#) j0LICH

FORSCHUNGSZENTRUM

~ JUROPATEST ~

User's Manual
for the Batch System

[Slurm integrated with Parastation]



Author Chrysovalantis Paschoulas
Support sc@fz-juelich.de

Contributors Dorian Krause, Philipp Thornig, Eric Gregory, Matthias Nicolai, Theodoros
Stylianos Kondylis

Document version 1.4 ( 2014-Nov-18)



Table of Contents

IO UTSY 7<) ol 2 ¥ ) wnn T (1 (o) s FEUUU USSP 1
1.1 IETOAUCTION. ...ccueveieeeeiieeeeeeiee e e eeete e e eeteeeeeeeaeeeeeeetaaeeeeesaeeeeeeasaaeeeessaeeeeasssaeeeessnsseeeeennsssssssssneseeens 1
1.2 ClUSEET INOGES. .. uuviveieieeeieieeiiteeee et e eeerirtree e e e eeesesatrarereeeesessssasrereeeeeessesrssanesesessensnnsnsnsssessessesaeens 1
1.3 Data Management - FIleSYSIOIMIS. ........eirutiriiriiieniierieerite et et sttt e st ste et e st e e sebeeessnseeesnnees 1
1.4 ACCESS 10 The CIUSTET....uuvvvveeeeeiiiiieiirieeieeeeeeeiiittreeeeeeeeeesssrrerreeeeeeeesssraseseseessesssssrssssssssnannnnnsssssssens 2
1.5 Shell ENVIIONIMENL........uoiiiiiiiiieeeeiieeeececeeeeeeeteeeeeeeaeeeeeeetaeeeeeeaseeeeeessseeeeessssseeessssseeeeasssseesennnnsnnnnes 2
1.6 IMOAULES. ...ttt ettt e e eeeeebre e e e e e e sessasbbaaeseeeeeesassssaareeesessesasbaararseeeesesseesrennnes 3

Modules and Toolchains hierarchy............cccoovueiriiiiiiiiiee e 3
Using the module COMMANG..........coooiiiiiiiiiiiieiieeeeeeteest ettt sae e s sre e s saaeessaaeeeeesaannaeas 3
1.7 COMIPILETS. ..ceitiiiieeieete ettt ettt ettt et e st e st e e st e et e sabe e st e s abe e bt e sabeestesabe e abaeeeasaeeenssaeesnnees 5
Compilation EXAMIPLES........veiiiiiiiiiiiiieiiieciteesre ettt sae e e s aeeesaeessabeessabaessaseessssessnsneesseens 5
1.8 Batch model & ACCOUNTING......ccctiriiiiriiieiiiiteeieete ettt ettt et e st e s bt e sbee st e e sabe e e e abaeesaes 6

2 Batch SyStem — SIUIMN..cccuiiiiiiiiiiieeeiteeete ettt ettt e e st e e st e e sbeeesaeaeesssaesssaeesssesssssaeessnnnns 7
2.1 SIUITII OVEIVIEW......utiieeeeeireeeeeiteeeeeeitteeeeeeaeeeeeettaeeeeeesseeeeesssseeeaassseesassssseeeasssssesseeseseeseesasnnsnsssnnes 7
2.2 SIUrM CONFIGUIALION. . .cccuiiiiieeieetieeie et eeie et et e et este e bt essseebeessteesbeessseesseesssessseesssessseesssesnsseeenn 8
RS T o1 111 0) 1 |- TR 9
2.4 Slurm's ACCOUNtiNG Database........ueerruriiriiiiiriiieieiieiniteeriee ettt e sre e s saeesbaeesbaeessaaeesssaessnnnsneeas 9
2.5 JOD LIS — QOS....eeeeeiieiiiiiiiieeieitieee e ettt e e e e e eee bbbt e e e e eesessssssaaeeeesessssssssssseaeessessssssssssssaannen 9
BT X 5 0] 1 <] T U U U U TR U 10
2.7 JOD ENVITONIMONT......coiiiiiiiieieeiiieeeeeeieeeeeeiteeeeeeitteeeeeetreeeeessseeeeeessaseeeesssseeeesassseeeesssseeesesssseeeessnsnnes 11
2.8 ST ...ttt eeet e ee e e e et e e e e et a e e e et a b e e e e aaaeeeaabaeeeeaatreeeaarbrreeeetareeeeannnaarranes 11

3 SIurm User COMIMANCS........c.vveeieeeriieieeiieeeeeeireeeeeeiteeeeeeereeeeeeetaeeeeeesseeeeeessseeeeessseeeesassssaeaseeeesesseeennnes 13
3.1 LiSt Of COMIMAIAS. .....ccoiiuiiiiieiieieeeeiteeeceereeeeeeite e e eertteeeeeeabeeeeessaaeeeeesaseeeesssseeesessssssrssaeseeeeeeeennns 13
3.2 Allocation COMIMANAS..........ceeeeiivreeeeiieeeeeeiieeeeeeirreeeeeitreeeeeereeeeeesssreeeeesseeeeessseseeesssssssseseeeseeseenns 14

oY1 s TECY= 11 Lo Tl ] o L o R 14
3.3 SPaWNiNg COMIMANMS. .....cccutiriieeriirrieeriteeteetteeteettesteesttesbe e bt e subee bt essbesseesabeeseesasessseesaseesseesnnne 17
STTIN.vvvvvvuvuvesesssesesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnssssssssnnnnsessssssnnn 17
3.4 QUETY COMIMANAS. ....ccuvteruieeieeriieeieerteeteesiteete et e eteessteste e st esbeesseesabeeseesabeeseessbesnseesssesseessnnees 18
SUEUE. ...ceeeueerteeeeutteeeesutteeeesureeeeasasteeesassteeessassaeesassaaeessassaeeassssaessnssteesssnssaeeessseeessnssnnsnsssssaaaaeeees 18
37 (< SRR 19
31 110 TSRS RSR PP 19
SITIAD e uvvteeeeunrreeesamrteeseeneteeeesraeeesanraeeeeensteeeansaeeesassraeeseennateeeanbaaeesensbaaeseesbaeee e nbreeesenbaeeseennnnnnnns 21
] 1) 4 [0 SO OO O PO PRSPPSO POPPPPPPTP 22
SCOMMTOL. . veeeeeiiieeeecieee e ettt e eeett e e e eeetreeeeeetteeeeeetbaeeeeesaseeeeassseeeeessaaeeeassseeeaasssaeeeeeeeeaannssnsssssnnseeeens 22
T ¥ 1 4 TSSOSO USRS 23
3.5 Job Control COMMANGS........c..eeeeeeireieeeeiiieeeeecreeeeeeiteeeeeeteeeeeesaeeeeeeesreeeeessaeeeeessseeeeessssssssaseeeens 25
] at=1 1 (ol <) USROS 25
SCOMMTOL. . veeeeeeiiieeeecieeeeeect et e ceete e e e eeeteeeeeetaeeeeeetsaeeeeesseeeeeessaeeeeessaaeeeanssseeeaasssaeeeeeeesaansssnsssssnnsseeens 26
3.6 JOD Utility COMMANAS.....ccccvtiiririeiiieiiieeniieeeiteeete et e esteeesteeesaeeessseesssseesssseessssesssssesssnessnsnnns 26
SATEACK. ..eeeeeeiriee ettt eeee e e e et e e e e tb e e e e e tba e e e e e abae e e e taaeeeeabaaeeeaaaaaeeearaaaeeeeannnnrrrnarraeeans 26
7] ¥= 1 PO URPTPPRR 27
3.7 Job Accounting COMMANAS........cccueeruieriierriierieeniteeiteeseteste et e steesteesbee st esabesseessteeseesssesseessnnees 28
SACCE. e eeeeeeeeeeeeeeeeeereeeeeresesesesesesesasesssesasasasasasasasssesasesssnsssssssssssssnsssssssssnsssssssssssssssssnsnssesesssssssnneesesssssnn 28
SACCEITIET e eveeeeteerteee ettt eeeeutteeeseenrteeeeenbteeeenbbeeeseassteeeeeansteeeeansbaeesesnsateseannsaeesessaeeesessraeesssnnnnnnnnnnt 29
3.8 Custom commands fTOM JSC.......cuuviiiiiiiiiiiiiiieeceeiee ettt eeare e eeeare e e eeaareeeeesasasaeraeeeeeas 30
LI AW ..ottt ettt e e e et e e e et e e e e e abaa e e e e abaeeeeetaaeeeetaaaeeaaaaaaeeeaaaaaaeeeeeeaaeaaannnnnnnns 30



4.1 JOD SCIIPt EXAIMPIES....ceiiiiiiiiieeiiieeieeete ettt e st e e st e e sateessateessaseessaeesssssaaeeeesssssesaesssnnnses 33
SETIAL JOD ...ttt ettt ettt et e st e et e st e e b e et e e aaeennraeas 33
Paralle] JOD....couiieiiieeteeeeeeee ettt e et e st e st e e s ba e e s aeeeebaeentaeaeeeennnnns 33
OPENIMP JOD.....ciiiiiiieieetecee ettt ettt ettt s bt e st e e bt e st e s be e st e e beesabeebeenate e nbaeeennes 33
IMIPT JOD...teeeteee ettt et sttt et a e bt et e at e bt et eea e e bt et e s at e be et e e e beeenteeas 34
MPT JODS WIth SIMT ...ttt sttt ettt et sb e et sat e s bt e sneesnneeane 34
HYDTIA JODS...eiiiitieitieete ettt e st e e s te e e s te e e saeeesaseeessseeesseesssneessssaeessnnns 35
Hybrid jJObS With SIMT ..ottt ettt sttt et st sbe e senneene 35
INEEL IMIPT JODS..c . eiieeiiieeeiteeete ettt ettt st e e e st e e st e e s be e e s baeesnbaeesssaeenasaeeessnnsnsaesssnnses 36

4.2 JOD STEPS..ceuteetierieettente et e ste et e st e e bt e st e e bt e st e s bt e a e e e bt et te e bt e bt e et e e bt e e abeehteeeabbee e nbteeennbeeeennes 36

4.3 DependenCy CRaiNS.........cocuieiriieiiiieiiieeeiieeeiteeseee s st e e steessaeessseeessseesssteessssessssseesssseessssssseseens 37

4.4 JOD ATTAYS. . eeeeuteeiteeieeitteste et estesttestte e bt estte s bt esatessbeesstessbeesateesseasssesabaessteesbeesssessaesstesnsaennsaeenans 38

4.5 MPMD ...ttt ettt ettt sttt h et h e bt et e e a e e b e et e e ht e beetesat e beeateebteens 39

5 INEEIACTIVE JODS ..ottt ettt ettt et et s bttt st e sab e e st e s bt e e ntesnee s 40
5.1 INLETACTIVE SESSIOM....uuuiiiiriiieeieriiteeeeiitteeesrtteeeesstteeessrteeessaraeeessssseeeessssaeessssssaeessssssaeessssssaeessnnns 40
5.2 X FOTWAITING. .. .eeitieriieiieeieeiteete et e ste et e st e e steesate e bt e ssbesbeessbeesseessbesssaessseessbaeessnsaesesssaessnnsaenns 41

6 From Moab/TOrque t0 SIUIMI.......cccueiiiieeiiieieiieeeiieeeteeee e e st e e st e e steeesaeeesiaaeessaeeesssnsssaeesssssssseaeeens 42
6.1 Differences between the SYStemS.......c.c.civiiiiiiiiiiiiiiiieeeeeee ettt 42
6.2 User Commands COMPATiSON........eieruieerrueeeriureeriueeesiueeesseeesseessseessssessssseessseesssseesssseesssseesssseesenns 43

7 KIIOWIL ISSUES.....ceiuiiiiiiiiiiiieitt ettt ettt et e e saa e e e b e e s bb e e eba e e s bbb s e e e e sansnaeeessnnnnns 44

8 EXAIMIPLES..ccuitiiiiieiiee ettt ettt e sttt e e st e e s te e e et e e et e e e s abee e abee e abee e abeeebaeeenntrraeeeenns 45

8.1 TemPlate JOD-SCIIPLS. ..cccutiriieitieeieeiteeie ettt ettt s et e st e sae st e e bt e s sba e e sabaeesssaeesnnes 45

8.2 IMOAUIES. ....coiiiieitieeee ettt ettt e e st e e s te e s aa e e e st e e s ab e e s baeesbeeensbeeenabae e sbae e nnraaaeeeennnes 45

8.3 COMPILATION. .cutiiitiiiieeieete ettt ettt e st e e bt e st e e bt e s ateebeesabeebeeeennraeeennes 48

8.4 JOD SUDIMISSION. ...ciiuiiiiiiiiiiiieeiee ettt ettt e e e ste e s sabe e ssabeesabeessstaaeessssssseeesenssnsneens 50

8.5 JOD COMNMIOL...uiiiiiiiiieieeteetetee ettt ettt a et e b e e b st e bt et e e be e e bt e e b e e eneeeanee 51

8.6 QUETY COMIMANAS......cerovieirrieirieeiiieeeiteeerteeesteeesteeessteeestaeesseesssseeessseessssesssssesssssesssssessssaesssnnnns 51

8.7 AcCOUNtING COMIMANGS. ..c..ueerrerrrierierrieerieeiteesteesteesteesseessessseesseesstesssessseessesssseessssseeesssseesssnses 53



1 Cluster Information

1.1 Introduction

JUROPATEST is a new cluster at JSC. This test system allows users of JSC's current general purpose
supercomputer JUROPA to port and optimize their applications for the new Haswell CPU architecture.
Moreover, the system also serves as a development platform for system software and hardware with
respect to the JUROPA collaboration. This cluster's main purpose is to prepare users and administrators
for a smooth transition to the next JUROPA installation.

1.2 Cluster Nodes

For JUROPATEST cluster we have: 2 Master, 2 Login and 70 Compute nodes.

Type Hostname CPU Cores(SMT) RAM Description
(Node Num.)
Login juropatest1.zam.kfa-juelich.de (j3103) 2x Intel Xeon 28 (56) 256 GB Login Nodes
(2) juropatest2.zam.kfa-juelich.de (j3104) | E5-2695 v3 (Haswell) DDR4

@ 2.3GHz

Master - 2x Intel Xeon 28 (56) 256 GB Master Nodes
@ 2.3GHz

Compute j3c[061-130] 2x Intel Xeon 28 (56) 128 GB Compute Nodes

(70) E5-2695 v3 (Haswell) DDR4

@ 2.3GHz

The Operating System on JUROPATEST cluster is Scientific Linux release 6.5 (Carbon). For the
management of the system we use the ParaStation Cluster Management software. Regarding the
network, we use FDR Infiniband with a non-blocking Fat Tree topology.

1.3 Data Management - Filesystems

On JUROPATEST we provide GPFS shared filesystems. We provide home, scratch and archive file-
systems, which have different purposes. The home filesystems are supposed to be used for user's data
storage with the safety of backups (TSM backup), the scratch filesystem should be used as a fast
storage for the data produced by the jobs (no backup and purged regularly) and the archive ones are to
be used for long-term data archiving. Here is a small matrix with all available filesystems to the users:

Filesystem Mount Point | Description
GPFS $WORK /work Scratch filesystem — without backup
GPFS $HOME /homea Home filesystems — with TSM backup
/homeb
/homec
GPFS $ARCH /arch Archiving filesystems — with TSM backup. Available only on the
/arch2 login nodes.
GPFS $DATA /data Special filesystem used only by certain groups — with TSM backup
User local binaries (GPFS) | /usr/local Software repository available via module commands




The GPFS filesystems on JUROPATEST are mounted from JUST storage cluster. JUQUEEN and
JUDGE users should be aware that they will work in the same $HOME directory as on these
production machines. The JUROPA successor will use the same home filesystems as JUROPATEST.
Please note that JSC will do an automatic migration of all user data from Lustre to GPFS $HOME
directories as soon as the JUROPA successor system is starting production. Therefore there is no need
to copy any data ahead of this time. Only those data should be copied which is needed for the code
porting and optimization process on JUROPATEST.

1.4 Access to the Cluster

Users can have access to the login nodes of the system only through SSH connections. As we described
above there are two available login nodes. There is not a configured round-robin shared hostname
between the login nodes. Users must explicitly define the login node they want to have access to. For
example, to connect to the system, users must execute from their workstation the following command:

$ ssh username@juropatestl.fz-juelich.de

or

$ ssh username@juropatest2.fz-juelich.de

It is not possible to login by suppling username/password credentials. Instead, password-free login
based on SSH key exchange is required. The public/private ssh key pair has to be generated on the
workstation you are using for accessing JUROPATEST. On Linux or UNIX-based systems, the key pair
can be generated by executing:

$ ssh-keygen -t [dsa|rsa]

It is required to protect the SSH key with a non-trivial pass phrase to fulfill the FZJ security policy. The
generated public ssh key contained in the file “id_dsa.pub” or “id_rsa.pub” on user's workstation
must be uploaded through the web interface from Dispatch when initially applying for a user account
on JUROPA system. This SSH key afterwards will be automatically stored in the file
“$HOME/.ssh/authorized keys” on the cluster.

1.5 Shell Environment

The default shell for all users on JUROPATEST is BASH (/bin/bash). After a successful login, user's
shell environment is defined in files “$HOME/ .bash profile” and “$HOME/.bashrc”. Since the GPFS
filesystems are shared between different clusters in JSC, that means the users' home directories are also
shared on all system where the users have access to. This makes it more difficult for the users to create
the correct or desired shell environment for each system. In order to solve this issue, a file has been
created on all systems which contains a string with the system's name. The file is:

/etc/FzJ/systemname

This file is available on all login and compute nodes. The users can read this file and depending on the
system they are logged-in they can set the desired environment.


mailto:userxyz@juropatest2.fz-juelich.de
mailto:userxyz@juropatest1.fz-juelich.de

1.6 Modules

The installed software on JUROPATEST is organized through a hierarchy of modules. Loading a
module adapts your environment variables to give you access to a specific set of software and its
dependencies. The hierarchical organization of the modules ensures that you get a consistent set of
dependencies, for example all built with the same compiler version or all relying on the same
implementation of MPI. The module hierarchy is built upon toolchains. Toolchains modules in the
lowest level contain just a compiler suite (like Intel compilers icc and ifort). Toolchains in the
second level contain a compiler suite and a compatible implementation of MPI. The third and highest
level contains "full toolchains”, with a compiler suite, an MPI implementation, and compatible
mathematical libraries such as SCALAPACK. An application is only accessible to the user when its
module is loaded. You can load the application module only when the toolchain modules containing its
dependencies are loaded first.

Modules and Toolchains hierarchy

If you know the dependencies of the application you would like to run, you can simply load a
Toolchain module bundle from one of the three levels: Compilers, Compilers+MPI, or FullToolchains.

Here is a quick reference to the tools provided by each toolchain module:

Type Modules available

Compilers GCC: Gnu compilers with frontends for C, C++, Objective-C, Fortran, Java & Ada
ifort: Intel Fortran compiler

icc: Intel C and C++ compilers

iccifort: icc/ifort (Intel C and Fortran compilers together)

Compilers+MPI gpsmpi2: GCC + Parastation MPICH MPI
ipsmpi2: icc/ifort + Parastation MPICH MPI
iimpi: icc/ifort + Intel MPI

FullToolchains | gpsolf: gpsmipi + OpenBLAS, FFTW and ScaLAPACK
intel-para: ipsmpi2 + Intel Math Kernel Library (imkl)
intel: iimpi + Intel Math Kernel Library (imkl)

Using the module command

Users should load, unload and query modules though the module command. Several useful module
commands are:

Command Description

module avail Shows the available toolchains and what modules are compatible
to load right now according to the currently loaded toolchain.

module load <modname>/<modversion> Loads a specific module. Default version if it is not given.

module list Lists what modules are currently loaded.

module unload <modname>/<modversion> |{Uploads a module.

module purge Unloads all modules

module spider <modname> Finds the location of a module within the module hierarchy.




As we said above, in order to load a desired application module it is necessary first to load the correct
toolchain. Therefore, preparing the module environment includes two steps:

1. First, load one of the available toolchains. The intel-para toolchain (from the Fulltoolchains) has
the most supported software at this moment.

2. Second, load other application modules, which where built with currently loaded toolchain.
Following we will give some examples of the module command:

List the available toolchains:

$ module avail
———————————————————— /usr/local/software/juropatest/TC/FullToolchains —-—-——-—————————————————
gpsolf/2014.11 intel/2014.11 intel-para/2014.11

————————————————————— /usr/local/software/juropatest/TC/Compilers+MPI ———————————————————
gpsmpi/2014.11 iimpi/7.1.2 ipsmpi/2014.11

——————————————————————— /usr/local/software/juropatest/TC/Compilers —-—————————————————————
GCC/4.9.1 icc/2015.0.090 ifort/2015.0.090

Load a toolchain:

$ module load intel-para/2014.11

List all loaded modules from the current toolchain:

$ module list

Currently Loaded Modules:
1) binutils/2.24 4) popt/1.14 7) iccifort/2015.0.090
2) icc/2015.0.090 5) pscom/5.0.44-1 8) imkl/11.2.0.090
3) ifort/2015.0.090 6) psmpi/5.1.0-1 9) intel-para/2014.11

List all application modules available for the current toolchain:

$ module avail

-- /usr/local/software/juropatest/Stagel/modules/all/MPI/intel/2015.0.090/psmpi/5.1.0-1 ——-

Bison/2.7 Python/2.7.5

Bison/3.0.2 (D) Python/2.7.8

Boost/1.53.0 Python/3.4.1 (D)
Boost/1.56.0 (D) ot/4.8.4

CMake/2.8.4 ot/4.8.5 (D)
CMake/3.0.0 (D) QuantumESPRESSO/5.1

Cube/4.2.3 SCOTCH/5.1.12b_esmumps

Get information about a package:

$ module spider Boost # or module spider Boost/1.56.0

Load an application module:

$ module load Boost/1.56.0

Unload all currently loaded modules:

$ module purge



1.7 Compilers

On JUROPATEST we offer some wrappers to the users, in order to compile and execute parallel jobs
using MPI. Different wrappers are provided depending on the MPI version that is used. Users can
choose the compiler's version using the module command (see the modules section).

The following table shows the names of the MPI wrapper procedures for the Intel compilers as well as
the names of compilers themselves. The wrappers build up the MPI environment for your compilation
task, so please always use the wrappers instead of the compilers:

Programming Language Compiler Parastation MPI Wrapper | Intel MPI Wrapper
Fortran 90 ifort mpif90 mpiifort

Fortran 77 ifort mpif77 mpiifort

C++ icpc mpicxx mpicpc

C icc mpicc mpiicc

In the following table we present some useful compiler options that are commonly used:

Option Description

—openmp Enables the parallelizer to generate multi-threaded code based on the OpenMP
directives.

-9 Creates debugging information in the object files. This is necessary if you want to
debug your program.

-0[0-3] Sets the optimization level.

-L A path can be given in which the linker searches for libraries

-D Defines a macro.

-U Undefines a macro.

-I Allows to add further directories to the include file search path.

-H Gives the include file order. This options is very useful if you want to find out which
directories are used and in which order they are applied.

-SOX Stores useful information like compiler version, options used etc. in the executable.

-ipo Inter-procedural optimization.

-axCORE-AVX2 Indicates the processor for which code is created.

-help Gives a long list of quite a big amount of options.

Compilation Examples
Compile an MPI program in C++:
$ mpicxx -02 program.cpp -0 mpi_prog

Compile a hybrid MPI/OpenMP program in C:

$ mpicc -openmp -o mpi_prog program.c




1.8 Batch model & Accounting

Following, we present the main policies concerning the batch model and accounting that are applied on
JUROPATEST:

Job scheduling according to priorities. The jobs with the highest priorities will be scheduled
next.

Backfilling scheduling algorithm. The scheduler checks the queue and may schedule jobs with
lower priorities that can fit in the gap created by freeing resources for the next highest priority
jobs.

No node-sharing. The smallest allocation for jobs is one compute node. Running jobs do not
disturb each other.

For each project a Linux group is created where the users belong to. Each user has available
contingent from one project only.

CPU-Quota modes: monthly and fixed. The project are charged contingent in a monthly base or
get a fixed amount until it is completely used.

Contingent/CPU-Quota states for the projects: normal, low-contingent, no-contingent.

Contingent priorities: normal > lowcont > nocont. Users without contingent get a penalty to the
priorities of their jobs, but they are still allowed to submit and run jobs.



2 Batch System - Slurm

2.1 Slurm Overview

Slurm is the Batch System (Workload Manager) of JUROPATEST cluster. Slurm (Simple Linux Utility
for Resource Management) is a free open-source resource manager and scheduler. It is a modern,
extensible batch system that is widely deployed around the world on clusters of various sizes. A Slurm
installation consists of several programs and daemons.

The Slurm control daemon (slurmctld) is the central brain of the batch system, responsible for
monitoring the available resources and scheduling batch jobs. The slurmctld runs on an administrative
node with a special setup to ensure availability of the services in case of hardware failures. Most user
programs such as srun, sbatch, salloc and scontrol interact with the slurmctld. For the purpose of job
accounting slurmctld communicates with Slurm database daemon (slurmdbd).

Slurm stores all the information about users, jobs and accounting data in its own database. The
functionality of accessing and managing these data is implemented in slurmdbd. In our case, slurmdbd
is configured to use a MySQL database as the back-end storage. To interact with slurmdbd and get
information from the accounting database, Slurm provides commands like sacct and sacctmgr.

In contrast to the Moab/Torque combination where Moab provides scheduling and Torque performs
resource management (like batch job start or node health monitoring) Slurm combines the functionality
of the batch system and resource management. For this purpose Slurm provides the slurmd daemon
which runs on the compute nodes and interacts with slurmctld. For the executing of user processes,
slurmstepd instances are spawned by slurmd to shepherd the user processes. On JUROPATEST cluster
no slurmd/slurmstepd daemons are running on the compute nodes. Instead the process management is
performed by psid the management daemon from the Parastation Cluster Suite which has a proven
track record on the JUROPA system. Similar to the architecture of the JUROPA resource management
system, where a psid plugin called psmom replaces the Torque daemon on the compute nodes, a plugin
of psid called psslurm replaces slurmd on the compute nodes of JUROPATEST. Therefore only one
daemon is required on the compute nodes for the resource management which minimizes jitter (which
can affect large-scale applications). For the end-users, there is no real difference visible because of this
integration between Slurm and Parastation. Currently, psslurm is under active development by ParTec
and JSC in the context of the JuRoPA collaboration.

The Batch System manages the compute nodes, which are the main resource entity of the cluster.
Slurm groups the compute nodes into partitions. These partitions are the equivalent of queues in
Moab. It is possible for different partitions to overlap, which means that the compute nodes can belong
to multiple partitions. Also partitions can be configured with certain limits for the jobs that will be
executed. Jobs are the allocations of resources by the users in order to execute tasks on the cluster for a
specified period of time. Slurm introduces also the concept of job-steps, which are sets of (possible
parallel) tasks within the jobs. One can imagine job-steps as smaller allocations or jobs within the job,
which can be executed sequentially or in parallel during the main job allocation.

In Figure 1 we present the architecture of the daemons and their interactions with the user commands
of Slurm.



o o — — — —— —  ———

Commands

sbatch

scancel

squeue

salloc

scontrol

I
I
I
I
sinfo |
I
I
I
I

sattach | : < e ;

sstat |

sbhcast | sgather |

|
[
psslurm :

psid |

i i I
Login Nodes Compute Node Ni

2.2 Slurm Configuration

High-Availability for the main controllers slurmctld and slurmdbd.
Backfilling scheduling algorithm.

No node-sharing.

Job scheduling according to priorities.

Accounting mechanism: slurmdbd with MySQL database as back-end storage.

User and job limits enforced by QoS (Quality of Service) and some hard-limits configured in the
partition settings. There is a QoS for each contingent state: normal, lowcont, nocont and
suspended. Users without contingent are set to a different QoS and get a penalty for their job
priorities.

No preemption configured. Running jobs cannot be preempted.

Prologue and Epilogue, with pshealthcheck from Parastation. The prologue checks the status of
the nodes at job start and Epilogue cleans up the nodes after job completion.

Same limits/configurations for batch and interactive jobs (no difference between batch and
interactive jobs for Slurm, different behavior than Moab).

8



2.3 Partitions

In Slurm multiple nodes can be grouped into partitions which are sets of nodes with associated limits
(for wall-clock time, job size, etc.). These limits are hard-limits for the jobs and can not be overruled by
the specified limits in QoS's. Nodes may overlap and be in more than one partition, making partitions
serve as general purpose queues, like queues in Moab. The following table shows the partitions on
JUROPATEST and the configured maximum limits and default values:

Partition Limit Value

batch (default) Maximum wall-clock time for each job 2 hours
Default wall-clock time for each job 30 minutes
Minimum/Maximum number of nodes per job 1/ 4 nodes
Default number of nodes for each job 1 node
Maximum number of running jobs per user 4 jobs

large Maximum wall-clock time for each job 1 hour
Default wall-clock time for each job 30 minutes
Minimum/Maximum number of nodes per job 5/ 64 nodes
Default number of nodes for each job 5 node
Maximum number of running jobs per user 4 jobs

The batch partition is intended for code optimization and small-scale performance tests. The large
partition is intended for short running scalability tests. Jobs using the large partition only run in fixed
time-slots (usually once per week depending on demand). The default partition is batch.

2.4 Slurm's Accounting Database

Slurm manages its own data with two different ways. First, there is a runtime engine in memory,
backed-up with state files that is managed by slurmctld and second, there is the MySQL database that is
managed by slurmdbd. Slurm stores all the important information in its MySQL database, like: cluster
information, events, accounts, users, associations, QoS's and jobs history. An association is the
combination of cluster, account, user and partition. Associations are stored in a tree-like hierarchical
structure starting with the root node with the accounts as its children and users as children of the
accounts. In each association it is possible to specify fair-share, job limits and QoS.

To interact with slurmdbd and get accounting information from the database Slurm provides the
commands sacct and sacctmgr.

2.5 Job Limits — QoS

As we describe above, the limits of the partitions are the hard-limits that put an upper limit for the jobs.
However, the actual job limits are enforced by the limits specified in both partitions and Quality-of-
Services, which means that first the QoS limits are checked/enforced, but these limits can never go over
the partition limits.



One QoS is configured for each possible contingent status: normal, lowcont, nocont. These QoSs play
the most important role to define the job priorities. By defining those QoSs the available range of
priorities is separated into three sub-ranges, one for each contingent mode. Also one more QoS is
defined with the name suspended which will be given to all associations that belong to users/projects
that have ended and/or are not allowed to submit jobs anymore. Following we present the list with the
configured Quality-of-Services:

Name Priority Flags MaxNodes/Job | MaxWall/Job MaxJobs/User | MaxSubmittedJobs
normal 100,000 |DenyOnLimit| *Partition* *Partition* 4 12
lowcont 50,000 |DenyOnLimit| *Partition* *Partition* 4 12
nocont 0 |DenyOnLimit| *Partition* | *Partition* 4 12
suspended 0 | DenyOnLimit 0 - 0 0

Note: For the entries that have *Partition* as value, it means that the limits are inherited from the
Partitions where the jobs are running.

Each association in Slurm's database belongs to one user only. In each association there are two entries
regarding the QoSs. One entry with the list of available QoSs and another entry with the Default-QoS
(used when QoS is not specified with options). In every association only one available QoS is defined
(same as default) for each user depending on the contingent status. This is implemented in JSC's
accounting mechanism and the users are not allowed to change their QoS. The limits are enforced to
the users by setting the correct QoS for their association according to their contingent. Job limits are
enforced by that QoS in combination with the partition limits. If the users request allocations over the
limits then the submission will fail (flag DenyOnLimit).

2.6 Priorities

Slurm schedules the jobs according to their priorities, which means that the jobs with the highest
priorities will be executed next. With the backfilling algorithm though, jobs (usually small) with lower
priorities can be schedule next if they can fit and run on the available resources before the next high-
priority job is scheduled to start. Slurm has a very simple and well defined priority mechanism that
allows us to define exactly the batch model we want. Following, we present how Slurm calculates the
priorities for each job:

Job priority = (PriorityWeightAge) * (age factor) +

B (PriorityWeightFairshare) * (fair-share factor) +
(PriorityWeightJobSize) * (job size fachr) +
(PriorityWeightPartition) * (partition factor) +
(PriorityWeightQOS) * (QOS_factor) -

Slurm uses five factors to calculate the job priorities: Age, Fairshare, Job-Size, Partition and QoS. The
possible range of values for the factors is between 0.0 (min) and 1.0 (max). For each factor we have
defined a weight that is used in the job-priority equation. Following is the list of weights we have
configured:

10



Weight Value

WeightQOS 100,000
WeightAge 32,500
WeightJobSize 14,500
WeightFairshare 3,000
WeightPartition 0

It is clear now that QoS plays an important role for the calculation of the priorities. With the different
QoSs that have been defined, it is possible to create different priority range according to the contingent
of the users. Below follows a table with the priority ranges for each contingent mode:

Contingent Status | Priority Ranges

normal 100,001 — 150,000
lowcont 50,001 — 100,000
nocont 0 -50,000
suspended -

For each contingent state the available range for priorities is 50k and is calculated from three factors: a)
job age, b) job size and c) fair-share. In current setup, the partition factor is not used which means no
difference in the priorities between different partitions.

2.7 Job Environment

The whole shell environment on the compute nodes during submission is passed to the jobs. With some
options of the allocation commands, users can change this default behavior. The users can load
modules and prepare the desired environment before job submission, and then this environment will be
passed to the jobs that will be submitted. Of course, a good practice is to include module commands
inside the job-scripts, in order to have full control of the environment of the jobs.

2.8 SMT

Similar to the Intel Nehalem processors in JUROPA, the Haswell processors in JUROPATEST offer the
possibility of Simultaneous Multithreading (SMT) in the form of the Intel Hyper-Threading (HT)
Technology. With HT enabled each (physical) processor core can execute two threads or tasks
simultaneously. The operating thus lists a total of 56 logical cores or Hardware Threads (HWT).
Therefore a maximum of 56 processes can be executed on each compute node without overbooking.

Each compute node on JUROPATEST consists of two CPUs, located on socket zero and one, with 14
physical cores. These cores are numbered 0 to 27 and the hardware threads are named 0 to 55 in a
round-robin fashion. Figure 2 depicts a node schematically and illustrates the naming convention.

11



Node

Figure 2.

In chapter 4/section 4.1, there are examples (commands and job scripts) on how to use SMT.

12



3 Slurm User Commands

In this section we will give first a list of all commands with a short description and then later we will
describe with more details the functionality of each command, giving also some examples.

3.1 List of Commands

Slurm offers a variety of user commands for all the necessary actions concerning the jobs. With these
commands the users have a rich interface to allocate resources, query job status, control jobs, manage
accounting information and to simplify their work with some utility commands.

Here is the list of all Slurm's user commands;

salloc is used to request interactive jobs/allocations. When the job is started a shell (or other
program specified on the command line) is started on the submission host (login node). From the shell
srun can be used to interactively spawn parallel applications. The allocation is released when the user
exits the shell.

sattach is used to attach standard input, output, and error plus signal capabilities to a currently
running job or job step. One can attach to and detach from jobs multiple times.

sbatch is used to submit a batch script (which can be a bash, Perl or Python script). The script will be
executed on the first node in the allocation chosen by the scheduler. The working directory coincides
with the working directory of the shatch directory. Within the script one or multiple srun commands
can be used to create job steps and execute (MPI) parallel applications. Note: mpiexec is not supported
on JUROPATEST. srun is the only supported method to spawn MPI applications. In the future the
mpirun command from Intel MPI may be supported.

scancel is used to cancel a pending or running job or job step. It can also be used to send an arbitrary
signal to all processes associated with a running job or job step.

sbcast is used to transfer a file to all nodes allocated for a job. This command can be used only
inside a job script.

sgather is used to transfer a file from all allocated nodes to the currently active job. This command
can be used only inside a job script.

scontrol is primarily used by the administrators to view or modify Slurm configuration, like
partitions, nodes, reservations, jobs, etc. However it provides also some functionality for the users to
manage jobs or query and get some information about the system configuration.

sinfo is used to retrieve information about the partitions, reservations and node states. It has a wide
variety of filtering, sorting, and formatting options.

smap graphically shows the state of the partitions and nodes using a curses interface. We recommend
llview as an alternative which is supported on all JSC machines.

sprio can be used to query job priorities.

squeue allows to query the list of pending and running jobs. By default it reports the list of pending
jobs sorted by priority and the list of running jobs sorted separately according to the job priority.

13



srun is used to initiate job steps mainly within a job or start an interactive job. srun has a wide variety
of options to specify resource requirements. A job can contain multiple job steps executing sequentially
or in parallel on independent or shared nodes within the job's node allocation.

sshare is used to retrieve fair-share information for each user.
sstat allows to query status information about a running job.
sview is a graphical user interface to get state information for jobs, partitions, and nodes.

sacct is used to retrieve accounting information about jobs and job steps. For older jobs sacct queries
the accounting database.

sacctmgr is primarily used by the administrators to view or modify accounting information in
Slurm's database. However, it allows also the users to query some information about their accounts and
other accounting information.

Note: Man pages exist for all daemons, commands, and API functions. The command option “--help”
also provides a brief summary of the available options.

3.2 Allocation Commands

sbatch, salloc & srun

All three commands sbatch, salloc and srun, can be used to allocate resources. sbatch is used for batch
jobs. The arguments for the sbatch command is the allocation options followed by the jobscript. sbatch
gets the allocation options either from the command line or from the job script (using #SBATCH
directives). salloc is used to allocate resources for interactive jobs. srun can also be used to start
interactive jobs but we suggest to use salloc. srun should be used only to start job steps and spawn the
processes (like MPI tasks) inside an allocation.

Command format:
sbatch [options] jobscript [args...]
salloc [options] [<command> [command args]]

srun [options...] shell [args...]

Here we present some useful options only for shatch command:

Option Description
-a <indexes> Submit a job array (set of jobs). Each job can be
--array=<indexes> identified by its index number.

--export=<env variables | ALL | NONE> Specify which environment variables will be passed to
the job. Default is ALL.

--ignore-pbs Ignore any "#PBS" options in the job script.
--wrap=<command string> Wraps a command in a simple "sh" shell script.

-d <dependency_list> Delay the start of the job wuntil the specified
--dependency=<dependency_list> dependencies have been satisfied.

14




These three commands (sbatch, salloc and srun) share many allocation options. The most useful and
commonly used allocation options are explained in following table:

Option

Description

—--begin=<time>

Delay and schedule job after the specified time.

——cores—per—socket=<cores>

Allocate nodes with at least the specified number of
cores per socket.

-c <ncpus>
--cpus-per-task=<ncpus>

Number of logical CPUs (hardware threads) per task.
This option is only relevant for hybrid/OpenMP jobs.

-D <directory>

Set the working directory of the job.

-e <filename pattern>
—--error=<filename pattern>

Path to the job's standard error. Slurm supports format
strings containing replacement symbols such as %j
(job ID).

-H
--hold

Job will be submitted in a held state (zero priority).
Can be released with “scontrol release <job_id>".

-i <filename pattern>
—-input=<filename pattern>

Connect the jobscript’s standard input directly to the
specified file.

-J <jobname>
—-job-name=<jobname>

Set the name of the job.

--mail-user

Define the mail address to receive mail notification.

--mail-type

Define when to send a mail notifications. Valid
options: BEGIN, END, FAIL, REQUEUE or ALL.

-N <minnodes[-maxnodes]>
--nodes=<minnodes|[-maxnodes ]>

Number of compute nodes used by the job. Can be
omitted if --ntasks and --ntasks-per-node is given.

-n <number>
--ntasks=<number>

Number of tasks (MPI processes). Can be omitted if
--nnodes and --ntasks-per-node is given.

--ntasks-per-core=<ntasks>

Number of tasks that will run on each CPU.

--ntasks-per-node=<ntasks>

Number of tasks per compute node.

-o <filename pattern>
—--output=<filename pattern>

Path to the job's standard output. Slurm supports
format strings containing replacement symbols such as
%j (job ID).

-p <partition names>
--partition=<partition_names>

Partition to be used. The argument can be either batch
or large on JUROPATEST. If omitted, batch is the
default.

--reservation=<name>

Allocate resources from the specified reservation.

-t <time>
—--time=<time>

Maximal wall-clock time of the job.

--tasks-per-node=<n>

Same as --ntasks-per-node.

15




Examples:
Submit a job requesting 2 nodes, with 28 tasks per node (total 56 tasks) and a walltime of 1 hour:

sbatch -N2 --ntasks-per-node=28 --time=1:00:00 jobscript

Submit a jobscript allocating 4 nodes with 16 tasks in total (4 tasks per node) for 30 minutes:

sbatch -N4 -nl6 -t 30 jobscript

Submit a job array of 4 jobs with 1 node per job, with the default walltime:

sbatch --array=0-3 -N1 jobscript

Submit a jobscript in the large partition requesting 70 nodes for 2 hours:

sbatch -N70 -p large -t 2:00:00 jobscript

Submit a job without a jobscript but wrapping a shell command:

sbatch -N4 -nl --wrap="hostname"

Submit a job requesting the execution to start after the specified date:

sbatch --begin=2015-01-11T12:00:00 -N2 --time 2:00:00 jobscript

Submit a job requesting all available mail notifications to the specified email address:

sbatch -N2 --mail-user=myemail@address.com --mail-type=ALL jobscript

Specify a jobname and the standard output/error files:

sbatch -N1 -J myjob -o MyJob-%j.out -e MyJob-%j.err jobscript

Start an interactive job and allocate 4 nodes for 1 hour:

salloc -N4 --time=60

Start an interactive job with srun and allocate 1 node for 10 minutes:

srun -N1 -t 10 --pty -u /bin/bash -i

16



3.3 Spawning commands

srun

With srun the users can spawn any kind of application, process or task inside a job allocation. It can be
a shell command, any single-/multi-threaded executable in binary or script format, MPI application or
hybrid application with MPI and OpenMP. When no allocation options are defined with srun command
the options from sbatch or salloc are inherited.

srun should be used either,
1. Inside a job script submitted by sbatch.
2. Or after calling salloc.

Note: To start an application with Parastation MPI, the users should use only srun and not mpiexec. For
Intel MPI, mpirun is not supported yet but it will be later.

Command format:

srun [options...] executable [args...]

The allocation options of srun for the job-steps are (almost) the same as for sbatch and salloc (please
see the table above with allocation options). There are also some useful options only for srun:

Option Description
--forward-x Enable X11 forwarding only for interactive jobs.
--multi-prog=<filename> Run different programs with different arguments for
each task specified in a text file.
--pty Execute the first task in pseudo terminal mode.
-r <num> Execute a jobstep inside allocation with relative index
--relative=<num> of a node.
--exclusive Allocate distinct cores for each task.
Examples:

Spawn 56 tasks on 4 nodes (14 tasks per node) for 30 minutes:

srun -N4 -n56 -t 30 executable

Spawn 8 tasks on 2 nodes (4 tasks per node), specifying in a file the executables for each task:

srun -n8 -N2 --multi-prog=./tasks.conf

./tasks.conf:
0-3 hostname
4-7 executable2

Inside a job-script, execute 4 tasks on 1 node without sharing cores with other job-steps:

srun --exclusive -n 4 -N1 mpi-prog

17



3.4 Query Commands

squeue

With squeue, we can see the current status information of the queued and running jobs.

Command format:

squeue [OPTIONS...]

Some of the most useful squeue options are:

Option

Description

-A <account list>
--account=<account_list>

List jobs for the specified accounts.

-a Show information about jobs and job-steps for all
--all partitions.

-r Optimized display for job arrays.

—--array

-h Do not print the header of the output.

--noheader

-i <seconds>
--iterate=<seconds>

Repeatedly print information at the specified interval.

-1
--long

Report more information.

-0 <output_format>
-—-format=<output_ format>

Specify the information that will be printed (columns).
Please read the man pages for more information.

-p <part_list>
--partition=<part_list>

List jobs only from the specified partitions.

-R <reservation name>
--reservation <reservation name>

List jobs only for the specified reservation.

-5 <sort_list>
--sort=<sort_ list>

Specify the order of the listed jobs.

--start

Print the expected start time for each job in the queue.

-t <state_list>
--states=<state_list>

List jobs only with the specified state (failed, pending,
running, etc).

-u <user_ list>
--user=<user list>

Examples:
Repeatedly print queue status every 4 seconds:

squeue -i 4

Show jobs in the large partition:

squeue -p large

Print the jobs of the specified user.

18




Show jobs that belong to a specific user:

squeue -u user0l

Print queue status with a custom format, showing only job ID, partition, user and job state:

squeue --format="%.18i %.9P %.8u %.2t"

Normally, the jobs will pass through several states during their life-cycle. Typical job states from
submission until completion are: PENDING (PD), RUNNING (R), COMPLETING (CG) and COMPLETED
(CD). However there are plenty of possible job states for Slurm. The following table describes the most
common states:

State Code | State Name Description

CA CANCELLED Job was explicitly cancelled by the user or an administrator. The job may or
may not have been initiated.

CD COMPLETED Job has terminated all processes on all nodes.

CF CONFIGURING |Job has been allocated resources, but are waiting for them to become ready
for use.

CG COMPLETING Job is in the process of completing. Some processes on some nodes may still
be active. Usually Slurm is running job's epilogue during this state.

F FAILED Job terminated with non-zero exit code or other failure condition.

NF NODE_FAIL Job terminated due to failure of one or more allocated nodes.

PD PENDING Job is awaiting resource allocation.

R RUNNING Job currently has an allocation. Note: Slurm is always running the prologue at
the beginning of each job before the actual execution of user's application.

TO TIMEOUT Job terminated upon reaching its walltime limit.

sview

With sview, we get a graphical overview of the cluster. It shows information about system
configuration, partitions, nodes, jobs, reservations. Some actions also are possible through the GUI. No
options are available for sview. Users can just call the command and they will get the graphical
window.

sinfo

With sinfo, we can get information and check the current state of partitions, nodes and reservations.
This command is useful for checking the availability of the nodes.

Command format:

sinfo [OPTIONS...]

19



Some of the most useful sinfo options are:

Option Description
-a Show information about all partitions.
--all
-d Show information only for the non-responding (dead)
--dead nodes.

-i <seconds>

--iterate=<seconds>

Repeatedly print information at the specified interval.

-1
--long

Report more information.

-n <nodes>
--nodes=<nodes>

Show information only about the specified nodes.

-N
--Node

Show information in a node-oriented format.

-0 <output_ format>

--format=<output format>

Specify the information that will be printed (columns).
Please read the man pages for more information.

-p <partition>

—--partition=<partition>

Show information in a node-oriented format.

-r Show information only for the responding nodes.
—--responding

-R List the reasons why nodes are not in a healthy state.
--list-reasons

-s List partitions without many details for the nodes.
--summarize

-t <states>
--states=<states>

List nodes only with the specified state (e.g. allocated,
down, drain, idle, maint, etc).

=T
--reservation

Examples:

Show information about nodes in idle state:

sinfo -t idle

Show information about the reservations.

Show information about partitions and nodes in a summarized way:

sinfo -s

List all reservations:

sinfo -R

Show jobs that belong to a specific user:

sinfo -T

Show information for partition large:

sinfo -p large

20




Depending on the options, the srun command will print the states of the partitions and the nodes. The
partitions may be in state UP, DOWN or INACTIVE. The UP state means that a partition will accept new
submissions and the jobs will be scheduled. The DOWN state allows submissions to a partition but the
jobs will not be scheduled. The INACTIVE state means that not submissions are allowed.

The nodes also can be in various states. Node state code may be shortened according to the size of the
printed field. The following table shows the most common node states:

Shortened State | State Name Description

alloc ALLOCATED The node has been allocated.

comp COMPLETING | The job associated with this node is in the state of COMPLETING.

down DOWN The node is unavailable for use.

drain DRAINING & While in DRAINING state any running job on the node will be
DRAINED allowed to run until completion. After that and in DRAIN state the

node will be unavailable for use.

idle IDLE The node is not allocated to any jobs and is available for use.

maint MAINT The node is currently in a reservation with a flag of "maintenance".

resy RESERVED The node is in an advanced reservation and not generally available.

smap

With smap, we can get a graphical overview of the cluster. It shows information about the nodes and
the jobs that are running on them.

Command format:

smap [OPTIONS... ]

Some of the most useful smap options are:

Option Description
-c Send output to the command-line, without using
--commandline curses.
-D <option> Define the display mode of smap. Please read the man
--display=<option> pages for more information.
-h Do not print the header of the output.
--noheader
-H Show information about hidden partitions and their
--show_hidden jobs.
-i <seconds> Repeatedly print information at the specified interval.
--iterate=<seconds>
-n <node_list> Show information only for the specified nodes.
--nodes <node list>

21



Sprio

With sprio, we can check the priorities of all pending jobs in the queue.

Command format:

sprio [OPTIONS...]

Some of the most useful sprio options are:

Option Description
-h Do not print the header of the output.
—--noheader
-Jj <job_id_list> Show information only about the requested jobs.
--jobs=<job id list>
-1 Report more information.
--long
-n Print the the normalized priority factors of the jobs.
——-norm
-0 <output_format> Specify the information that will be printed (columns).
--format=<output_format> Please read the man pages for more information.
-u <user_list> Show information about the jobs of the specified users.
--user=<user_ list>
-w Print the configured weights for each factor.
--weights

Examples:

Show information about priorities of all queued jobs in a long format:
sprio -1

Show priority information for job 777:
sprio -j 777

Show the priorities of all jobs that belong to the specified user:
sprio -u userl

Show priority information in a custom format, printing only job ID, priority and user:

sprio -o "%.7i %.10Y %.8u"

scontrol

This command is primarily used by the administrators to manage Slurm's configuration. However it
provides also some functionality for the users to manage jobs or query and get some information about
the system configuration. Here we present the way to query and get various information with scontrol:

22



Command format:

scontrol [OPTIONS...] [COMMAND... ]

Some of the most useful scontrol query commands are:

Command Description

show hostlist <host_list> Return a compressed regular expression for the given
comma separated host list.

show hostlistsorted <host_list> Return a compressed and sorted regular expression for
the given comma separated host list.

show hostnames <host_regex> Expand the given regular expression to a full list of
hosts.

show job [<job_id>] Show information about all jobs or about the specified
job.

show node [<node_name>] Show information about all nodes or about the

specified node.

show partition [<partition_name>] Show information about all partitions or about the
specified one.

show reservation [<reservation name>] Show information about all reservations or about the
specified one.

show step [<step_id>] Show information about all jobsteps or about the
specified one.

Examples:
Expand and print a list of hostnames for the specified range:

scontrol show hostname j3c[061-070]

Show information about the job 777:

scontrol show job 777

Show information about the node j3c069:

scontrol show node j3c069

Show information about the partition batch:

scontrol show partition batch

sshare

With sshare, we can retrieve fairshare information and check the current value of the fairshare factor
that is used to calculate the priorities of the jobs.

Command format:

sshare [OPTIONS...]

23




Some of the most useful options of sshare are:

Option

Description

-A <account_list>
--accounts=<account_list>

Show information for the specified accounts. By
default users belong only to one account.

-h Do not display the header in the beginning of the
--noheader output.
-1 Show more information.
--long
-p Print information in a parsable way. Delimit output
--parsable with “|”, with a “|” in the end.
-P Print information in a parsable way. Delimit output
--parsable2 with “|”, without a “|” in the end.

Examples:

Print information about the user's shares in a long format:

sshare -1

Print information about the user's shares in a parsable way:

sshare -P

Print information about the user's shares without the initial header in the output:

sshare -n

24




3.5 Job Control Commands

scancel

With scancel, we can signal or cancel jobs, job arrays or job steps.

Command format:

scancel [OPTIONS...] [Jjob_id[_array id][.step_id]...]

Some of the most useful options of the scancel command are:

Option

Description

-A <account>
—-—account=<account>

Restrict the operation only to the jobs under the
specified account.

-b Send a signal to the batch job shell and its child
--batch processes.

-i Enables interactive mode. User must confirm for each
—-interactive

operation.

-n <job name>
--name=<job_name>

Cancel a job with the specified name.

-p <partition_name>
--partition=<partition name>

Restrict the operation only to the jobs that are running
in the specified partition.

-R <reservation_ name>
--reservation=<reservation_name>

Restrict the operation only to the jobs that are running
using the specified reservation.

-s <signal name>
--signal=<signal name>

Send a signal to the specified job(s).

-t <Jjob_state name>
--state=<job state name>

Restrict the operation only to the jobs that have the
specified state. Please check the man page.

-u <user_name>
——user=<user_name>

Examples:
Cancel jobs with ID 777 and 778:
scancel 777 778

Cancel jobs with the specified names:

scancel -n testjobl testjob2

Cancel job(s) only from the specified user. If no job ID
is given then cancel all jobs of this user.

Cancel all jobs in queue (pending, running, etc.) from user1:

scancel -u userl

Cancel all jobs in partition large that belong to user1:

scancel -p large -u userl

Cancel all jobs from user1 that are in pending state:

scancel -t PENDING -u userl

25




scontrol

The scontrol command can be also used to manage and do some actions on the jobs:

Command Description
hold <job_list> Prevent a pending job from beginning started.
release <job list> Release a previously held job, so it can start.
notify <job_id> <message> Send message to the standard error (stderr) of a job.
Examples:

Put jobs 777 and 778 in hold:

scontrol hold 777 778

Release job 777 from hold:

scontrol release 777

3.6 Job Utility Commands

sattach

With sattach, we can attach to a running job-step and get or manage the IO streams of the tasks in that
job-step. By default (without options) it attaches to the standard output/error streams.

Command format:

sattach [options] <jobid.stepid>

Some of the most useful options of sattach are:

Option Description
--input-filter[=]<task number> Transfer the standard input or print the standard
--output-filter[=]<task number> output/error only from the specified task.
—--error-filter[=]<task number>
-1 Add the task number in the beginning of each line of
--label standard output/error.
--layout Print the task layout information of the job-step

without attaching to its I/O streams.

--pty Run task number zero in pseudo terminal.

Examples:

Attach to the output of job 777 and job-step 1:
sattach 777.1

Attach to the output of job 777 and job-step 2, adding the task ID in the beginning of each line:
sattach -1 777.2

26




sstat

With sstat, we can get various status information about running job-steps, for example minimum,
maximum and average values for metrics like CPU time, Virtual Memory (VM) usage, Resident Set
Size (RSS), Disk I/0, Tasks number, etc.

Command format:

sstat [OPTIONS...]

Some of the most useful options of sattach are:

Option Description
-a Show information about all steps for the specified job.
--allsteps
-e Show the list of fields that can be specified with the “--
--helpformat format” option.
-i Show information about the pids for each jobstep.
—-pidformat

-j <job(.step)>
--jobs <job(.step)>

Show information for the specified jobs or jobsteps.

-n
--noheader

Do not display the header in the beginning of the
output.

-o <field list>
--format=<field list>
--fields=<field list>

Specify the list of fields that will be displayed in the
output. Available fields can be found with “-e” option
or in the man pages.

-p
--parsable
-P
--parsable?2

Examples:

Display default status information for job 777:

sstat -j 777

Print information in a parsable way. Output will be
delimited with “|”.

Display the defined metrics for job 777 in parsable format:

sstat -P --format=JobID,AveCPU,AvePages,AveRSS,AveVMSize -j 777

27




3.7 Job Accounting Commands

sacct

With sacct, we can get accounting information and data for the jobs and jobsteps that are stored in
Slurm's accounting database. Slurm stores the history of all jobs in the database but each user has

permissions to check only his/her own jobs.

Command format:

sacct [OPTIONS...]

Some of the most useful options of sacct are:

Option Description
b Show a brief listing, with the fields: jobid, status and
--brief exitcode.
-e Show the list of fields that can be specified with the “--
--helpformat format” option.

-E <end_time>
--endtime=<end time>

List jobs with any state (or with specified states using
option “--state”) before the given date. Please check
the man pages for the available time formats.

-j <job(.step)>
—-jobs=<job(.step)>

Show information only for the specified jobs/job-steps.

-1 Show full report with all available fields for each
--long reported job/job-step.

-n Do not display the header in the beginning of the
—--noheader

output.

-N <node_list>
--nodelist=<node list>

Show information only for jobs that ran on the
specified nodes.

--name=<jobname list>

Show information about jobs with the specified names.

-o <field list>
--format=<field list>

Specify the list of fields that will be displayed in the
output. Available fields can be found with “-e” option
or in the man pages.

-r <partition name>
--partition=<partition_name>

Show information only for jobs that ran in the
specified partitions. Default is all partitions.

-s <state_list>
--state=<state_list>

Filter and show information only about jobs with the
specified states, like completed, cancelled, failed, etc.
Please check the man pages for the full list of states.

-5 <start_time>
--starttime=<start time>

List jobs with any state (or with specified states using
option “--state) after the given date. The default value
is 00:00:00 of current date. Check man page for date
formats.

-X
--allocations

Show information only for jobs and not for job-steps.

28




Examples:
Show job information in long format for default period (starting from 00:00 today until now):
sacct -1

Show job only information (without jobsteps) starting from the defined date until now:

sacct -S 2014-10-01T07:33:00 -X

Show job and jobstep information printing only the specified fields:

sacct -S 2014-10-01 --format=jobid,elapsed,nnodes,state

sacctmgr

The sacctmgr command is mainly used by the administrators to view or modify accounting information
and data in the accounting database. This command provides also an interface with limited permissions
to the users for some querying actions.

Command format:

sacctmgr [OPTIONS...] [COMMAND...]

Some of the most useful commands for sacctmgr are:

Command Description
show/list* cluster Show cluster information.
show association [where user=<name>] List all visible associations or the ones for the

specified user.

show event [where node=<node_name>] List all events for all or for the specified nodes.
show gos [where name=<qgos_name>] List all or the specified QoS.
show user Show some user information, like privileges, etc.

* “show” and “list” commands are the same for sacctmgr.
Examples:
Show cluster information:

sacctmgr show cluster

Show the association of userl:

sacctmgr show association where user=userl

Print all QoSs:

sacctmgr show gos

Show the privileges of my user:

sacctmgr show user

29




3.8 Custom commands from JSC

llview

Ilview is a cluster monitoring tool implemented in JSC that shows a graphical overview of the cluster.
The nodes are grouped and presented per rack, and different coloring is used per job for each allocation
on the nodes. The GUI shows the list of all current jobs in the queue, and gives also information about
the utilization of the cluster.

Below in Figure 3 there is a screenshot of llview:

File Options Step 60 s W active ﬂ Search |paschoul Filter |~ Last Update | 11/17/14 11:25:01 nextin| 26s Source wwwl Help

Nodes | Eunnlngl Ealtlngl

[ — — [ [ [ [ [ [ [ [ [ [ [ [ [ | used:  22¢ son/aszs,
| P I 5 | I | | I B Iz I; | Iz - [ I | £ree: 3020, 52 nds (0 nehd)

#jobs (run/wait): 6/4

[cus[ Userid | cpun [ wall | Class | Spec | TEnd |

. 224 paschoul 0.0h of 0130 batch n04.p56.£01 11:55

. 224 paschoul 0.0h of 30 batch n04.p56.t01 11:54
EGEcoee]  [EMG3coes] EEGEco70] EEEE0TY)

g 1

B = 0z

B 3. 224 paschoul 0.0h of 0:30 batch n04.p56.£01 11:55
El5c072] 30073 3074 O 4. =224 paschoul 0.0h of 0:30 batch n04.p56.£01 11:55

B s 2 3Jif£1302  0.0h of 2:00 batch n01.p01.t01 13:25

W s % mnicelai  0.0h of 0:10 batch n01.p01.t01 11:35

= [
FEEFEFE B PR T S .
E c

er (33a04)
ua: .

:25:0
FT33cIT7]  [FT33cIle] [ENE3ells] [F1%elzs]  [FE3clZl] [F13%elzs] [F[i3elzg
Too%
[ENG3cIzd]  @E3clzs)  [WEEelzd @GEezT @GScIzE)  [Eelzs) [EEEE -
508
258
JURCEATEST_R2
b 0t = [
11/14/14 11:30:00 e B e R @ Basksl 11717018 11:15:00
J U ROPATEST | #18 updates, started at Mon Nov 17 11:] N INIEENEENE = L.

Figure 3.

30



gJ_cpuquota

Job accounting is done via a central database in JSC and the information about JUROPATEST jobs will
be completed once per day around midnight, based on information obtained from Slurm Accounting
Database. Users get information about their current quota-test status or the usage of single jobs by
using the command q_cpuquota.

Command format:

g_cpuquota [OPTIONS...]

Some useful options of the q_cpuquota commnd are:

Option Description

-? Print usage information.

-h <cluster> Show information for the specified system (e.g. JUROPATEST).
-j <jobID> Show accounting information for the specified job.

-t <time> Show information about jobs in the specified time period.

-d <number> Show information about jobs of the last specified days.

31



4 Batch Jobs

Users submit batch applications (usually bash scripts) using the sbatch command. In the job scripts, in
order to define the sbatch parameters #SBATCH directives must be used. The script is executed on the
first compute node in the allocation. To execute parallel MPI tasks users call srun within their script.
With srun users can also create job-steps. A job step can allocate the whole or a subset of the already
allocated resources from sbatch. With these commands Slurm offers a mechanism to allocate resources
for a certain walltime and then run many parallel jobs in that frame. The following table describes the
most common or necessary allocation options that can be defined in a job script:

Option Default value Description

#SBATCH --nodes=<number> 1 | Number of nodes for the allocation.

#SBATCH -N <number>

#SBATCH --ntasks=<number> 1 |Number of tasks (MPI processes). Can be omitted if
#SBATCH -n <number> --nodes and —ntasks-per-node are given.

#SBATCH --ntasks-per-node=<num> 1 |Number of tasks per node. If keyword omitted the
#SBATCH --tasks-per-node=<num> default value is used, but there are still available

maximum 56 CPUs per node for current allocation.

#SBATCH --cpus-per-task=<num> 1 |Number of threads/VCores per task. Used only for
#SBATCH -c <num> OpenMP or hybrid jobs.

#SBATCH --output=<path> slurm-<jobID>.out | Path to the file for the standard output.

#SBATCH -0 <path>

#SBATCH --error=<path> slurm-<jobID>.out | Path to the file for the standard error.

#SBATCH -e <path>

#SBATCH --time=<walltime> 30 minutes | Requested walltime limit for the job.

#SBATCH -t<walltime>

#SBATCH --partition=<name> batch |Partition to run the job. Currently available: batch and
#SBATCH -p <name> large partitions.

#SBATCH --mail-user=<email> username | Email address for notifications.

#SBATCH --mail-type=<mode> NONE | Event types for email notifications.

#SBATCH --job-name=<jobname> jobscript's name |Job name.

#SBATCH -J <jobname>

Multiple srun calls can be placed in a single batch script. Options such as --nodes, --ntasks and
--ntasks-per-node are by default taken from the sbatch arguments but can be overwritten for each srun
invocation. If --nasks-per-node is omitted or set to a value higher than 28 then SMT (simultaneous
multi-threading) will be enabled. Each compute node has 28 physical cores and 56 logical cores.

As we described before, the job script is submitted using:

sbatch <jobscript>

On success, sbatch writes the job ID to standard out.

32



4.1 Job script examples

Serial job

Example 1: Here is a simple example where some system commands are executed inside the job script.
This job will have the name “TestJob”. One compute node will be allocated for 30 minutes. Output will
be written in the defined files. The job will run in the default partition batch.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 1

#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=30

sleep 5
hostname

Parallel job

In order to start a parallel job, users have to use the srun command that will spawn processes on the
allocated compute nodes of the job. Options given to srun will override the allocation option from
sbatch. In case of no srun options the defined options (with #SBATCH) or the defaults will be used.

Example 2: Here is a simple example of a job script where we allocate 4 compute nodes for 1 hour.
Inside the job script, with the srun command we request to execute on 2 nodes with 1 process per node
the system command hostname in a time-frame of 10 minutes.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 4

#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=60

srun -N2 --ntasks-per-node=1 -t 10 hostname

OpenMP job

Example 3: In this example the job will execute an OMP application named “omp-prog”. The
allocation is for 1 node and by default, since there is no node-sharing, all CPUs of the node are
available for the application. The output filenames are also defined and a walltime of 2 hours is
requested. Note: It is important to define and export the variable OMP_NUM_THREADS that will be
used by the executable.

#!/bin/bash

#SBATCH -J TestOMP
#SBATCH -N 1

#SBATCH -o TestOMP-%j.out
#SBATCH -e TestOMP-%j.err
#SBATCH --time= 02:00:00

export OMP_NUM THREADS=56

/home/user/test/omp-prog

33




MPI job

Example 4: In the following example, an MPI application will start 112 tasks on 4 nodes running 28
tasks per node (no SMT) requesting a walltime limit of 15 minutes in batch partition. Each MPI task
will run on a separate core of the CPU.

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --ntasks=112
#SBATCH --output=mpi-out.$%]j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:15:00
#SBATCH --partition=batch

srun -N4 --ntasks-per-node=28 ./mpi-prog

MPI jobs with SMT

On each node there are 28 real cores available and, with SMT enabled, 56 virtual cores. In order to
enable SMT the users just have to request from Slurm to allocate more than 28 CPUs on each compute
node. Following there asre some examples where SMT is enabled:

Example 5: In this example we have an MPI application starting 1792 tasks in total on 32 nodes using
56 logical CPUs (hardware threads) per node (SMT enabled) requesting a time period of 20 minutes.
The large partition is used.

#!/bin/bash -x

#SBATCH --nodes=32

#SBATCH --ntasks=1792

#SBATCH --ntasks-per-node=56 # can be omitted #
#SBATCH --output=mpi-out.$%j

#SBATCH --error=mpi-err.%j

#SBATCH --time=00:20:00

#SBATCH --partition=large

srun ./mpi-prog

Example 6: In this example, the job script will start the program “mpi-prog” on 4 nodes using 56 MPI
tasks per node, where two MPI tasks will be executed on each physical core.

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --ntasks=224

#SBATCH --ntasks-per-node=56
#SBATCH --output=mpi-out.$%]
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:15:00
#SBATCH --partition=batch

srun ./mpi-prog

34



Hybrid Jobs

Example 7: In this example, a hybrid MPI/OpenMP job is presented. This job will allocate 5 compute
nodes for 2 hours. The job will have 35 MPI tasks in total, 7 tasks per node and 4 OpenMP threads per
task. On each node 28 cores will be used (no SMT enabled). Note: It is important to define the
environment variable OMP_NUM_THREADS and this must match with the value that was given to the
option “~-cpus-per-task”.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 5

#SBATCH -0 TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time= 02:00:00
#SBATCH —partition=large

export OMP_NUM THREADS=4

srun -N 5 --ntasks-per-node=7 --cpus-per-task=4 ./hybrid-prog

Example 8: In this example, there is a hybrid application which will start 4 tasks per node on 2
allocated nodes and starting 7 threads per node (no SMT). In order to set the environment variable
“OMP_NUM_THREADS”, Slurm's variable “sLurM cpus_PER TASK” is used which is defined by the option
“__cpus-per-task”.

#!/bin/bash

#SBATCH -N 4

#SBATCH -n 8

#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=7
#SBATCH --output=mpi-out.$%]j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00
#SBATCH --partition=batch

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
srun ./hybrid-prog

Hybrid jobs with SMT

Example 9: This example shows a hybrid application that will start 4 tasks per node on 3 allocated
nodes and starting 14 threads per task, using in total 56 cores per node (SMT enabled).

#!/bin/bash

#SBATCH --nodes=3

#SBATCH --ntasks=12

#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=14
#SBATCH --output=mpi-out.$%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00

export OMP_NUM THREADS=${SLURM CPUS PER TASK}
srun ./hybrid-prog

35



Example 10: This example presents a hybrid application which will execute “hybrid-prog” on 3
nodes using 2 MPI tasks per node and 28 OpenMP threads per task (56 CPUs per node).

#!/bin/bash

#SBATCH --nodes=3

#SBATCH --ntasks=12

#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=28
#SBATCH --output=mpi-out.$%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00
#SBATCH --partition=batch

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
srun ./hybrid-prog

Intel MPI jobs

In order to run Intel MPI jobs user can use srun. The mpirun command is currently not supported. That
means for now the users can not export and use the environment variables from Intel MPI, because
srun does not work with them. Users will be informed when mpirun will be supported.

4.2 Job steps

In a previous chapter we described job-steps as small allocations or jobs inside the current job. Each
call of srun will create a new job-step. It is up to the users to decide how they will create job-steps. It is
possible to have one job-step after another using all the allocated nodes each time, or to have many job-
steps running in parallel. Instead of submitting many single-node jobs, known as farming, it is
suggested to the users to do farming using job-steps inside a single job. In this case, since all CPUs are
available to the job, the only bounding factor is the memory per task (and the walltime), which means
that users should increase the allocated nodes.

Example 11: In the following example it is presented how to execute MPI programs in different job-
steps sequentially inside a job allocation. In total 4 nodes are allocated for 2 hours. In this job 3 job-
steps will be created. The first job-step will run on 4 nodes having 1 MPI task per node for 20 minutes.
After that the second job-step will be executed on 3 nodes with 28 MPI tasks per node for 1 hour. And
in the end the last job-step will run on 4 nodes with 56 MPI tasks per node using all virtual cores on
each node (SMT) and it will finish when the MPI application will be completed or will be canceled by
the scheduler if it will reach the walltime limit.

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --output=mpi-out.$%]j
#SBATCH --error=mpi-err.%j
#SBATCH --time=02:00:00

srun -N4 --ntasks-per-node=1 --time=00:20:00 ./mpi-progl
srun -N3 --ntasks-per-node=28 --time=01:00:00 ./mpi-prog2
srun -N4 --ntasks-per-node=56 ./mpi-prog3

36



Example 12: In the following example we show a job script where two different job-steps are initiated
within one job. In total 28 cores are allocated on two nodes. Each job step uses 14 cores on one of the
compute nodes. In this example the option --exclusive is passed to srun to ensure that distinct cores are
allocated to each job step. Here the job-steps will be executed in parallel:

#!/bin/bash

#SBATCH --nodes=2

#SBATCH --ntasks=28

#SBATCH --ntasks-per-node=14
#SBATCH --output=mpi-out.$%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00

srun --exclusive -n 14 ./mpi-progl &
srun --exclusive -n 14 ./mpi-prog2 &

wait

4.3 Dependency Chains

Slurm supports dependency chains which are collections of batch jobs with defined dependencies,
similar to job chains of Moab on JUROPA. Job dependencies can be defined using the --dependency
argument of sbatch. The format is:

sbatch --dependency=<type>:<jobID> <jobscript>
sbatch -d <type>:<jobID> <jobscript>

The available dependency types for job-chains are: dfter, afterany, afternotok and afterok. For more
information please check the man page of sbatch.

Example 13: Below is an example of a job-script for the handling of job chains. The script submits a
chain of “sNo_oF JoBs”. A job will only start after successful completion of its predecessor. Please
note that a job which exceeds its time-limit is not marked successful.

#!/bin/bash -x
# submit a chain of jobs with dependency

# number of jobs to submit
NO_OF JOBS=<no of jobs>

# define jobscript
JOB_SCRIPT=<jobscript>

echo "sbatch ${JOB_SCRIPT}"
JOBID=$ (sbatch ${JOB_SCRIPT} 2>&1 | awk '{print $(NF)}')

I=0

while [ ${I} -le ${NO_OF_JOBS} ]; do
echo "sbatch -d afterok:${JOBID} ${JOB_SCRIPT}"
JOBID=$ (sbatch -d afterok:${JOBID} ${JOB_SCRIPT} 2>&l | awk '{print $(NF)}')
let I=S${I}+1

done

37



4.4 Job Arrays

Slurm supports job-arrays and offers a mechanism to easily manage these collections of jobs. Job
arrays are only supported for the sbatch command and, as we described previously, they can be defined
using the options “--array” or “-a”. To address a job-array, Slurm provides a base array ID and an array

index unique for each job. The format for specifying an array job is first the base array jobID followed
by “_” and then the array index:

‘ <base job id> <array index> ‘

Slurm exports two environment variables that can be used in the job script to identify each array-job:

SLURM_ARRAY JOB_1ID # base array job ID
SLURM_ARRAY TASK_ID # array index

Some additional options are available to specify the stdin, stdout, and stderr file names: option “sa”
will be replaced by the value of sLurM ARRAY JoB ID and option “sa” will be replaced by the value
of SLURM ARRAY TASK_ ID.

Also each job in an array has its own normal unique job ID. This ID is exported in the environment
variable

| SLURM_JOBID |

Example 14: In the following example, the job-script will create a job array of 4 jobs with indices 0-3.
Each job will run on 1 node with walltime of 1 hour and will execute a different bash script
(script [0-3].sh).

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --output=prog-%A %a.out
#SBATCH --error=prog-%A_%a.err
#SBATCH --time=01:00:00

#SBATCH --array=0-3

./script_${SLURM_ARRAY TASK_ ID}.sh

Example 15: In the following job-script a job array of 20 jobs will be submitted with indices 1-20.
Each job will run on a separate node with 2 hours walltime limit. Some may be running and some may
be waiting in the queue. For this job array all jobs will execute the same binary “prog” with different
input files (input_[1-20].txt):

#!/bin/bash -x

#SBATCH --nodes=1

#SBATCH --output=prog-%$A %a.out
#SBATCH --error=prog-%A %a.err
#SBATCH --time=02:00:00

#SBATCH --array=1-20

#SBATCH --partition=large

srun -N1 --ntasks-per-node=1 ./prog input ${SLURM ARRAY TASK ID}.txt

38



4.5 MPMD

Slurm supports the MPMD model (Multiple Program Multiple Data Execution Model) that can be used
for MPI applications, where multiple executables can have one common MPI_ COMM WORLD
communicator. For this purpose Slurm provides the option “--multi-prog” for the srun command only.
This option expects a configuration text file as an argument and the format is:

‘ srun [OPTIONS..] --multi-prog <text-file> ‘

Each line of the configuration file can have two or three possible fields separated by space and the
format is like this:

‘ <list of task ranks> <executable> [<possible arguments>] ‘

In the first field is defined a comma separated list of ranks for the MPI tasks that will be spawned.
Possible values are integer numbers or ranges of numbers. The second field is the path/name of the
executable. And the third field is optional and defines the arguments of the program.

Example 16: In this example there is a simple configuration file with name “multi.conf’. This file
defines three MPI programs. For the first executable mpi-progl only one instance will be executed
with rank 0 and one integer argument. For the second program mpi-prog2 Slurm will create two tasks
with ranks 4 and 6 and each one will have the path of a file as argument. For the third program mpi-
prog3 five MPI tasks will be executed with ranks 1, 2, 3, 5 and 7 without any arguments.

0 ./mpi-progl 0
4,6 ./mpi-prog2 ./tmp.txt
1-3,5,7 ./mpi-prog3

Following is the job-script that will start this MPMD job. The job-script allocates 4 nodes for 1 hour.
The command srun will start this MPMD application, where all 4 nodes will be used with 2 MPI tasks
per node (8 tasks in total). It can be submitted with sbatch:

#!/bin/bash
#SBATCH --nodes=4
#SBATCH --time=01:00:00

srun -N4 --ntasks-per-node=2 --multi-prog ./multi.conf

The “--multi-prog” option can be used of course for any kind of binary and its usage is not restricted
to MPI jobs only, but it is the only way to apply the MPMD model.

39



5 Interactive Jobs

5.1 Interactive Session

Interactive sessions can be allocated using the salloc command. The following command for example
will allocate 2 nodes for 30 minutes:

‘ salloc --nodes=2 --time=00:30:00

Once an allocation has been made, the salloc command will start a bash on the login node where the
submission was done. After a successful allocation the users can execute srun from that shell and they
can spawn interactively their applications. For example:

‘ srun --ntasks=4 --ntasks-per-node=2 --cpus-per-task=7 ./hybrid-prog ‘

The interactive session is terminated by exiting the shell. In order to obtain a shell on the first allocated
compute nodes (like command “msub -I“from Moab), the users can start a remote shell from within
the current session and connect it to a pseudo terminal (pty) using the srun command with a shell as an
argument. For example:

‘ srun --nodes=2 --pty /bin/bash ‘

After gaining access to the remote shell it is possible to run srun again from that remote shell in order
to execute interactively applications without any delays (no scheduling delays since the allocation has
already been granted). Below follows a transcript of an exemplary interactive session:

$ salloc --nodes=2 --time=00:01:00

salloc: Pending job allocation 4749

salloc: job 4749 queued and waiting for resources
salloc: job 4749 has been allocated resources
salloc: Granted job allocation 4749

$ hostname
33103

$ srun --ntasks 2 --ntasks-per-node=2 hostname
j3c061
j3c062

$ srun --nodes=1 --ntasks=1 --pty /bin/bash -i

$ hostname
j3c061

$ logout

$ hostname
33103

$ exit

exit

salloc: Relinquishing job allocation 4749
salloc: Job allocation 4749 has been revoked.

40



5.2 X Forwarding

The X11 forwarding support has been implemented with the “--forward-x” option of the srun
command. It is similar to the option “msub -x” from Moab. X11 forwarding is required for users who
want to use applications or tools which provide a GUI.

Here is an example that shows how to use this feature:

$ salloc --nodes=1 --time=00:01:00

$ srun --nodes=1 --ntasks=1 --forward-x --pty /bin/bash -i

$ ./GUI-App

Note: User accounts will be charged per allocation whether the compute nodes are used or not. Batch
submission is the preferred way to execute jobs.

41



6 From Moab/Torque to Slurm

On JUROPA we are using the combination of Moab and Torque for the Batch System. Moab works as
the scheduler and Torque is the resource manager. However, on JUROPATEST and later on the next
Juropa installation (Juropa Successor) we will use Slurm as scheduler and resource manager. In this
chapter we will compare and give some information about these two solutions and we will try to help

the users have an easier migration from Moab/Torque to Slurm.

6.1 Differences between the Systems

Here we will compare and declare some differences between Moab and Slurm:

Moab Slurm
Resource Not supported. Needs an external A flexible and capable resource manager
Management Resource Manager (like Torque). (in our case psslurm on the nodes).

Nodes It is possible to set nodes for batch and |No difference between batch and
interactive jobs only, or both. interactive jobs for Slurm.

Queues Partitions separate node into groups. Slurm defines only partitions. For Slurm
Queues are used for job submission on | the partitions are used as queues. Partitions
one partition only. can overlap and we can specify limits.

Priorities Complex priorities mechanism. Easy to configure, maintain and manage.
The desired batch model from JSC can be
easily applied.

Limits/Policy Good support for limits and policies Highly configurable: define limits and
configuration. policies per partition/account/user. Enforce
limits with QoS.
Job scripts Define job-script options with #MSUB. | Define job-script options with #SBATCH.

In the following table you can see some of the differences between Torque and Slurm:

Torque Slurm

Scheduling Integrates only a simple FIFO Slurm is a capable scheduler with support
scheduler, needs external scheduler. for backfilling algorithm.

Output files Stores output locally on compute Standard output and error files are created
nodes. Upon completion files are in the final destination immediately.
gathered at destination.

Working directory | Must explicitly change to current Jobs start to run in the directory where
working directory. they were submitted from.
Job Steps Not supported by Torque. Flexible allocations within jobs.
Task Distribution Possible to specify different number of |Possible to specify only the same number
tasks per set of nodes, e.g.: of tasks on all nodes with the allocation
“-1 nodes=1:ppn=2+nodes=4:ppn=8~ options.
Environment If users want to export the whole shell | The environment defined in user's shell

environment, they must use the option
(‘_V)).

42

during submission will be automatically
exported to the job.




6.2 User Commands Comparison

The following table presents commands with similar functionality from Slurm, Moab and Torque:

User Commands Slurm Moab Torque
Job Submission sbatch msub gsub
Job deletion scancel canceljob gdel
Job status squeue checkjob gstat
scontrol show job

Job hold scontrol hold mjobctl -h ghold
Job release scontrol release mojobctl -u grls
Queue list squeue showqg gstat -0
Cluster status sinfo -— gstat -a
Node list scontrol show nodes -— pbsnodes -1
GUI sview - xpbsmon
The table below compares the allocation options of msub and sbatch:

Allocation option Moab/Torque (msub) Slurm (sbatch)

Number of nodes

-1 nodes=<number>

--nodes=<number>
-N <number>

Number of total tasks

None

--ntasks=<number>
-n <number>

Number of tasks/cpus per node

-1 ppn=<number>

--ntasks-per-node=<num>
--tasks-per-node=<num>

Number of threads per task

-V tpt=<number>

--cpus-per-task=<num>
-c <num>

File for the standard output -0 <path> --output=<path>
-0 <path>
File for the standard error -e <path> --error=<path>

-e <path>

Walltime limit

-1 walltime=<time>

--time=<walltime>
-t <walltime>

Partition/Queue selection

-q <queue>

—--partition=<queue>
-p <queue>

Email for notifications

-M <email>

—--mail-user=<email>

Event types for notifications

-m <mode>

—--mail-type=<mode>

Job name -N <jobname> --job-name=<jobname>
-J <jobname>
Interactive jobs -I None (use salloc or srun)

Job dependencies

-W depend=<mode>:<jobID>

43

--dependency=<dependency_list>
-d <dependency_list>




7 Known issues

The psslurm plugin is currently under active development and it is projected that a first release version
will be available by the end of the year 2014. The Parastation consortium members monitor the
progress of the development using an extensive regression test suite. Based on this test-suite the
following list of known issues has been compiled. Users which observe problems or inconsistencies
between the batch system on JUROPATEST and other Slurm installations are kindly asked to report
their findings after checking with the list below whether the problem is already known.

The link here presents the updated list of all known issues for the current installed version of the
psslurm plugin. The URL of the web page is:

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPATEST/UserInfo/Batch.html

44


http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPATEST/UserInfo/Batch.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPATEST/UserInfo/Batch.html#doc1743904bodyText10

8 Examples

8.1 Template job-scripts

Template MPI job-script:

#!/bin/bash

#SBATCH -J <jobname>

#SBATCH -N <number>

#SBATCH -n <number> # can be omitted
#SBATCH --ntasks-per-node=<number>
#SBATCH -o <jobname>-%j.out

#SBATCH -e <jobname>-%j.err

#SBATCH --mail-type=<BEGIN, END, FAIL, or ALL>
#SBATCH --mail-user=<email>

#SBATCH --partition=<batch | large>
#SBATCH --time=<time>

# run MPI application below (with srun)

Template Hybrid job-script:

#!/bin/bash

#SBATCH -J <jobname>

#SBATCH -N <number>

#SBATCH -n <number> # can be omitted
#SBATCH --ntasks-per-node=<number>
#SBATCH --cpus-per-task=<number>
#SBATCH -o <jobname>-%j.out

#SBATCH -e <jobname>-%j.err

#SBATCH --mail-type=<BEGIN, END, FAIL, or ALL>
#SBATCH --mail-user=<email>

#SBATCH --partition=<batch | large>
#SBATCH --time=<time>

export OMP_NUM_THREADS=${SLURM CPUS_PER_TASK}

# run Hybrid application below (with srun)

8.2 Modules

Check loaded modules:

$ module list
No modules loaded

Check available Toolchains:

$ module avail

—————————————————————————— /usr/local/software/juropatest/TC/FullToolchains —-——-———————————————
gpsolf/2014.11 intel/2014.11 intel-para/2014.11

—————————————————————————— /usr/local/software/juropatest/TC/Compilers+MPl —————— - e oo
gpsmpi/2014.11 iimpi/7.1.2 ipsmpi/2014.11-mt ipsmpi/2014.11 (D)

———————————————————————————— /usr/local/software/juropatest/TC/Compilers ————————— oo
GCC/4.9.1 Java/1.7.0_71 icc/2015.0.090 iccifort/2015.0.090 ifort/2015.0.090

—————————————————————— /usr/local/software/juropatest/Stagel/modules/t00ls/COre ————————memmmmmm—————
AllineaPerformanceReports/4.2-PR-39422 Inspector/2015 (D) binutils/2.24

45



EasyBuild/1.15.2
Inspector/2015 updatel

software devel (S)

Where:

/usr/local/software/juropatest/Devel

VTune/2015_updatel
VTune/2015 (D)

(S): Module is Sticky, requires --force to unload or purge

(D): Default Module

Use "module spider" to find all possible modules.

Use "module keyword keyl key2

Load a Toolchain and check loaded modules:

$ module load intel-para/2014.11
$ module list

Currently Loaded Modules:
1) binutils/2.24

2) icc/2015.0.090
3) ifort/2015.0.090

Check available packages:

$ module avail

———————— /usr/local/software/juropatest/Stagel/modules/all/MPI/intel/2015.0.090/psmpi/5.1.0-1

ABINIT/7.8.2
ASE/3.6.0.2515-Python-2.7.3
ASE/3.8.0.3420-Python-2.7.3
Autoconf/2.69
Automake/1.13.4
BioPerl/1.6.1-Perl-5.20.0
Bison/2.6.5

Bison/2.7

Bison/3.0.2
Boost/1.49.0-Python-2.7.3
Boost/1.53.0

Boost/1.56.0

CMake/2.8.4

CMake/3.0.0

Cube/4.2.3

Doxygen/1.8.2
Doxygen/1.8.7
ELPA/2014.06-generic-simple
FFTW/3.3.1

FFTW/3.3.4
FIAT/1.0.0-Python-2.7.3
GDB/7.8

GLib/2.34.3
GPAW/0.10.0.11364-Python-2.7.3
GSL/1.15

GSL/1.16

HDF5/1.8.10-gpfs
HDF5/1.8.10

HDF5/1.8.12

HDF5/1.8.13

HPL/2.1

Harminv/1.3.1
Hypre/2.8.0b
IOR/2.10.3-mpiio
JasPer/1.900.1

LWM2/1.0

Libint/1.1.4
LinkTest/1.1p5

M4/1.4.16

M4/1.4.17

METIS/5.0.2

4) popt/1.14
5) pscom/5.0.44-1
6) psmpi/5.1.0-1

(D)

(D)

(D)
(D)

(D)

(D)

(D)

(D)

(D)

7) iccifort/2015.0.090
8) imk1/11.2.0.090
9) intel-para/2014.11

Qt/4.8.4

ot/4.8.5
QuantumESPRESSO/5.1
SCOTCH/5.1.12b_esmumps
SCOTCH/6.0.0_esmumps
SIONlib/1.5.2
Scalasca/2.1
ScientificPython/2.8-Python-2.7.3
Score-P/1.2.3
SuiteSparse/3.7.0-withparmetis
Szip/2.1

Tcl/8.5.16
UDUNITS/2.1.24
UltraScan3/3.3.1868
VampirTrace/5.14.4
XML-LibXML/2.0018-Perl-5.20.0
arpack-ng/3.1.3
bzip2/1.0.4
bzip2/1.0.5
bzip2/1.0.6
CURL/7.37.1
flex/2.5.37
flex/2.5.39
freetype/2.5.2
gettext/0.18.2
imk1/11.2.0.090
inputproto/2.3
kbproto/1.0.6
1ibICE/1.0.8
libsM/1.2.1
1ibX11/1.6.1
libXaw/1.0.12
libXmu/1.1.2
libXpm/3.5.11
1ibXt/1.1.4
1ibffi/3.0.13
libjpeg-turbo/1.3.1
libpng/1.6.12
libreadline/6.2
libreadline/6.3
libtool/2.4.2

46

(D)

(D)

(D)

(D)

(D)

(D)

(D)

." to search for all possible modules matching any of the "keys".



MUMPS/4.10.0-parmetis libunistring/0.9.3

MethPipe/3.0.1 libxc/2.0.1

NASM/2.07 libxc/2.0.2 (D)
NASM/2.11.05 (D) libxcb/1.8-Python-2.7.3

OPARI2/1.1.2 libxml2/2.9.2-Python-3.4.1

OTF/1.12.5 (D) 1libxml2/2.9.2 (D)
OTF2/1.2.1 ncurses/5.9

OTF2/1.4 (D) ncview/2.1.1

OpenFOAM/2.3.0 ncview/2.1.2

OpenSSL/1.0.11 ncview/2.1.3 (D)
PAPI/5.2.0 netCDF/4.2.1.1

PAPI/5.3.2 (D) netCDF-Fortran/4.2

PDT/3.19 (D) pkg-config/0.27.1
PETSc/3.3-p2-Python-2.7.3 tcsh/6.18.01

ParMETIS/3.2.0 xcb-proto/1.7-Python-2.7.3
ParMETIS/4.0.2 (D) xextproto/7.2.1

Perl/5.20.0 xproto/7.0.23

Python/2.7.3 xtrans/1.2

Python/2.7.5 z1lib/1.2.7

Python/2.7.8 z1lib/1.2.8 (D)
Python/3.4.1 (D)

———————————— /usr/local/software/juropatest/Stagel/modules/all/Compiler/intel/2015.0.090 -—-———————————
OTF/1.12.5 PDT/3.19 impi/5.0.1.035 popt/1.14 psmpi/5.1.0-1-mt
PAPI/5.3.2 gettext/0.18.2 1ibffi/3.0.13 pscom/5.0.44-1 psmpi/5.1.0-1 (D)

—————————————————————————— /usr/local/software/juropatest/TC/FullToolchains -———————————mmmmmm—
gpsolf/2014.11 intel/2014.11 intel-para/2014.11

—————————————————————————— /usr/local/software/juropatest/TC/Compilers+MPI —————— oo
gpsmpi/2014.11 iimpi/7.1.2 ipsmpi/2014.11-mt ipsmpi/2014.11 (D)

———————————————————————————— /usr/local/software/juropatest/TC/Compilers —————————m oo
GCC/4.9.1 Java/1.7.0_71 icc/2015.0.090 iccifort/2015.0.090 ifort/2015.0.090

—————————————————————— /usr/local/software/juropatest/Stagel/modules/tools/Core ——————————————————————

AllineaPerformanceReports/4.2-PR-39422 Inspector/2015 (D) binutils/2.24
EasyBuild/1.15.2 VTune/2015_ updatel
Inspector/2015_ updatel VTune/2015 (D)

———————————————————————————————— /usr/local/software/juropatest/Devel ——————— e
software devel (S)

Where:
(S): Module is Sticky, requires --force to unload or purge
(D): Default Module

Use "module spider" to find all possible modules.
Use "module keyword keyl key2 ..." to search for all possible modules matching any of the "keys".

Load a module:

$ module load OpenFOAM/2.3.0
$ module list

Currently Loaded Modules:

1) binutils/2.24 5) pscom/5.0.44-1 9) intel-para/2014.11 13) OpenFOAM/2.3.0
2) icc/2015.0.090 6) psmpi/5.1.0-1 10) libreadline/6.2

3) ifort/2015.0.090 7) iccifort/2015.0.090 11) SCOTCH/6.0.0_ esmumps

4) popt/1.14 8) imkl1/11.2.0.090 12) ncurses/5.9

Purge all modules:
$ module purge

$ module list
No modules loaded

47



Check a package:
$ module spider Boost

Description:
Boost provides free peer-reviewed portable C++ source libraries. - Homepage:
http://www.boost.org/

Versions:
Boost/1.49.0-Python-2.7.3
Boost/1.53.0
Boost/1.56.0

To find detailed information about Boost please enter the full name.
For example:

$ module spider Boost/1.56.0

Check a specific version of a package:

$ module spider Boost/1.56.0

Description:
Boost provides free peer-reviewed portable C++ source libraries. - Homepage:
http://www.boost.org/

This module can only be loaded through the following modules:

GCC/4.9.1, psmpi/5.1.0-1

Stages/.software_devel Stagel, GCC/4.9.1, psmpi/5.1.0-1
Stages/.software_devel Stagel, icc/2015.0.090, impi/5.0.1.035
Stages/.software_devel Stagel, icc/2015.0.090, psmpi/5.1.0-1
Stages/.software_devel Stagel, ifort/2015.0.090, impi/5.0.1.035
Stages/.software_devel Stagel, ifort/2015.0.090, psmpi/5.1.0-1
icc/2015.0.090, impi/5.0.1.035

icc/2015.0.090, psmpi/5.1.0-1

ifort/2015.0.090, impi/5.0.1.035

ifort/2015.0.090, psmpi/5.1.0-1

software_devel, GCC/4.9.1, psmpi/5.1.0-1

software devel, icc/2015.0.090, impi/5.0.1.035

software_devel, icc/2015.0.090, psmpi/5.1.0-1

software_devel, ifort/2015.0.090, impi/5.0.1.035
software_devel, ifort/2015.0.090, psmpi/5.1.0-1

8.3 Compilation

MPI program example (file mpi.c):

#include <stdio.h>
#include <mpi.h>

int main ( int argc, char** argv )

{

int rank, size;
char processor_name [MPI_MAX_ PROCESSOR_NAME];
int name_len;

48



// Initialize the MPI environment.
MPI Init( &argc, &argv );

// Get the number of processes.
MPI Comm size ( MPI_COMM WORLD, &size);

// Get the rank of the process.
MPI Comm rank ( MPI_COMM WORLD, &rank );

// Get the name of the processor.
MPI_Get_processor_ name ( processor_name, &name_len );

// Print out.
printf( "Hello world from processor %s, rank %d out of %d processors.\n", processor_ name,

rank, size);

// Finalize the MPI environment.
MPI Finalize();

return 10;

Hybrib program example (file hybrid.c):
#include <stdio.h>

#include <mpi.h>

#include "mpi.h"

#define _NUM_THREADS 16

int main ( int argc, char** argv )

{
int rank, size, count, total;
char processor_name [MPI_MAX_ PROCESSOR_NAME];
int name_len;

// omp_set_num_threads(_NUM_THREADS) ;

// Initialize the MPI environment.
MPI_Init( &argc, &argv );

// Get the number of processes.
MPI Comm size ( MPI_COMM WORLD, &size);

// Get the rank of the process.
MPI Comm rank ( MPI_COMM WORLD, &rank );

// Get the name of the processor.
MPI_Get_processor_name ( processor_name, &name len );

count = 0;
#pragma omp parallel reduction(+:count)
{
count = count + omp_get_ num threads();

total = omp_get num threads();

}

// Print out.
printf( "Hello world from processor %s, rank %d out of %d processors. OpenMP threads: %d\n",
processor_name, rank, size, total);

// Finalize the MPI environment.
MPI Finalize();

return 0;

49



Compile the MPI program:

$ mpicc -o mpi-prog mpi.c

Compile the Hybrid program:

$ mpicc -openmp -o hybrid-prog hybrid.c

8.4 Job submission

Job-script for an MPI job (file mpiscript.sh):

#!/bin/bash

#SBATCH -J mpitest

#SBATCH -N 4

#SBATCH --ntasks-per-node=28

#SBATCH -o mpitest-%j.out

#SBATCH -e mpitest-%j.err

#SBATCH --mail-type=END

#SBATCH --mail-user=c.paschoulas@fz-juelich.de
#SBATCH --partition=large

#SBATCH --time=00:30:00

# run MPI application below (with srun)
srun -N 4 --ntasks-per-node=28 ./mpi-prog

Submit the MPI job-script:

$ sbatch ./mpiscript.sh

Job-script for a Hybrid job (file hybridtest.sh):

#!/bin/bash

#SBATCH -J hybridtest
#SBATCH -N 4

#SBATCH --ntasks-per-node=28
#SBATCH --cpus-per-task=2
#SBATCH -o hybridtest-%j.out
#SBATCH -e hybridtest-%j.err
#SBATCH --mail-type=END
#SBATCH --mail-user=c.paschoulas@fz-juelich.de
#SBATCH --partition=batch
#SBATCH --time=00:30:00

export OMP_NUM_THREADS=${SLURM CPUS_PER_TASK}

# run Hybrid application below (with srun)

srun -N 4 --ntasks-per-node=28 -c ${SLURM_ CPUS_PER TASK}

Submit the Hybrid job-script

$ sbatch ./hybridscript.sh

50

./hybrid-prog



8.5 Job Control

Hold a job:

$ scontrol hold 14900

$ squeue

JOBID PARTITION

14896 batch
14898 batch
14899 batch
14901 batch
14900 batch
14894 batch
14895 batch

Release a job:

$ scontrol release 14900

$ squeue

JOBID PARTITION
14900 batch
14800 large

Cancel a job:

$ scancel 14905

NAME
hybridte
hybridte
hybridte
hybridte
hybridte
hybridte
hybridte

NAME
hybridte
job

8.6 Query Commands

Check the Queue

$ squeue
JOBID PARTITION
14905 batch
14902 batch
14903 batch
14904 batch
14800 large

Check the Queue for one user:

$ squeue -u paschoul

JOBID PARTITION

14910 batch
14911 batch
14912 batch
14913 batch
14908 batch
14909 batch

Check partitions and nodes:

$ sinfo

PARTITION AVAIL TIMELIMIT
batch* up 2:00:00
batch* up 2:00:00
large down 1:00:00
large down 1:00:00

NAME
hybridte
hybridte
hybridte
hybridte

job

NAME
mpitest
mpitest

hybridte
hybridte
mpitest
mpitest

NODES

USER
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul

USER
paschoul
esmil702

USER
paschoul
paschoul
paschoul
paschoul
esmil702

USER
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul

ST
CG
PD
PD
PD
PD

ST

PD

ST
CG
CG
CG
CG
PD

ST
PD
PD

Lol e ]

STATE NODELIST

coo0OocoocooH
o
o

TIME
0:01
0:00

T

0:05
0:07
0:08
0:08
0:00

IME
:00
:00
:02
:02
:02
:02

ocooocooooH

NODES

Lo T

NODES

32

NODES

DR DD D

5 drain j3c[090,115-116,119,124]

65

5 drain j3c[090,115-116,119,124]

65

51

NODELIST (REASON)
j3c[065-068]
(QOSResourceLimit)
(QOSResourceLimit)
(QOSResourceLimit)
(JobHeldUser)
j3c[120-123]
j3c[061-064]

NODELIST (REASON)
j3c[120-123]
(PartitionDown)

NODELIST (REASON)
j3c[099-102]
j3c[120-123]
j3c[091-094]
j3c[095-098]
(PartitionDown)

NODELIST (REASON)
(QOSResourceLimit)
(QOSResourceLimit)
j3c[120-123]
j3c[091-094]
j3c[095-098]
j3c[099-102]

idle j3c[061-089,091-114,117-118,120-123,125-130]

idle j3c[061-089,091-114,117-118,120-123,125-130]



Check off-line nodes:

$ sinfo -R

REASON USER TIMESTAMP NODELIST

#523 - ipc objects 1 root 2014-11-17T09:47:55 j3clleé

#494 - MCE-Errors: p root 2014-11-14T13:49:10 j3c090

#495 - MCE-Errors: p root 2014-11-14T13:49:49 j3cll5

#496 - MCE-Errors: V root 2014-11-14T13:48:34 j3cll9

#497 - MCE-Errors: p root 2014-11-14T13:53:22 j3cl24

#494 - MCE-Errors: p root 2014-11-14T13:49:10 j3c090

#495 - MCE-Errors: p root 2014-11-14T13:49:49 j3cll5

#494 - MCE-Errors: p root 2014-11-14T13:49:10 j3c090

Check reservations:

$ sinfo -T

RESV_NAME STATE START_TIME END_TIME DURATION NODELIST
test ACTIVE 2014-11-14T15:24:47 2015-10-01T00:00:00 320-07:35:13 3j3cl28

Check one partition:

$ scontrol show partition batch

PartitionName=batch
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=j3103,3j3104 Default=YES
DefaultTime=00:30:00 DisableRootJobs=YES GraceTime=0 Hidden=NO
MaxNodes=4 MaxTime=02:00:00 MinNodes=1 LLN=NO MaxCPUsPerNode=56
Nodes=3j3c[061-130]
Priority=1 RootOnly=NO ReqResv=NO Shared=NO PreemptMode=0FF
State=UP TotalCPUs=3920 TotalNodes=70 SelectTypeParameters=N/A
DefMemPerNode=125952 MaxMemPerNode=125952

Check one node:

$ scontrol show node j3cl130

NodeName=3j3c130 Arch=x86_ 64 CoresPerSocket=14
CPUAlloc=0 CPUErr=0 CPUTot=56 CPULoad=0.01 Features=normal
Gres=(null)
NodeAddr=j3c130 NodeHostName=j3cl1l30 Version=5.0.12
0S=Linux RealMemory=128952 AllocMem=0 Sockets=2 Boards=1
State=IDLE ThreadsPerCore=2 TmpDisk=0 Weight=1
BootTime=2014-10-15T14:22:58 SlurmdStartTime=2014-11-17T09:04:37
CurrentWatts=0 LowestJoules=0 ConsumedJoules=0
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

Check the shares:
$ sshare

Account User Raw Shares Norm Shares Raw Usage Effectv Usage
zam paschoul 3000 0.000037 317994 0.002611

Check the priorities:

$ sprio
JOBID PRIORITY AGE FAIRSHARE JOBSIZE Q0S
15979 2882 2727 0 155 0
16004 2881 2726 0 155 0
16005 2933 2726 0 207 0
16008 2881 2726 0 155 0
16013 2881 2726 0 155 0
16017 2933 2726 0 207 0

52

FairShare

0.000000



8.7 Accounting Commands

Check user association:

$ sacctmgr show assoc where user=paschoul

Cluster Account User Partition Share GrpJobs GrpNodes GrpCPUs GrpMem GrpSubmit
GrpWall GrpCPUMins MaxJobs MaxNodes MaxCPUs MaxSubmit MaxWall MaxCPUMins Q0Ss
Def QOS GrpCPURunMins

juropatest zam paschoul 3000
normal normal
Check all QoSs:
$ sacctmgr show gos
Name Priority GraceTime Preempt PreemptMode Flags
UsageThres UsageFactor GrpCPUs GrpCPUMins GrpCPURunMins GrpJobs GrpMem GrpNodes GrpSubmit
GrpWall MaxCPUs MaxCPUMins MaxNodes MaxWall MaxCPUsPU MaxJobsPU MaxNodesPU MaxSubmitPU
normal 100000 00:00:00 cluster DenyOnLimit
1.000000
4 70 12
lowcont 50000 00:00:00 cluster DenyOnLimit
1.000000
4 70 12
nocont 0 00:00:00 cluster DenyOnLimit
1.000000
4 70 12
suspended 0 00:00:00 cluster DenyOnLimit
1.000000
0 00:00:00 0 0 0
nolimits 100000 00:00:00 cluster DenyOnLimit
1.000000
Check one QoS:
$ sacctmgr show gos where name=normal
Name Priority GraceTime Preempt PreemptMode Flags
UsageThres UsageFactor GrpCPUs GrpCPUMins GrpCPURunMins GrpJobs GrpMem GrpNodes GrpSubmit
GrpWall MaxCPUs MaxCPUMins MaxNodes MaxWall MaxCPUsPU MaxJobsPU MaxNodesPU MaxSubmitPU
normal 100000 00:00:00 cluster DenyOnLimit
1.000000
4 70 12
Check old jobs history:
$ sacct -X -u paschoul
JobID JobName Partition Account AllocCPUS State ExitCode
14797 TestJob batch zam 56 COMPLETED 0:0
14798 sleepscri+ batch zam 56 COMPLETED 0:0
14799 sleepscri+ batch zam 56 COMPLETED 0:0
14801 TestJob batch zam 224 FAILED 127:0
14802 TestJob batch zam 224 FAILED 127:0
14803 TestJob batch zam 224 FAILED 127:0
14804 TestJob batch zam 224 FAILED 127:0
14805 TestJob batch zam 224 FAILED 127:0

53



14806
14807
14814
14816
14817
14818
14820
14821
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897

sleepscri+
sleepscri+
sleepscri+

TestJob

TestJob

TestJob
sleepscri+
sleepscri+
hybridtest
hybridtest
hybridtest

mpitest

mpitest

mpitest

mpitest
hybridtest
hybridtest
hybridtest
hybridtest
hybridtest
hybridtest
hybridtest
hybridtest
hybridtest
hybridtest

batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch
batch

zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam
zam

56
56
56
224
224
224
56
56
224
224
224
224
224 C
224
224
224
224
224
224
224
224
224
224
224
224

Check old jobs with different format and specified time frame:

$ sacct =X

-u paschoul

2014-11-17T18:00:00

JobID

User

NNodes

NodeList

State

COMPLETED
COMPLETED
COMPLETED

FAILED

FAILED

FAILED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED

FAILED
ANCELLED+

FAILED

FAILED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED

ExitCode

paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul
paschoul

QU O N O NSO NV U SO O SO NV O SO OO SO SOV SO N GO P SO QY N O N SOV O N S

§3c117
§3c[120-123]
§3c[091-094]
j3c[095-098]
§3c[091-094]
33c[061-064]

§3c129

§3c130

§3c117
§3c[093-096]
j3c[093-096]
§3c[093-096]

j3c127

§3c129

§3¢130
§3c[093-096]
33c[120-123]
§3c[120-123]
33c[120-123]
§3c[120-123]
33c[120-123]
§3c[061-064]
§3c[065-068]
§3c[077-080]
§3c[120-123]
33c[061-064]
§3c[065-068]
33¢[077-080]
§3c[120-123]
j3c[061-064]
§3c[120-123]
§3c[061-064]
§3c[065-068]
§3c[077-080]
§3c[120-123]

COMPLETED
COMPLETED
COMPLETED
FAILED
FAILED
FAILED
FAILED
FAILED
COMPLETED
COMPLETED
COMPLETED
FAILED
FAILED
FAILED
COMPLETED
COMPLETED
COMPLETED
FAILED
FAILED
COMPLETED
COMPLETED
COMPLETED
FAILED
CANCELLED+
FAILED
FAILED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED

54

12
12
12

= =
CO0OO0OO0O0OO0O0OO0O0O0O0OO0O0O0O0O0OO0O0ONO0OOONNNOO

@6 s ee s se s se s se s se s se e ss e ss e ss e ss e ss e ss e ss e e
O OO0 OO0 O OO0 O0OO0OO0ODO0ODO0ODO0ODO0ODO0ODO0OODO0OOO0ODO0ODO0ODO0ODOO0OOO0OOoOOo

o o

127:
127:

o

== =

O OO0 OO0 OO O0ODO0OO0ODO0OOOOOOOOOoOOoO

--format="jobid,user,nnodes,nodelist,state,exit"

o

O OO0 OO0 OO OO O0OO0ODO0ODO0ODO0OODOODOODOO OO OO

-S 2014-11-15T00:00:00

-E



	1 Cluster Information
	1.1 Introduction
	1.2 Cluster Nodes
	1.3 Data Management - Filesystems
	1.4 Access to the Cluster
	1.5 Shell Environment
	1.6 Modules
	Modules and Toolchains hierarchy
	Using the module command

	1.7 Compilers
	Compilation Examples

	1.8 Batch model & Accounting

	2 Batch System – Slurm
	2.1 Slurm Overview
	2.2 Slurm Configuration
	2.3 Partitions
	2.4 Slurm's Accounting Database
	2.5 Job Limits – QoS
	2.6 Priorities
	2.7 Job Environment
	2.8 SMT

	3 Slurm User Commands
	3.1 List of Commands
	3.2 Allocation Commands
	sbatch, salloc & srun

	3.3 Spawning commands
	srun

	3.4 Query Commands
	squeue
	sview
	sinfo
	smap
	sprio
	scontrol
	sshare

	3.5 Job Control Commands
	scancel
	scontrol

	3.6 Job Utility Commands
	sattach
	sstat

	3.7 Job Accounting Commands
	sacct
	sacctmgr

	3.8 Custom commands from JSC
	llview
	q_cpuquota


	4 Batch Jobs
	4.1 Job script examples
	Serial job
	Parallel job
	OpenMP job
	MPI job
	MPI jobs with SMT
	Hybrid Jobs
	Hybrid jobs with SMT
	Intel MPI jobs

	4.2 Job steps
	4.3 Dependency Chains
	4.4 Job Arrays
	4.5 MPMD

	5 Interactive Jobs
	5.1 Interactive Session
	5.2 X Forwarding

	6 From Moab/Torque to Slurm
	6.1 Differences between the Systems
	6.2 User Commands Comparison

	7 Known issues
	8 Examples
	8.1 Template job-scripts
	8.2 Modules
	8.3 Compilation
	8.4 Job submission
	8.5 Job Control
	8.6 Query Commands
	8.7 Accounting Commands


