
IBM PSSC Montpellier Customer Center

© 2009 IBM Corporation8/14/2009

BlueGene/P Architecture

Forschungszentrum Jülich
11, August 2009

Pascal Vezolle
HPC Performance Specialist
vezolle@fr.ibm.com

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

2 PSSC Montpellier Deep Computing Team 8/14/2009

Content (2 days Blue Gene application user workshop)

 Blue Gene/P Architecture

– Hardware Components

– Networks

– Partitioning

 Blue Gene/P Software Stack

– I/O Node

– Compute Node

– HPC Software Stack

– Software Locations

 Programming Models & Execution Modes

– Programming Models

– Execution Modes

– Partition Types

 Blue Gene/P Compilation

– Compilers

– Mathematical Libraries

 Blue Gene/P Execution

– MPIRUN / MPIEXEC Commands

– Environment Variables

– LoadLeveler

– HTC

 Blue Gene/P Parallel Libraries

– Shared Memory

– Message Passing

 Blue Gene/P Advanced Topics

– Blue Gene/P Memory

– Advanced Compilation with IBM XL Compilers

– SIMD Programming

– Communications Framework

– Checkpoint/Restart

– I/O Optimization

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

3 PSSC Montpellier Deep Computing Team 8/14/2009

Information Sources

 IBM Redbooks for Blue Gene

(http://www.redbooks.ibm.com/)

– Application Development Guide

– Performance Tools

– System Administration Guide

 Open Source Communities (Argonne Web site, …)

 Doxygen Documentation (DCMF, SPI, …) on the system

(/bgsys)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

4

Blue Gene Philosophy – Hardware Perspective with standard
HPC programming models

 How to break through the power and cost issues limiting traditional supercomputer design

 Optimize FLOPS per rack; Best FLOPS/Watt found with modest-frequency
design point

– Relatively low architectural complexity

– Choice: BG/L : IBM PowerPC 440 -- 700 MHz @1.6V

BG/P: IBM PowerPC 450 -- 850 MHz @1.1V

 Scalable architecture and appropriate package can lead to a high density, low power, massively
parallel system

 Some applications display very high levels of parallelism, and can be executed efficiently on tens
of thousands of processors if:

– low-latency, high-bandwidth, integrated interconnect is present

– machine is reliable enough

– good compilers and programming models are available

– machine is manageable (simple to build and operate)

 Whatever the scalability it is compulsory to get the best from the Blue Gene processor and IO
subsystem

 Embedded processor is based on IBM Power technology

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

5 PSSC Montpellier Deep Computing Team 8/14/2009

13.6 GF/s

8 MB

EDRAM

4 processors

1 chip, 20

DRAMs

13.6 GF/s

2.0 (or 4.0) GB

DDR

32 Node Cards

14 TF/s

2 TB

72 Racks

1 PF/s

144 TB

Cabled 8x8x16
Rack

System

Compute

Card

Chip

435 GF/s

64 GB

(32 chips 4x4x2)

32 compute, 0-1 IO

cards

Node Card

Blue Gene/P Packaging

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

8 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Rack Content

 32 Compute Nodes populate a Node
Card

– Node cards may be hot plugged for service

 0-2 I/O Nodes populated on a Node Card

– Flexible ratio of compute to I/O nodes

– I/O Nodes are identical to Compute Nodes
other than placement in the Node Card
which defines network connections

 16 Node Cards form a Midplane

 2 Midplanes form a rack

– 1024 Compute Nodes per rack

– 8 to 64 I/O nodes per rack: 80Gb to 640Gb
Ethernet bw/rack

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

9 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene Blocks Hierarchical Organization

 Compute Nodes dedicated to running user application, and almost nothing else -
simple compute node kernel (CNK)

 I/O Nodes run Linux and provide a more complete range of OS services – files,
sockets, process launch, signaling, debugging, and termination

 Service Node performs system management services (e.g., partitioning, heart
beating, monitoring errors) - transparent to application software

Front-end Nodes, Filesystem

10 Gb Ethernet

1 Gb Ethernet

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

10 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P ASIC

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

11 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Interconnection Networks

 3-Dimension Torus

– Interconnects all compute nodes

– Virtual cut-through hardware routing

– 3.4 Gb/s on all 12 node links (5.1 GB/s per node)

– 0.5 µs latency between nearest neighbors, 5 µs to the farthest

– MPI: 3 µs latency for one hop, 10 µs to the farthest

– Communications backbone for computations

– 1.7/3.9 TB/s bisection bandwidth, 188TB/s total bandwidth

 Collective Network

– One-to-all broadcast functionality

– Reduction operations functionality

– 6.8 Gb/s of bandwidth per link

– Latency of one way tree traversal 1.3 µs, MPI 5 µs

– ~62 TB/s total binary tree bandwidth (72k machine)

– Interconnects all compute and I/O nodes (1152)

 Low Latency Global Barrier and Interrupt

– Latency of one way to reach all 72K nodes 0.65 µs (MPI 1.6 µs)

 Other networks

– Functional Network

• 10 Gb/s Ethernet

• Linking I/O Nodes to shared filesystem (GPFS)

– 1Gb Private Control Ethernet

• Provides JTAG access to hardware. Accessible only from Service Node system

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

12 PSSC Montpellier Deep Computing Team 8/14/2009

Torus VS Mesh

 The basic block is the midplan,

shape 8x8x8= 512 Computes Nodes

(2048 cores)

 Only multiple midplans partition is

a Torus; i.e. each CNode has 6

nearest-neighbours

 All the other partition is a mesh

 Capability from LoadLeveler to

request a Torus or a Mesh with the

field:

– # @ bg_connection= torus/mesh

 The default is a mesh

X

Y

Z

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

13 PSSC Montpellier Deep Computing Team 8/14/2009

Partitioning

 Partition = Subdivision of a single Blue Gene system

 Partitions are software defined

 Torus, Collective and Barrier networks are completely isolated from

traffic from other partitions

 A single job runs on a partition

– Jobs never share resources or interfere with each other

 Custom kernels may be booted in a partition

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

14

Blue Gene System Architecture

Functiona
l Gigabit
Ethernet

I/O Node 0

Linux

ciod

C-Node 0

CNK

I/O Node 1023

Linux

ciod

C-Node 0

CNK

C-Node 63

CNK

C-Node 63

CNK

Control
Ethernet

IDo chip

mpirun

LoadL

System
Console

MMCS

JTAG

torus

tree

DB2

Front-End
Nodes

Pset 1023

Pset 0

I2C

File
Servers

fs client

fs client

Service Node

app app

appapp

mpi
run

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

15

How File I/O works in Blue Gene applications

Tree

CNK

BG/L ASIC

Application

Linux

BG/L ASIC

ciod

Ethernet

File server

*FS

IP

fscanf

read

Tree packets

libc read

Tree packets

read data

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

16 PSSC Montpellier Deep Computing Team 8/14/2009

What’s new with BG/P …

 Torus DMA and numerous communication library optimizations

 pthreads and OpenMP support

 CNK application compatibility with Linux

– Dynamic linking

– Use of mmap for shared memory

– Protected readonly data and application code

– Protection for stack overflow

– Full socket support (client and server)

– Better Linux compatibility in ciod on the I/O node

 MPMD

– mpiexec supports multiple executables

– Some restrictions: executable specified per pset

 Numerous control system enhancements

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

17

Blue Gene Software Stack Review

Compute NodeService NodeFront-end Node

Kernel
(CNK)

Run-time

MPI

Application

Linux

XL compilers

mpirun
front-end

Debuggers

Linux

Proxy

MMCS

LoadLeveler

CIODB

mpirun
back-end

DB2 & Firmware

Navigator

I/O Node

Linux

File system

Debuggers

GNU tools

CIOD

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

18 PSSC Montpellier Deep Computing Team 8/14/2009

CNK System Calls

 Direct Implementation

– exit, time, getpid, getuid, alarm, kill, times, brk, getgid, geteuid, getegid,

getppid, sigaction, setrlimit, getrlimit, getrusage, gettimeofday, setitimer,

getitimer, sigreturn, uname, sigprocmask, sched_yield, nanosleep,

set_tid_address, exit_group

 Implementation through forward to I/O Node

– open, close, read, write, link, unlink, chdir, chmod, lchown, lseek, utime,

access, rename, mkdir, rmdir, dup, fcntl, umask, dup2, symlink, readlink,

truncate, ftruncate, fchmod, fchown, statfs, fstatfs, socketcall, stat, lstat, fstat,

fsync, llseek, getdents, readv, writev, sysctl, chown, getcwd, truncate64,

ftruncate64, stat64, lstat64, fstat64, getdents64, fcntl64

 Restricted Implementation

– mmap, munmap, clone, mutex

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

19 PSSC Montpellier Deep Computing Team 8/14/2009

Programming Models & Development Environment

 Familiar Aspects

– SPMD model - Fortran, C, C++ with MPI (MPI1 + subset of MPI2)

• Full language support

• Automatic SIMD FPU exploitation

– Linux development environment

• User interacts with system through front-end nodes running Linux – compilation, job submission,
debugging

• Compute Node Kernel provides look and feel of a Linux environment
– POSIX system calls (with some restrictions)

– BG/P adds pthread support, additional socket support,

• Tools – support for debuggers, MPI tracer, profiler, hardware performance monitors, visualizer
(HPC Toolkit), PAPI

• Dynamic libraries

• Python 2.5

 Aggregate Remote Memory Copy (ARMCI), Global Arrays (GA), UPC, …

 Restrictions (lead to significant scalability benefits)

– Space sharing - one parallel job (user) per partition of machine, one process per
processor of compute node

– Virtual memory constrained to physical memory size

• Implies no demand paging, but on-demand linking

– MPMD model limitations

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

20 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Messaging Framework

SPI

Message Layer Core (C++)

DMA Device

pt2pt protocols

(eager, rendezvous)

ARMCI

primitives
MPICH GLUE

UPC

messaging

Converse/Charm++

DCMF API (C)

Multisend protocols

DMA Network Hardware

IPC DeviceTree Device

Application

global

arrays

supported

but not

recommended

CCMI Collective Layer

(barrier, broadcast, allreduce)

supported

encouraged

Multiple programming paradigms supported

MPI, Charm++, ARMCI, GA, UPC (as a research initiative)

SPI : Low level systems programming interface

DCMF : Portable active-message API

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

21 PSSC Montpellier Deep Computing Team 8/14/2009

Programming Models & Execution Modes

 Programming Models

 3 Types of Partition

– HPC

– HTC (High Throughput Computing) with CNK – no MPI

– HTC with CNL Kernel (Compute Node Linux) , IP address/compute

Node, no MPI

 Execution Modes

– SMP, DUAL, VN

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

22 PSSC Montpellier Deep Computing Team 8/14/2009

Quad Mode
Previously called Virtual Node

Mode

All four cores run one MPI process

each

No threading

Memory / MPI process = ¼ node

memory

MPI programming model

Dual Mode

Two cores run one MPI process

each

Each process may spawn one

thread on core not used by other

process

Memory / MPI process = ½ node

memory

Hybrid MPI/OpenMP programming

model

SMP Mode

One core runs one MPI process

Process may spawn threads on

each of the other cores

Memory / MPI process = full node

memory

Hybrid MPI/OpenMP programming

model

M

P

M

P

M

P

Memory address space

M

C
o

re
 0

P

Application

C
o

re
 1

C
o

re
 2

C
o

re
 3

Application

M

P

T

M

P

TC
o

re
 0

C
o

re
 1

C
o

re
 2

C
o

re
 3

Memory address space

CPU2 CPU3

Application

M

P

T T T

C
o

re
 0

C
o

re
 1

C
o

re
 2

C
o

re
 3

Memory address space

Blue Gene/P Execution Modes (HPC and CNK HTC)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

23 PSSC Montpellier Deep Computing Team 8/14/2009

High Throughput Computing (HTC) Mode

 Many applications that run on Blue Gene today are “embarrassingly
(pleasantly) parallel”

– They do not fully exploit the torus for MPI communication, since that is not
needed for their problem

– They just want a very large number of small tasks, with a coordinator of results

 High Throughput Computing Mode on Blue Gene

– Enables a new class of workloads that use many single-node jobs

– Leverages the low-cost, low-energy, small footprint of a rack of 1,024 compute
nodes

• Capacity machine (“cluster buster”): run 4,096 jobs on a single rack in virtual node
mode (VN)

 New HTC CNL mode with full Linux kernel on each Compute Node (from
BG/P driver V1R3)

• Compute Node is seen as a regular Linux SMP system

• Number of Processes and/or Threads is under user control

• SSH session on Compute Node becomes possible

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

24 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Execution

 UNICORE, LoadLeveler & Environment Variables

 HPC Partition

– MPIRUN, MPIEXEC Commands

– mpirun -cwd ~/hello_world -exe hello_world -mode SMP

-np 128 -env " OMP_NUM_THREADS=4

XLSMPOPTS=spins=0:yields=0:stack=64000000"

 HTC Partition

– SUBMIT Command

– IBM Simple Scheduler

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

25 PSSC Montpellier Deep Computing Team 8/14/2009

STDIN / STDOUT / STDERR Support

 STDIN, STDOUT, and STDERR work as expected. You can pipe or redirect
files into mpirun and pipe or redirect output from mpirun, just as you would
on any command line utility. STDIN may also come from the keyboard
interactively.

 Any compute node may send STDOUT or STDERR data. Only MPI rank 0
may read STDIN data.

 Mpirun always tells the control system and the C runtime on the compute
nodes that it is writing to TTY devices. This is because logically MPIRUN
looks like a pipe; it can not do seeks on STDIN, STDOUT, and STDERR
even if they are coming from files.

 As always, STDIN, STDOUT and STDERR are the slowest ways to get input
and output from a supercomputer. Use them sparingly.

 STDOUT is not buffered and can generate a huge overhead for some
applications. It advices for such applications to buffer the stdout with

-enable_tty_reporting

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

26 PSSC Montpellier Deep Computing Team 8/14/2009

IBM Scheduler for HTC Glide-In to LoadLeveler

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

28 PSSC Montpellier Deep Computing Team 8/14/2009

XL Runtime Environment variables

 Number of threads per MPI tasks

– OMP_NUM_THREADS

 OMP and SMP runtime options

– XLSMPOPTS=option1=XXX:option2=YYY: ….

• schedule= static[=n]:dynamic [=n]:guided [=n]:affinity [=n]

• parthds= number of threads (with –qsmp in the compilation, should be set for
esslsmp)

• stack= amount of space in Bytes for the all thread stack (defauklt 4MB)

• For performance

• spins= number of spins before a yield

• yields= number of yields before a sleep
– On BGP spins=0:yields=0

 512 mpi tasks, 4 OpenMP threads with 64MBytes stack per thread

– mpirun –mode SMP –np …. –env „‟ OMP_NUM_THREADS=4
XLSMPOPTS=spins:0:yields=0:stack=67108864‟‟

 A lot of other potential XL runtime variables: c.f. XL documentation

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

29 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Compilation

 Compilers

 Mathematical Libraries

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

30 PSSC Montpellier Deep Computing Team 8/14/2009

GNU Tools and Libraries

 GCC 4.1.1

– Standard System Locations

• /bgsys/drivers/ppcfloor/gnu-linux/
– powerpc-bgp-linux-gcc

– No support for OMP in this version

– Specificities

• gfortran replaces the older g77
– -std=legacy emulates previous behavior

 GLIBC 2.4

– Thread support enabled

• Link Option: –lpthread

– Standard System Location

• /bgsys/drivers/ppcfloor/gnu-linux/bin
– powerpc-bgp-linux-addr2line

> Decode more BG/P syscalls

– gdb / gdbserver

– python2.5

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

31 PSSC Montpellier Deep Computing Team 8/14/2009

IBM XL Compilers for Blue Gene

 XL Fortran 11.1

 XL C/C++ 9.0

 Standard System Locations

– /opt/ibmcmp/xlf/bg/11.1/

– /opt/ibmcmp/vacpp/bg/9.0/

 Specificities

– Fortran 2003 standard supported

• xlf2003

– Blue Gene/P Optimization Options

• -qarch=450[d] –qtune=450

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

32 PSSC Montpellier Deep Computing Team 8/14/2009

IBM XL Compilers for Blue Gene / MPI Wrappers

 Included in the BG/P driver

 Standard System Location

– /bgsys/drivers/ppcfloor/comm/bin

• mpicc / mpicxx / mpixlc / mpixlcxx / mpixlc_r / mpixlcxx_r

• mpixlf2003 / mpixlf77 / mpixlf90 / mpixlf95 / mpif77 / mpixlf2003_r / mpixlf77_r /
mpixlf90_r / mpixlf95_r

– /bgsys/drivers/ppcfloor/comm/bin/fast

• Fast versions

– The 'fast' scripts use libraries that are built with assertions turned off and MPICH debug turned
off

• Recommendations

– Build and test with original wrappers (/comm/bin/mpi*)

– Make sure you have successful runs of application before switching

• Using these shaves roughly a microsecond off of most communications calls (which
can be 25% improvement)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

33 PSSC Montpellier Deep Computing Team 8/14/2009

IBM Compilers Key Options

 -qarch=440, 450

– Generates only instructions for one floating point (option minimal option with blrts_)

 -qarch=440d, 450d

– Generates only instructions for 2 floating point pipes

 -qtune=450/440

 -O3 (-qstrict)

– Minimal level for SIMDization

 -O3 -qhot (=simd)

 -O4 (-qnoipa)

 -O5

 -qdebug=diagnostic

– Provides details about SIMDization, only with –qhot

 -qreport –qlist –qsource

– Provides pseudo-assembler code in .lst generated file

 -qsmp (-qsmp=omp + -qdirectives=…) for OpenMP

– Recommended: mpiXXX_r -g -qarch=450d –qtune450 –qmaxmem=-1 –O3 [-qhot]

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

34 PSSC Montpellier Deep Computing Team 8/14/2009

Compiler Options

 -C, -qcheck

– Checks each reference to an array element, array section, or character substring to ensure the reference stays within the defined bounds of the
entity.

 -g, -qdbg

– Generates debug information for use by a symbolic debugger.

 -qdpcl

– Generates symbols that tools based on the IBM Dynamic Probe Class Library (DPCL) can use to see the structure of an executable file.

 -qextchk

– Generates information to perform type-checking at both compile and link time to ensure consistency between declarations and references.

 -qflttrap

– Determines what types of floating-point exception conditions to detect at run time.

 -qformat (XLC)

– Warns of possible problems with string input and output format specifications.

 -qinitauto

– Initializes uninitialized automatic variables to a specific value, for debugging purposes.

 -qkeepparm

– When used with -O2 or higher optimization, specifies whether function parameters are stored on the stack.

 -qobject

– Specifies whether to produce an object file or to stop immediately after checking the syntax of the source files.

 -qoptdebug

– When used with high levels of optimization, produces files containing optimized pseudocode that can be read by a debugger.

 -qxflag=dvz

– Causes the compiler to generate code to detect floating-point divide-by-zero operations

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

35 PSSC Montpellier Deep Computing Team 8/14/2009

MASS Library

 MASS = Mathematical Acceleration Subsystem

 Collection of tuned mathematical intrinsic functions

 Components

– MASS

• Scalar functions

– MASSV

• Vector functions (Single & Double precision)

 Standard System Location

– /opt/ibmcmp/xlmass/bg/4.4/bglib

• libmass.a

• libmassv.a

– /opt/ibmcmp/xlmass/bg/4.4/include

 Link Syntax

– -L/opt/ibmcmp/xlmass/bg/4.4/bglib –lmass -l massv

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

36 PSSC Montpellier Deep Computing Team 8/14/2009

ESSL Library

 ESSL = Engineering and Scientific Subroutine

 Optimization library and intrinsics for better application performance

– Serial Static Library supporting 32-bit applications

– Callable from C/C++ and Fortran

– PowerPC 450 optimized

 Components

– ESSL

– ESSL SMP
• SMP Support

– Parallel ESSL

 Standard System Location

– /opt/ibmmath/essl/4.4
• ./lib/libesslbg.a

• ./lib/libesslsmpbg.a

 Link Syntax

– Fortran Linker

• -L/opt/ibmmath/essl/4.3/lib –lesslbg [–lesslsmpbg]

– C/C++ Linker

• -L/opt/ibmmath/essl/4.3/lib –lesslbg [–lesslsmpbg] -L/opt/ibmcmp/xlf/bg/11.1/lib -
lxlf90_r -lxlopt -lxl -lxlfmath

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

38

A word on FFTs ...

 Use ESSL or FFTW on BlueGene

 Only FFTW-2.1.5 and ESSL are optimized for “double hummer”

 Must compile code with -qarch=450d (to get alignment right)

 3D volumetric FFTs

 Easy out-of-the-box solution

 Free P3DFFT package from San Diego Supercomputing Center (SDSC)

 Uses a 2d 'pencil' decomposition on top of FFTW or ESSL

 IBM PESSL or FFTW(MPI) only support 1d slab decomposition

 Proven scalability up to 32k MPI tasks for up to 4096**3 FFT sizes

 Roll your own 'pencil' decomposition

 Beneficial for very large FFTs (1024**3 and larger) if transpositions are

blocked for L3 cache and MPI Datatypes are used

 Must interleave FFT transpositions with programs fourier space code

 50% speedup over P3DFFT package possible

 Sample code should be available on NIC website next week

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

39 PSSC Montpellier Deep Computing Team 8/14/2009

Available Tools Summary

 Integrated Tools

– Personality

– Compiler Options

– Kernel Functions

– Core Processor

– Core Files + addr2line

– GDB

– Hardware counters

 Supported Commercial Software

– TotalView Debugger

– Allinea DDT

– Juelich‟s tools, +++

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

40 PSSC Montpellier Deep Computing Team 8/14/2009

Personality / Provided Information

 personality.Network_Config.[X|Y|Z]nodes

– Nb X / Y / Z Nodes in Torus

 personality.Network_Config.[X|Y|Z]coord

– X / Y / Z Node Coordinates in Torus

 Kernel_PhysicalProcessorID()

– Core ID on Compute Node (0, 1, 2, 3)

 BGP_Personality_getLocationString(&personality, location)

– Location string

• Rxx-Mx-Nxx-Jxx

 Two Include Files

– #include <common/bgp_personality.h>

– #include <common/bgp_personality_inlines.h>

• In Directory: /bgsys/drivers/ppcfloor/arch/include

 Structure

– _BGP_Personality_t personality;

 Query Function

– Kernel_GetPersonality(&personality, sizeof(personality));

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

41 PSSC Montpellier Deep Computing Team 8/14/2009

Personality / Example

#include <spi/kernel_interface.h>

#include <common/bgp_personality.h>

#include <common/bgp_personality_inlines.h>

int main(int argc, char * argv[]) {

int taskid, ntasks;

int memory_size_MBytes;

_BGP_Personality_t personality;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

Kernel_GetPersonality(&personality,
sizeof(personality));

memory_size_MBytes =
personality.DDR_Config.DDRSizeMB;

printf("Memory size = %d MBytes\n",
memory_size_MBytes);

node_config =
personality.Kernel_Config.ProcessConfig;

if (node_config == _BGP_PERS_PROCESSCONFIG_SMP)
printf("SMP mode\n");

else if (node_config ==
_BGP_PERS_PROCESSCONFIG_VNM) printf("Virtual-node
mode\n");

else if (node_config ==
_BGP_PERS_PROCESSCONFIG_2x2) printf("Dual
mode\n");

else printf("Unknown mode\n");

xcoord =

personality.Network_Config.Xcoord;

ycoord =

personality.Network_Config.Ycoord;

zcoord =

personality.Network_Config.Zcoord;

xsize =

personality.Network_Config.Xnodes;

ysize =

personality.Network_Config.Ynodes;

zsize =

personality.Network_Config.Znodes;

pset_num =

personality.Network_Config.PSetNum;

pset_size =

personality.Network_Config.PSetSize;

pset_rank =

personality.Network_Config.RankInPSet;

BGP_Personality_getLocationString(&person

ality, location);

procid = Kernel_PhysicalProcessorID();

}

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

42 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Advanced Topics

 Blue Gene/P Memory

 Advanced Compilation with IBM XL Compilers

 SIMD Programming

 Communications Frameworks

 Checkpoint/Restart

 I/O Optimization

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

43 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P ASIC

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

44 PSSC Montpellier Deep Computing Team 8/14/2009

Memory Cache Levels

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

45 PSSC Montpellier Deep Computing Team 8/14/2009

L1-2-3 Caches

 L1 Cache

– Avoid instructions prefetching in L1. Reduce the number of prefetch streams below 3

– Programmer can use the XL compiler directives or assembler instruction (dcbt)

– Without an intensive reused of the L1 and register, memory subsystem is not allowed to feed the double FPU

 L2 Cache

– 128B line Prefetch engine, up to 7 streams

– L2 boosts the overall performance and does not require any special software provisions.

 L3 Cache

 Request queue per port

– 8 read requests

– 4 write requests

 4 eDRAM banks per chip, each containing independent

– directory

– 15 entry 128B-wide write combining buffer

 Hit under Miss resolution

– Limit defined by request queues and write buffer

• Up to 8 read misses per port

• Up to 15 write misses per write combining buffer

 Limitation: banking conflict (possibility to configure dedicated
L3/core – need IBM Lab support)

eDRAM

32B@425MHz

eDRAM

32B@425MHz

Request

queue

Request

queue

Request

queue

eDRAM

32B@425MHz

eDRAM

32B@425MHz

Request

queue

Request

queue

Request

queue

Core0/1

Core2/3

DMA

L3 cache 0

L3 cache 1

32B@425MHz 32B@425MHz

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

46 PSSC Montpellier Deep Computing Team 8/14/2009

Bottlenecks

 L2 – L3 switch

– Not a full core to L3 bank crossbar

– Request rate and bandwidth limited if two cores of one dual processor

group access the same L3 cache

 4 memory module-internal banks (4x512 MB)

– 4 banks on 512Mb DDR modules

– Burst-8 transfer (128B): 16 cycles

– Page open, access, precharge: 64 cycles

– Peak bandwidth only achievable if accessing 3 other banks before

accessing the same bank again

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

47 PSSC Montpellier Deep Computing Team 8/14/2009

Main Memory Banking Optimization Example

 For sequential access, two arrays used in a single operation must

not be aligned on the same bank

BG memory tuning
parameter (n=12800000)

real(8) x(n), y(n), w(n)

…..

do j=1,n

x(j) = x(j) + y(j)*w()

Enddo

…

parameter (n=12800000, offset=16)

real(8) x(n+offset), y(n+2*offset), w(n)

…..

do j=1,n

x(j) = x(j) + y(j)*w()

Enddo

…

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

48 PSSC Montpellier Deep Computing Team 8/14/2009

CNK / Shared Memory Support

 Shared Memory is supported in Virtual and Dual mode

 Normal theme: do it the Linux way…

 shm_open() standard interface

– Allocate:

• fd = shm_open(SHM_FILE, O_RDWR, 0600);

• ftruncate(fds[0], MAX_SHARED_SIZE);

• shmptr1 = mmap(NULL, MAX_SHARED_SIZE, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0);

– Deallocate:

• munmap(shmptrl, MAX_SHARED_SIZE);

• close(fd)

• shm_unlink(SHM_FILE);

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

49 PSSC Montpellier Deep Computing Team 8/14/2009

CNK / Persistent Memory

 Persistent memory is process memory that retains its contents from job to
job.

 To allocate persistent memory, the environment variable
BG_PERSISTMEMSIZE=X must be specified,

– where X is the number of 1024*1024 bytes to be allocated for use as persistent
memory.

 In order for the persistent memory to be maintained across jobs, all job
submissions must specify the same value for BG_PERSISTMEMSIZE.

 The contents of persistent memory can be re-initialized during job startup
by either changing the value of BG_PERSISTMEMSIZE or by specifying the
environment variable BG_PERSISTMEMRESET=1.

 The following new kernel function was added to support persistent
memory:

– persist_open()

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

50 PSSC Montpellier Deep Computing Team 8/14/2009

Dual FPU Architecture

Primary

Pipe

P0

FPR: Primary

P31

Secondary

Pipe

S0

FPR: Secondary

S31

Secondary

Quadword Store data

Quadword (2x8 Bytes) Load data

5 stages arithmetic pipes

Running the same operation

32 (2x8 Byres) Registers

One Load/Store Unit

Primary Scalar slide

Pipe 1

5 stages arithmetic pipes

Running different operations

FPR: Primary> 100 (8 Bytes) Registers

2 independent Load/Store Units

Pipe 2

• Designed with input from compiler and library developers

• SIMD instructions over both register files

• FMA operations over double precision data

• More general operations available with cross and

replicated operands

•Useful for complex arithmetic, matrix multiply,

FFT

• Parallel (quadword) loads/stores

• Fastest way to transfer data between processors

and memory

• Data needs to be 16-byte aligned
• Load/store with swap order available

• Useful for matrix transpose

Power 5/6 Architecture

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

51 PSSC Montpellier Deep Computing Team 8/14/2009

SIMD Implementation Control

 -qarch=440d, 450d generates instructions for 2 floating point pipes

 Obtaining and understanding an object code listing

– qdebug=diagnostic

• Provides details about SIMDization, only with –qhot

– qreport –qlist –qsource

• Provides pseudo-assembler code

• .lst file

 BG/P Hardware counters

 or a profiling tool

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

52 PSSC Montpellier Deep Computing Team 8/14/2009

Program to Disable Simdization

 Turn off the right optimizations

– do not invoke TPO

• compile with –O3 without “-qhot” or “-qipa”

• add –qhot=nosimd at –O4, -O5

– disable simdization (with at least –O3 –qhot=simd)

• for a loop

– #pragma nosimd

– !IBM* NOSIMD

• completely

– -qhot=nosimd / -qdebug=nosimd

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

53 PSSC Montpellier Deep Computing Team 8/14/2009

SIMD Instructions for Double FPU

 Main constraint: 16 Bytes data alignment

 Help the compiler with directives

Fortran

call alignx(16,x(1))

call alignx(16,y(1))

!ibm* unroll(10)

do i = 1, n

y(i) = a*x(i) + y(i)

end do

C :

double * x, * y; double x[256] __attribute__((aligned(16));

#pragma disjoint (*x, *y)

__alignx(16,x);

__alignx(16,y);

#pragma unroll(10)

for (i=0; i<n; i++) y[i] = a*x[i] + y[i];

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

54 PSSC Montpellier Deep Computing Team 8/14/2009

How to Enable SIMD Instructions

 Use Libraries (ESSL)

– Surely the most efficient

 Use compiler options

– -qarch=450d -qhot=simd

 Align data on 16 Bytes and add compiler directives

– alignx, #pragma disjoint

– Versioning with alignement testing

 Implement SIMD instrinsics (versioning)
void reciprocal_roots (double *x, double *f, int n)

{

/* are both x & f 16 byte aligned? */

if (((((int) x) | ((int) f)) & 0xf) == 0) /* This could also be done as:

if (((int) x % 16 == 0) && ((int) f % 16) == 0) */

aligned_ten_reciprocal_roots (x, f, n);

else

ten_reciprocal_roots (x, f, n);

}

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

55 PSSC Montpellier Deep Computing Team 8/14/2009

Division on BG (similar for Square Root)

Do i=1,N

Y(I) = 1./X(I)

Enddo
Normal computation ~30 cycles

Do i=1,N

e = FPE(X(I))

T1 = e + e*(1-X(I)*e) for single precision

Y(I) = T1 + e*(1-X(I)*T1) for double precision

Enddo

1. Use compiler option –qhot –O3, check implementation with –qsource –qlist

2. Use libmass: vsrec function

3. Use Hardware approximation

Power hardware able to provide an estimation 10-4 in 1 cycles

using FRE or FRSQRT

Blue Gene Double able to provide 2 estimation per cycles (FPRE, FPRSQRT)

4. Use SWDIV_NOCHECK function

Do i=1,N

Y(I) = swdib_nocheck(1.,X(I)

Enddo

5. Use SIMD intrinsic functions (LOADFP, FPRE, FPNMSUB, FPMUL, FPMADD, STOREFP, …)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

56 PSSC Montpellier Deep Computing Team 8/14/2009

Checkpoint/Restore Library / 1

 Checkpoint/Restore implemented as an application library that

saves state in a file per node

 General use by modifying the application code

– At the beginning of the code

• BGCheckpointInit(“/path/for/checkpoint/files”)

– At any point in the code

• <barrier>

BGCheckpoint()

<barrier>

 The checkpoint itself saves state in a unique file per node with a

sequence number

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

57 PSSC Montpellier Deep Computing Team 8/14/2009

Checkpoint/Restore Library / 2

 For restart, the same job is launched again with the environment variables

 BG_CHKPTRESTARTSEQNO and BG_CHKPTDIRPATH set to the

appropriate values. The BGCheckpointInit() function checks for these

environment variables and, if specified, restarts the application from the

desired checkpoint.

BG_CHKPT_ENABLED Is set (to 1) if checkpoints are desired; otherwise it is not

specified.

BG_CHKPTDIRPATH Default path to keep checkpoint files.

BG_CHKPTRESTARTSEQNO Set to a desired checkpoint sequence number from where a

user wants the application to restart. If set to zero, each process

restarts from its individual latest consistent checkpoint. This

option must not be specified, if no restart is desired.

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

58 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Parallel Libraries

 Shared Memory

 Message Passing

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

59 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P Messaging Framework

SPI

Message Layer Core (C++)

DMA Device

pt2pt protocols

(eager, rendezvous)

ARMCI

primitives
MPICH GLUE

UPC

messaging

Converse/Charm++

DCMF API (C)

Multisend protocols

DMA Network Hardware

IPC DeviceTree Device

Application

global

arrays

supported

but not

recommended

CCMI Collective Layer

(barrier, broadcast, allreduce)

supported

encouraged

Multiple programming paradigms supported

MPI, Charm++, ARMCI, GA, UPC (as a research initiative)

SPI : Low level systems programming interface

DCMF : Portable active-message API

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

60

MPI on BGP vs BGL

 MPI 2 Standard compliance

– SMP with thread mode multiple

• Thread mode multiple is default

• Simpler thread modes need to be initialized with MPI_Thread_init

– Dual and quad mode also supported

 DMA engine to optimize communication

– Improved progress semantics over Blue Gene/L

– DMA makes sends and receives packets while the processor is busy computing

– Drive network harder: can keep ~5 links busy for near neighbor traffic in both directions

– Allows overlap of computation and communication

 Comm-thread which is enabled on packet arrival to make BGP MPI fully progress compliant

– Allow tag matching of Rzv messages in comm thread

– Enabled through environment variable DCMF_INTERRUPTS=1

– SMP mode has 1 commthread, dual has two and quad (VN) mode has four comm threads

– Commthreads are scheduled by interrupts

 Built on top of the DCMF messaging API

– 3+ us latency and 370 MB/s bandwidth per link

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

61 PSSC Montpellier Deep Computing Team 8/14/2009

Communication Libraries

 MPI

– MPICH2 1.0.4p2

– Optimized collectives built on DCMF

– Redbook Application development

 DCMF (Deep Computing Message Framework)

 SPI (System Programming Interfaces)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

62 PSSC Montpellier Deep Computing Team 8/14/2009

MPI Point-to-Point Routing

 The route from a sender to a receiver on a torus network has two possible paths:

– Deterministic routing

– Adaptive routing

 Selecting deterministic or adaptive routing depends on the protocol that is used for the
communication.

 The Blue Gene/P MPI implementation supports three different protocols:

– MPI short protocol

• The MPI short protocol is used for short messages (less than 224 bytes), which consist of a single
packet. These messages are always deterministically routed. The latency for eager messages is
around 3.3 μs.

– MPI eager protocol

• The MPI eager protocol is used for medium-sized messages. It sends a message to the receiver
without negotiating with the receiving side that the other end is ready to receive the message. This
protocol also uses deterministic routes for its packets.

– MPI rendezvous protocol

• Large (greater than 1200 bytes) messages are sent using the MPI rendezvous protocol. In this
case, an initial connection between the two partners is established. Only after that will the receiver
use direct memory access (DMA) to obtain the data from the sender. This protocol uses adapStive
routing and is optimized for maximum bandwidth. Naturally, the initial rendezvous handshake
increases the latency.

 DCMF_EAGER variable

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

63 PSSC Montpellier Deep Computing Team 8/14/2009

Optimized Collectives

Collective
(All are non-blocking at the DCMF API

level)

Network

Torus via DMA Collective Barrier

Barrier Binomial algorithm N/A Uses Global Interrupt wires to

determine when nodes

have entered the barrier.

Sync Broadcast

(BG/L style broadcast where all nodes

need to reach the broadcast call

before data is transmitted)

Rectangular algorithm Uses a Collective Broadcast via spanning class route. To

prevent unexpected packets, broadcast is executed via

global BOR.

N/A

Binomial algorithm

All-to-All(v) Each node sends messages in

randomized permutations to

keep the bisection busy.

N/A N/A

Reduce Rectangular algorithm Same as Collective All-reduce, but with no store on non-root

nodes.

N/A

Binomial algorithm

All-reduce Rectangular algorithm Uses a Collective Broadcast via spanning class route. Native

tree operations, single and double pass double precision

floating point operations.

N/A

Binomial algorithm

All-gather(v) Broadcast, reduce, and all-to-all based algorithms. Algorithm used depends on geometry, partition

size, and message size.

N/A

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

64 PSSC Montpellier Deep Computing Team 8/14/2009

MPI Environment Variables / MPICH2

 DCMF_EAGER

– This value, passed through atoi(), is the smallest message that will be sent using the Rendezvous
protocol. This is also one greater than the largest message sent using the Eager protocol.

– (Synonyms: DCMF_RVZ, DCMF_RZV)

 DCMF_COLLECTIVES

– When set to "0", this will disable the optimized collectives. When set to "1", this will enable the
optimized collectives. Otherwise, this is left at the default.

– (Synonyms: DCMF_COLLECTIVE)

 DCMF_TOPOLOGY

– When set to "0", this will disable the optimized topology routines. When set to "1", this will enable the
optimized topology routines. Otherwise, this is left at the default.

 DCMF_ALLREDUCE

– Possible options: MPICH, BINOMIAL, RECTANGLE, TREE

 DCMF_INTERRUPTS

– When set to "0", interrupts are disabled. Message progress occurs via polling. When set to "1",
interrupts are enabled. Message progress occurs in the background via interrupts, and/or by polling.
Default is "0".

– (Synonyms: DCMF_INTERRUPT)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

65 PSSC Montpellier Deep Computing Team 8/14/2009

Alltoall

 DMA based alltoall

 Uses adaptive routing on the network

– Optimized for latency and bandwidth (latency 0.9 us/destination)

– 96% of peak throughput on a midplane

 Alltoall performance for large messages optimized by the all-to-all mode in
the DMA device

– DCMF_FIFOMODE=ALLTOALL (20% more)

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

66

Mapping Tasks to physical Nodes or Cores

 Three Options

 BG_MAPPING environment variable

– Equivalent to BGLMPI_MAPPING on BGL. Allows user to specify mapping as an

environment variable. Options are: TXYZ, TXZY, TYXZ, TYZX, TZXY, TZYX, XYZT, XZYT,

YXZT, YZXT, ZXYT, ZYXT or a path to a mapping file

• Rotations and point-mirroring operators (XYZT is default)

 -mapfile option of mpirun

– <CR> separated list of physical core coordinates per task

• x0 y0 z0 t0

• X1 y1 z1 t1

• ...

• XN yN zN tN

 Use cartesian communicators and let BG MPI reorder the tasks

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

67

Mapping for Nearest-Neighbor-Communication

 powers of 2 on BlueGene in partitioning are king !

 1d -> 4d (AxBxCxD) physical (smallest partition is 4x4x2x(4))

– Use 'slithering snake' mapping on small partitions (no torus)

– TXYZ mapping on torus partitions probably fine

 2d (NxM) -> 4d physical (AxBxCxD)

– Try to decouple problem into two 1d -> 2d mappings,

then use 'slithering snake'

 3d (LxNxM) -> 4d physical (AxBxCxD)

– Try to map one L,N or M to a product of two physical dimensions

then map the remaining dimensions one-to-one

– What, if that's not possible

• Try to split the D (intra-node dimension) into 2x2 and see if that works out

– 4d -> 4d

• Really only works well if all dimensions can be mapped one-to-one,

then use the MAPPING variable

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

68

Mapping Examples (1a)

 1d ring communicator mapping (default XYZT): worst case is 7 hops

0 1 2 3

4 5 6 7

1

2

1

3

1

4

1

5

8 9
1

0

1

1

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

8

2

9

3

0

3

1
2

4

2

5

2

6

2

7

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

69

Mapping Examples (1b)

 1d ring communicator mapping (slithering snake) -> single hop between neighbors

0 1 2 3

7 6 5 4

1

5

1

4

1

3

1

2

8 9
1

0

1

1

3

1

3

0

2

9

2

8

2

4

2

5

2

6

2

7

1

6

1

7

1

8

1

9
2

3

2

2

2

1

2

0

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

70

Mapping Examples (2)

 8x4 2d communicator mapping (folded paper) -> single hop between neighbors

0 1 2 3

8 9
1

0

1

1

2

4

2

5

2

6

2

7
1

6

1

7

1

8

1

9

7 6 5 4

1

5

1

4

1

3

1

2

3

1

3

0

2

9

2

8
2

3

2

2

2

1

2

0

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

71

MPI topologies

 Defined in ch06 of the MPI 1.1 standard

 Idea: attach knowledge of application's inherent topology (2D grid,
etc.) to an MPI communicator

– inside the program, not external mapping like --mapfile

 Create a new communicator based on

– input communicator (e.g. MPI_COMM_WORLD)

– description of the app's topology (shape, periodicity)

– programmer may allow the runtime to reorder, or not

• advice is to ALLOW reordering to optimize placement of tasks onto the
torus network

 Then, use new communicator in your MPI calls,
instead of the usual MPI_COMM_WORLD

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

72

Using cartesian communicators

 Simplest case: just rely on the re-ordered rank

– if your program's coord/rank calculation is "natural", this is often
good enough: MPI runtime has done the placement

 Use MPI topology coords/rank transformations:

– MPI_Cart_rank() and MPI_Cart_coords()

• mainly convenience, makes program easier to read

 Express neighborhood in app's coords not rank:

– MPI_Cart_shift() – again mainly convenience

 Use collectives on cartesian sub-communicators:

– use MPI_Cart_sub() to create row or column
sub-communicators (call similar to MPI_Comm_split)

– then use these sub-comms in collectives

– this may exploit special BlueGene hardware features like multicast
along a torus axis

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

73

BlueGene/P MPI runtime support of MPI topologies

 Only cartesian topologies, no graphs

– most apps are cartesian, and BlueGene is a torus

 input communicator to MPI_Cart_Create()
must be a rectangular part of the torus

 one- to three-dimensional topologies supported
in all three execution modes (VN, DUAL and SMP)

 four-dimensional topologies only for DUAL or VNM mode

– one dimension must have size 2 (DUAL) or 4 (VNM)

 higher-dimensional cartesian topologies and graphs are accepted, but
result is a NO-OP (same as MPI_COMM_WORLD)

 DCMF_TOPOLOGY environment variable controls optimization:

– Set it to 1  on (default), or 0  off

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

74 PSSC Montpellier Deep Computing Team 8/14/2009

Blue Gene/P MPI communicators

 int MPIX_Cart_comm_create (MPI_Comm *cart_comm)

– This function creates a four-dimensional (4D) Cartesian communicator

that mimics the exact hardware on which it is run

 int MPIX_Pset_same_comm_create (MPI_Comm *pset_comm)

– This function is a collective operation that creates a set of

communicators, where all nodes in a given communicator are part of

the same pset

 int MPIX_Pset_diff_comm_create (MPI_Comm *pset_comm)

– This function is a collective operation that creates a set of

communicators, where no two nodes in a given communicator are part

of the same pset

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

75 PSSC Montpellier Deep Computing Team 8/14/2009

Deep Computing Messaging Framework (DCMF)

 Low level message layer API

 Understands and exploits Blue Gene network hardware

 Implements various protocols

– Point-point low level message passing

– Multisend to broadcast to multiple destinations

– Remote get/put

– Component Collective Messaging Interface

• allows implementation of optimized collectives

– Pluggable user provided protocols

 Manages Threads

 Manages Mappings

 DMCF allows direct use as well as multiple higher level layers such as MPI,
GA/ARMCI, to coexist in a single application

 /bgsys/drivers/ppcfloor/comm/lib, /bgsys/drivers/ppcfloor/comm/include

 Doxygen documentation: http://bgweb.rchland.ibm.com/~jratt/

http://bgweb.rchland.ibm.com/~jratt/

© 2009 IBM Corporation

IBM PSSC Montpellier Customer Center

76 PSSC Montpellier Deep Computing Team 8/14/2009

System Programming Interfaces (SPI)

 Lowest level access to “bare metal”

 Building block for higher level layers

 Generally inline interfaces with direct hardware access

 May be used with higher level layers if carefully coordinated

 Not thread safe!

 Discouraged except in extreme cases such as QCD

 Examples:

– setup and start DMA on Torus

– inject or receive packets on Collective

– access to low level hardware “lockbox”

– access to SRAM

 Only Doxygen documentation (/bgsys/drivers/ppcfloor/arch/include)

