#))0LICH

FORSCHUNGSZENTRUM

Debugging and
performance analysis tools

November 22, 2017 | llya Zhukov

#) J0LICH

FORSCHUNGSZENTRUM

Outline

= Debugging
m Performance analysis: introduction
= Performance analysis tools
= Score-P/CUBE
= Vampir
= AMD CodeXL
= NVVp
= Intel Vtune
= Intel Advisor
= Tools overview
= Hands-on

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 2

#) JULICH
Debugging OpenCL 1.1

= Top tip:
= Write data to a global buffer from within the kernel
result] get_global_id(0)] = ... ;

= Copy back to the host and print out from there or debug as a
normal serial application

= Works with any OpenCL device and platform

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 3

#) J0LICH

FORSCHUNGSZENTRUM

Debugging OpenCL

= Check your error messages!
= |f you enable Exceptions in C++ as we have here, make sure you
print out the errors.
® Don't forget, use the err_code.c from the tutorial to print out errors as strings
(instead of numbers), or check in the cl.h file in the include directory of your
OpenCL provider for error messages
= Check your work-group sizes and indexing

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 4

#) J0LICH

FORSCHUNGSZENTRUM

Debugging OpenCL - using GDB

= Can also use GDB to debug your programs on the CPU
= This will also leverage the memory system
= Might catch illegal memory dereferences more accurately
= But it does behave differently to accelerator devices so bugs may show
up in different ways
m As with debugging, compile your C or C++ programs with the —g flag

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 5

#) J0LICH

FORSCHUNGSZENTRUM

Using GDB with AMD

 Ensure you select the CPU device from the AMD® platform
* Must use the —g flag and turn off all optimizations when building the kernels:
program.build(" —-g -O0")

 The symbolic name of a kernel function “__kernel void foo(args)” is
“ OpenCL_foo_kernel”

— To set a breakpoint on kernel entry enter at the GDB prompt:
break _ OpenCL_foo_kernel

* Note: the debug symbol for the kernel will not show up until the kernel has been built
by your host code

« AMD® recommend setting the environment variable
to ensure deterministic kernel behavior

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 6

#) J0LICH

FORSCHUNGSZENTRUM

Using GDB with Intel

 Ensure you select the CPU device from the Intel® platform
* Must use the —g flag and specify the kernel source file when building the kernels:
program.build(" —g -s /full/path/to/kernel.cl")
 The symbolic name of a kernel function “__kernel void foo(args)” is “foo”
— To set a breakpoint on kernel entry enter at the GDB prompt:
break foo

* Note: the debug symbol for the kernel will not show up until the kernel has been built
by your host code

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 7

#) J0LICH

FORSCHUNGSZENTRUM

Debugging OpenCL - using GDB

® use n to move to the next line of execution
use s to step into the function
® if you reach a segmentation fault, backtrace lists the previous few execution
frames
= type frame 5 to examine the 5th frame
® use print varname to output the current value of a variable

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 8

Performance factors of parallel #) 0LICH
a.p pl icati O n S FORSCHUNGSZENTRUM

= “Sequential” factors

= Computation
4+ Choose right algorithm, use optimizing compiler

= Cache and memory
4+ Tough! Only limited tool support, hope compiler gets it right

= |nput / output
4+ Often not given enough attention

= “Parallel” factors
= Partitioning / decomposition
= Communication (i.e., message passing)
= Multithreading

= Synchronization / locking
4+ More or less understood, good tool support

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 9

Tuning basics #) JULICH

FORSCHUNGSZENTRUM

= Successful engineering is a combination of
= The right algorithms and libraries
= Compiler flags and directives
= Thinking !!!

= Measurement is better than guessing
= To determine performance bottlenecks
= To compare alternatives

= To validate tuning decisions and optimizations
+ After each step!

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 10

Performance engineering workflow A) JULICH

FORSCHUNGSZENTRUM

v

Preparation

= Prepare application (with symbols),

l

Insert extra code (probes/hooks)

= Collection of data relevant to

Measurement execution performance analysis

l

= Calculation of metrics, identification

Analysis of performance metrics

l

= Presentation of results in an

Examination

Intuitive/understandable form

l

= Modifications intended to eliminate/reduce

Optimization

performance problems

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 11

The 80/20 rule

= Programs typically spend 80% of their time in 20% of
the code

= Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application

4+ Know when to stop!

= Don't optimize what does not matter
4+ Make the common case fast!

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools

#))0LICH

FORSCHUNGSZENTRUM

12

Classification of measurement ’J JULICH
techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?
= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?

= Online
= Post mortem

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 13

Sampling

I

#) J0LICH

FORSCHUNGSZENTRUM

ol
o
~
(o
©

=
|

-

Time

'
NN ENE N

——

foo(0) foo(1)

int main()

{

int 1;

for (i=0; i < 3; i++)
foo(1);

return 0;

}

void foo(int 1)

{

if (i > 0)
foo(i - 1);

= Running program is periodically interrupted
to take measurement

= Timer interrupt, OS signal, or HWC overflow
= Service routine examines return-address stack

= Addresses are mapped to routines using
symbol table information

= Statistical inference of program behavior

= Not very detailed information on highly
volatile metrics

= Requires long-running applications

= \Works with unmodified executables

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 14

Instrumentation #))0LICH

FORSCHUNGSZENTRUM

foo(0) foo(1) foo(2)

Measurement

int main() = Measurement code is inserted such that
{ C every event of interest is captured directly
int i;
Enter(“main”); = Can be done in various ways
for (1i=0; 1 < 3; i++)
foo(i); = Advantage:
Leave(“main”); . . :
return 0: = Much more detailed information
} = Disadvantage:
\Eoid foo(int 1) = Processing of source-code / executable
Enter(”foo”) - necessary
if (i > 0) = |Large relative overheads for small functions
foo(i - 1);

Leave(“foo0”);

}

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 15

Instrumentation techniques A) JULICH

FORSCHUNGSZENTRUM

= Static instrumentation

= Program is instrumented prior to execution
= Dynamic instrumentation

= Program is instrumented at runtime

= Code is inserted
= Manually
= Automatically
= By a preprocessor / source-to-source translation tool
= By a compiler
= By linking against a pre-instrumented library / runtime system
= By binary-rewrite / dynamic instrumentation tool

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 16

Critical issues #))0LICH

FORSCHUNGSZENTRUM

= Accuracy

= |ntrusion overhead
= Measurement itself needs time and thus lowers performance

= Perturbation
= Measurement alters program behaviour
= E£.g., memory access pattern

= Accuracy of timers & counters
= Granularity
= How many measurements?
= How much information / processing during each measurement?

4 Tradeoff: Accuracy vs. Expressiveness of data

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 17

Profiling / Runtime summarization ’J JULICH

FORSCHUNGSZENTRUM

= Recording of aggregated information
= Total, maximum, minimum, ...
= For measurements
= Time
= Counts
= Function calls

= Bytes transferred
= Hardware counters

= Qver program and system entities
= Functions, call sites, basic blocks, loops, ...
= Processes, threads

4 Profile = summarization of events over execution interval

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 18

Tracing ’J JULICH

FORSCHUNGSZENTRUM

= Recording information about significant points (events) during
execution of the program

= Enter /leave of a region (function, loop, ...)
= Send /receive a message, ...

= Save information in event record
= Timestamp, location, event type

= Plus event-specific information (e.g., communicator,
sender / receiver, ...)

= Abstract execution model on level of defined events

4 Event trace = Chronologically ordered sequence of
event records

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 19

Tracing vs. Profiling #) JULICH

FORSCHUNGSZENTRUM

= Tracing advantages

= Event traces preserve the temporal and spatial relationships
among individual events (4 context)

= Allows reconstruction of dynamic application behaviour on any
required level of abstraction

= Most general measurement technique
= Profile data can be reconstructed from event traces

= Disadvantages
= Traces can very quickly become extremely large

= \Writing events to file at runtime causes perturbation

= \Writing tracing software is complicated
= Event buffering, clock synchronization, ...

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 20

Score-P #) JOLICH

FORSCHUNGSZENTRUM

" [Instrumentation & measurement infrastructure = (o) re_P
" Developed by a consortium of performance iirastradtore for pralel codes
tool groups

" Latest generation measurement system of
" Scalasca 2.x
" Vampir
" TAU
" Periscope
" Common data formats improve tool interoperability
" http://www.score-p.org/

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 21

#) JULICH
CU B E4 I nte rface FORSCHUNGSZENTRUM

Cube-4.3.5: scorep_jacobi_opencl_2x12_trace/summary.cubex
File Display Plugins Help

JJ Restore Setting ™ Save Settings

|Absolute x| |Absolute =| |Absolute =l
HMetric tree | ECaII tree | Flat view I HSYStE"‘- tree | .]BoxPIot |
B~ 1486.14 Time (sec) Zf = 1486.03 main E(NFE - machine JURECA

-l 2.12e5 Visits (occ)
=l 1.58e7 Bytes transferred (bytes)
=[] 0 MPI file operations (occ)

=l 1.25 Computational imbalance (sec)
-] 0.00 Minimum Inclusive Time (sec)
-l 56.72 Maximum Inclusive Time (sec)

[~ 0.07 $jacobi_kernel &[] - node jrc0490
=[] - MPI Rank 0

-] 0.00 Master thread
0.00 OMP thread 1
0.00 OMP thread 2
0.00 OMP thread 3
0.00 OMP thread 4
0.00 OMP thread 5
0.00 OMP thread 6
0.00 OMP thread 7
0.00 OMP thread 8
0.00 OMP thread 9
0.00 OMP thread 10
0.00 OMP thread 11
-] 0.06 Tesla K80
=[] - MPI Rank 1
0.00 Master thread
0.00 OMP thread 1
0.00 OMP thread 2
0.00 OMP thread 3
0.00 OMP thread 4
0.00 OMP thread 5
0.00 OMP thread 6
0.00 OMP thread 7
0.00 OMP thread 8
0.00 OMP thread 9
0.00 OMP thread 10
0.00 OMP thread 11
0.05 Tesla K80 _|_|

DO00000000000

DO00000000000

o

I _|_I [_l_l IAII (26 elements) i
0

1486 (100.00%) 1486| (0.00 0.11 (0.01%) 1486.03| [0.00 0.11

Selected "Time"

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 22

#) J0LICH

FORSCHUNGSZENTRUM

Vampir

= Visualization of dynamics
of complex parallel processes
® Requires two components
= Monitor/Collector (Score-P)
= Charts/Browser (Vampir)

Typical questions that Vampir helps to answer:

= What happens in my application execution during a given time in
a given process or thread?

= How do the communication patterns of my application execute on
a real system?

= Are there any imbalances in computation, I/O or memory usage
and how do they affect the parallel execution of my application?

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 23

#) J0LICH

FORSCHUNGSZENTRUM

Event Trace Visualization with Vampir

= Alternative and supplement to automatic analysis
= Show dynamic run-time behavior graphically at any level of detalil
= Provide statistics and performance metrics

Timeline charts

= Show application activities and
communication along a time axis

Summary charts | o
= Provide quantitative results for the o [
currently selected time interval | i

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 24

#)0LICH

FORSCHUNGSZENTRUM
- -
]
Vampl r: Main Interface
L} L]
Navigation Toolbar
W File Edit Chart Filter Window Help =]
B L H— " E“ | B ‘) 1.19209e= 51s
E t’I ﬂ ﬁ 9 3 HE ih H = % y v n) Bt LR e . B . B a5 D21 i e S L L 1 s | | i Bl
Timeline | (%] Function Summary
0.5s 1.0s 155 2.0s 25s 30s 35s 4.0s 45s 5.0s T All Processes, Accumulated Exclusive Time per ..
: : : : : : : : : : 20 s 0Os
¥ Master thread:0 ; ’ 1 L1 i :E:] | 1$omp implicit...i_opencl.c:236 |~
OMP thread 1:0 |] ; _ M| Bl | Bl = 7.561 5 t$omp for @ja..._opencl.c:207
OMP thread 2:0 | IW ! | I ‘M | L 7.492 s [l jacobi
— - i - — | ; — 2,879 s || '$omp implicit...i_opencl.c:360
OMP thread 3:0 ™ Im 5 : - - M| 0.781 s Tc FteConten
_ . clireateLonte
OMP thread 4:0 II.I-I_I— I—I I— | III! __ II_II__I II_ I_I- 0.664 5 | | $omp for @ja..._opencl.c:353
OMP thread 5:0] [l | I- — 1l : :]| 1 e e | -I | 0.375 5| clEnqueueReadBuffer
OMP thread 6:0 - l- I- -IIII P | _I I I_ I _I [] 0.247 s | gjacobi_kernel
| = 0.134 s| $copy_kernel
OMP thread 7:0 - - .- II- -II“ __I _I.. _“I _I] 94.903 ms | clEnqueueWriteBuffer
Tesla K80:0 g 66.508 ms | cl[EnqueueNDRangekernel
¥ Master thread:1 60.6 ms | clGetPlatformIDs
OMP thread 1:1] L E 1 | annnn |1 | Nl %’736 ms | MPI_Allreduce —
OMP thread 2:1 -_ . -_ I. -..] —————Function Legend
e o Py e Function Summar i
OMP thread 4:1 | |_I]| y OPENCL_FLUSH
OMP thread 5:1 - ! - m _ I - — : gsgl'i\'cca'-t—ig“c
OMP thread 6:1 e l- | — : | _l 1 OMP_SYNC
) _ OMP_LOOP
OMP thread 7:1 5 _— _I _II M baaLLEL
Tesla K80:1 OMP_API
) OPERCL
‘ v THREADS -

Master Timeline

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools

Function Legend

25

JULICH

FORSCHUNGSZENTRUM

AMD CodeXL

 AMD provide a graphical Profiler and Debugger for AMD Radeon™ GPUs
« Can give information on:

— API and kernel timings

— Memory transfer information

— Register use

— Local memory use

— Wavefront usage

— Hints at limiting performance factors

odexL | Profie M ods (GPU: Performance Counters) 117

Fle Edit View Debug Profile Analyze Tools Window Help

(O >

CodeX. Explorer] Mar-17-2015_18-06-46@Iocalhost (GPU: Performance Counters) Mar-17-2015_18-08-07@localhost (GPU: Performance Counters) (<) ‘

~ &b gemm@Iocalhost | Profile Mode (G. Celntens |

~ @l GPU: Performance Counters

o Mar17-2015_18-06-46 @loca. Show Zero Columns
2| BE O153B08078 o Method + ExecutionOrder ThreadID Callindex GlobalWorkSize WorkGroup! Time. VGPRs SGPRs FCStacks KernelOccupancy Wavefronts FetchSize CacheHit (%) VALUInsts SALUInsts VFetchinsts SFetchinsts VWi ation (%) VALUBusy (%) SALUBusy (%) WriteSize MemuUnitBusy (%)

Bl cemm nn_ia Tahiin |1 7865 7 {3968 31 1} |{ 16 1 1} (506915733 155 |4 NA 10 7688 2160584.18 |79.65 1693015 |907720 |183152 13 128 2324 a.72 10.40 6128531 |23.47
2 |gemm nn k1 Tahitil |2 7865 73 {3968 31 1} { 16 1 1} 5089.90059 155 40 NA 10 7688 2160642.05 | 79.85 1693015 907720 183152 13 128 2324 a.60 1040 61127.75 2358
3 |gemm nn ki Tehitil |3 7865 75 {3968 31 1} {16 1 1} (508926770 155 40 NA 10 7688 2160641.38 | 79.85 1693015 907720 183152 13 128 23.24 a.69 1040 61127.75 2352
4 |gemm nn_ k1 Tahitil |4 7865 77 {3968 31 1} { 16 1 1} 506858059 155 40 NA 10 7688 2161060.88 79.88 1693015 907720 183152 13 128 2324 .70 1042 6110138 2359
5 |gemm nn ki Tahitil |5 7865 79 {3968 31 1} {16 1 1} 508583778 155 40 A 10 7688 2160584.19 | 79.63 1693015 907720 183152 13 128 23.24 a.72 1043 61159.88 2356

Properties 8@ | [

2 6 |gemm nn k1 Tehitin |6 7865 81 {3968 31 1} ({16 1 1} 5083.63230 155 40 NA 10 7688 2160584.19 | 79.79 1693015 907720 183152 13 128 23.24 072 1041 61222 2352

GPU Profile Session =l

I Gpy || |7 |gemmonn k1 Tahin |7 7865 83 {3968 31 1} {16 1 1} (508615570 155 40 NA 10 7688 2161372.06 80.19 1693015 907720 183152 13 128 23.24 a7 1042 61127.75 2356

Performance Counters T
8 [gemm nn i Tahitil |8 7865 85 {3968 31 1} { 16 1 1} 509573333 155 40 NA 10 7688 2160584.19 |79.76 1693015 907720 183152 13 128 2324 a72 1042 61127.75 2356

Executable Path: /home/beckmann/ =l

opencisamples/GEMMgemm s |gemm nn ki Tahiin |9 7865 87 {3968 31 1} ({16 1 1} 5094.80133 155 40 NA 10 7688 2161108 |79.92 1693015 |907720 183152 13 128 23.24 9.70 10.40 6112775 2355

Arguments: -pL =
10 gemm nn_ki Tahitil |10 7865 89 {3968 31 1} { 16 1 1} 50928508l 155 40 NA 10 7688 2160584.19 | 79.87 1693015 907720 183152 13 128 23,24 971 1041 6115988 2359

Working Directory: fhome/beckmann/ |

openclsamples/GEMM

Ready

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 26

#) J0LICH

FORSCHUNGSZENTRUM

Profiling using nvvp

* The timeline says what happened durmg the program execution:

2|S

=l [0] Tesla M2090
=l Context 1 (OpenCL) E h
F MemCpy (HtoD) a C

¥ MemCpy (DtoH)

= e omnce MMV AR 0] invocation of

-_>jr3?3%[1oo]ep:: R .
Kernels = wsaeamers- || the kernel is
= "Gweams MMM A A A pictured as a

* optimizing tips are displayed in the Analysis tab: box

W& Analysis 2 lﬂ Details | =2 Console|- Settings|

-Analysis Results
& Reset All | M Analyze AII|
Low Memcpy/Compute Overlap [0 ns / 32.327 ms = 0%]
Py &
v The percentage of time when memcpy is being performed in parallel with compute is low.

Multiprocessor m @‘ ; Low Memcpy Throughput [1.84 GB/s avg, for memcpys accounting for 100% of all memcpy time]
The memory copies are not fully using the available host to device bandwidth.

Kernel Memory ﬂ@‘ . Low Memcpy Overlap [0 ns /11.322 ms = 0%]

Kernel Instruction m @‘

[
The percentage of time when two memory copies are being performed in parallel is low.

* The Details tab shows information for each kernel invocation and memory copy
— number of registers used
— work group sizes
— memory throughput
— amount of memory transferred

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 27

JULICH

FORSCHUNGSZENTRUM

Intel VTune - Performance analysis tool

™ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

% Bottom-

® Elapsed Time: 1.087s

Total Thread Count: 34
Overhead Time 1.350s
A significant portion of GPU time is spent in synchronization or threading overhead. Consider increasing task granularity or the scope of data synchronization.
Spin Time 0.030s
CPU Time: 6.520s
Paused Time: 0s

® Top Hotspots

This section lists the most active functions in your application. Optimizing these hetspot functions typically results in improving overall application perfformance.

Function CPU Time
emm 2.920s
emm 1.830s

TEB Dispatch Loop] 1.340s

clCreateContext 0.210s

clBuildProgram 0.080s

[Others] 0.140s

(® CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultanecusly. Spin and Overhead time adds to the Idle CPU usage
value. GPU usage may be higher than the Thread Cencurrency level if a thread is executing code on a CPU while it is logically waiting. Try to keep your Target
Concurrency value as close to the CPU number as possible
0.55s5

0.44s

ime

0.33s

0.22s

arget Concurrency

Elapsed Ti

0.11s

0s

01 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Ok F_

Simultaneously Utilized Logical CPUs

@ Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

Application Command Line: Jhomeb/zam/homberg/JUR OPA3/my_swtest/J 3-intel/cuda2openclidgemm_gpu_simple_oclwh

Operating System: 2.6.32-358.el6.x86_64 Scientific Linux release 6.4 (Carbon)
Computer Name: jac0s8
Result Size: 2MB
Collection start time: 13:35:113 14/03/2015 UTC
Collection stop time: 13:35:16 14/03/2015 UTC
@ CPU
Name: Intel(R) Xeon(R) ES processor
Frequency 20GHz

Logical CPU Count 32

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 28

#) J0LICH

FORSCHUNGSZENTRUM

Intel Advisor

Program metrics

Elapsed Time 86,10s
Vector Instruction Set AVXZ2, AVX512 Number of CPU Threads 1
Total GFLOP Count 8,12 Total GFLOPS 0,09

Total Arithmetic Intensity @ 0,07

Loop metrics

Total CPU time 85,78s I 100,0%

Time in 10 vectorized loops 0,785 |

Time in scalar code 85,00s R 99,1%
Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency © 6,35x [[44% &

Program Approximate Gain @ 1,05x

Top time-consuming loops”

Loop Self Time? Total Time? Trip Counts®
& [loop in Richards|acobianEval at richards jacobian_eval.c:612] 4,276s 14,7925 2
& [loop in Richards|acobianEval at richards_jacobian_eval.c:612] 2,779s 20,869s 92257
& [loop in PhaseRelPerm at problem phase rel perm.c:1102] 1,438s 6,715s 2
& [loop in Saturation at problem saturation.c:280] 1,362s 4,563s 2
& [loop in PhaseRelPerm at problem_phase _rel perm.c:1206] 1,320s 8,897s 2
Recommendations”

Loop Self Time? Recommendations?

[loop in PEVDiv at vector utilities.c:391] 0,140s 2 Disable unrolling

[loop in NIFunctionEval at nl function eval.c:465] 0,080s 2 Disable unrolling

[loop in PFVScaleBy at vector_utilities.c:19541] 0,020s 7 Disable unrolling

i Align data

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 29

#) J0LICH

FORSCHUNGSZENTRUM

Tools overview

m Score-P
= Measurement system to collect profiles and traces
= http://score-p.org

= CUBE
= Profile browser
m http://scalasca.org

= Vampir
= Trace visualizer
= https://www.vampir.eu/

= AMD® CodeXL
= Graphical Profiler and Debugger for AMD® APUs, CPUs and GPUs
= http://developer.amd.com/tools-and-sdks/opencl-zone/codex|/

= NVIDIA® Nsight™ Development Platform
= Profiler and Debugger (nvvp) for NVIDIA® GPUs
= used to work for OpenCL until CUDA 4.2
m https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
= How to use with OpenCL: http://uob-hpc.github.io/2015/05/27/nvvp-import-opencl/

= [ntel Vtune
= Xeon Phi performance analysis tool
m https://software.intel.com/en-us/intel-vtune-amplifier-xe

= Intel Advisor
= \ectorization optimization tool
m https://software.intel.com/en-us/intel-advisor-xe

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 30

http://score-p.org/
http://scalasca.org/
https://www.vampir.eu/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://uob-hpc.github.io/2015/05/27/nvvp-import-opencl/
https://software.intel.com/en-us/intel-vtune-amplifier-xe

#))0LICH

FORSCHUNGSZENTRUM

Questions? Ask!

m JSC support
sc@fz-juelich.de

® VI-HPS tuning workshops
http://www.Vvi-hps.org/training/tw

= Apply for free POP performance audit
https://pop-coe.eu/request-service-form

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 31

#) J0LICH

FORSCHUNGSZENTRUM

Hands-on: Jacobi Solver

®
® Jacobi Example oo o
e

= |terative solver for system of equations

Uy=U

ui,j:b uold,i,j+ax(uold,i—l,j+uold,i+1,j)+ay(uold,i,j—1+uold,i,j+1)_rHS/b

= Code uses OpenMP, OpenCL and MPI

for parallelization MPI MPI

Process 1 Process 2

= Domain decomposition
= Halo exchange at boundaries:

= Via MPI between processes

= Via OpenCL between hosts and
accelerators

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 32

#) J0LICH

FORSCHUNGSZENTRUM

Hands-On Exercise

= Copy exercise directory to your working directory on JURECA

scp /home/train060/0OpenCL_Course/Exercise/jacobi.tar.gz jureca:~

® | ogontoJURECA

ssh -X jureca

= Untar jacobi.tar.gz

tar xvf jacobi.tar.gz

m Load modules

module use /homeb/zam/izhukov/modules

module load intel-para CUDA scalasca-ipmpi-cuda

= |nstrument application

PREP="gcorep --static” make

= Submit batch script

sbatch run_scorep.sh

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 33

#) J0LICH

FORSCHUNGSZENTRUM

Hands-On Exercise

Or interactively

salloc --nodes=1 --time=00:30:00 --partition=gpus --gres=gpu:2 --reservation=0OpenCL
OMP_NUM_THREADS=8 srun -n 2 ./bin/jacobi_mpi+opencl <matrix size x> <matrix size y> <CPU_load>

where CPU _load=(0;1)

Load CUBE and Vampir

module load intel-para Cube Vampir

Examine results
= CUBE

cube scorep_jacobi_opencl_sum/profile.cubex

sguare scorep_jacobi_opencl_sum

= Vampir

vamplr scorep_jacobil_opencl trace/traces.otf2

Vectorization and portable programming using OpenCL — Debugging and performance analysis tools 34

	Titel
	Outline
	Debugging
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Performance factors of parallel applications
	Tuning basics
	Performance engineering workflow
	The 80/20 rule
	Classification of measurement techniques
	Sampling
	Instrumentation
	Instrumentation techniques
	Critical issues
	Slide 18
	Slide 19
	Tracing vs. Profiling
	Score-P
	CUBE4 Analysis
	Mission
	Event Trace Visualization with Vampir
	Vampir: Visualization of the NPB-MZ-MPI / BT trace
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Jacobi Solver
	Setup Environment
	Slide 34

