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= ParaStation MPI

= Compiling your program
= Running your program

= Tuning parameters

= Resources




CC ParaStation MPI

= Based on MPICH (3.2)
= supports all MPICH tools (tracing, debugging, ...)

= Proven to scale up to 3,000 nodes and 85,000 procs per job
= JURECA running ParaStation MPI: 1.42 PFLOPS (2015)
= JURECA & Booster ParaStation MPI: 3.78 PFLOPS (2017)
= JUWELS running ParaStation MPI: 6.18 PFLOPS (2018)

= Supports a wide range of interconnects, even in parallel
= InfiniBand EDR on JURECA Cluster and JUWELS
= OmniPath on JURECA Booster
= Extoll on DEEP projects research systems

= Tight integration with Cluster Management (healthcheck)
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GCC ParaStation MPI

= MPI libraries for several compilers
= especially for GCC and Intel
= Recently added features include:
= Support for modular jobs
= Improved Omni-Path performance
= Improved scalability
= Improved InfiniBand bandwidth performance
= Improved (dynamic) process management

ParaStation
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GLC ParaStation History

= 1995: University project (— University of Karlsruhe)
= 2004: Open source (— ParaStation Consortium)
= 2004: Cooperation with JSC

= various precursor clusters

= DEEP Cluster/Booster, DEEP-ER

= JUROPAS3 (J3)

= JUAMS

= JURECA

= JURECA-Booster

= JUWELS




GC Recent Versions

- JURECA
= ParaStation MPI  — psmpi-5.2.1-1 (MPI-3.1)
= Intel Compilers — v 19.0.0.117
= Gnu gcc — v 8.2.0

= JUWELS
= ParaStation MPl  — psmpi-5.2.1-1 (MPI-3.1)
= Intel Compilers — v 19.0.0.117
= Gnu gcc — v 8.2.0
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GART\E:“’@EPNEEW Compiling on JURECA

= Currently MPI-3.1 version (5.2.1-1) available
= single thread tasks
= module load Intel ParaStationMPI
= module load GCC ParaStationMPI
= multi-thread tasks (mt)
= module load Intel ParaStationMPI/5.2.1-1-mt
= no multi-thread GCC version available
= Changelog available with
= less $(dirname $(which mpicc))/../Changelog
= Gnu and Intel compilers available
= gcc-8.2.0 (GCC(C)
= intel-2019.0.117 (Intel)
= see also the previous talk JURECA Cluster and Booster
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= Wrappers
= mpicc (C)
= mpicxx (C++)
= mp1if90 (Fortran 90)
= mpif77 (Fortran 77)

= mpi1<LANG> -show
= shows what would happen
= useful for legacy Makefiles
= allows to tweak compiler

= When using the “mt” version (and using OpenMP), add
= -fopenmp (gcc)
= -qgopenmp (intel)

G¢C Wrapper vs. Manual Compilation
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GLC Wrapper vs. Manual Compilation

= Intel C-Compiler + ParaStation MPI
= module load Intel ParaStationMPI

= mpicc -Show

icc -WL, -rpath-link=/usr/local/software/jureca/Stages
/2018b/software/pscom/Default/lib -I/usr/local/
software/jureca/Stages/2018b/software/psmpi/5.2.1-1-
iccifort-2019.0.117-GCC-7.3.0/include -L/usr/local/
software/jureca/Stages/2018b/software/psmpi/5.2.1-1-
iccifort-2019.0.117-GCC-7.3.0/1lib -WL,-rpath -WL,
/usr/local/software/jureca/Stages/2018b/software/psmp
i/5.2.1-1-iccifort-2019.0.117-GCC-7.3.0/1ib -WL, --
enable-new-dtags -lmpi
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GART\E:“’@EPNEEW Did the wrapper link correctly?

= Libraries are linked at runtime according to LD_LIBRARY_PATH
= Ldd shows the libarries attached to your binary
= Look for ParaStation libararies

ldd hello mpi:
iibmpi.so.lz => /usr/local/software/jureca/Stages/2018b/

software/psmpi/5.2.1-1-iccifort-2019.0.117-GCC-7.3.0/11ib/
libmpi.so.12 (Ox00002abal71df000)

VS.
libmpi.so0.12 => /usr/local/software/jureca/Stages/2018b/

software/psmpi/5.2.1-1-iccifort-2019.0.117-GCC-7.3.0-mt/lib/
libmpi.so.12 (0x00002b35231d4000)



GC JURECA: start via srun

= Use srun to start MPI| processes
= srun -N <nodes> -n <tasks> spawns task
= directly
= Interactively via salloc
= from batch script via sbatch
= Exports full environment
= Stop interactive run with (consecutive) ~C
= passed to all tasks
= No manual clean-up needed
= You can log into nodes which have an allocation/running job step
= squeue -u <user>
= sgoto <jobid> <nodenumber>
-e.g. sgoto 2691804 0
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GART\E:G hello_mpi.c

/* C Example */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
int numprocs, rank, namelen;

char processor name[MPI MAX PROCESSOR NAME];

MPI Init (&argc, &argv);

MPI Comm_rank (MPI COMM WORLD, &rank);

MPI Comm size (MPI COMM WORLD, &numprocs);

MPI_ Get processor_name (processor name, &namelen);

printf ("Hello world from process %d of %d on %s\n",
rank, numprocs, processor name);

MPI Finalize ();

return 0;



GCC Running on JURECA (Intel chain)

= module load Intel
module load ParaStationMPI
mpicc -03 -o hello mpi hello mpi.c
Interactive:
salloc -N 2 # get an allocation
srun -n 2 ./hello mp1
= Hello world from process O of 2 on jrc0491

= Hello world from process 1 of 2 on jrc0492
Batch:

sbatch ./hello mpi.sh

Increase verbosity:

- PSP DEBUG=[1,2,3,...] srun -n 2 ./hello mpi




GCC Process Placement

= ParaStation process pinning:
= Avoid task switching
= Make better use of CPU cache
= JURECA is pinning by default:
= SO --cpu bind=rank may be omitted
= Manipulate pinning:
= e.q. for “large memory / few task” applications
= Manipulate via --cpu_bin=mask cpu:<maskl>,<mask2>,..
= CPU masks are always interpreted as hexadecimal values
= For example on JURECA:
srun --cpu bind=[verbose, ]mask cpu:0x1,0x1000

-n 2 ./testcore
P A

= rank @ running on core 0
= rank 1 running on core 12

3 210



(wi(@  Hybrid MPI/OpenMP

Example:
#include <stdio.h> 2 Nodes. 2x2 Procs
#include <mpi.h> 2%2x12 _I’_h g d
#include <omp.h> XX reaads
int main(int argc, char *argv[]) { Node x Node )

int numprocs, rank, namelen;
char processor name[MPI MAX PROCESSOR NAME];
int iam = 0, np = 1;

MPI Init(&argc, &argv);
MPI_Comm_size(MPI COMM WORLD, &numprocs);
MPI_Comm_rank (MPI COMM WORLD, &rank);

MPI_Get processor_name(processor name, &namelen);

#pragma omp parallel default(shared) private(iam, np)

{

np = omp_get_num_threads();
iam = omp_get thread num();
printf("Hello from thread %02d out of %d from process %d out of %d on %s\n",

iam, np, rank, numprocs, processor _name);

}

MPI Finalize();
}



N
<E;QE'@%%“ On JURECA

= module load Intel ParaStationMPI/5.2.1-1-mt

mpicc -03 -gopenmp -0 hello hybrid hello hybrid.c
salloc -N 2 --cpus-per-task=12

export OMP NUM THREADS=${SLURM CPUS PER TASK}
srun -n 4 ./hello hybrid

Hello from thread 00 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 01 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 02 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 03 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 09 out of 12 from process 3 out of 4 on jrc0492
Hello from thread 10 out of 12 from process 3 out of 4 on jrc0492
Hello from thread 11 out of 12 from process 3 out of 4 on jrc0492



Gmec <5« Pinning: Which core for a thread”?

= JURECA:
= 2 Sockets, 12 Cores per Socket
= 2 HW-Threads per Core
= — 48 Threads possible
= Normally (SMT):
= Threads 0-11, 24-35 — CPUO
= Threads 12-23, 36-47 — CPU1 “‘Package”

Node

Socket0 4 Socket1 4
Core 0 | Core 1 Core 10| Core 11||| Core 12| Core 13 Core 22| Core 23
HWT 0 HWT 1 HWT 10 | HWT 11 HWT 12 | HWT 13 HWT 22 | HWT 23

HWT 24 | HWT 25 HWT 34 | HWT 35 HWT 36 | HWT 37 HWT 46 | HWT 47




Gmec <5« Pinning: Which core for a thread”?

= JUWELS:
= 2 Sockets, 24 Cores per Socket
= 2 HW-Threads per Core
= — 96 Threads possible
= Normally (SMT):
= Threads 0-23, 48-71 — CPUO

= Threads 23-47, 72-95 — CPU1 “‘Package”
Node
Socket0 4 Socket1 4
Core 0 | Core 1 Core 22| Core 23||| Core 24| Core 25 Core 46| Core 47
HWTO | HWT1 HWT 22 | HWT 23 HWT 24 | HWT 25 HWT 46 | HWT 47

HWT 48 | HWT 49 HWT 70 | HWT 71 HWT 72 | HWT 73 HWT 94 | HWT 95




et (8« Pinning: Which core for a thread?
N

= No thread pinning by default on JURECA and JUWELS

= Allow the Intel OpenMP library thread placing
= export KMP AFFINITY=[verbose,modifier,]...
compact: place threads as close as possible
scatter: as evenly as possible
= KMP_AFFINITY=granularity=fine,verbose, scatter srun

OMP: Info #171: KMP AFFINITY: 0S proc O maps to
package 0 core 0

OMP: Info #242: KMP AFFINITY: pid 4940 thread 1
bound to 0S proc set {1}

= Full environment is exported via srun on JURECA and JUWELS

= For GCC: set GOMP_CPU_AFFINITY (see manual)



ﬁ CLUSTER - "
GLC Large Job Considerations

= Every MPI process talks to all others:
= (N-1) x 0.556 MB communication buffer space per process!

= Example 1 on JURECA:
= Job size 256 x 48 = 12,288 processes
= 12,288 x 0.65 MB — ~ 6,758 MB / process
= x 48 process / node — ~ 317 GB communication buffer space
= But there is only 128 GB of main memory per node

= Example 2 on JUWELS:
= Job size 256 x 96 = 24,576 processes
= 24,576 x 0.56 MB — ~ 13,617 MB / process
= X 96 process /node — ~ 1,267 GB mpi buffer space
= But there is only 96 GB of main memory per node



GC On Demand / Buffer Size

Two possible solutions: I\

16k

= 1. Create buffers on demand only:
= export PSP ONDEMAND=1
= Activated on JUWELS by default! 16k

= 2. Reduce the buffer queue length:
= (Default queue length is 16) 16K
export PSP OPENIB SENDQ SIZE=3
export PSP OPENIB RECVQ SIZE=3
Do not go below 3, deadlocks might occur!
Trade-off: Performance penalty 16k
(sending many small messages)

yibus| ananb
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GLC On-Demand / Queue Size Guidelines

= On-Demand works best with nearest neighbor communications
= (Halo) Exchange
= Scatter/Gather
= All-reduce

= But for All-to-All communication:
= queue size modification only viable option...
= Example
rank O: for ( ; ; ) MPI Send ()
rank 1: for ( ; ; ) MPI Recv ()
= PSP OPENIB SENDQ/RECVQ SIZE=4: 1.8 seconds
= PSP OPENIB SENDQ/RECVQ SIZE=16: 0.6 seconds
= PSP OPENIB SENDQ/RECVQ SIZE=64: 0.5 seconds



GC NUMA Considerations

= Non Uniform Memory Access (NUMA)

memory 0

=

Compute Node

Socket O Socket 1

memory 1

CPUO —P

CPU1 ¢

Cheap

Expensive




CC NUMA Policies

= [f memory is bound to processes, only local memory is
accessible — and can get exhausted (at about 55 GB):

= srun -n 1 --mem bind=rank|local ./blockmem mpi
srun: error: jrcO075: task 0: Killed
srun: Force Terminated job step 1505858.15
= [f memory is not bound to processes, all memory is accessible:
= srun -n 1 --mem bind=none ./blockmem mpi

= On JURECA and JUWELS is - -mem bind=none used by
default so it can be omitted

= But: membind off — data is crossing CPUs (NUMA)
— ~15-20% performance drop!

= First-Touch Policy: Memory is allocated locally



GC % Resources

= www.parastation.com
= www.fz-juelich.de/ias/jsc/jureca
= /opt/parastation/doc/pdf
= by mail: support@par-tec.com
= by mail: sc@fz-juelich.de
= Download ParaStation MPI at github:
= https.//github.com/ParaStation/psmgmt
= https.//github.com/ParaStation/pscom
= https.//github.com/ParaStation/psmpi2
= git clone https.//github.com/ParaStation/psmpiZ2.qgit



http://www.parastation.com/
http://www.fz-juelich.de/ias/jsc/jureca
mailto:support@par-tec.com
mailto:sc@fz-juelich.de
https://github.com/ParaStation/psmgmt
https://github.com/ParaStation/pscom
https://github.com/ParaStation/psmpi2
https://github.com/ParaStation/psmpi2.git

ﬁ CLUSTER
GART\E:G Summary

= You now should be able to
= compile
= run your application
= tune some runtime parameters
= diagnose and fix specific errors
= know where to turn to in case of problems

ParaStation

MPI



Thank you!
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