
M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

OpenCL Basics

Wolfram Schenck Faculty of Eng. and Math., Bielefeld University of Applied Sciences

Vectorisation and Portable Programming using OpenCL, 21.-22.11.2017

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Overview of the Lecture

1 OpenCL Overview

2 OpenCL Host API

3 OpenCL for Compute Kernels

4 Exercise 1

5 Event Handling

6 Exercise 2

7 Appendix: Notes on Nomenclature

2

OpenCL Overview

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

OpenCL

4

OpenCL (Open Computing Language)
Programming framework for CPUs, GPUs, DSPs,
FPGAs with programming language „OpenCL C“

• Started by Apple, subsequent development with AMD, IBM,
Intel, and NVIDIA, meanwhile managed by Khronos Group
: Open and royalty–free standard

• Goal: Programming framework for portable, parallel
programming of devices in heterogeneous environments
(CPUs, GPUs, and other processors; from smartphone to
supercomputer)

• Dec. 2008: OpenCL 1.0
• June 2010: OpenCL 1.1
• Nov. 2011: OpenCL 1.2
• Nov. 2013: OpenCL 2.0
• Nov. 2015: OpenCL 2.1

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

CUDA C vs. OpenCL

5

CUDA C
PRO
3 Mature and efficient
3 Many tools and extra

libraries

CONTRA
7 Only usable for GPUs by

NVIDIA

OpenCL
PRO
3 For various processor

types (independent from
manufacturer)

3 Supports heterogeneous
platforms

CONTRA
7 Not as mature and as

widely used as CUDA C
7 Partly long–winded

programming necessary

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Additional Information

OpenCL Programming Guide
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson,
James Fung, Dan Ginsburg
Addison-Wesley, 2011, ISBN: 978-0321749642

• Khronos website:
http://www.khronos.org/opencl
(News, specifications, MAN pages)
• AMD OpenCL Zone:

http://developer.amd.com/tools-and-sdks/opencl-zone/
• Intel Developer Zone on OpenCL:

https://software.intel.com/de-de/forums/opencl
• EBook on OpenCL:

http://www.fixstars.com/en/opencl/book/. . .
. . . /OpenCLProgrammingBook/contents/

6

http://www.khronos.org/opencl
http://developer.amd.com/tools-and-sdks/opencl-zone/
https://software.intel.com/de-de/forums/opencl
http://www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/contents/
http://www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/contents/

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Tutorials

• OpenCL — Introduction for HPC Programmers:
https://software.intel.com/en-us/articles/. . .
. . . /tutorial-opencl-introduction-for-hpc-programmers
(from V. Kartoshkin and T. Mattson)
• OpenCL–Tutorials on PRACE website:

http://www.training.prace-ri.eu/. . .
. . . /training_material/?tx_pracetmo_pi1[tag]=opencl
I Heterogeneous Programming. OpenCL and High Level

Programming Tools
I PATC Course: Programming paradigms for new hybrid

architectures
I CUDA and OpenCL

7

https://software.intel.com/en-us/articles/tutorial-opencl-introduction-for-hpc-programmers
https://software.intel.com/en-us/articles/tutorial-opencl-introduction-for-hpc-programmers
http://www.training.prace-ri.eu/training_material/?tx_pracetmo_pi1[tag]=opencl
http://www.training.prace-ri.eu/training_material/?tx_pracetmo_pi1[tag]=opencl

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Architecture of OpenCL

At the conceptional level:
• Platform model
• Execution model
• Memory model
• Programming model

At the programming level:
• OpenCL Platform API
• OpenCL Runtime API
• OpenCL C (programming language)

8

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Platform Model

9Fig.: Wikipedia

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Platform Model (cont.)

10

• Basic structure: Host which is
connected to several devices

• Host: Computational unit on which
the host program runs
I Usually: CPU of the computer system

• Device: Computational unit which is
accessed via OpenCL library
I Examples: CPUs, GPUs, DSPs,

FPGAs
• Further subdivision:

I Device −→ „Compute Units“
I Compute Unit
−→ „Processing Elements“

Fig.: Wikipedia

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Platform Model (CPU)

CPU
• Device: All CPUs on the mainboard of the computer

system
• Compute unit (CU): One CU per core (or per hardware

thread)
• Processing element (PE): 1 PE per CU, or if PEs are

mapped to SIMD lanes, n PEs per CU, where n matches
the SIMD width

11

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Fermi: GF100/GF110
16 Streaming Multi–Processors (SM)

12

Die shot

Fig.: NVIDIA

GF100/GF110: Streaming Multi–Processor (SM)

SM properties

• 32 CUDA cores
(Streaming
processors/SP)

• 16 Load/store units
• 4 Special function units

(SFU)
• 2 Warp scheduler

: 512 ALUs/FPUs available

Fig.: NVIDIA

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Platform Model (GPU and MIC)

GPU

• Device: Each GPU in the system acts as single device
• Compute unit (CU): One CU per multi–processor (NVIDIA)
• Processing element (PE): 1 PE per CUDA core (NVIDIA) or

“SIMD lane” (AMD)

MIC

• Device: Each MIC in the system acts as single device
• Compute unit (CU): One CU per hardware thread

(= 4× [# of cores− 1])
• Processing element (PE): 1 PE per CU, or if PEs are mapped

to SIMD lanes, n PEs per CU, where n matches the SIMD width

14

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Platform Model (cont.)

15

Platform
• Every OpenCL implementation (with

underlying OpenCL library) defines a
so–called „platform“.

• Each specific platform enables the
host to control the devices belonging
to it.

• Platforms of various manufacturers
can coexist on one host and may be
used from within a single application
(ICD: „installable client driver
model“).

Fig.: Wikipedia

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Platform Model
Practical Hints

Get OpenCL running under Linux

• Header files: Get from Khronos website (e.g.)
I Central file: CL/cl.h

• OpenCL library stub with ICD loader:
Get from one of the vendors of your OpenCL devices
I Central file: libOpenCL.so

• ICD definition files and platform–specific OpenCL libraries:
Get from all the vendors of your OpenCL devices
I ICD files usually located in: /etc/OpenCL/vendors/

• Mechanism at runtime:
I libOpenCL.so is dynamically linked to your application at runtime
I ICD loader uses dlopen(..) to open all required platform–specific

OpenCL libraries
I Calls to OpenCL library functions are routed to the correct

implementation

16

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Execution Model
Example: 2D–Arrangement of Work–Items

17

Sx ,Sy : Number of work–
items within a single
work–group

sx , sy : Indices of a work–
item within a
work–group

wx ,wy : Indices of a work–
group within the
NDRange

Fx ,Fy : Global index offset

Fig.: „The OpenCL Specification 1.1“, Fig. 3.2

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Excursus: Thread Management on GPUs

Kernel
• Function for execution on the device (here: GPU)
• Typical scenario: Many kernel instantiations running

simultaneously in parallel threads

Challenge
Management of many thousands of threads

Solution
„Coarse Grained Parallelism“ : „Fine Grained Parallelism“

18

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Thread Management (cont.)

Hierarchical thread organization

Upper level : Grid (equiv. to NDRange)⇒ Device
Medium level : Block (equiv. to work–group)

⇒ Streaming Multi–Processor (SM)
Lower level : Thread (equiv. to work–item)

⇒ Streaming Processor (SP)

19Fig.: NVIDIA

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Thread–Management (cont.)

Block Scheduler : „Coarse Grained Parallelism“ (NVIDIA)

• Distributes groups of work–items (“work–groups”) to SMs
• Takes free capacity into account (registers, local memory,

number of work–items)
• Goal: Load–balancing (“round–robin” procedure)

Warp/Wavefront : „Fine Grained Parallelism“

• Warp (NVIDIA): Group of 32 work–items which are scheduled
and executed together (within a work–group/SM)

• Wavefront (AMD): Group of 64 work–items which are
scheduled and executed together (within a work–group/CU)

• At this level: SIMD

20

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Latency Hiding

21

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Thread–Management (cont.)
(numbers for GF110)

• Up to 8 work–groups actively scheduled per SM
I Up to 1024 work–items per work–group

(does not result in 8 × 1024 : see next item)
• Up to 1536 work–items per SM (organized as 48 Warps)
: With 16 SMs:

Max. 16 × 1536 = 24576 simultaneously scheduled
work–items

I Comparison with CPU:
Several 100 threads simultaneously active

• In the grid: Up to 655353 work–items
: Up to 655353 × 1024 ≈ 2.88 · 1017 work–items per kernel call

22

NVIDIA Tesla Graphics Cards in Comparison

GT200
(C1060)

GF110
(M2090)

GK110
(K20X)

GK110B
(K40)

of multi–procs. (SM/SMX) 30 16 14 15

of cuda cores (per SM/SMX) 8 32 192 192

of cuda cores (overall) 240 512 2688 2880

Clock (core/shader) [MHz] 602/1296 650/1300 735/735 745/875

GFLOPs (SP) 933 1331 3951 4290

GFLOPs (DP) 78 665 1317 1430

Memory bandwidth [GB/sec] 102 177 250 288

of registers (per SM/SMX) 16384 32768 65536 65536

Shared mem. (per SM/X) [KB] 32 16–48 16–48 16–48

L1–cache (per SM/SMX) [KB] 0 16–48 16–48 16–48

L2–cache [KB] 0 768 1536 1536

Max threads per SM/SMX 1024 1536 2048 2048

Max blocks per SM/SMX 8 8 16 16

Max threads in flight 30720 24576 30720 30720

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Execution Model
Components

• Basic distinction:
I Host: Executes host program
I Device: Executes device kernel

• Hierarchy on device:
I NDRange −→Work–Group −→Work–Item

• Host defines Context:
I Devices (only from single platform!)
I Kernels (OpenCL–functions for execution on the device)
I Program objects (kernel source code and kernels in compiled form)
I Memory objects

• Host manages Queues:
I Kernel execution
I Operations on memory objects
I Synchronization

B Variants: In–order– und out–of–order execution

24

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Memory Model

25Fig.: Wikipedia

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Memory Model
Allocation and Access

Weak Consistency Model

• Consistency within work–group for global and local memory:
Only at synchronization points within work–group

• Consistency between work–groups for global memory: Only
at synchronization points at host level

26Table: „The OpenCL Specification 1.1“, Tab. 3.1

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Programming Model
Supported Approaches

Data Parallel
• Possible mappings between data and NDRange:

I Strict 1:1 mapping: For each data element one work–item
I More flexible mappings also possible

• Favored device class: GPUs

Task Parallel

• Execution of only a single kernel instance
(equivalent to an NDRange with only one work–item)

• Parallelism via:
I SIMD units on the device (using OpenCL vector data types)
I Multiple tasks in queue which are executed asynchronously

• Favored device class: Multi–core CPUs, multi–CPU systems

27

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

The „Big Picture“

28Abb.: Khronos Group

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

OpenCL
Basic Programming Steps in Host Code

1 Determine components of the heterogeneous system
2 Query specific properties of each component to adapt

program execution dynamically during runtime
3 Compile and configure the OpenCL kernels
: Programming language for kernel code: OpenCL C

4 Create and initialize memory objects (buffers, images)
5 Execution of the kernels in the correct order with the best

suited device for each kernel
6 Collection of results

: Functions for all these steps:
OpenCL Platform and Runtime API

29

OpenCL Host API

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Basic Programming Steps. . .
. . . in Practice

• Query platforms : selection
• Query devices of the platform : selection
• Create context for the devices
• Create queue (for context and device)
• Create program object (for context)← from C string

I Compile program
I Create kernel (contained in program)

• Create memory objects (within context)
• Kernel execution:

1 Set kernel arguments
2 Put kernel into queue : Execution

• Copy memory objects with results from device to host
(invoke via queue)

• Clean up. . .

31

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Query Platforms

cl_int clGetPlatformIDs(cl_uint num_entries ,

cl_platform_id *platforms ,

cl_uint *num_platforms);

Query all OpenCL platforms on the system
Return value : Error code (ideally equal to CL_SUCCESS)
num_entries : Number of pre-allocated elements of type cl_platform_id

in the array platforms

platforms : Returns information about the platforms (for each platform
one element in the array platforms)

num_platforms: Returns number of platforms

32

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Query Platforms (cont.)

Double invocation of clGetPlatformIDs(..) necessary
• 1. invocation: num_entries = 0, platforms = NULL

: Query num_platforms

• Allocate num_platforms elements of type cl_platform_id in the array
platforms

• 2. invocation: num_entries = num_platforms : Query platforms

Related functions
• clGetPlatformInfo(..)

33

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Query Devices
Precondition: Platform exists

cl_int clGetDeviceIDs(cl_platform_id platform ,

cl_device_type device_type ,

cl_uint num_entries ,

cl_device_id *devices ,

cl_uint *num_devices);

Query the devices belonging to the respective platform
Return value : Error code (ideally equal to CL_SUCCESS)
platform : Selected platform
device_type : Device category (e.g. CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_GPU)
num_entries : Number of pre-allocated elements of type cl_device_id

in the array devices

devices : Returns information about the devices (for each device
one element in the array devices)

num_devices : Returns number of devices

34

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Query Devices (cont.)

Double invocation of clGetDeviceIDs(..) necessary
• 1. invocation: num_entries = 0, devices = NULL

: Query num_devices

• Allocate num_devices elements of type cl_device_id in the array
devices

• 2. invocation: num_entries = num_devices : Query devices

Related functions
• clGetDeviceInfo(..)

35

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Create Context
Precondition: Device exists

cl_context
clCreateContext(const cl_context_properties *properties ,

cl_uint num_devices ,
const cl_device_id *devices ,
(voidCL_CALLBACK *pfn_notify) (

const char *errinfo ,
const void *private_info , size_t cb,
void *user_data

),
void *user_data ,
cl_int *errcode_ret);

Creation of a context
Return value : The created context
properties : Bit field for the definition of the desired properties of the context
num_devices : Number of devices for which the context shall be created
devices : Array with devices for which the context shall be created
errcode_ret : Returns the error code (ideally equal to CL_SUCCESS)

For more details : see OpenCL man pages

36

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Create Queue
Precondition: Context and device exist

cl_command_queue

clCreateCommandQueue(cl_context context ,

cl_device_id device ,

cl_command_queue_properties properties ,

cl_int *errcode_ret);

Creation of a queue
Return value : The created queue
context : Context within which the queue shall be created
device : Device for which the queue shall be created
properties : Bit field for the definition of the desired properties of the queue
errcode_ret : Returns the error code (ideally equal to CL_SUCCESS)

Hint
The default mode for queues is “in order execution” (other settings possible
via parameter properties).

37

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Create Program Object
Precondition: Context and source code exist

cl_program

clCreateProgramWithSource(cl_context context ,

cl_uint count ,

const char **strings ,

const size_t *lengths ,

cl_int *errcode_ret);

Creation of a program object
Return value : The created program object
count : Number of char buffers with source code (see strings)
context : Context within which the program object shall be created
strings : Array with pointers to the char buffers containing the source code
length : Array specifying the length of each char buffer (in bytes)
errcode_ret : Returns the error code (ideally equal to CL_SUCCESS)

Hint
Most often the char buffers have been read in before from text files with the
OpenCL source code (file extension: .cl). For small applications, there is
often only one char buffer which contains the complete source code.

38

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Compile Program
Precondition: Program object and device(s) exist

cl_int

clBuildProgram(cl_program program ,

cl_uint num_devices ,

const cl_device_id *device_list ,

const char *options ,

void (CL_CALLBACK *pfn_notify)(

cl_program program , void *user_data

),

void *user_data);

Compile the program for the listed devices
Return value : Error code (ideally equal to CL_SUCCESS)
num_devices : Number of devices for which the program shall be compiled
device_list : Array with devices for which the program shall be compiled

(these must belong to the same context as the program object!)
options : Char string with compiler options

39

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Compile Program (cont.)

Hints
• For more details : see OpenCL man pages
• Automagically, the right compiler implementation is used — the one

from the OpenCL library which implements the platform for the devices
which belong to the context of the program object.

Related functions
• clGetProgramBuildInfo(..)

: Query the build status and the compiler logs (with error messages, e.g.
for syntax errors within the OpenCL device source code)

40

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Create Kernel
Precondition: Program object with compiled code exists

cl_kernel clCreateKernel(cl_program program ,

const char *kernel_name ,

cl_int *errcode_ret);

Creation of a compute kernel
Return value : The created kernel
program : The program object which contains the compiled kernel code
kernel_name : Name of the kernel function (within the source code of the program object)
errcode_ret : Returns the error code (ideally equal to CL_SUCCESS)

Hint
The kernel is afterwards available for all devices which were contained in
the device_list when calling clBuildProgram(..) before.

41

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Create Memory Objects
Precondition: Context exists

Here: Creation of a buffer (alternatively: sub buffer, image)

cl_mem clCreateBuffer(cl_context context ,

cl_mem_flags flags ,

size_t size ,

void *host_ptr ,

cl_int *errcode_ret);

Creation of a buffer object
Return value : The created buffer
context : Context within which the buffer shall be created
flags : Bit field for the definition of the buffer properties

and of the copy operations executed at creation
size : Length of the buffer (in bytes)
host_ptr : Pointer to the memory area in host memory which is used

as source for copy operations or which is directly used for
the buffer

errcode_ret : Returns the error code (ideally equal to CL_SUCCESS)

42

Explanation of the Parameter flags (Disjunct. within the Bit Field)

Flag Meaning

CL_MEM_READ_WRITE Memory object will be read and written by a
kernel.

CL_MEM_READ_ONLY Memory object will only be read by a kernel.
CL_MEM_WRITE_ONLY Memory object will only be written by a kernel.
CL_MEM_USE_HOST_PTR The buffer shall be located in host mem-

ory at address host_ptr (content may
be cached in device memory). Not
combinable with CL_MEM_ALLOC_HOST_PTR or
CL_MEM_COPY_HOST_PTR.

CL_MEM_ALLOC_HOST_PTR The buffer will be newly allocated in host mem-
ory (: in some implementations page–locked
memory!).

CL_MEM_COPY_HOST_PTR The buffer will be initialized with the content of
the memory region to which host_ptr points.

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Set Kernel Arguments
Precondition: Kernel exists

cl_int clSetKernelArg(cl_kernel kernel ,

cl_uint arg_index ,

size_t arg_size ,

const void *arg_value);

Set a single kernel argument
Return value : Error code (ideally equal to CL_SUCCESS)
kernel : The kernel for which the argument is set
arg_index : Index of the argument (starting with 0 for the first

argument of the kernel function)
arg_size : Length of the value of the argument (in bytes)
arg_value : Pointer to the value of the argument

Hints
• If you want to pass a global memory buffer as kernel argument, you

have to use the corresponding cl_mem object as value.
• In this case, arg_size has to be the size of the cl_mem object (not the

length of the buffer)!

44

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Execution Model (repeated)
Example: 2D–Arrangement of Work–Items

45

Sx ,Sy : Number of work–
items within a single
work–group

sx , sy : Indices of a work–
item within a
work–group

wx ,wy : Indices of a work–
group within the
NDRange

Fx ,Fy : Global index offset

Fig.: „The OpenCL Specification 1.1“, Fig. 3.2

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Kernel Execution
Precondition: Queue and kernel exist, kernel arguments already set

cl_int
clEnqueueNDRangeKernel(cl_command_queue command_queue ,

cl_kernel kernel ,
cl_uint work_dim ,
const size_t *global_work_offset ,
const size_t *global_work_size ,
const size_t *local_work_size ,
cl_uint num_events_in_wait_list ,
const cl_event *event_wait_list ,
cl_event *event);

Place a kernel for execution in a queue
Return value : Error code (ideally equal to CL_SUCCESS)
command_queue : Queue which shall be used for execution
kernel : The kernel to be executed
work_dim : Number of array dimensions (concerning the following

three parameters)
global_work_offset: Fx (Fy ,Fz) (see preceding slide)
global_work_size : Gx (Gy ,Gz) (see preceding slide; overall number of

work–items in each dimension across all work–groups!)
local_work_size : Sx (Sy ,Sz) (see preceding slide; the ratios

Gx/Sx , Gy/Sy , Gz/Sz need to be integer numbers!)

46

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Kernel Execution (cont.)

Hints
• The size and structure of the NDRange are defined by the parameters

global_work_offset, global_work_size and local_work_size.
• If local_work_size is set to NULL, the size of the work–groups will be

automatically determined.
• For details on event handling : see later slides

47

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Transfer Data from Device to Host
Precondition: Queue exists

cl_int clEnqueueReadBuffer(cl_command_queue command_queue ,
cl_mem buffer ,
cl_bool blocking_read ,
size_t offset ,
size_t cb ,
void *ptr ,
cl_uint num_events_in_wait_list ,
const cl_event *event_wait_list ,
cl_event *event);

Copy buffer content into host memory (e.g., buffer with results after kernel execution)
Return value : Error code (ideally equal to CL_SUCCESS)
command_queue : Queue which shall be used for execution
buffer : Buffer object which serves as source of the copy operation
blocking_read : If true, the function only returns after the copy operation has

been finished (and therefore also all preceding commands in
the queue if it operates in “in–order mode”)

offset : Read offset in the buffer (in bytes)
cb : Number of bytes to copy
ptr : Pointer to the target region in host memory (needs to be

allocated in sufficient size before)

For details on event handling : see later slides
48

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Free OpenCL Resources
(Selection)

cl_int clReleaseContext(cl_context context);

cl_int clReleaseCommandQueue(cl_command_queue command_queue);

cl_int clReleaseProgram(cl_program program);

cl_int clReleaseKernel(cl_kernel kernel);

cl_int clReleaseMemObject(cl_mem memobj);

Release of different types of OpenCL objects
Return value : Error code (ideally equal to CL_SUCCESS)

Hint
In analogy to the release functions also retain functions exist for many
types of OpenCL objects. The retain functions increase an object–internal
counter, the release functions decrease it. Only after all retain calls were
compensated by a release call, the next subsequent release call will
ultimately free the resources of the object.

49

OpenCL for Compute Kernels

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Basic Facts about “OpenCL C”

• Derived from ISO C99
• A few restrictions: No recursion, no function pointers, no

functions from the C99 standard headers
• Preprocessing directives defined by C99 are supported

(e.g., #include)
• Built–in data types:

I Scalar and vector data types, pointers, images
• Mandatory built–in functions:

I Work–item functions, math.h, reading and writing of images
I Relational functions, geometric functions, synchronization functions
I printf (v1.2 only)

• Optional built–in functions (called “extensions”)
I Support for double precision, atomics to global and local memory

51

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Qualifiers and Functions

• Function qualifiers:
I __kernel qualifier declares a function as a kernel, i.e. makes it

visible to host code so that it can be enqueued
• Address space qualifiers:

I __global, __local, __constant, __private
I Pointer kernel arguments must be declared with an address space

qualifier (excl. __private)
• Work-item functions:

I get_work_dim(), get_global_id(), get_local_id(),
get_group_id(), etc.

• Synchronization functions:
I Barriers — all work-items within a work-group must execute the

barrier function before any work-item can continue:
barrier(cl_mem_fence_flags flags)

I Memory fences — provides ordering between memory operations:
mem_fence(cl_mem_fence_flags flags)

52

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Restrictions

• Recursion is not supported
• Pointers to functions are not allowed
• Pointers to pointers allowed within a kernel, but not as an

argument to a kernel invocation
• Bit–fields are not supported
• Variable length arrays are not supported
• Structures and other data types have to be defined in both the

host and device code (naturally, in exactly the same way; use
common header files)

• Double types are optional in OpenCL v1.1, but the key word is
reserved (note: Most implementations support double)

53

Exercise 1

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Task and Hints

Task
• Implement the addition of three vectors instead of two!

Hints
• Copy project files from

train025@zam1069:OpenCL_Course/OpenCL_Basics/example

• Use host code in VectorAddition.C as starting point
• Use device code in vectoradd.cl as starting point
• Adjust settings in Makefile to the computer system which

you are using

55

Event Handling

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Further Useful Functions. . .
. . . for Event Handling and Queues

cl_int clWaitForEvents (cl_uint num_events ,

const cl_event *event_list);

Wait for all events in event_list

Return value : Error code (ideally equal to CL_SUCCESS)
num_events : Number of elements in event_list

event_list : Array of events

cl_int clFlush(cl_command_queue command_queue);

Issues all previously queued OpenCL commands in command_queue to the device
associated with command_queue

Return value : Error code (ideally equal to CL_SUCCESS)

cl_int clFinish(cl_command_queue command_queue);

Blocks until all previously queued OpenCL commands in command_queue are issued to
the associated device and have completed. clFinish is also a synchronization point.
Return value : Error code (ideally equal to CL_SUCCESS)

57

Exercise 2

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Task and Hints

Task
• Implement a second kernel for element–wise vector

multiplication!
• Compute with both kernels (multiplication and pair–wise

addition) the equation e = a ∗ b + c ∗ d as element–wise
vector operation!
• BONUS: Use an out–of–order queue instead of the default

queue. . .
• . . . and ensure by using events that all commands are

executed in the right order!

Hints
• Extend your code from exercise 1

59

Appendix: Notes on Nomenclature

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Nomenclature
AMD vs. NVIDIA

AMD NVIDIA

— Texture Processing Cluster (TPC),
Graphics Processing Cluster (GPC)

SIMD–Core Streaming Multi–Processor
GCN–Arch.: Compute–Unit (SM, SMX)

GCN–Arch.: SIMD —

SIMD–Einheit („SIMD lane“) Streaming Proc. (SP), CUDA Core

Wavefront Warp

Local Data Share Shared Memory

Global Data Share —

61

M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Nomenclature
OpenCL vs. CUDA

OpenCL CUDA

Work–Item Thread

Work–Group Block

NDRange (Workspace) Grid

Local Memory Shared Memory

Private Memory Registers/Local Memory

Image Texture

Queue Stream

Event Event

62

