
M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

Introduction to

Parallel Computing

2013 | Bernd Mohr

 Institute for Advanced Simulation (IAS)

 Jülich Supercomputing Centre (JSC)

 2013 JSC 2

Contents

• Introduction

 Terminology

 Parallelization example (crash simulation)

• Evaluating program performance

• Architectures

 Distributed memory

 Shared memory

 Hybrid systems

• Parallel programming

 Message passing, MPI

 Multithreading, OpenMP

 Accelerators, OpenACC

• Debugging + Parallel program performance analysis

• Future issues for HPC

 2013 JSC 3

INTRODUCTION

 2013 JSC 4

High-performance computing

• Computer simulation augments theory and experiments

 Needed whenever real experiments would be too large/small,

complex, expensive, dangerous, or simply impossible

 Became third pillar of science

• Computational science

 Multidisciplinary field that uses advanced computing capabilities to

understand and solve complex problems

• Challenging applications

 Protein folding

 Climate / weather modeling

 Astrophysics modeling

 Nano-scale materials

 . . .

 Realistic simulations need

 enormous computer resources (time, memory) !

 2013 JSC 5

Supercomputer

• Supercomputers:

 Current most powerful and effective

computing systems

• Supercomputer (in the 1980’s and 1990’s)

 Very expensive, custom-built

computer systems

• Supercomputer (since end of 1990’s)

 Large number of “off-the-shelf”

components

 “Parallel Computing”

 2013 JSC 6

Why use Parallel Computers?

• Parallel computers can be the only way to achieve

specific computational goals at a given time

 Sequential system is too “slow”

  Calculation takes days, weeks, months, years, …

  use more than one processor to get calculation faster

 Sequential system is too “small”

  Data does not fit into the memory

  use parallel system to get access to more memory

• [More and more often] You have a parallel system ( multicore)

and you want to make use of its special features

• Your advisor / boss tells you to do it ;-)

 2013 JSC 7

Parallel Computing Thesaurus

• Parallel Computing

 Solving a task by simultaneous use of multiple processors, all

components of a unified architecture

• Distributed Computing (Grid)

 Solving a task by simultaneous use of multiple processors of

isolated, often heterogeneous computers

• Embarrassingly Parallel

 Solving many similar, but independent, tasks; e.g., parameter

sweeps. Also called farming

• Supercomputing

 Use of the fastest and biggest machines to solve large problems

• High Performance Computing (HPC)

 Solving a problem via supercomputers + fast networks + large

storage + visualization

 2013 JSC 8

• Application programmer needs to

 Distribute data

to memories

 Distribute work

to processors

 Organize and

synchronize work

and dataflow

• Extra constraint

 Do it with least resources

most effective way

Programming Parallel Computers

 2013 JSC 9

Example: Crash Simulation

• A greatly simplified model based on parallelizing a crash simulation for

a car company

• Such simulations save a significant amount of money and time

compared to testing real cars

• Example illustrates various phenomena which are common to a great

many simulations and other large-scale applications

 2013 JSC 10

Finite Element Representation

• Car is modeled by a triangulated surface (the elements)

• The simulation consists of modeling the movement of the elements

during each time step, incorporating the forces on them to determine

their position

• In each time step, the movement of each element depends on its

interaction with the other elements that it is physically adjacent to.

 2013 JSC 11

Basic Serial Crash Simulation

1. For all elements

2. Read State(element), Properties(element),

 NeighborList(element)

3. For time = 1 to end_of_simulation

4. For element = 1 to num_elements

5. Compute State(element) for next time step

 based on previous state of element and its neighbors,

 and on properties of element

 2013 JSC 12

Simple Approach to Parallelization

• Parallel computer cluster based on PC-like processors linked with a

fast network ( distributed memory computer), where processors

communicate via messages ( message passing)

• Cannot parallelize time, so parallelize space

• Distribute elements to processors ( data distribution)

• Each processor updates the positions of the elements stored in its

memory ( owner computes)

• All machines run the same program ( SPMD)

 2013 JSC 13

A Distributed Car

 2013 JSC 14

Basic Parallel Crash Simulation

• Concurrently for all processors P

1. For all elements assigned to P

2. Read State(element), Properties(element),

 NeighborList(element)

3. For time = 1 to end_of_simulation

4. For element = 1 to num_elements-in-P

5. Compute State(element) for next time step

 based on previous state of element and its neighbors,

 and on properties of element

6. Exchange state information for neighbor elements

 located in other processors

 2013 JSC 15

Important Issues

• Allocation: How are elements assigned to processors?

 Typically, (initial) element assignment determined by serial

preprocessing using domain decomposition approaches

 Sometimes dynamic re-allocation ( load-balancing) necessary

• Separation: How does processor keep track of adjacency info for

neighbors in other processors?

 Use ghost cells (halo) to copy remote neighbors, add transition

table to keep track of their location and which local elements are

copied elsewhere

 2013 JSC 16

Halos

 2013 JSC 17

Important Issues II

• Update: How does a processor use State(neighbor) when it does not

contain the neighbor element?

 Could request state information from processor containing

neighbor. However, more efficient if that processor sends it

• Coding and Correctness: How does one manage the software

engineering of the parallelization process?

 Utilize an incremental parallelization approach, building in

scaffolding

 Constantly check test cases to make sure answers correct

• Efficiency: How do we evaluate the success of the parallelization?

 Evaluate via speedup or efficiency metrics

 2013 JSC 18

EVALUATING

PROGRAM PERFORMANCE

 2013 JSC 19

Evaluating Parallel Programs

• An important component of effective parallel computing is determining

whether the program is performing well.

• If it is not running efficiently,

or cannot be scaled to the targeted number of processors,

 one needs to determine the causes of the problem

 performance analysis

 tool support available

 and then develop better approaches

 tuning or optimization

 very little tools support

 difficult as often application and platform specific

 2013 JSC 20

Definitions

• For a given problem A, let

 SerTime(n) = Time of the best serial algorithm to solve A

 for input of size n

 ParTime(n,p) = Time of the parallel algorithm + architecture

 to solve A for input size n, using p processors

 Note that SerTime(n) ≤ ParTime(n,1)

• Then

 Speedup(p) = SerTime(n) / ParTime(n,p)

 Work(p) = p • ParTime(n,p)

 Efficiency(p) = SerTime(n) / [p • ParTime(n,p)]

 2013 JSC 21

Definitions II

• In general, expect

 0 ≤ Speedup(p) ≤ p

 Serial work ≤ Parallel work < ∞

 0 ≤ Efficiency ≤ 1

• Linear speedup: if there is a constant c > 0 so that speedup is at

least c • p. Many use this term to mean c = 1.

• Perfect or ideal speedup: speedup(p) = p

• Superlinear speedup: speedup(p) > p (efficiency > 1)

 Typical reason: Parallel computer has p times more memory

(cache), so higher fraction of program data fits in memory instead

of disk (cache instead of memory)

 Parallel version is solving slightly different, easier problem or

provides slightly different answer

 2013 JSC 22

Amdahl’s Law

• Amdahl [1967] noted:

 Given a program, let f be the fraction of time spent on operations

that must be performed serially (not parallelizable work). Then for p

processors:

 1

 Speedup(p) ≤

 f + (1 – f)/p

 Thus no matter how many processors are used

 Speedup(p) ≤ 1/f

 Unfortunately, f is typically 5 – 20%

 2013 JSC 23

Maximal Possible Speedup / Efficiency

f=0.001

f=0.01

f=0.1

 2013 JSC 24

Amdahl’s Law II

• Amdahl was an optimist

 Parallelization might require extra work, typically

 Communication

 Synchronization

 Load balancing

 Amdahl convinced many people that general-purpose parallel

computing was not viable

• Amdahl was a pessimist

 Fortunately, we can break the law!

 Find better (parallel) algorithms with much smaller values of f

 Superlinear speedup because more data fits cache/memory

 Scaling: exploit large parallel machines by scaling the problem

size with the number of processes

 2013 JSC 25

Scaling

• Amdahl scaling

• But why not … ?

 2013 JSC 26

Scaling

• Sometimes the serial portion

 is a fixed amount of time independent of problem size

 grows with problem size but slower than total time

• Thus large parallel machines can often be exploited by scaling the

problem size with the number of processes

• Scaling approaches used for speedup reporting/measurements:

 Fixed problem size ( strong scaling)

 Fixed problem size per processor ( weak scaling)

 Fixed time, find largest solvable problem [Gustafson 1988]

Commonly used in evaluating databases (transactions/s)

 Fixed efficiency: find smallest problem to achieve it

( isoefficiency analysis)

 2013 JSC 27

Parallelization

• Goal: Divide work and/or communication between processors

• Two approaches:

 Domain decomposition

 Partition a (perhaps conceptual) space

 Different processors do similar (same) work on different pieces

 Examples: harvesting a large farm field with many workers

 Functional decomposition

 Different processors work on different types of tasks

 Examples: workers on an assembly line, subcontractors on a

project

• Functional decomposition rarely scales to many processors, so most

programs are parallelized based on domain decomposition

 2013 JSC 28

• Goal

 Divide work between

processors equally

 work load on all

 processors

 is the same

 load balancing

• Difficulties

 Unknown distribution

of work

 Dynamic changes in

work load

Parallelization: Load Balancing

 2013 JSC 29

Load Balancing

• Ultimate goal:

Divide work and/or communication between processors equally

 work load on all processors is the same

 communication load on all processors is the same

 load balancing

• Many different types of load balancing problems

 Static (fixed, do it once) or dynamic (changing, adapt to load)

 Parameterized or data dependent

 Homogeneous or inhomogeneous

 Low or high dimensional

 Graph oriented, geometric, lexicographic, …

• Because of this diversity, many different approaches and tools are

needed

 2013 JSC 30

Load Balancing: Complicating Factors

• Objects being computed do not have a simple dependency pattern

among themselves, so communication load-balancing is difficult to

achieve

• Objects do not have uniform computational requirements, and it may

not initially be clear which ones need more time

• If objects are repeatedly updated (such as elements in the crash

simulation), the computational load of an object may vary over

iterations

• Objects may be created dynamically and in an unpredictable manner,

complicating both computational and communicational load balance

 2013 JSC 31

ARCHITECTURE

 2013 JSC 32

Architectural Taxonomies

• The classifications of parallel computers are in terms of hardware; but

there are natural software analogues

• These classifications provide ways to think about problems and their

solution.

• Note: many real systems blend approaches, and do not exactly

correspond to the classifications

 2013 JSC 33

Flynn’s Instruction/Data Taxonomy

• Flynn 1966: At any point in time can have

 S S

 M M

• SI Single Instruction: All processors execute same

 instruction. Usually involves a central controller

• MI Multiple Instruction: Different processors may be

 executing different instructions

• SD Single Data: All processors are operating on the same data

• MD Multiple Data: Different processors may be operating on

 different data

I D

 2013 JSC 34

Flynn’s Instruction/Data Taxonomy II

• SISD standard serial computer and program

• MISD extremely rare; some fault-tolerant schemes, using

 different computers and programs to operate on

 same input data

• MIMD almost all parallel computers are of this type

• SIMD there used to be companies that made such systems

 (e.g., Thinking Machines' connection machine);

 only special purpose systems made now

 2013 JSC 35

Parallel Architectures: Distributed Memory

• Interconnected nodes

(processor + memory)

• All memory is associated

with processors

• Advantages

 Memory is scalable

with number of processors

 can build very large machines (10000's of nodes)

 Each processor has rapid access to its own memory without

interference or cache coherency problems

 Cost effective and easier to build: can use commodity parts

Interconnect

M0 M1 Mn ...

P0 P1 Pn ...

 2013 JSC 36

Parallel Architectures: Distributed Memory II

• Disadvantages

 To retrieve information from another processor’s memory a

message must be sent over the network to the home processor

 Programmer is responsible for many of the details of the

communication; easy to make mistakes

 Explicit data distribution

 Explicit communication via messages

 Explicit synchronization

 May be difficult to distribute the data structures, often additional

data structures needed (ghost cells, location tables, …)

• Programming Models

 Message passing: MPI, PVM, shmem, LAPI, ELAN, ...

 Data parallelism: HPF

 2013 JSC 37

• Further classification based on how memory is accessed

 NORMA (NO Remote Memory Access)

 Nodes connected via network adaptors

 to external networks (switches)

 NOW (Network of Workstations)

 COW (Cluster of Workstations)

 RMA (Remote Memory Access)

 Processors connected via internal

 special interconnect hardware

 Often allows one-sided memory

 transfers (get, put)

 MPP (Massively Parallel Processing)

system

Parallel Architectures: Distributed Memory III

Network or Switch

M0 M1 Mn ...

P0 P1 Pn ...

Internal Networks

M0 M1 Mn ...

P0 P1 Pn ...

Example: Cray T3E

Example: PC Cluster

 2013 JSC 38

Parallel Architectures: Shared Memory

• More exact: shared address space

accessible by all processors

 physical memory modules may be

 distributed

• Processors may have local memory

(e.g., caches) to hold copies of

some global memory. Consistency of

these copies is usually maintained by special hardware

• Programming Models

 Automatic parallelization via compiler

 Explicit threading (e.g. POSIX threads)

 OpenMP

 [MPI]

Interconnect

P0 P1 Pn

Memory

...

M0 M1 Mn ... Memory

 2013 JSC 39

Parallel Architectures: Shared Memory II

• Advantages

 Global address space is user-friendly; program may be able to use

global data structures efficiently and with little modification

 Typically easier to program

 Implicit communication via (shared) data

 But still explicit synchronization!

 Data sharing (communication) between tasks is very fast

• Disadvantages

 Requires special expensive hardware for efficient (scalable)

memory access and cache coherence

 Therefore not very scalable (10 to 100's of nodes)

 2013 JSC 40

Parallel Architectures: Shared Memory III

• Further classification based on memory access time:

 UMA (Uniform Memory Access)

 Equal access times to memory from each processor

 Almost always cache-coherent

 Interconnects:

 Bus Crossbar

 Least scalable architecture

 Also used: SMP (Symmetrical Multi Processor)

 Example: Current Multi-core processors

P0 P1 P3

M0 M1 M3 M2

P2 P0 P1 P3

M0 M1 M3 M2

P2

 2013 JSC 41

Parallel Architectures: Shared Memory IV

• Further classification based on memory access time:

 NUMA (Non-Uniform Memory Access)

 Often made by linking UMA nodes with switching networks

 One node can directly access memory of another node through

special hardware; however this access is typically much slower

 cc-NUMA (cache-coherent NUMA)

 Also used: SMP (Scalable Multi Processor)

• Examples: SGI Altix

P0 P1

M0 M1

P0 P1

M0 M1

P0 P1

M0 M1

P0 P1

M0 M1

 2013 JSC 42

Shared Memory on Distributed Memory

• It is usually easier to parallelize a program

on a shared memory system

• However, most systems have distributed memory

because of the cost and scalability advantages

• To gain both advantages people investigate using software to emulate

shared memory access

 Virtual shared memory: virtualization inside operating system on

the memory page level  rarely efficient

 Special programming languages or libraries providing a global

address space abstraction

 Global arrays

 Unified Parallel C (UPC)

 Co-Array Fortran (CAF)

 2013 JSC 43

• Logical extension of distributed and shared memory architectures

  Increased complexity in hardware, software, and programming!!!

• Programming Models

 Message passing

 Message passing between nodes + multi-threading within nodes

• Examples: IBM BlueGene/P or Cray XT4

Node0 Node1 Noden

Parallel Architectures: Hybrid Systems

Network or Switch

...
Interconnect

P0 P1 Pn ...

Memory

Interconnect

P0 P1 Pn ...

Memory

Interconnect

P0 P1 Pn ...

Memory

 2013 JSC 44

Parallel Architectures: Hybrid Systems II

• Two typical forms:

• Clusters of shared memory nodes

 Number of nodes >> number of processors inside node

 Often small, cheaper SMP nodes (rack-mounted, blades)

 Sometimes called clumps

 Often commodity network (e.g., Gigabit Ethernet)

• Constellation systems

 Number of processors inside node > number of nodes

 Larger, more expensive UMA or cc-NUMA nodes

 Typically special high performance interconnect networks

 2013 JSC 45

Accelerators

• Special hardware for accelerating computations

has long tradition in HPC

 Floating-point units

 SIMD/vector units

 MMX, SSE (Intel), 3DNow! (AMD), AltiVec (IBM)

 BlueGene double hummer, …

 FPGA (Field Programmable Gate Arrays)

 Cell-Chip

 Main PowerPC core + 8 SPE (Synergistic Processing Elements)

 LLNL RoadRunner (Opteron / Cell heterogeneous system)

• Latest trends in HPC:

 General Purpose computing on Graphics Processing Units (GPGPU)

 Many-core, e.g. Intel MIC

 2013 JSC 46

Abstracted x64 + Accelerator Architecture

 2013 JSC 47

GPGPU

• Modern GPUs

 Have a parallel many-core architecture

 Each core capable of running 1000s of threads simultaneously

 MIMD blocks with SIMD fine-grain parallelism

 Highly parallel structure makes them more effective than general-

purpose CPUs for some (vectorizable) algorithms

• Large HPC clusters with GPU acceleration already built (#GPUs):

 Titan (18,688), Tianhe-1A (7168), Nebulae (4640),

Tokyo Tech (4224), …

• Difficult to use hardware effectively

 High-level (portable) programming interfaces just evolving

 Main disadvantage: data must be moved

to and from main memory to GPU memory

 Data locality important, otherwise performance degrades

significantly

 2013 JSC 48

Intel Many Integrated Core Architecture (MIC)

• Intel Xeon Phi (2013)

 1.1 GHz, up to 61 cores, each 4-way SMT, 512-bit SIMD instructions

• Current systems

 Tianhe-2A (48,000), Discover (NASA, 480), MVS-10P (RSC, 416)

Core

L2

TD
Core

L2

TD

Core

L2

TD
Core

L2

TD

Core

L2

TD
Core

L2

TD

Core

L2

TD
Core

L2

TD

…

…

…

…

GDDR MC

GDDR MC

GDDR MC

GDDR MC

PCIe

Client

Logic

 2013 JSC 49

Parallel Architectures: State of the Art

Network or Switch

...

N0 N1 Nk

Inter-
connect

P0 Pn ...

Memory

A0

Am

... Inter-
connect

P0 Pn ...

Memory

A0

Am

... Inter-
connect

P0 Pn ...

Memory

A0

Am

...

Pi
Core0 Core1 Corer

L10 L11 L1

L20 L2r/2

L30

...

... Aj

Router Router

Router

Router Router

Router

Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

or

 2013 JSC 50

Example: BSC IBM MareNostrum (2006)

 2013 JSC 51

Example: BSC IBM MareNostrum (2006)

• 64-bit IBM PowerPC 970MP

2.3 GHz, 2-way SMP

• 94.21 Teraflop/s peak

63.83 Teraflop/s Linpack

 Nov06: #5

 Jun12: #465

• 20 TByte memory

• 2,560 JS21 blades

 10,240 cores

• Interconnects

 Myrinet

 Gigabit Ethernet

 2013 JSC 52

Example: NUDT Tianhe-2A (2013)

• Node:

2 x 64-bit Intel IvyBridge

+

3 x Intel Xeon Phi

• 54.90 Petaflop/s peak

33.86 Petaflop/s Linpack

 Jun13: #1

• 1.4 PByte memory

• 162 racks

• 16,000 nodes

• 3,120,000 cores

• Express-2 Interconnect

(Chinese)

• 17.8 MW

 2013 JSC 53

Example: NUDT Tianhe-2A (2013)

• 16,000 Nodes each

 2 x 64-bit Intel IvyBridge

 2.2 GHz

 12-way SMP

 3 x Intel Xeon Phi

 1.1 GHz,

 57 cores

Pictures of

node boards

courtesy of

Taisuke Boku

 2013 JSC 54

Example: LLNL Sequoia computer (2012)

• 64-bit IBM PowerPC A2

1.6 GHz, 16-way SMP

• 20.13 Petaflop/s peak

17.17 Petaflop/s Linpack

 Jun12: #1

 Jun13: #3

• 1.6 PByte memory

• 96 racks

• 98,304 nodes

• 1,572,864 cores

• 5D interconnect

• Water cooling

 2013 JSC 55

Example: RIKEN AICS K computer (2011)

• 64-bit Sparc VIIIfx

2.0 GHz, 8-way SMP

• 11.28 Petaflop/s peak

10.51 Petaflop/s Linpack

 Nov11: #1

 Jun13: #4

• 1.41 PByte memory

• 864 racks

• 88,128 nodes

• 705,024 cores

• 6D interconnect (Tofu)

• Water cooling

 2013 JSC 56

Example: RIKEN AICS K computer (2011)

Only supercomputer with its

own train station!

4th floor: K computer

3rd floor: Computer cooling

2nd floor: Disks

1st floor: Disk cooling

Earth quake dampers

 2013 JSC 57

Example: RIKEN AICS K computer (2011)

Building

Earth quake

Security

“wiggle” moves damper

horizontal moves

damper

flexible pipes

V
e

rt
ic

a
l
m

o
v
e

s

d
a
m

p
e
r

 2013 JSC 58

Example: SuperMUC (2012)

• Fat node

 2 x 64-bit Intel Sandy Bridge EP

2.7 GHz, 8-way SMP

• Thin node

 4 x Intel Westmere EX

2.4 Ghz, 10-way SMP

• 3.19 Petaflop/s peak

2.90 Petaflop/s Linpack

 Jun12: #4

 Jun13: #9

• 340 TByte memory

• 9,216 fat / 205 thin nodes

• 155,656 total cores

• Infiniband FDR10 interconnect

• Warm-water cooling (in 30° → out 50°)

 2013 JSC 59

Example: SuperMUC (2012)

TUM Computer Science

LRZ
Machine hall

Water

infrastructure

Machine hall raised floor

 2013 JSC 60

Example: NSCC Tianhe-1A (2010)

• 64-bit Intel Xeon X5670 6C

2.93 GHz, 6-way SMP

• 4.70 Petaflop/s peak

2.57 Petaflop/s Linpack

 Nov10: #1

 Jun13: #10

• 262 TByte memory

• 112 racks

• 14,336 Xeon

• 86,016 cores

• 7,168 Nvidia

Tesla M2050

• 2,048 NUDT FT1000 processors

• Galaxy interconnect (Chinese)

 2013 JSC 61

Example: JSC IBM BlueGene/P (2009)

 2013 JSC 62

• 32-bit PowerPC 450

850 MHz, 4-way SMP

• 1,00 Petaflop/s peak

0,82 Petaflop/s Linpack

 Jun09: #3

 Nov12: #25

• 144 TByte memory

• Numerous hardware

 72 racks, 73728 nodes, 294912 cores,

 648 power modules, 576 link cards, 144 service cards,

 4352 data cables, 288 service cables, … → 4.1 km

• Interconnects

 3D-torus, collective (tree), and barrier network

 10 GigaBit (I/O), 1 GigaBit (control)

Example: JSC IBM BlueGene/P (2009)

 2013 JSC 63

• 64-bit PowerPC A1

1.6 GHz, 16-way SMP

each 4-way SMT

• 5.87 Petaflop/s peak

5.00 Petaflop/s Linpack

 Nov12: #5

 Jun 13: #7

• 448 TByte memory

• 28 racks

• 458,752 cores

• 5D-torus interconnect

• 90% water cooled, 10% air

• 6 racks BG/Q more powerful than 72 racks BG/P!

Example: JSC IBM BlueGene/Q (2012)

 2013 JSC 64

 2013 JSC 65

JSC Machine Hall Specifications

• Area: 1000 m²

 self supporting roof

• Volume: 6500 m³

• Power supply: 5300 kW

• Floor temperature: 16 °C

• Humidity: 40 – 60 %

• Air exchange rate: 38/h

• Air exchange: 250000 m³/h

• UPS: only for communication and disks

 2013 JSC 66

Air Cooling System

Glycol cooling

(for <10 °C outside)

6 cooling machines connected to

central cold water supply and glycol cooling system

 2013 JSC 67

Air + Water Cooling System

Glycol coolers

Cooling

system

Cold water

distribution

Central cold

water supply

 2013 JSC 68

Water-Cooled Blue Gene/P

16 C

31 C 35 C

35 C

18 C 24 C

20 C

…

16 C

8 racks

in one

row

9 rows with

8 racks each

 2013 JSC 69

JSC: Supply of Cooling Water

Bringing water into

basement

Establishing a room

with pumps to prepare

different inlet temperatures

 2013 JSC 70

JSC: Extending the Power Supply

from

1,6 MW

to

5,3 MW

 2013 JSC 71

Number of fuses:
• 72x3 125 A
• 220x1 32 A
• 598x1 16 A
• 174x1 32 A
• 12x3 32 A
 1244 total

30 m power distribution panels

nearly 50 km

length of cables

JSC: Power Distribution

 2013 JSC 72

Length of the communication cables:

• BG/P: 23 km (copper)

 21 km (fiber)

• JUROPA: 20 km (mixed)

• HPC-FF: 16 km (mixed)

 80 km

JSC: Supercomputer Networks

 2013 JSC 73

JSC: Fire Prevention

Argon bottles

Pressure equalization

 2013 JSC 74

Costs (JSC, 2011)

• Jugene (IBM BlueGene/P)

 1 Node hour (Quadcore) 0.039 €

 Typical job (1 day x 2048 nodes) 1916.92 €

 Maximum (1 day x 73728) 69009.41 €

• Juropa (Bull/Sun Intel Nehalem/Infiniband cluster)

 1 Node hour (Dual quadcore) 0.39 €

 Typical job (12h x 128 nodes) 599.04 €

 Maximum (1 day x 3288) 30775.68 €

 2013 JSC 76

PARALLEL PROGRAMMING

 2013 JSC 77

• Application programmer needs to

 Distribute data

to memories

 Distribute work

to processors

 Organize and

synchronize work

and dataflow

• Extra constraint

 Do it with fewest resources

in most effective way

RECALL: Programming Parallel Computers

 2013 JSC 78

Parallelization Strategies

• Two major computation resources:

 Processor

 Memory

• Parallelization means

 Distributing work among processors

 Synchronization of the distributed work

• If memory is distributed it also means

 Distributing data

 Communicating data between local and remote processors

• Programming models offer combined methods for

 Distribution of work & data

 Communication and synchronization

 2013 JSC 79

Processes and Threads

• Processes are entities provided by the operating system (OS) to

execute programs

• A typical (sequential) process consists of a thread of execution

executing the program starting with main. The thread can access

 A stack for storing local data

 A heap for storing dynamic data (e.g., via allocate/malloc/new)

 Space for storing global static data

• If OS supports multi-threading, a process can have multiple threads

 Can be dynamically created and destroyed at run-time

 Each thread can access the heap and global data

 Each thread has its own stack!

• Parallel programs

 Can use multiple processes + mechanism to communicate

 On shared memory computer, use multi-threading

 Or combination of both

 2013 JSC 80

Single-threaded vs. Multi-threaded

Sequential

Code

Heap Files Global Data

Registers Stack Registers

Stack

Registers

Stack

Registers

Stack

Heap Files Global Data

Single-threaded

process

Multi-threaded

process

Sequential

Code0

Sequential

Code1

Sequential

Code2

 2013 JSC 81

Basic Parallel Programming

Paradigm: SPMD

• SPMD: Single Program Multiple Data

• Basic paradigm for implementing parallel programs

• Programmer writes one program

 Which is executed on all processors

 But written in a way that it works on different parts of the data

• Special cases (e.g., different control flow) is handled

inside the program

if (process_or_thread_id == 42) then

 call do_something()

else

 call do_something_else()

endif

 2013 JSC 82

Programming Models: Message Passing

• Typically used on distributed memory computer systems

• Local (“distributed”) style

 SPMD-style program runs locally using local data

• Explicit data distribution, communication and synchronization

 High programming overhead

 Message passing libraries: MPI, PVM, ...

P0 P1 P2 P3

 2013 JSC 83

Message Passing Performance

• Performance metrics for message passing

 Latency: time to transfer message

 Bandwidth: amount of data which can be transferred in fixed time

measured for a specific message length

• Reducing latency often important for performance. Approaches:

 Reduce number of messages by mapping communicating entities

onto the same processor

 Combine messages having the same sender and destination

 If processor P has data needed by processor Q, have P send to Q,

rather than Q requesting it. P should send as soon as data ready, Q

should read as late as possible to increase probability data has

arrived  Send early, receive late, don’t ask but tell.

 Try overlapping communication and calculation (not all systems

can do this)

 2013 JSC 84

Programming Models: MPI

• MPI: Message Passing Interface

• De-facto standard message passing interface

 MPI 1.0 in 1994

 MPI 1.2 in 1997

 MPI 2.0 in 1997

 MPI 2.1 in 2008

 MPI 2.2 in 2009

 MPI 3.0 in 2012

• Library interface

• Language bindings for Fortran, C, C++, [Java]

• Typically used in conjunction with SPMD programming style

• http://www.mpi-forum.org

 2013 JSC 85

MPI Functionality

• Point-to-point communication

(between 2 processes)

• Collective communication

(between a group of processes)

• Barrier synchronization

• Management of communicators, data types, topologies

• New in MPI 2.0

 One-sided communication

 Parallel I/O

 F90 and C++ support

 Process creation

P1 P2 Pn ... P0

P1 P2 Pn ... P0

• New in MPI 3.0

 Non-blocking collectives

 Neighborhood collectives

 mpi_f08 Fortran module

 MPI Tool Interface

 2013 JSC 86

MPI Functionality

 2013 JSC 87

MPI Communicators

• Communicator consists of a process group

and a communication context

• Predefined communicator (representing all processes)

is MPI_COMM_WORLD

• Each message is sent relative to a communicator

• All processes in the process group of the communicator have to take

part in a collective operation

• Operations are provided to:

 Determine the number of processes in a communicator

 Determine the rank of the executing process relative to a

communicator  0 to N-1

 Build new process groups and communicators

 2013 JSC 88

MPI Basic Routines

MPI_Init()

 Initialize MPI library

 Needs to be called once, before all other MPI functions

MPI_Finalize()

 Wrap-up / terminates MPI usage

 Needs to be called once, after all other MPI functions

MPI_Comm_size(comm, size)

 Get total number of processes in communicator comm

MPI_Comm_rank(comm, rank)

 Get process identification (rank) within comm

 2013 JSC 89

Example: Hello World (MPI), Fortran

program main
include 'mpif.h'
integer :: ierr, myrank, numprocs

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

write(*,*) "hello from", myrank, "of", numprocs

call MPI_Finalize(ierr)
end program

Fortran MPI routines:

error code returned in

extra parameter!

 2013 JSC 90

Example: Hello World (MPI), C I

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
 int ierr, myrank, numprocs;

 ierr = MPI_Init(&argc, &argv);
 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 ierr = MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 printf("hello from %d of %d\n", myrank, numprocs);

 ierr = MPI_Finalize();
}

C:

error code returned by

functions!

C MPI_Init:

needs access to

program parameters

 2013 JSC 91

Example: Hello World (MPI), C II

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
 int ierr, myrank, numprocs;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 printf("hello from %d of %d\n", myrank, numprocs);

 MPI_Finalize();
}

C:

error code returned

but ignored

C MPI_Init:

needs access to

program parameters

 2013 JSC 92

Compiling MPI Programs

• Many implementations provide special compilation commands

which automatically

 direct the compilers to the location of MPI

header files and modules

 link in all necessary MPI and network libraries

 often called:

 C: mpicc

 C++: mpiCC, mpicxx, or mpic++

 Fortran: mpif90, mpif77

 2013 JSC 93

Executing MPI Programs

• Start mechanism is implementation dependent

 Many implementations:

 mpirun –np <numprocs> <executable> [<options>]

 MPI-2 standard:

 mpiexec –n <numprocs> <executable> [<options>]

• Possible implementation-dependent differences

 Options

 Environment variables

 Passing runtime parameters, ...

• Start mechanism in general different with a batch system

like PBS (qsub …) or LoadLeveler (llsubmit ...)

 2013 JSC 94

Running MPI on Distributed Memory

Interconnect

M0

...

P0

...

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

Mn

Pn

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

M1

P1

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

 mpirun

 2013 JSC 95

Running MPI on Shared Memory

Interconnect

Memory

P0

...

Pn P1

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

 mpirun MPI_Init
print “hello”
MPI_Finalize

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

myid

numproc

MPI_Init
print “hello”
MPI_Finalize

myid

numproc

 2013 JSC 96

Examples: Executing Hello World (MPI)

• mpiexec –n 4 helloworld.exe

• mpiexec –n 4 helloworld.exe

• mpiexec –n 4 helloworld.exe

hello from 0 of 4
hello from 1 of 4
hello from 2 of 4
hello from 3 of 4

hello from 3 of 4
hello from 1 of 4
hello from 0 of 4
hello from 2 of 4

hehellhelllo from 3
lo from helf 4lo from
1 of 4o fr 2 of 4
om 0 of 4

 2013 JSC 97

MPI Messages I

• Communication in MPI is done by exchanging messages

• A message is always described by 3 parameters

 buffer: the address of the object containing the data

 num: number of data elements

 datatype: type of a data element

 Fortran: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, …

 C: MPI_INT, MPI_FLOAT, MPI_DOUBLE, …

P0 P1 Pn
...

Interconnect

M0 ...

 2013 JSC 98

MPI Messages II

• Point-to-point messages can be tagged

(“marked”) with a user-defined identification number

• Messages are local to communicator

 Source and destination process

 described by rank within communicator

 Special case null process MPI_PROC_NULL

– Message ignored if used as destination or source

– Useful for non-circular shifts at boundary processes

• Receiving process gets extra information on received message

through MPI status object

 Fortran: integer :: status(MPI_STATUS_SIZE)

 C: MPI_Status status

To:

Rank 4

Communicator ABC

 2013 JSC 99

Basic MPI Point-to-Point Routines

MPI_Send(buffer, num, datatype, dest, tag, comm)

 Called on sender process

 Pack data inside buffer into a message tagged with tag and

send it out to rank dest within comm

MPI_Recv(buffer, num, datatype, src, tag, comm, status)

 Called on receiver process

 Receive message tagged with tag from
rank src within comm and unpack message into data buffer

MPI_Sendrecv(sendbuf, sendnum, senddtype, dest, sendtag,

 recvbuf, recvnum, recvdtype, src, recvtag,

 comm, status)

 Send a message and receive one at the same time

 Useful for executing shift across a chain of processes

 2013 JSC 100

Example:

Sending Messages in a Ring, Fortran

program shift
include 'mpif.h'
integer :: left, right, ierr, myrank, numprocs
integer :: value=0, tag=42, status(MPI_STATUS_SIZE)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

left = mod(myrank - 1 + numprocs, numprocs)
right = mod(myrank + 1, numprocs)
call MPI_Sendrecv(myrank, 1, MPI_INTEGER, right, tag, &
 value, 1, MPI_INTEGER, left, tag, &
 MPI_COMM_WORLD, status, ierr)
write (*,*) myrank, "received", value

call MPI_Finalize(ierr)
end program

 2013 JSC 101

Example:

Sending Messages in a Ring, C

#include <stdio.h>
#include <mpi.h>

int main(int argc, char* argv[]) {
 int left, right, ierr, myrank, numprocs, value=0, tag=42;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 left = (myrank - 1 + numprocs) % numprocs;
 right = (myrank + 1) % numprocs;
 MPI_Sendrecv(&myrank, 1, MPI_INT, right, tag, &value, 1,
 MPI_INT, left, tag, MPI_COMM_WORLD, &status);
 printf("%d received %d\n", myrank, value);
 MPI_Finalize();
 return 0;
}

 2013 JSC 102

MPI Collective Operations

MPI_Barrier(comm)

 Synchronizes all processes in a group

MPI_Bcast(buffer, num, datatype, root, comm)

 Distribute same data from root process to process group

P0 A

P1

P2

P0 A

P1

P2

Bcast

root:

A

A

 2013 JSC 103

MPI Collective Operations II

MPI_Scatter(sendbuf, sendnum, senddtype,
 recvbuf, recvnum, recvdtype, root, comm)

 Distribute different data from root to process group

MPI_Gather(sendbuf, sendnum, senddtype,
 recvbuf, recvnum, recvdtype, root, comm)

 Collects data from process group at root process

P0

P1

P2

P0 A

P1

P2 C

B

Scatter

Gather

root: A B C

 2013 JSC 104

MPI Collective Operations III

MPI_Reduce(sendbuf, recvbuf, num, dt, op, root, comm)

 Collects data from process group at root process by reducing it

to single value using operation op (e.g. sum)

MPI_Allreduce(sendbuf, recvbuf, num, dt, op, comm)

 Variant of MPI_Reduce where all processes receive the result

P0

P1

P2

P0 A

P1

P2 C

B Reduce

root:
AopBopC

 2013 JSC 105

Example: Max value of Polynomial (serial)

program poly_max_serial
integer :: i,nsteps
double precision :: x,y,ymax,step,coeff(4),xmin,xmax

open(1, file="poly.dat")
read(1,*) coeff, xmin, xmax, nsteps

ymax = -huge(x)
 x = xmin
step = (xmax - xmin) / (nsteps - 1)
do i = 1, nsteps
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 ymax = max(ymax, y)
 x = x + step
end do

write(*,*) "Maximum is ", ymax
end program

 2013 JSC 106

MPI Work Distribution

do i = 1, N
 call work(i)
end do

do i = rank+1, N, numprocs
 call work(i)
end do

Cyclic

c = N / numprocs
low = rank*c + 1
high = low + c – 1
if (rank==numprocs-1) &
 high = N

do i = low, high
 call work(i)
end do

Block 0 1 2 3 4 5 6 7 8 9

c = N / numprocs
r = mod(N,numprocs)
low = rank*c + min(rank,r) + 1
if (rank<r) c = c + 1
high = low + c - 1

do i = low, high
 call work(i)
end do

Block balanced 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 Sequential 0

 2013 JSC 107

Work Distribution of Polynomial Example

 x = xmin
step = (xmax - xmin) / (nsteps - 1)
do i = 1, nsteps
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 ymax = max(ymax, y)
 x = x + step
end do

 x = xmin
step = (xmax - xmin) / (nsteps - 1)
do i = myrank+1, nsteps, numprocs
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 ymax = max(ymax, y)
 x = x + step
end do

 x = xmin
step = (xmax - xmin) / (nsteps - 1)
do i = myrank+1, nsteps, numprocs
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 ymax = max(ymax, y)
 x = x + step
end do

step = (xmax - xmin) / (nsteps - 1)
do i = myrank+1, nsteps, numprocs
 x = xmin + (i-1) * step
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 lmax = max(lmax, y)
end do

 2013 JSC 108

Example: Max value of Polynomial (MPI) I

program poly_max_mpi
include 'mpif.h'
integer :: i,ierr,myrank,numprocs
double precision :: x,y,ymax,lmax,step,coeff(4),domain(3)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

if (myrank == 0) then
 open(1, file="poly.dat")
 read(1,*) coeff, domain
endif

call MPI_Bcast(coeff, 4, MPI_DOUBLE_PRECISION, 0, &
 MPI_COMM_WORLD, ierr)
call MPI_Bcast(domain, 3, MPI_DOUBLE_PRECISION, 0, &
 MPI_COMM_WORLD, ierr)

 2013 JSC 109

Example: Max value of Polynomial (MPI) II

lmax = -huge(x)
step = (domain(2) - domain(1)) / (domain(3) - 1)
do i = myrank+1, domain(3), numprocs
 x = domain(1) + (i-1) * step
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 lmax = max(lmax, y)
end do

call MPI_Reduce(lmax, ymax, 1, MPI_DOUBLE_PRECISION, &
 MPI_MAX, 0, MPI_COMM_WORLD, ierr)

if (myrank == 0) then
 write(*,*) "Maximum is ", ymax
endif

call MPI_Finalize(ierr)
end program

 2013 JSC 110

Example:

PI Calculation (serial)

program pi_serial ! Approximate  with
integer :: i,n ! n-point rectangle
double precision :: x,sum,pi,h ! quadrature rule

open(1, file="pi.dat")
read(1,*) n ! Number of rectangles

h = 1.0d0 / n
sum = 0.0d0
do i = 1, n
 x = (i - 0.5d0)*h
 sum = sum + (4.d0/(1.d0 + x*x))
end do
pi = h * sum

write(*, fmt="(A, F16.12)") "Value of pi is ", pi
end program

 2013 JSC 111

Example:

PI Calculation (MPI) I

program pi_mpi
include 'mpif.h'
integer :: i,n,ierr,myrank,numprocs
double precision :: x,sum,pi,h,mypi

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

if (myrank == 0) then
 open(1, file="pi.dat")
 read(1,*) n
end if

call MPI_Bcast(n, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

...

 2013 JSC 112

Example:

PI Calculation (MPI) II

...
h = 1.0d0 / n
sum = 0.0d0
do i = myrank+1, n, numprocs
 x = (i - 0.5d0)*h
 sum = sum + (4.d0/(1.d0 + x*x))
end do
mypi = h * sum

call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION, &
 MPI_SUM, 0, MPI_COMM_WORLD, ierr)

if (myrank == 0) then
 write(*, fmt="(A, F16.12)") "Value of pi is ", pi
endif

call MPI_Finalize(ierr)
end program

 2013 JSC 113

MPI Evaluation

• Advantages

 Supplies communication, synchronization, and I/O variations and

optimized functions for a wide range of needs

 Supported by all major parallel computer vendors;

optimized for the vendor’s hardware

 Free open-source versions available (MPICH, OpenMPI,…)

 About 130 functions (MPI 1), now 320 functions (MPI 2)

 But basic programs can be implemented with 10 to 20 functions

 gentle learning curve

• Disadvantages

 High programming overhead

 explicit data distribution, communication, and synchronization

 Separate sequential and parallel version of program necessary

 MPI codes help preserve your investment as systems change!

 2013 JSC 114

Programming Models: Shared Memory

• Global (“sequential”) style

• Work distribution onto threads for global operations

• Domain decomposition determines work distribution

• All processors can access all memory: however shared + private data

• Directive-based programming with OpenMP or

explicit threading (e.g. POSIX threads)

T2 T3 T0 T1 T2 T3

T2 T3 T0 T1

T0 T1 T2 T3

T0 T1

 2013 JSC 115

OpenMP Overview

• OpenMP: Open specification for Multi Processing

• De-facto standard programming interface

for portable shared memory programming

 Does NOT work on distributed memory systems!

• Based on Directives for Fortran 77/90 and pragmas

for C/C++, library routines and environment variables

• Explicit (not automatic) programming model

 Does NOT check correctness of directives!

• Fork-join model resulting in a global program

• http://www.openmp.org

• http://www.compunity.org

 2013 JSC 116

History

• Proprietary designs by some vendors (SGI, CRAY, SUN, IBM, …)

end of the 1980’s

• Different unsuccessful attempts to standardize API

 PCF

 ANSI X3H5

• OpenMP-Forum founded to define portable API

 1997 first API for Fortran (V1.0)

 1998 first API for C/C++ (V1.0)

 2000 Fortran V2.0

 2002 C/C++ V2.0

 2005 combined C/C++/Fortran specification V2.5

 2008 V3.0

 2011 V3.1

 2013 JSC 117

OpenMP Functionality

• Directives/pragmas

 Parallel regions (execute the same code in parallel)

 Parallel loops (execute loop iterations in parallel)

 Parallel sections (execute different sections in parallel)

 Tasks (dynamically create and execute tasks in parallel, since V3.0)

 Execution by exactly one single or master thread

 Shared and private data

 Reductions

 Synchronization primitives (Barrier, Critical region, Atomic)

• Run-time library functions

 omp_get_num_threads(), omp_get_thread_num()

 omp_set_lock(), omp_unset_lock(), …

• Environment variables

 OMP_NUM_THREADS, …

 2013 JSC 118

OpenMP Execution Model

a = 1

a = 2

do i = 1,9
 call work(i)
enddo

a = 3

Program:

Thread0

(Sequential) Execution:

a = 1

a = 2

i=1..9:
 work(i)
enddo

a = 3

 2013 JSC 119

OpenMP Execution Model

a = 1

!$omp parallel
a = 2

do i = 1,9
 call work(i)
enddo

!$omp end parallel

a = 3

Program:

Thread0 Thread1 Thread2

(Parallel) Execution:

a = 1

a = 2 a = 2 a = 2

i=1..9: i=1..9: i=1..9:
 work(i) work(i) work(i)
enddo enddo enddo

a = 3

parallel region

 2013 JSC 120

OpenMP Execution Model

a = 1

!$omp parallel
a = 2

!$omp do
do i = 1,9
 call work(i)
enddo

!$omp end parallel

a = 3

Program: (Parallel) Execution:

a = 1

a = 2 a = 2 a = 2

i=1..3: i=4..6: i=7..9:
 work(i) work(i) work(i)
enddo enddo enddo

a = 3

Thread0 Thread1 Thread2

parallel region

parallel loop

 2013 JSC 121

Example: Hello World (OpenMP), Fortran

program main
integer :: myid, nthreads
integer :: OMP_Get_num_threads, OMP_Get_thread_num

!$omp parallel private(myid, nthreads)
myid = OMP_Get_thread_num()
nthreads = OMP_Get_num_threads()

write(*,*) "hello from", myid, "of", nthreads
!$omp end parallel

end program

 2013 JSC 122

Example: Hello World (OpenMP), C

#include <stdio.h>
#include <omp.h>

int main() {
 int myid, nthreads;

 #pragma omp parallel private(myid, nthreads)
 {
 myid = omp_get_thread_num();
 nthreads = omp_get_num_threads();

 printf("hello from %d of %d\n", myid, nthreads);
 }
}

 2013 JSC 123

OpenMP 3.0 – Introducing Tasks

• Tasks describe independent chunks of work

• Useful for:

 Tree traversals

 Linked lists

 Recursive algorithms

• Basic usage (C):

void process_leaf(int nodeID)
{
...
 #pragma omp task
 {
 process_leaf(left_childID[nodeID]);
 }
...
}

 2013 JSC 124

Compiling and Executing OpenMP Programs

• OpenMP compilation triggered by compiler options

 otherwise OpenMP directives/pragmas get ignored

 option is compiler-specific:

 GNU: -fopenmp

 Intel: -openmp

 IBM XL: -qsmp=omp

 PGI: -mp

 Oracle: -xopenmp

 NEC: -Popenmp

• OpenMP programs are executed like sequential programs

 Parallelism specified by environment variable OMP_NUM_THREADS

 Batch jobs: allocate extra cores for additional threads

 2013 JSC 125

Running OpenMP I

Interconnect

Memory

P0

...

Pn P1

myid

numproc

!$omp parallel

print “hello”

!$omp end para.

myid

numproc

!$omp parallel

print “hello”

!$omp end para.

!$omp parallel

print “hello” print “hello” print “hello”

!$omp end para.

 2013 JSC 126

Running OpenMP II

Interconnect

Memory

P0

...

Pn P1

myid

numproc

!$omp parallel&
 private(myid)

print “hello”

!$omp end para.

myid

numproc

!$omp parallel&
 private(myid)

print “hello”

!$omp end para.

!$omp parallel &
 private(myid)

print “hello” print “hello” print “hello”

!$omp end para.

myid myid

 2013 JSC 127

Example: Max value of Polynomial (OpenMP)

program poly_max_omp
integer :: i,nsteps
double precision :: x,y,ymax,step,coeff(4),xmin,xmax

open(1, file="poly.dat")
read(1,*) coeff, xmin, xmax, nsteps

ymax = -huge(x)
step = (xmax - xmin) / (nsteps - 1)
!$omp parallel do private(x,y) reduction(max:ymax)
do i = 1, nsteps
 x = xmin + (i-1) * step
 y = coeff(4)*x**3 + coeff(3)*x**2 + coeff(2)*x + coeff(1)
 ymax = max(ymax, y)
end do

write(*,*) "Maximum is ", ymax
end program

 2013 JSC 128

Example:

PI Calculation (OpenMP)

program pi_omp
integer :: i,n
double precision :: x,sum,pi,h

open(1, file="pi.dat")
read(1,*) n

h = 1.0d0 / n
sum = 0.0d0
!$omp parallel do private(x) reduction(+:sum)
do i = 1, n
 x = (i - 0.5d0)*h
 sum = sum + (4.d0/(1.d0 + x*x))
end do
pi = h * sum

write(*, fmt="(A, F16.12)") "Value of pi is ", pi
end program

 2013 JSC 129

OpenMP Work Distribution

• OpenMP also provides:

 schedule(dynamic [, chunk])

 schedule(guided [, chunk])

do i = 1, N
 call work(i)
end do

!$omp do schedule(static,1)
do i = 1, N
 call work(i)
end do

Cyclic 0 1 2 3 4 5 6 7 8 9 Sequential 0

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

!$omp do schedule(static)
do i = 1, N
 call work(i)
end do

Block
?

 2013 JSC 130

OpenMP Evaluation

• Advantages

 Stable standard

 Supported by all major parallel computer + compiler vendors;

optimized for the vendor’s hardware

 Lean: simple and limited set of compiler directives

 Ease of use

 supports incremental parallelization

 Sequential version = parallel version

• Disadvantages

 Only works on shared memory machines

 Requires special compiler

 GNU OpenMP since V4.2

 Danger of missing or incorrect synchronization

 Getting efficient parallel implementation often hard

 2013 JSC 131

Low-Level GPGPU Programming

• Proprietary programming languages or extensions

 NVIDIA: CUDA (C/C++ based)

 AMD: StreamSDK or Brooks+ (C/C++ based)

• OpenCL (Open Computing Language)

 Open standard for portable, parallel programming

of heterogeneous parallel computing

 CPUs, GPUs, and other processors

• Major rewriting of the code required, not portable

 Best performance, usually only needed for

 Important kernels

 Libraries

 2013 JSC 132

High-Level GPGPU Programming

• Compilation systems with

(OpenMP-like) directives for GPU programming

 User tells compiler which part of code to accelerate

 Portland Group Fortran and C compilers

 http://www.pgroup.com/resources/accel.htm

 CAPS HMPP (Fortran, C)

 http://www.caps-enterprise.com/hmpp.html

 OpenACC joint-venture by:

 NVIDIA

 Portland Group

 CRAY

 CAPS

 http://www.openacc-standard.org

 2013 JSC 133

CUDA Hierarchical Programming Model

• Threads are

grouped into

blocks

• Blocks are

grouped into

a grid

• A kernel is

executed as

a grid of

blocks of

threads

Thread

per-thread

local

memory

Block

Local

Barrier

per-block

shared

memory

Kernel 0

. . .
Global

Barrier Kernel 1

. . .

per-devices

global

memory

 2013 JSC 134

EXAMPLE: CUDA saxpy Code

/* -- Sequential Version -------------------------------- */
void saxpy_s(int n, float a, float x[], float y[])
{
 for (int i=0; i<n; ++i)
 y[i] = a * x[i] + y[i];
}
saxpy_s(n, 2.0, x, y);

/* -- CUDA Parallel Version ----------------------------- */
__global__ void saxpy_p(int n, float a, float x[], float y[])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n) y[i] = a * x[i] + y[i];
}
/* -- Invoke kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_p<<<nblocks, 256>>>(n, 2.0, x, y);

 2013 JSC 135

EXAMPLE: Jacobi Relaxation

change = tolerance + 1.0
do while(change > tolerance)
 change = 0
 do i = 2, m-1
 do j = 2, n-1
 newa(i,j) = w0*a(i,j) + &
 w1 * (a(i-1,j) + a(i,j-1) + &
 a(i+1,j) + a(i,j+1)) + &
 w2 * (a(i-1,j-1) + a(i-1,j+1) + &
 a(i+1,j-1) + a(i+1,j+1))
 change = max(change,abs(newa(i,j)-a(i,j)))
 enddo
 enddo
 a(2:m-1,2:n-1) = newa(2:m-1,2:n-1)
enddo

 2013 JSC 136

EXAMPLE: Device-side CUDA C Kernel Ia

extern "C" __global__ void
jacobikernel(float* a, float* anew, float* lchange, int n, int m)
{
 int ti = threadIdx.x, tj = threadIdx.y; /* local indices */
 int i = blockIdx.x*16+ti; /* global indices */
 int j = blockIdx.y*16+tj;
 __shared__ float mychange[16*16], b[18][18];

 b[tj][ti] = a[(j-1)*m+i-1];
 if(i<2) b[tj][ti+16] = a[(j-1)*m+i+15];
 if(j<2) b[tj+16][ti] = a[(j+15)*m+i-1];
 if(i<2&&j<2) b[tj+16][ti+16] = a[(j+15)*m+i+15];
 __syncthreads();

 mya = w0 * b[tj+1][ti+1] +
 w1 * (b[tj+1][ti] + b[tj][ti+1] +
 b[tj+1][ti+2] + b[tj+2][ti+1]) +
 w2 * (b[tj][ti] + b[tj+2][ti] +
 b[tj][ti+2] + b[tj+2][ti+2]);
 newa[j][i] = mya;

 2013 JSC 137

EXAMPLE: Device-side CUDA C Kernel Ib

/* this thread's "change" */
 mychange[ti+16*tj] = fabs(mya,b[tj+1][ti+2]);
 __syncthreads();

 /* reduce all "change" values for this thread block
 * to a single value */
 n = 256;
 while(n <<= 1){
 if(tx+ty*16 < n)
 mychange[ti+tj*16] = fmaxf(mychange[ti+tj*16],
 mychange[ti+tj*16+n]);
 __syncthreads();
 }
 /* store this thread block's "change" */
 if(tx==0&&ty==0)
 lchange[blockIdx.x+blockDim.x*blockIdx.y]
 = mychange[0];
}

 2013 JSC 138

EXAMPLE: Device-side CUDA C Kernel II

/*reduce all thread block's "change" values*/
extern “C” __global__ void
reduction(float* lchange, int n)
{
 __shared__ float mychange[256];
 float mych = lchange[i];
 int i = threadIdx.x, m = n;
 while(m <= n){
 mych = fmaxf(mych,lchange[m]);
 m += n;
 }
 mychange[i] = mych;
 __syncthreads();
 n = 256;
 while(n <<= 1){
 if(i<n) mychange[i] = fmaxf(mychange[i],mychange[i+n]);
 __syncthreads();
 }
 if(i==0) change = mychange[0];
}

 2013 JSC 139

EXAMPLE: Device-side CUDA C Kernel III

/* Update 'a' from 'newa */
extern "C" __global__ void
updatekernel(float* a, float* anew, int n, int m)
{
 int i = blockIdx.x*16 + threadIdx.x;
 int j = blockIdx.y*16 + threadIdx.y;
 a[j*m+i] = newa[j*m+i];
}

 2013 JSC 140

EXAMPLE: Host-side CUDA C

GPU Control Code

__device__ float dchange; float change;

memsize = sizeof(float)*n*m

cudaMalloc(&da, memsize); cudaMalloc(&dnewa, memsize);
cudaMalloc(&lchange, (n/16)*(m/16));
cudaMemcpy(da, a, memsize, cudaMemcpyHostToDevice);

do{
 dim3 threads(16, 16); dim3 blocks(n/16, m/16);
 jacobikernel<<<blocks,threads>>>(da, dnewa, lchange, n, m);
 reduction<<<1,256>>>(lchange, (n/16)*(m/16));
 updatekernel<<<blocks,threads>>>(da, dnewa, n, m);
 cudaMemcpy(&change, &dchange, sizeof(float),
 cudaMemcpyDevicetoHost);
}while(change > tolerance);

cudaMemcpy(a, dnewa, memsize, cudaMemcpyDeviceToHost);
cudaFree(da); cudaFree(dnewa); cudaFree(lchange);

 2013 JSC 141

OpenACC

• High-level programming model, similar to OpenMP

• Joint-venture to develop an open, portable standard

• All members are part of the OpenMP language committee

• Compilers have preliminary support, full support announced for

Q4/2012

• Tuning is done by specifying data regions for which data:

 Can reside on the GPU over several iterations

 Can be shared between different loop regions

 Is only needed locally on the GPU

• Compiler developers focus on implementing good optimization

schemes themselves

 2013 JSC 142

OpenACC – Basic Usage

• Manage execution on device:

Combined directives:

• Implicit data movement with „hints“ from the programmer:

• Internal Control Variables (ICVs)

 Set via environment variables

 Query and set via runtime functions

#pragma acc parallel [clauses]

#pragma acc kernels [clauses]

#pragma acc loop [clauses]

#pragma acc data [clauses]

#pragma acc parallel loop [clauses]

#pragma acc kernels loop [clauses]

 2013 JSC 143

EXAMPLE: OpenACC Version

!$acc data copy(a) create(newa)
 do while(change > tolerance)
 !$acc kernels
 change = 0
 !$acc loop collapse(2) reduction(max:change)
 do i = 2, m-1
 do j = 2, n-1
 newa(i,j) = w0*a(i,j) + &
 w1 * (a(i-1,j) + a(i,j-1) + &
 a(i+1,j) + a(i,j+1)) + &
 w2 * (a(i-1,j-1) + a(i-1,j+1) + &
 a(i+1,j-1) + a(i+1,j+1))
 change = max(change,abs(newa(i,j)-a(i,j)))
 enddo
 enddo
 a(2:m-1,2:n-1) = newa(2:m-1,2:n-1)
 !$acc end kernels
 enddo
!$acc end data

 2013 JSC 144

CAPS HMPP Directives

• Codelet is a pure function that can be remotely executed on a GPU

• Regions are a short cut

for writing codelets

• Target clause specifies what

GPU code to generate

 GPU can be CUDA or OpenCL

 The runtime selects out of the available hardware and code

• Parallel loops are the code constructs converted in GPU threads

 Directive hmppcg parallel forces parallelization

 Two levels of parallelism can be used to generate the threads

#pragma hmpp myfunc codelet, target=GPU, …
void saxpy(int n, float alpha, float x[n], float y[n]){
 #pragma hmppcg parallel
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

#pragma hmpp myreg region, …
{
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

 2013 JSC 145

CAPS HMPP: Tuning

• Tuning hybrid CPU/GPU code consists of

 Reducing penalty when allocating and releasing GPUs

 Reducing data transfer time

 Reduce data transfer occurrences

 Share data on the GPU between codelets

 Map codelet arguments to the same GPU space

 Perform partial data transfers

 Optimizing performance of the GPU kernels

 Loop tiling, splitting, …

 Reductions

 Select right level of GPU memory (global, local, …)

 Using CPU cores in parallel with the GPU

• HMPP provides a set of directives to address these optimizations

 2013 JSC 146

Advantages of Pragma/directives-based

GPU Programming

• "Only" need to add pragmas/directives

 Single Code for "normal" and accelerated version

 Incremental program migration

 Minimal code changes

• Auto-generated

 Data allocation and transfers

 Reductions

 (Partially) Heuristics for thread block size and shape

• "Standard" tool chain

• Potential for future portability

 2013 JSC 147

Dual Level Parallelism

• Often: Applications have two natural levels of parallelism.

 If possible, take advantage of it and exploit by using OpenMP

within an SMP node and by using MPI between nodes

• Why ?

 MPI performance degrades when

 Domains become too small

 Message latency dominates computation

 Parallelism is exhausted

 OpenMP

 Typically has lower latency

 Can maintain speedup at finer granularity

• Drawback:

 Programmer must know MPI and OpenMP

 Code might be harder to debug, analyze and maintain

 2013 JSC 148

Hybrid Programming

• Many of today’s most powerful computers employ both shared memory

and distributed memory architectures

 hybrid systems

• The corresponding hybrid programming model is a combination of

shared and distributed memory programming

 MPI and OpenMP

 MPI and POSIX threads

 MPI and multi-threaded libraries

• Can give better scalability than pure MPI or OpenMP

• Upcoming systems with accelerators complicate the situation:

 Hybrid programming will become the norm:

 Multi-threaded + accelerators

 MPI + multi-threaded + accelerators

 2013 JSC 149

Intel MIC Programming

• Based on “standard” programming models

 MPI, OpenMP, or MPI/OpenMP

 On a set of MIC nodes

 On a set of Cluster and MIC nodes

• Using offload directives (probably in OpenMP V4)

 MPI program on Cluster nodes

 Offloading (OpenMP) kernels to MIC nodes

• Various Intel proprietary programming models

 Cilk Plus

 TBB

 OpenCL

 …

 2013 JSC 150

DEBUGGING AND

PERFORMANCE ANALYSIS

 2013 JSC 151

Performance Properties of Parallel Programs

• Factors which influence performance of parallel programs

 “Sequential” factors

 Computation

 Cache and memory

 Input / output

 “Parallel” factors

 Communication (Message passing)

 Threading

 Synchronization

 Accelerators

  Choose right algorithm, use optimizing compiler

  Tough! Not many tools yet, hope compiler gets it right

  Not given enough attention

 More or less understood, tool support

 Tough! Very little, simple tools for now

 2013 JSC 152

Metrics of Performance

• What can be measured?

 A count of how many times an event occurs

 The duration of some time interval

 The size of some parameter

• Derived metrics (e.g., rates) needed for normalization

• Typical metrics

 Execution time

 MIPS

 Millions of instructions

executed per second

 MFLOPS/GFLOPS

 Millions/billions of floating-point operations per second

 Cache or TLB misses

 …

“math” Operations?

 HW Operations?

 HW Instructions?

 32-/64-bit? …

 2013 JSC 153

Example: Time Measurement (MPI)

program main
include 'mpif.h'
integer :: ierr, myrank, numprocs
double precision :: starttime, endtime !double in C/C++

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)

starttime = MPI_Wtime()
write(*,*) "hello from", myrank, "of", numprocs
endtime = MPI_Wtime()
write(*,*) myrank, "used", endtime-starttime, "seconds"

call MPI_Finalize(ierr)
end program

 2013 JSC 154

Example: Time Measurement (OpenMP)

program main
integer :: myid, nthreads
integer :: OMP_Get_num_threads, OMP_Get_thread_num
double precision :: OMP_Get_wtime, starttime, endtime

starttime = OMP_Get_wtime()
!$omp parallel private(myid)
myid = OMP_Get_thread_num()
nthreads = OMP_Get_num_threads()

write(*,*) "hello from", myid, "of", nthreads
!$omp end parallel
endtime = OMP_Get_wtime()
write(*,*)"used", endtime-starttime, "seconds"

end program

 2013 JSC 155

Performance Measurement Cycle

 Insertion of extra code (probes, hooks)

into application

Instrumentation

 Transformation of the results into a

representation that can be easily understood

by a human user

Presentation

Measurement  Collection of data relevant to

performance analysis

Optimization
 Elimination of performance problems

Analysis  Calculation of metrics, identification of

performance problems

 2013 JSC 156

Performance Measurement

• Two dimensions

 When performance measurement is triggered

 Externally (asynchronous)  indirect measurement

– Sampling

» Timer interrupt

» Hardware counters overflow

 Internally (synchronous)  direct measurement

– Code instrumentation

» Automatic or manual instrumentation

 How performance data is recorded

 Profile ::= Summation of events over time

– run time summarization (functions, call sites, loops, …)

 Trace file ::= Sequence of events over time

 2013 JSC 157

Measurement Methods: Profiling I

• Recording of aggregated information

 Time

 Counts

 Calls

 Hardware counters

• about program and system entities

 Functions, call sites, loops, basic blocks, …

 Processes, threads

• Statistical information: min, max, mean and total number of values

• Methods to create a profile

 PC sampling (statistical approach)

 Interval timer / direct measurement (deterministic approach)

 2013 JSC 158

Profiling II

• Sampling

 General statistical measurement technique based on the
assumption that a subset of a population being examined is
representative for the whole population

 Running program is interrupted periodically

 Operating system signal or Hardware counter overflow

 Interrupt service routine examines return-address stack to find
address of instruction being executed when interrupt occurred

– Using symbol-table information this address is mapped
onto specific subroutine

 Requires long-running programs

• Interval timing

 Time measurement at the beginning and
at the end of a code region

 Requires instrumentation + high-resolution / low-overhead clock

 2013 JSC 159

Profiling Tools

• gprof

 Available on many systems

• mpiP (LLNL et al)

 http://mpip.sourceforge.net

 MPI profiler

 single output file: data for all ranks

• FPMPI-2 (ANL)

 http://www.mcs.anl.gov/fpmpi/

 MPI profiler

 special: Optionally identifies synchronization time

 single output file: count, sum, avg, min, max over ranks

 2013 JSC 160

Profiling Tools II

• ompP (UC Berkeley)

 http://www.ompp-tool.com

 OpenMP profiler

• HPCToolkit (Rice University)

 http://www.hpctoolkit.org

 Multi-platform sampling-based callpath profiler

 Works on un-modified, optimized executables

• Open|SpeedShop (Krell Institute with support of LANL, SNL, LLNL)

 http://www.openspeedshop.org

 Comprehensive performance analysis environment

 2013 JSC 161

Measurement Methods: Tracing

• Recording information about significant points (events) during

execution of the program

 Enter/leave a code region (function, loop, …)

 Send/receive a message ...

• Save information in event record

 Timestamp, location ID, event type

 plus event specific information

• Event trace := stream of event records sorted by time

• Can be used to reconstruct the dynamic behavior

  Abstract execution model on level of defined events

 2013 JSC 162

Event tracing

void foo() {

 ...

 send(B, tag, buf);

 ...

}

Process A

void bar() {

 ...

 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {

 trc_enter("bar");

 ...

 recv(A, tag, buf);

 trc_recv(A);

 ...

 trc_exit("bar");

}

void foo() {

 trc_enter("foo");

 ...

 trc_send(B);

 send(B, tag, buf);

 ...

 trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

 2013 JSC 163

PMPI: The MPI Profiling Interface

• PMPI allows selective replacement of MPI routines at link time

 no re-compilation necessary

• Uses technique of “wrapper” function libraries

• Used by most MPI performance tools

User program

Call MPI_Bcast

Call MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

MPI library

MPI_Bcast

PMPI_Send

MPI_Send

Wrapper library

MPI_Send

 2013 JSC 164

Event Tracing: “Timeline” Visualization

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A

 2013 JSC 165

Tracing Tools

• MPE / Jumpshot (ANL)

 Part of MPICH2

 Only supports MPI P2P and collectives; SLOG2 trace format

• VampirTrace / Vampir (TU Dresden, ZIH)

 http://www.tu-dresden.de/zih/vampirtrace/

 http://www.vampir.eu

 Open-source measurement system (VampirTrace) + commercial

trace visualizer (Vampir); OTF trace format

• Extrae / Paraver (BSC/UPC)

 http://www.bsc.es/paraver

 Measurement system (Extrae) and visualizer (Paraver)

 Powerful filter and summarization features

 Very configurable visualization

 2013 JSC 166

Example: Timeline of MPI Ring Program

 2013 JSC 167

“Real World” Example

 2013 JSC 168

Vampir Event-Trace Displays

 2013 JSC 169

VampirServer BETA: Trace Visualization

S3D@200,448

• OTF trace of 4.5 TB

• VampirServer running with 20,000 analysis processes

 2013 JSC 170

Profiling + Tracing Toolsets

• TAU (University of Oregon)

 http://tau.uoregon.edu

 Very versatile performance analysis toolset for profiling and tracing

 Supports many platforms, programming paradigms, and languages

• Scalasca (JSC)

 http://www.scalasca.org

 Highly scalable call-path profiling

 Automatic trace-based performance analysis

 Detection, classification and ranking of common parallel

programming bottlenecks

 Supports many platforms, programming paradigms, and languages

 2013 JSC 171

TAU Profiling, Large System

 2013 JSC 172

TAU ParaProf: 3D Profile, Miranda, 16K PEs

 2013 JSC 173

Scalasca Analysis sweep3D(294,912 Cores)

Measured

metrics

System structure

or topology

Region

tree

 2013 JSC 174

• UNified Integrated Tool Environment

• http://apps.fz-juelich.de/unite/

• Lower bar for inexperienced users and admins

• Common usage and installation documentation

• Download, build and install all the following tools

from one package:

UNITE

 UNITE package installer

and module package

 Cube-3.4.3 + 4.1.6

 Extrae-2.3

 Lwm2-1.1

 Marmot-2.4.0

 Opari2-1.0.7

 OTF-1.12.3 + OTF2-1.1.1

 Paraver-4.4.1

 Pdtoolkit-3.19

 Scalasca-1.4.3 + 2.0b1

 Score-P-1.1.1

 TAU-2.22.2

 UniMCI-1.0.1

 Vampirtrace-5.14.3

 Vampir-5.x or 7.x, 8.x

 VampirServer-1.x or 7.x, 8x

 2013 JSC 175

Debugging of Parallel Programs

• … is much more difficult than sequential debugging!

• Reasons

 Multiplication of sequential bugs on multiple processes

 Amount of resources to control and data to handle

 Additional kind of bugs in parallel programs, e.g., deadlocks

 Non-deterministic behavior  non reproducible behavior

 Race conditions

 Heisenbugs: bugs appear/disappear under debugging

• Commercial parallel debuggers (supporting MPI, threads, CUDA, …)

 DDT (Allinea, UK)

 http://www.allinea.com

 Totalview (TotalView Technologies, Rogue Wave, USA)

 http://totalviewtech.com

 2013 JSC 176

FUTURE ISSUES FOR HPC

 2013 JSC 177

Increasing Importance of Scaling

• Number of Cores share for TOP 500 Nov 2012

• Average system size: 29,772 cores

• Median system size: 15,360 cores

1025-2048

2049-4096

4097-8192

8193-16384

> 16384

NCore

1

2

81

206

210

Count

0.2%

0.4%

16.2%

41.2%

42.0%

Share

122 TF

155 TF

8,579 TF

24,543 TF

128,574 TF

∑Rmax

Total 500 100% 161,973 TF

0.1%

0.1%

5.3%

15.1%

79.4%

Share

100%

1,280

7,104

551,624

2,617,986

11,707,806

∑NCore

14,885,800

 2013 JSC 178

Increasing Importance of Scaling II

• Number of Cores share for TOP 500 Jun 2001 – Nov 2012

 2013 JSC 179

Observations

• Petascale is not terascale scaled up!

 More than linear increase of scale

 Multi-core processors

 Multi-mode parallelism

 Reduced memory per core

 Heterogeneity via HW acceleration (Cell, FPGA, GPU, …)

 New programming models (needed)

 Higher system diversity

• More emphasis on

 Fault-tolerance and performability

 Automated diagnosis and remediation

From workshop report

SDTPC Aug 2007

http://www.csm.ornl.gov/workshops/Petascale07/

 2013 JSC 180

Projection for a Exascale System*

* From http://www.exascale.org

System

attributes

2010 “2015” “2018” Difference

2010 &

2018

System peak 2 Pflop/s 200 Pflop/s 1 Eflop/sec O(1000)

Power 6 MW 15 MW ~20 MW

System memory 0.3 PB 5 PB 32-64 PB O(100)

Node

performance

125 GF 0.5 TF 7 TF 1 TF 10 TF O(10) –

O(100)

Node memory

BW

25 GB/s 0.1

TB/sec

1 TB/sec 0.4 TB/sec 4 TB/sec O(100)

Node

concurrency

12 O(100) O(1,000) O(1,000) O(10,000) O(100) –

O(1000)

Total

Concurrency

225,000 O(108) O(109) O(10,000)

Total Node

Interconnect

BW

1.5 GB/s 20 GB/sec 200 GB/sec O(100)

MTTI days O(1day) O(1 day) - O(10)

 2013 JSC 181

IESP

• International Exascale Software Project

• International collaboration

 Started Apr 2009

• http://www.exascale.org/

• Objectives

 Develop international exascale (system) software roadmap

 Investigate opportunities for international collaborations and

funding

 Explore governance structure and models for IESP

http://www.exascale.org/

 2013 JSC 182

Roadmap Components

4.1 Systems Software

4.1.1 Operating systems

4.1.2 Runtime Systems

4.1.3 I/O systems

4.1.4 Systems Management

4.1.5 External Environments

4.2 Development Environments

4.2.1 Programming Models

4.2.2 Frameworks

4.2.3 Compilers

4.2.4 Numerical Libraries

4.2.5 Debugging Tools

4.3 Applications

4.3.1 Application Element:

 Algorithms

4.3.2 Application Support:

 Data Analysis and

 Visualization

4.3.3 Application Support:

 Scientific Data

 Management

4.4 Crosscutting Dimensions

4.4.1 Resilience

4.4.2 Power Management

4.4.3 Performance Optimization

4.4.4 Programmability

see IJHPCA, Feb 2011, http://hpc.sagepub.com/content/25/1/3

 2013 JSC 183

EESI

• European Exascale Software Initiative

• EU FP7

 Funded Jun 2010 to Nov 2011

• http://www.eesi-project.eu/

• Objectives

 Develop European exascale system and application software

vision and roadmap

 Investigate Europe's strengths and weaknesses

 Identify sources of competitiveness for Europe

 Investigate and propose programs in education and training for the

next generation of computational scientists

 EESI2 started September 2012

http://www.eesi-project.eu/

 2013 JSC 184

 We need integrated teams / simulation labs / end stations / ..

 To get integrated, customized tool support

 Tool community needs to build up interoperable, reusable tool

 components implementing the various basic technologies

• We can do performance analysis on the tera- and petascale, however…

Conclusion

 Parallel Computing (PC?)

might have reached the masses …

 but remember, we do

High Performance Computing (HPC!)

