
November 22, 2017 | Ilya Zhukov

M
it

g
lie

d
 d

e
r

H
e
lm

h
o
lt

z-
G

e
m

e
in

sc
h
a
ft

Debugging and
performance analysis tools

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 2

Outline

 Debugging
 Performance analysis: introduction
 Performance analysis tools

■ Score-P/CUBE
■ Vampir
■ AMD CodeXL
■ nvvp
■ Intel Vtune
■ Intel Advisor

 Tools overview
 Hands-on

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 3

Debugging OpenCL 1.1

 Top tip:
■ Write data to a global buffer from within the kernel

 result[get_global_id(0)] = … ;
■ Copy back to the host and print out from there or debug as a

normal serial application
■ Works with any OpenCL device and platform

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 4

Debugging OpenCL

 Check your error messages!
■ If you enable Exceptions in C++ as we have here, make sure you

print out the errors.
 Don’t forget, use the err_code.c from the tutorial to print out errors as strings

(instead of numbers), or check in the cl.h file in the include directory of your
OpenCL provider for error messages

 Check your work-group sizes and indexing

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 5

Debugging OpenCL – using GDB

 Can also use GDB to debug your programs on the CPU
■ This will also leverage the memory system

■ Might catch illegal memory dereferences more accurately
■ But it does behave differently to accelerator devices so bugs may show

up in different ways
 As with debugging, compile your C or C++ programs with the –g flag

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 6

Using GDB with AMD

• Ensure you select the CPU device from the AMD® platform

• Must use the –g flag and turn off all optimizations when building the kernels:

program.build(" –g –O0")

• The symbolic name of a kernel function “__kernel void foo(args)” is
“__OpenCL_foo_kernel”

– To set a breakpoint on kernel entry enter at the GDB prompt:

break __OpenCL_foo_kernel

• Note: the debug symbol for the kernel will not show up until the kernel has been built
by your host code

• AMD® recommend setting the environment variable
CPU_MAX_COMPUTE_UNITS=1 to ensure deterministic kernel behavior

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 7

Using GDB with Intel

• Ensure you select the CPU device from the Intel® platform

• Must use the –g flag and specify the kernel source file when building the kernels:

program.build(" –g –s /full/path/to/kernel.cl")

• The symbolic name of a kernel function “__kernel void foo(args)” is “foo”

– To set a breakpoint on kernel entry enter at the GDB prompt:

break foo

• Note: the debug symbol for the kernel will not show up until the kernel has been built
by your host code

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 8

Debugging OpenCL – using GDB

 use n to move to the next line of execution
 use s to step into the function
 if you reach a segmentation fault, backtrace lists the previous few execution

frames
■ type frame 5 to examine the 5th frame

 use print varname to output the current value of a variable

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 9

Performance factors of parallel
applications

■ “Sequential” factors
■ Computation

Choose right algorithm, use optimizing compiler

■ Cache and memory
Tough! Only limited tool support, hope compiler gets it right

■ Input / output
Often not given enough attention

■ “Parallel” factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

More or less understood, good tool support

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 10

Tuning basics

■ Successful engineering is a combination of
■ The right algorithms and libraries
■ Compiler flags and directives
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To compare alternatives
■ To validate tuning decisions and optimizations

After each step!

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 11

Performance engineering workflow

■ Prepare application (with symbols),
insert extra code (probes/hooks)

■ Collection of data relevant to
execution performance analysis

■ Calculation of metrics, identification
of performance metrics

■ Presentation of results in an
intuitive/understandable form

■ Modifications intended to eliminate/reduce
performance problems

Preparation

Measurement

Analysis

Examination

Optimization

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 12

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of
the code

■ Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application

 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 13

Classification of measurement
techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 14

Sampling

■ Running program is periodically interrupted
to take measurement

■ Timer interrupt, OS signal, or HWC overflow
■ Service routine examines return-address stack
■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behavior
■ Not very detailed information on highly

volatile metrics
■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1 t

2
t
3

t
8

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 15

Instrumentation

Time

Measurement

■ Measurement code is inserted such that
every event of interest is captured directly

■ Can be done in various ways

■ Advantage:
■ Much more detailed information

■ Disadvantage:
■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t5 t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 16

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 17

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation
■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters
■ Granularity

■ How many measurements?
■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 18

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

 Profile = summarization of events over execution interval

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 19

Tracing

■ Recording information about significant points (events) during
execution of the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)
■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of
event records

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 20

Tracing vs. Profiling

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships
among individual events (context)

■ Allows reconstruction of dynamic application behaviour on any
required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large
■ Writing events to file at runtime causes perturbation
■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 21

Score-P

 Instrumentation & measurement infrastructure
 Developed by a consortium of performance

tool groups

 Latest generation measurement system of
 Scalasca 2.x
 Vampir
 TAU
 Periscope

 Common data formats improve tool interoperability
 http://www.score-p.org/

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 22

CUBE4 Interface

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 23

Vampir

 Visualization of dynamics
of complex parallel processes

 Requires two components
■ Monitor/Collector (Score-P)
■ Charts/Browser (Vampir)

Typical questions that Vampir helps to answer:
■ What happens in my application execution during a given time in

a given process or thread?
■ How do the communication patterns of my application execute on

a real system?
■ Are there any imbalances in computation, I/O or memory usage

and how do they affect the parallel execution of my application?

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 24

Event Trace Visualization with Vampir

 Alternative and supplement to automatic analysis
 Show dynamic run-time behavior graphically at any level of detail
 Provide statistics and performance metrics

Timeline charts
 Show application activities and

communication along a time axis

Summary charts
 Provide quantitative results for the

currently selected time interval

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 25

Vampir: Main Interface

Master Timeline

Navigation Toolbar

Function Legend

Function Summary

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 26

AMD CodeXL

• AMD provide a graphical Profiler and Debugger for AMD Radeon™ GPUs

• Can give information on:

– API and kernel timings

– Memory transfer information

– Register use

– Local memory use

– Wavefront usage

– Hints at limiting performance factors

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 27

Profiling using nvvp

• The timeline says what happened during the program execution:

• optimizing tips are displayed in the Analysis tab:

Kernels

Each
invocation of
the kernel is
pictured as a

box

• The Details tab shows information for each kernel invocation and memory copy

– number of registers used

– work group sizes

– memory throughput

– amount of memory transferred

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 28

Intel VTune – Performance analysis tool

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 29

Intel Advisor

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 30

Tools overview
 Score-P

■ Measurement system to collect profiles and traces
■ http://score-p.org

 CUBE
■ Profile browser
■ http://scalasca.org

 Vampir
■ Trace visualizer
■ https://www.vampir.eu/

 AMD® CodeXL
■ Graphical Profiler and Debugger for AMD® APUs, CPUs and GPUs
■ http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/

 NVIDIA® Nsight™ Development Platform
■ Profiler and Debugger (nvvp) for NVIDIA® GPUs
■ used to work for OpenCL until CUDA 4.2
■ https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
■ How to use with OpenCL: http://uob-hpc.github.io/2015/05/27/nvvp-import-opencl/

 Intel Vtune
■ Xeon Phi performance analysis tool
■ https://software.intel.com/en-us/intel-vtune-amplifier-xe

 Intel Advisor
■ Vectorization optimization tool
■ https://software.intel.com/en-us/intel-advisor-xe

http://score-p.org/
http://scalasca.org/
https://www.vampir.eu/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://uob-hpc.github.io/2015/05/27/nvvp-import-opencl/
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 31

Questions? Ask!

 JSC support

sc@fz-juelich.de

 VI-HPS tuning workshops

http://www.vi-hps.org/training/tw

 Apply for free POP performance audit

https://pop-coe.eu/request-service-form

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 32

Hands-on: Jacobi Solver

 Jacobi Example
■ Iterative solver for system of equations

■ Code uses OpenMP, OpenCL and MPI
for parallelization

 Domain decomposition
■ Halo exchange at boundaries:

■ Via MPI between processes
■ Via OpenCL between hosts and

accelerators

U old=U

ui , j=buold ,i , j+ax(uold ,i−1, j+uold ,i+1, j)+a y(uold ,i , j−1+uold ,i , j+1)−rHs /b

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 33

Hands-On Exercise

 Copy exercise directory to your working directory on JURECA
scp /home/train060/OpenCL_Course/Exercise/jacobi.tar.gz jureca:~

 Log on to JURECA
ssh X jureca

 Untar jacobi.tar.gz
tar xvf jacobi.tar.gz

 Load modules
module use /homeb/zam/izhukov/modules

module load intelpara CUDA scalascaipmpicuda

 Instrument application
PREP=”scorep static” make

 Submit batch script
sbatch run_scorep.sh

Vectorization and portable programming using OpenCL – Debugging and performance analysis tools 34

Hands-On Exercise

 Or interactively
salloc nodes=1 time=00:30:00 partition=gpus gres=gpu:2 reservation=OpenCL

OMP_NUM_THREADS=8 srun n 2 ./bin/jacobi_mpi+opencl <matrix_size_x> <matrix_size_y> <CPU_load>

where CPU_load=(0;1)

 Load CUBE and Vampir
module load intelpara Cube Vampir

 Examine results
■ CUBE

cube scorep_jacobi_opencl_sum/profile.cubex

square scorep_jacobi_opencl_sum

■ Vampir
vampir scorep_jacobi_opencl_trace/traces.otf2

	Titel
	Outline
	Debugging
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Performance factors of parallel applications
	Tuning basics
	Performance engineering workflow
	The 80/20 rule
	Classification of measurement techniques
	Sampling
	Instrumentation
	Instrumentation techniques
	Critical issues
	Slide 18
	Slide 19
	Tracing vs. Profiling
	Score-P
	CUBE4 Analysis
	Mission
	Event Trace Visualization with Vampir
	Vampir: Visualization of the NPB-MZ-MPI / BT trace
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Jacobi Solver
	Setup Environment
	Slide 34

