

Blue Gene/P

Porting Applications to Blue Gene/P

Dr. Christoph Pospiech pospiech@de.ibm.com

© 2007 IBM Corporation

Agenda

- What beast is this ?
- Compile link go !
- MPI subtleties
- Help ! It doesn't work (the way I want) !

Blue Gene/P

Blue Gene/P Spider Webs

3 Dimensional Torus

- Interconnects all compute nodes (73,728)
- Virtual cut-through hardware routing
- 3.4 Gb/s on all 12 node links (5.1 GB/s per node)
- 0.5 µs latency between nearest neighbors, 5 µs to the farthest
- MPI: 3 µs latency for one hop, 10 µs to the farthest
- Communications backbone for computations
- 1.7/3.9 TB/s bisection bandwidth, 188TB/s total bandwidth

Collective Network

- One-to-all broadcast functionality
- Reduction operations functionality
- 6.8 Gb/s of bandwidth per link
- Latency of one way tree traversal 1.3 μs, MPI 5 μs
- ~62TB/s total binary tree bandwidth (72k machine)
- Interconnects all compute and I/O nodes (1152)

Low Latency Global Barrier and Interrupt

– Latency of one way to reach all 72K nodes 0.65 $\mu s,$ MPI 1.6 μs

Other networks

- 10Gb Functional Ethernet
- I/O nodes only
- 1Gb Private Control Ethernet
- Provides JTAG access to hardware. Accessible only from Service Node system

5

You have the choice !

Dual FPU Architecture

- SIMD instructions over both register files
- FMA operations over double precision data
- Parallel (quadword) loads/stores
- Data needs to be 16-byte aligned

Caches

7

∛‡pache	Total per node	Size	Replacement Policy	Associativity
L1 Instruction	4	32 KB	Round-Robin	64-way set-associative 16 sets 32B line size
L1 Data	4	32 KB	Round-Robin	64-way set-associative 16 sets 32B line size
L2 PreFetch	4	14x256 B	Round-Robin	Fully associative (15-way)128 B Line size
L3	2	2x4 MB	Least Recently Used	8way associative 2 Bank Interleaved 128 B Line

Jitter-free Execution

Compute node runs nothing but application

- I/O delegated to I/O nodes
- Cross-Compiling on the front end node

Software Stack in Blue Gene Compute Node

 Compute Node Kernel (CNK) controls access to hardware, and enables bypass for application use

Blue Gene/P

- User-space libraries and applications can directly access torus and collective network through bypass
- Application code can use all processors in a compute node

Processing Sets (Psets)

- I/O node dedicated to a fixed group of compute nodes
- Compute to VO ratio is fixed within a partition

- 128:1, 64:1, 32:1, 16:1

I/O Node Kernel

IBM

Linux

- SMP Linux
- No persistent store (network filesystems only; no swap)
- 10Gb Ethernet interface
- Several CNK System calls are function shipped to here
 - Linux compatibility by executing these syscalls on Linux
 - Function ship occurs over Collective network
 - The ciod daemon manages a fixed set of compute nodes in a processing set (pset)
 - Linux provides the portable filesystem and network layer interfaces

Agenda

- What beast is this ?
- Compile link go !
- MPI subtleties
- Help ! It doesn't work (the way I want) !

Getting started is simple

- Infor simple cases
- BGP_SYS=/bgsys/drivers/ppcfloor
- make CC=\$BGP_SYS/comm/bin/mpixlc_r
- Ilrun -mode VN -np 512 ./hello_par

IBM XL Compilers for Blue Gene

XLF 11.1/VACPP 9.0 will be the compiler releases

- -/opt/ibmcmp/xlf/bg/11.1/bin
- -/opt/ibmcmp/vacpp/bg/9.0/bin

Differences in this release:

- xlf2003 (the 2003 Fortran standard) is available
- -BGP wrapper names are different
 - blrts_ is replaced by bg
 - bgxlf, bgxlc, bgcc, etc.
 - On BG/L for xlf 11.1/vacpp 9.0 both blrts_ and bg will be supported.

--qarch=450d/450 are accepted in addition to 440d/440

Some key options for IBM compilers

- -qarch=440, 450 generates only instructions for one floating point (option minimal option with blrts_)
- -qarch=440d, 450d generates only instructions for 2 floating point pipes
- -qtune=440
- -O3 (-qstrict) minimal level for SIMDization
- -O3 –qhot (=simd)
- -O4 (-qnoipa)
- **-05**
- -qdebug=diagnostic provide details about SIMDization, only with qhot
- -qreport –qlist –qsource provide pseudo-assembler code .lst

What's new from BG/L ...

- pthreads and OpenMP support
- Dynamic linking
- Use of mmap for shared memory
- Protected readonly data and application code
- Protection for stack overflow
- Full socket support (client and server)

ESSL for Blue Gene

- Engineering and Scientific Subroutine Library
- Optimization library and intrinsics for better application performance
- Serial Static Library supporting 32-bit applications
- Callable from FORTRAN, C, and C++
- SMP support and ppc450 tuning done for BG/P
- libesslbg.a (.so) and libesslsmpbg.a (.so)

Lib Mass for Blue Gene

Mathematical Acceleration Subsystem (MASS) libraries) consists of libraries of tuned mathematical intrinsic functions

Location:

- /opt/ibmcmp/xlmass/bg/4.4/bglib
 - libmass.a libmassv.a
- /opt/ibmcmp/xlmass/bg/4.4/include

MPIRUN implementation on **BGP**

- no rsh/ssh mechanism
- Option -free
- STDIN handling

Partitioning

Blue Gene/P

- Subdivision of a single Blue Gene system
- Partitions are software defined
- Torus, Collective and Barrier networks are completely isolated from traffic from other partitions
- A single job runs on a partition
 - i.e. jobs never share resources or interfere with each other
- Custom kernels may be booted in a partition

Agenda

- What beast is this ?
- Compile link go !
- MPI subtleties
- Help ! It doesn't work (the way I want) !

Blue Gene/P

Blue Gene/P Spider Webs

3 Dimensional Torus

- Interconnects all compute nodes (73,728)
- Virtual cut-through hardware routing
- 3.4 Gb/s on all 12 node links (5.1 GB/s per node)
- 0.5 μs latency between nearest neighbors, 5 μs to the farthest
- MPI: 3 µs latency for one hop, 10 µs to the farthest
- Communications backbone for computations
- 1.7/3.9 TB/s bisection bandwidth, 188TB/s total bandwidth

Collective Network

- One-to-all broadcast functionality
- Reduction operations functionality
- 6.8 Gb/s of bandwidth per link
- Latency of one way tree traversal 1.3 μs, MPI 5 μs
- ~62TB/s total binary tree bandwidth (72k machine)
- Interconnects all compute and I/O nodes (1152)

Low Latency Global Barrier and Interrupt

– Latency of one way to reach all 72K nodes 0.65 $\mu s,$ MPI 1.6 μs

Other networks

- 10Gb Functional Ethernet
- I/O nodes only
- 1Gb Private Control Ethernet
- Provides JTAG access to hardware. Accessible only from Service Node system

Collectives

- Use the hardware support in the collective network and global interrupt networks
- Supported operations
 - Barrier
 - Broadcast
 - Allreduce
 - Alltoall
 - Allgather

Messaging Framework

Multiple programming paradigms supported

MPI, Charm++, ARMCI, GA, UPC (as a research initiative)

- **SPI : Low level systems programming interface**
- DCMF : Portable active-message API

Agenda

- What beast is this ?
- Compile link go !
- MPI subtleties
- Help ! It doesn't work (the way I want) !

Debugger Interfaces

ptrace-like interfaces available via ciod

- non-parallel: gdbserver for direct use with gdb
- parallel: Totalview, or other tools

lightweight core files

- each node writes a small file with regs, traceback, etc
- superset of parallel tools consortium format
- Use addr2line for translating HEX into source lines

Coreprocessor

GNU Debugger

- Simple debug server call «gdbserver »
- Only one gdb instance for one compute node (to debug multiple CNs at the same time you need to launch multipleGDB clients)
- Limited subset of primitives (however enough to be useful)
- Standard Linux gdb client, not aware about Double FPU.
- Gdserver must start before the application; mpirun has a special option «-start_gdbserver »
- Compile and link with –g (-O2)
- Location: /bgsys/drivers/ppcfloor/gnu-linux/bin

Performance Tools

- Low level SPI provided to configure, reset and read hardware perf counters
- PAPI interface to the perf counters
- HPC Toolkit
- Considering addition of per-job performance metrics recorded via job history
- Unix gprof command (compiler with –g –pg)

IBM High Performance Computing (HPC) Toolkit

Message-passing performance

- MP_Profiler (MPI and SHMEM)
- MP_Trace (MPI and SHMEM)
- SHMEM Library (Cray API) AIX only
- CPU performance
 - Xprofiler

Blue Gene/P

- HPM (Hardware counters)
- Thread performance
 - Pomp Profiler (OpenMP)
- Memory performance
 - SiGMA memory profiler
 - Prediction Assistant
- Visualization and analysis
 - PeekPerf

More Information

IBM Redbooks for Blue Gene

- Application Development Guide
- System Administration Guide
- Performance Tools
- Open Source Communities (Argonne website, ...)
- BlueGene Rochester website
 - http://bgweb.rchland.ibm.com/~jratt/
- Doxygen documentations (DCMF, SPI, ...)