
November 22, 2017 | Ilya Zhukov

M
it

g
lie

d
 d

e
r

H
e
lm

h
o
lt

z-
G

e
m

e
in

sc
h
a
ft

Debugging and
performance analysis tools

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 2

Outline

 Debugging
 Performance analysis: introduction
 Performance analysis tools

■ Score-P/CUBE
■ Vampir
■ AMD CodeXL
■ nvvp
■ Intel Vtune
■ Intel Advisor

 Tools overview
 Hands-on

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 3

Debugging OpenCL 1.1

 Top tip:
■ Write data to a global buffer from within the kernel

 result[get_global_id(0)] = … ;
■ Copy back to the host and print out from there or debug as a

normal serial application
■ Works with any OpenCL device and platform

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 4

Debugging OpenCL

 Check your error messages!
■ If you enable Exceptions in C++ as we have here, make sure you

print out the errors.
 Don’t forget, use the err_code.c from the tutorial to print out errors as strings

(instead of numbers), or check in the cl.h file in the include directory of your
OpenCL provider for error messages

 Check your work-group sizes and indexing

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 5

Debugging OpenCL – using GDB

 Can also use GDB to debug your programs on the CPU
■ This will also leverage the memory system

■ Might catch illegal memory dereferences more accurately
■ But it does behave differently to accelerator devices so bugs may show

up in different ways
 As with debugging, compile your C or C++ programs with the –g flag

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 6

Using GDB with AMD

• Ensure you select the CPU device from the AMD® platform

• Must use the –g flag and turn off all optimizations when building the kernels:

program.build(" –g –O0")

• The symbolic name of a kernel function “__kernel void foo(args)” is
“__OpenCL_foo_kernel”

– To set a breakpoint on kernel entry enter at the GDB prompt:

break __OpenCL_foo_kernel

• Note: the debug symbol for the kernel will not show up until the kernel has been built
by your host code

• AMD® recommend setting the environment variable
CPU_MAX_COMPUTE_UNITS=1 to ensure deterministic kernel behavior

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 7

Using GDB with Intel

• Ensure you select the CPU device from the Intel® platform

• Must use the –g flag and specify the kernel source file when building the kernels:

program.build(" –g –s /full/path/to/kernel.cl")

• The symbolic name of a kernel function “__kernel void foo(args)” is “foo”

– To set a breakpoint on kernel entry enter at the GDB prompt:

break foo

• Note: the debug symbol for the kernel will not show up until the kernel has been built
by your host code

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 8

Debugging OpenCL – using GDB

 use n to move to the next line of execution
 use s to step into the function
 if you reach a segmentation fault, backtrace lists the previous few execution

frames
■ type frame 5 to examine the 5th frame

 use print varname to output the current value of a variable

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 9

Performance factors of parallel
applications

■ “Sequential” factors
■ Computation

Choose right algorithm, use optimizing compiler

■ Cache and memory
Tough! Only limited tool support, hope compiler gets it right

■ Input / output
Often not given enough attention

■ “Parallel” factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

More or less understood, good tool support

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 10

Tuning basics

■ Successful engineering is a combination of
■ The right algorithms and libraries
■ Compiler flags and directives
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To compare alternatives
■ To validate tuning decisions and optimizations

After each step!

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 11

Performance engineering workflow

■ Prepare application (with symbols),
insert extra code (probes/hooks)

■ Collection of data relevant to
execution performance analysis

■ Calculation of metrics, identification
of performance metrics

■ Presentation of results in an
intuitive/understandable form

■ Modifications intended to eliminate/reduce
performance problems

Preparation

Measurement

Analysis

Examination

Optimization

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 12

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of
the code

■ Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application

 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 13

Classification of measurement
techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 14

Sampling

■ Running program is periodically interrupted
to take measurement

■ Timer interrupt, OS signal, or HWC overflow
■ Service routine examines return-address stack
■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behavior
■ Not very detailed information on highly

volatile metrics
■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1 t

2
t
3

t
8

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 15

Instrumentation

Time

Measurement

■ Measurement code is inserted such that
every event of interest is captured directly

■ Can be done in various ways

■ Advantage:
■ Much more detailed information

■ Disadvantage:
■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t5 t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 16

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 17

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation
■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters
■ Granularity

■ How many measurements?
■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 18

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

 Profile = summarization of events over execution interval

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 19

Tracing

■ Recording information about significant points (events) during
execution of the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)
■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of
event records

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 20

Tracing vs. Profiling

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships
among individual events ( context)

■ Allows reconstruction of dynamic application behaviour on any
required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large
■ Writing events to file at runtime causes perturbation
■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 21

Score-P

 Instrumentation & measurement infrastructure
 Developed by a consortium of performance

tool groups

 Latest generation measurement system of
 Scalasca 2.x
 Vampir
 TAU
 Periscope

 Common data formats improve tool interoperability
 http://www.score-p.org/

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 22

CUBE4 Interface

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 23

Vampir

 Visualization of dynamics
of complex parallel processes

 Requires two components
■ Monitor/Collector (Score-P)
■ Charts/Browser (Vampir)

Typical questions that Vampir helps to answer:
■ What happens in my application execution during a given time in

a given process or thread?
■ How do the communication patterns of my application execute on

a real system?
■ Are there any imbalances in computation, I/O or memory usage

and how do they affect the parallel execution of my application?

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 24

Event Trace Visualization with Vampir

 Alternative and supplement to automatic analysis
 Show dynamic run-time behavior graphically at any level of detail
 Provide statistics and performance metrics

Timeline charts
 Show application activities and

communication along a time axis

Summary charts
 Provide quantitative results for the

currently selected time interval

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 25

Vampir: Main Interface

Master Timeline

Navigation Toolbar

Function Legend

Function Summary

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 26

AMD CodeXL

• AMD provide a graphical Profiler and Debugger for AMD Radeon™ GPUs

• Can give information on:

– API and kernel timings

– Memory transfer information

– Register use

– Local memory use

– Wavefront usage

– Hints at limiting performance factors

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 27

Profiling using nvvp

• The timeline says what happened during the program execution:

• optimizing tips are displayed in the Analysis tab:

Kernels

Each
invocation of
the kernel is
pictured as a

box

• The Details tab shows information for each kernel invocation and memory copy

– number of registers used

– work group sizes

– memory throughput

– amount of memory transferred

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 28

Intel VTune – Performance analysis tool

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 29

Intel Advisor

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 30

Tools overview
 Score-P

■ Measurement system to collect profiles and traces
■ http://score-p.org

 CUBE
■ Profile browser
■ http://scalasca.org

 Vampir
■ Trace visualizer
■ https://www.vampir.eu/

 AMD® CodeXL
■ Graphical Profiler and Debugger for AMD® APUs, CPUs and GPUs
■ http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/

 NVIDIA® Nsight™ Development Platform
■ Profiler and Debugger (nvvp) for NVIDIA® GPUs
■ used to work for OpenCL until CUDA 4.2
■ https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
■ How to use with OpenCL: http://uob-hpc.github.io/2015/05/27/nvvp-import-opencl/

 Intel Vtune
■ Xeon Phi performance analysis tool
■ https://software.intel.com/en-us/intel-vtune-amplifier-xe

 Intel Advisor
■ Vectorization optimization tool
■ https://software.intel.com/en-us/intel-advisor-xe

http://score-p.org/
http://scalasca.org/
https://www.vampir.eu/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://uob-hpc.github.io/2015/05/27/nvvp-import-opencl/
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 31

Questions? Ask!

 JSC support

sc@fz-juelich.de

 VI-HPS tuning workshops

http://www.vi-hps.org/training/tw

 Apply for free POP performance audit

https://pop-coe.eu/request-service-form

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 32

Hands-on: Jacobi Solver

 Jacobi Example
■ Iterative solver for system of equations

■ Code uses OpenMP, OpenCL and MPI
for parallelization

 Domain decomposition
■ Halo exchange at boundaries:

■ Via MPI between processes
■ Via OpenCL between hosts and

accelerators

U old=U

ui , j=buold ,i , j+ax(uold ,i−1, j+uold ,i+1, j)+a y(uold ,i , j−1+uold ,i , j+1)−rHs /b

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 33

Hands-On Exercise

 Copy exercise directory to your working directory on JURECA
scp /home/train060/OpenCL_Course/Exercise/jacobi.tar.gz jureca:~

 Log on to JURECA
ssh ­X jureca

 Untar jacobi.tar.gz
tar xvf jacobi.tar.gz

 Load modules
module use /homeb/zam/izhukov/modules

module load intel­para CUDA scalasca­ipmpi­cuda

 Instrument application
PREP=”scorep ­­static” make

 Submit batch script
sbatch run_scorep.sh

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 34

Hands-On Exercise

 Or interactively
salloc ­­nodes=1 ­­time=00:30:00 ­­partition=gpus ­­gres=gpu:2 ­­reservation=OpenCL

OMP_NUM_THREADS=8 srun ­n 2 ./bin/jacobi_mpi+opencl <matrix_size_x> <matrix_size_y> <CPU_load>

where CPU_load=(0;1)

 Load CUBE and Vampir
module load intel­para Cube Vampir

 Examine results
■ CUBE

cube scorep_jacobi_opencl_sum/profile.cubex

square scorep_jacobi_opencl_sum

■ Vampir
vampir scorep_jacobi_opencl_trace/traces.otf2

	Titel
	Outline
	Debugging
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Performance factors of parallel applications
	Tuning basics
	Performance engineering workflow
	The 80/20 rule
	Classification of measurement techniques
	Sampling
	Instrumentation
	Instrumentation techniques
	Critical issues
	Slide 18
	Slide 19
	Tracing vs. Profiling
	Score-P
	CUBE4 Analysis
	Mission
	Event Trace Visualization with Vampir
	Vampir: Visualization of the NPB-MZ-MPI / BT trace
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Jacobi Solver
	Setup Environment
	Slide 34

