabilized by the group S for any

element g of S gives:

U |ψ〉 = Ug |ψ〉 = UgU †U |ψ〉 , (C.6)

so the new state U |ψ〉 is stabilized by UgU †. In consequence the vector space UVS is

stabilized by the group USU † = {UgU †|g ∈ S} and if S has generators g1, . . . , gl, then

Ug1U
†, . . . , UglU

† generate USU †.

To illustrate the advantage of this approach, let’s look at the following example: The

Hadamard gate H is applied to the state stabilized by Z, which is the state |0〉. It follows

thatHZH† = X , so the resulting state is stabilized byX , which is the state 2−1/2(|0〉+|1〉).
For a single qubit the advantage is not obvious, but now think of a n-qubit state with sta-

bilizer 〈Z1, Z2, . . . , Zn〉. This is just the state |0〉⊗n
. After applying a Hadamard gate to

each of the qubits, the state has the stabilizer 〈X1, X2, . . . , Xn〉. It is the state of equal su-

perposition of all computational basis states. The remarkable result is that the state is fully

specified by n generators, instead of using 2n amplitudes to fully describe the state.

The stabilizer formalism is not constrained to the Pauli group Gn, but the description also

holds true for the Clifford group (also called normalizer group), whose generators are the

Hadamard operator, the CNOT and the single qubit phase gate [Gottesman, 1997]. Ta-

ble C.1 summarizes the transformation properties of elements of the Pauli group under

conjugation. Products of operators can be derived from the results of this table.

It turns out that while many interesting gates lie within this group, most quantum gates are

outside, especially the π/8-gate (figure 2.2) and the Toffoli gate (appendix A), which are

of particular interest for building a universal set of quantum gates (see section 2.1.1). The

1The necessity can be seen easily; for the proof that these two conditions are also sufficient, refer to [Nielsen

and Chuang, 2000].
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Operation Input Output

CNOT

X1 X1X2

X2 X2

Z1 Z1

Z2 Z1Z2

H
X Z

Z X

S
X Y

Z Z

X
X X

Z -Z

Y
X -X

Z -Z

Z
X -X

Z Z

Table C.1 – Transformation properties of Pauli group elements under conjugation.

Generator Operator

g1 ZZI
g2 IZZ

Table C.2 – Generators of the 3-qubit bit flip code using stabilizer formalism.

g1 g2 error type action

+1 +1 no error no action

+1 -1 bit 3 flipped flip bit 3

-1 +1 bit 1 flipped flip bit 1

-1 -1 bit 2 flipped flip bit 2

Table C.3 – 3-qubit bit flip code in the stabilizer description. Measuring the stabilizers leads
to a specific recovery operation.

stabilizer formalism does not provide an efficient scheme for general quantum computation,

as for universal quantum computation gates are needed, which can move elements out of

the Pauli and Clifford group, like the π/8-gate.

Nevertheless, for stabilizer quantum codes, the encoding, error-detection, recovery and de-

coding can be realized using only gates from this group, so that the use of the stabilizer

formalism is well suited for the analysis of such codes.

3-qubit bit flip code using stabilizer formalism The 3-qubit bit flip code can be de-

scribed by the stabilizer generators in table C.2. Measuring the stabilizers results in the

actions for the correction of an error given by table C.3.
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Name Operator

g1 ZZIIIIIII
g2 IZZIIIIII
g3 IIIZZIIII
g4 IIIIZZIII
g5 IIIIIIZZI
g6 IIIIIIIZZ
g7 XXXXXXIII
g8 IIIXXXXXX
Z̄ XXXXXXXXX
X̄ ZZZZZZZZZ

Table C.4 – Generators of the stabilizer and logical Z and logical X operations for Shor’s 9-
qubit quantum error correction code. The entries represent tensor products on the respective
qubits. Note that the logical operations are just the reverse of what one would naively expect.

Generator Operator

g1 IIIXXXX
g2 IXXIIXX
g3 XIXIXIX
g4 IIIZZZZ
g5 IZZIIZZ
g6 ZIZIZIZ

Table C.5 – Generators of the stabilizer for Steane’s 7-qubit quantum error correction code.
The entries represent tensor products on the respective qubits.

9-qubit code using stabilizer formalism Shor’s 9-qubit code can also be represented in

the stabilizer formalism, yielding the generators and logical operators given in table C.4.

7-qubit code using stabilizer formalism Steane’s 7-qubit code can be described in a

very compact way within the stabilizer formalism (compared to the description in terms

of state vectors (equations (2.113) and (2.114)). The generators are given in table C.5.

Notice the similarity to the Hamming [7, 4, 3] code with the parity check matrix given by

equation (2.110).

5-qubit code using stabilizer formalism The 5-qubit code [Laflamme et al., 1996; Di-

Vincenzo and Shor, 1996] is the smallest code that can correct any error on a single qubit.

The generators of the stabilizer are given in table C.6. Although the 5-qubit code is the

smallest one to protect against any single error, Steane’s 7-qubit code has some properties

that makes it much easier to handle, especially when going to fault-tolerant quantum error

correction (section 2.3.3).
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Name Operator

g1 XZZXI
g2 IXZZX
g3 XIXZZ
g4 ZXIXZ
Z̄ ZZZZZ
X̄ XXXXX

Table C.6 – Generators of the stabilizer and logical Z and logical X operation for the 5-qubit
quantum error correction code. The entries represent tensor products on the respective qubits.
Note that the latter generators are obtained by right shifting the first one.
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Appendix D

Listings

Listing D.1 – Determination of communication partners

s t r i d e t a s k s =1<<(K−M) ;

f o r ( i =0 ; i<L ; i +=2)

{
j = i & s t r i d e t a s k s ;

t a s k i = i−j + j / s t r i d e t a s k s ;

t a s k j = t a s k i + s t r i d e t a s k s ;

i f ( myrank == t a s k j )

{
/∗ send odd e n t r i e s t o t a s k i and g e t even e n t r i e s

from t a s k i ∗ /
/∗ c a l c u l a t e even e n t r i e s ∗ /
/∗ send back even e n t r i e s and g e t back odd e n t r i e s

∗ /
}
i f ( myrank == t a s k i )

{
/∗ send even e n t r i e s t o t a s k j and g e t odd e n t r i e s

from t a s k j ∗ /
/∗ c a l c u l a t e odd e n t r i e s ∗ /
/∗ send back odd e n t r i e s and g e t back even e n t r i e s

∗ /
}

}
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Listing D.2 – CNOT gate in the case M > T and C > T , so that no communication be-
tween different MPI tasks is neccessary. The explicit distiction between T = 0 and T �= 0 is
neccessary due to the even/odd-splitting scheme.

/∗ E x e c u t i n g loop w i t h p a r a m e t e r s s e t : ∗ /
i f ( T != 0) /∗ common case ∗ /
{

f o r ( k= k s t a r t ; k<=kmax ; k+=2∗ j 1 )

{
f o r ( l =0 ; l<=lmax ; l +=2∗ i 1 )

{
f o r (m=0; m<=( i1 −1) / evenodd ; m++)

{
i =( k+ l ) / evenodd+m;

j = i + i 1 / evenodd ;

r0 = p s i R a [ i ] ;

r1 = p s i I a [ i ] ;

r2 = p s i R a [ j ] ;

r3 = p s i I a [ j ] ;

p s i R a [ i ]= r2 ;

p s i I a [ i ]= r3 ;

p s i R a [ j ]= r0 ;

p s i I a [ j ]= r1 ;

r0 = p s i R b [ i ] ;

r1 = p s i I b [ i ] ;

r2 = p s i R b [ j ] ;

r3 = p s i I b [ j ] ;

p s i R b [ i ]= r2 ;

p s i I b [ i ]= r3 ;

p s i R b [ j ]= r0 ;

p s i I b [ j ]= r1 ;

}
}

}
}
e l s e /∗ ( T == 0) −−> even / odd exchange ∗ /
{

f o r ( k= k s t a r t ; k<=kmax ; k+=2∗ j 1 )

{
f o r ( l =0 ; l<=lmax ; l +=2) /∗ 2∗ i 1 =2∗1=2 ∗ /
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{
i =( k+ l ) / evenodd ;

r0 = p s i R a [ i ] ;

r1 = p s i I a [ i ] ;

r2 = p s i R b [ i ] ;

r3 = p s i I b [ i ] ;

p s i R a [ i ]= r2 ;

p s i I a [ i ]= r3 ;

p s i R b [ i ]= r0 ;

p s i I b [ i ]= r1 ;

}
}

}
Listing D.3 – CNOT gate in the case M > T and C < T . No communication between different
MPI tasks is neccessary. The explicit distiction between T = 0 and T �= 0 is neccessary due to
the even/odd-splitting scheme.

i f ( c o n t r o l b i t != 0 )

{
f o r ( k= j 1 ; k<=j 1+1<<M−2∗ i 1 ; k+=2∗ i 1 )

{
f o r ( l =0 ; l<=i1 −2∗ j 1 ; l +=2∗ j 1 )

{
f o r (m=0; m<=( j1 −1) / evenodd ; m++)

{
i =( k+ l ) / evenodd+m;

j = i + i 1 / evenodd ;

r0 = p s i R a [ i ] ;

r1 = p s i I a [ i ] ;

r2 = p s i R a [ j ] ;

r3 = p s i I a [ j ] ;

p s i R a [ i ]= r2 ;

p s i I a [ i ]= r3 ;

p s i R a [ j ]= r0 ;

p s i I a [ j ]= r1 ;

r0 = p s i R b [ i ] ;

r1 = p s i I b [ i ] ;

r2 = p s i R b [ j ] ;
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r3 = p s i I b [ j ] ;

p s i R b [ i ]= r2 ;

p s i I b [ i ]= r3 ;

p s i R b [ j ]= r0 ;

p s i I b [ j ]= r1 ;

}
}

}
}
e l s e /∗ ( c o n t r o l b i t == 0) o n l y odd−e l e m e n t s i n v o l v e d ∗ /
{

f o r ( k= j 1 ; k<=j 1 +NSTATESPERTASK−2∗ i 1 ; k+=2∗ i 1 )

{
f o r ( l =0 ; l<=i1 −2; l +=2) /∗ 2∗ j 1 =2∗1=2 ∗ /
{

f o r (m=0; m<=( j1 −1) / evenodd ; m++)

{
i =( k+ l ) / evenodd+m;

j = i + i 1 / evenodd ;

r0 = p s i R b [ i ] ;

r1 = p s i I b [ i ] ;

r2 = p s i R b [ j ] ;

r3 = p s i I b [ j ] ;

p s i R b [ i ]= r2 ;

p s i I b [ i ]= r3 ;

p s i R b [ j ]= r0 ;

p s i I b [ j ]= r1 ;

}
}

}
}

Listing D.4 – CNOT gate in the case T ≤ M and C > T . Communication between different
MPI tasks is unavoidable. The explicit distiction between T = 0 and T �= 0 is not neccessary,
because an operation on qubit 0 can always be done locally

i f ( ( myrank / sw )%2 == 1)

{
i f ( ( myrank / sw2 )%2 == 0) /∗ f i r s t communica t ion p a r t n e r ∗ /
{

/∗ Send odd p a r t t o myrank+sw2 ; ∗ /
/∗ R e c e i v e even p a r t from myrank+sw2 : ∗ /
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/∗ Exchange a m p l i t u d e s ∗ /
/∗ backward communica t ion ∗ /

}
e l s e /∗ second communica t ion p a r t n e r ∗ /
{

/∗ Send even p a r t t o myrank−sw2 ; ∗ /
/∗ r e c e i v e odd p a r t from myrank−sw2 : ∗ /
/∗ Exchange a m p l i t u d e s ∗ /
/∗ backward communica t ion ∗ /

}
}

Listing D.5 – CNOT gate in the case T ≤ M and C < T . Communication between different
MPI tasks is unavoidable.

i f ( sw == 0) /∗ M > C ∗ /
{

k s t a r t = j 1 ;

kmax= j 1 ; /∗ ma in l y 1 i t e r a t i o n f o r k−l oop ∗ /
lmax=1<<M−2∗ j 1 ;

mmax=j1 −1;

}
e l s e /∗ C >= M ∗ /
{

i f ( ( myrank / sw )%2 == 0)

k s t a r t = j 1 ; /∗ ma in l y s t h . g r e a t e r th an kmax=0 ∗ /
e l s e
k s t a r t =0 ;

kmax =0;

lmax =0;

mmax=1<<M−1;

}

/∗ E x e c u t i n g loop w i t h p a r a m e t e r s s e t : ∗ /
f o r ( k= k s t a r t ; k<=kmax ; k+=2∗ i 1 ) /∗ A c t u a l l y , s t e p doesn ’ t

m a t t e r ∗ /
{

/∗ i f t h e r e i s a n y t h i n g t o do , do communica t ion p a r t he re :
∗ /

i f ( c o n t r o l b i t != 0 ) /∗ common case ∗ /
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{
/∗ o t h e r w i s e o n l y odd s t a t e s i n v o l v e d −> l e s s commun . ∗ /
i f ( ( myrank / sw2 )%2 == 0) /∗ f i r s t communica t ion p a r t n e r

∗ /
{

/∗ Send odd p a r t t o myrank+sw2 ; ∗ /
/∗ R e c e i v e even p a r t from myrank+sw2 : ∗ /

f o r ( l =0 ; l<=lmax ; l +=2∗ j 1 )

{
f o r (m=0; m<=mmax / evenodd ; m++)

{
i =( k+ l ) / evenodd+m;

/∗ swap a m p l i t u d e s ∗ /
}

}

/∗ backward communica t ion : ∗ /
}
e l s e /∗ second communica t ion p a r t n e r ∗ /
{

/∗ Send even p a r t t o myrank−sw2 ; ∗ /
/∗ r e c e i v e odd p a r t from myrank−sw2 : ∗ /

f o r ( l =0 ; l<=lmax ; l +=2∗ j 1 )

{
f o r (m=0; m<=mmax / evenodd ; m++)

{
i =( k+ l ) / evenodd+m;

/∗ swap a m p l i t u d e s ∗ /
}

}
/∗ backward communica t ion : ∗ /

}
}
e l s e /∗ ( c o n t r o l b i t ==0) , o n l y odd s t a t e s , l e s s commun . ∗ /
{

i f ( ( myrank / sw2 )%2 == 0 )

{
/∗ Send odd p a r t t o myrank+sw2 ∗ /
/∗ n o t h i n g t o do he r e ∗ /
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/∗ backward communica t ion : ∗ /
}
e l s e
{

/∗ R e c e i v e odd p a r t from myrank−sw2 : ∗ /

f o r ( l =0 ; l<=lmax ; l +=2∗ j 1 )

{
f o r (m=0; m<=mmax / evenodd ; m++)

{
i =( k+ l ) / evenodd+m;

/∗ swap a m p l i t u d e s ∗ /
}

}
/∗ backward communica t ion : ∗ /

}
}

}
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Large-Scale Simulations of Error-Prone Quantum  
Computation Devices 

Doan Binh Trieu

The theoretical concepts of quantum computation in the idealized and undisturbed case are well 
understood. However, in practice, all quantum computation devices do suffer from decoherence 
effects as well as from operational imprecisions. This work assesses the power of error-prone 
quantum computation devices using large-scale numerical simulations on parallel supercomput-
ers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that 
simulates a generic quantum computer on gate level. The robustness of various algorithms in the 
presence of noise has been analyzed. The simulation results show that for large system sizes and 
long computations it is imperative to actively correct errors by means of fault-tolerant quantum 
error correction. Fault-tolerant methods require the single qubit error rate to be below a certain 
threshold. We determined this threshold numerically for Steane’s 7-qubit code. Using the depolar-
izing channel as the source of decoherence, we find a threshold error rate of (5.2 w 0.2) · 10–

 
6. 

For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 
0.0431 w 0.0002. We can conclude that quantum error correction is especially well suited for the 
correction of operational imprecisions and systematic over-rotations.

For realistic simulations of specific quantum computation devices we extend the generic model  
to dynamic simulations of realistic hardware models. We focus on today’s most advanced technology,  
i.e. ion trap quantum computation. We developed the Dynamic Quantum Computer Simulator for 
Ion Traps (DyQCSI). Starting from a microscopic Hamiltonian, it does not rely on approximations 
that are usually necessary for an analytical approach. We show that the effects due to these 
approximations are significant. We present several ways for the visualization of the state of the 
system during its time evolution and demonstrated the benefit of the simulation approach for 
parameter optimizations.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part  
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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