ParTec | comperence B MANAGED HPC
‘ CENTER

JUWELS & JURECA
Tuning for the platform

Usage of ParaStation MPI

2018-11-22

" :
GAR.I.QC CENTER O u tI I n e

= ParaStation MPI

= Compiling your program
= Running your program

= Tuning parameters

= Resources

CC ParaStation MPI

= Based on MPICH (3.2)
= supports all MPICH tools (tracing, debugging, ...)

= Proven to scale up to 3,000 nodes and 85,000 procs per job
= JURECA running ParaStation MPI: 1.42 PFLOPS (2015)
= JURECA & Booster ParaStation MPI: 3.78 PFLOPS (2017)
= JUWELS running ParaStation MPI: 6.18 PFLOPS (2018)

= Supports a wide range of interconnects, even in parallel
= InfiniBand EDR on JURECA Cluster and JUWELS
= OmniPath on JURECA Booster
= Extoll on DEEP projects research systems

= Tight integration with Cluster Management (healthcheck)

ParaStation

MPI
20181122 ParaStatonmPl 3

GCC ParaStation MPI

= MPI libraries for several compilers
= especially for GCC and Intel
= Recently added features include:
= Support for modular jobs
= Improved Omni-Path performance
= Improved scalability
= Improved InfiniBand bandwidth performance
= Improved (dynamic) process management

ParaStation

MPI
.~ 20180528 ParaStatonMPl 4

ﬁ CLUSTER " i
GLC ParaStation History

= 1995: University project (— University of Karlsruhe)
= 2004: Open source (— ParaStation Consortium)
= 2004: Cooperation with JSC

= various precursor clusters

= DEEP Cluster/Booster, DEEP-ER

= JUROPAS3 (J3)

= JUAMS

= JURECA

= JURECA-Booster

= JUWELS

GC Recent Versions

- JURECA
= ParaStation MPI — psmpi-5.2.1-1 (MPI-3.1)
= Intel Compilers — v 19.0.0.117
= Gnu gcc — v 8.2.0

= JUWELS
= ParaStation MPl — psmpi-5.2.1-1 (MPI-3.1)
= Intel Compilers — v 19.0.0.117
= Gnu gcc — v 8.2.0

7 4 CLUSTER 1 F
GART\E:“’@EPNEEW Compiling on JURECA

= Currently MPI-3.1 version (5.2.1-1) available
= single thread tasks
= module load Intel ParaStationMPI
= module load GCC ParaStationMPI
= multi-thread tasks (mt)
= module load Intel ParaStationMPI/5.2.1-1-mt
= no multi-thread GCC version available
= Changelog available with
= less $(dirname $(which mpicc))/../Changelog
= Gnu and Intel compilers available
= gcc-8.2.0 (GCC(C)
= intel-2019.0.117 (Intel)
= see also the previous talk JURECA Cluster and Booster

‘ CENTER

= Wrappers
= mpicc (C)
= mpicxx (C++)
= mp1if90 (Fortran 90)
= mpif77 (Fortran 77)

= mpi1<LANG> -show
= shows what would happen
= useful for legacy Makefiles
= allows to tweak compiler

= When using the “mt” version (and using OpenMP), add
= -fopenmp (gcc)
= -qgopenmp (intel)

G¢C Wrapper vs. Manual Compilation

ﬁ CLUSTER " "
GLC Wrapper vs. Manual Compilation

= Intel C-Compiler + ParaStation MPI
= module load Intel ParaStationMPI

= mpicc -Show

icc -WL, -rpath-link=/usr/local/software/jureca/Stages
/2018b/software/pscom/Default/lib -I/usr/local/
software/jureca/Stages/2018b/software/psmpi/5.2.1-1-
iccifort-2019.0.117-GCC-7.3.0/include -L/usr/local/
software/jureca/Stages/2018b/software/psmpi/5.2.1-1-
iccifort-2019.0.117-GCC-7.3.0/1lib -WL,-rpath -WL,
/usr/local/software/jureca/Stages/2018b/software/psmp
i/5.2.1-1-iccifort-2019.0.117-GCC-7.3.0/1ib -WL, --
enable-new-dtags -lmpi

7 4 CLUSTER - "
GART\E:“’@EPNEEW Did the wrapper link correctly?

= Libraries are linked at runtime according to LD_LIBRARY_PATH
= Ldd shows the libarries attached to your binary
= Look for ParaStation libararies

ldd hello mpi:
iibmpi.so.lz => /usr/local/software/jureca/Stages/2018b/

software/psmpi/5.2.1-1-iccifort-2019.0.117-GCC-7.3.0/11ib/
libmpi.so.12 (Ox00002abal71df000)

VS.
libmpi.so0.12 => /usr/local/software/jureca/Stages/2018b/

software/psmpi/5.2.1-1-iccifort-2019.0.117-GCC-7.3.0-mt/lib/
libmpi.so.12 (0x00002b35231d4000)

GC JURECA: start via srun

= Use srun to start MPI| processes
= srun -N <nodes> -n <tasks> spawns task
= directly
= Interactively via salloc
= from batch script via sbatch
= Exports full environment
= Stop interactive run with (consecutive) ~C
= passed to all tasks
= No manual clean-up needed
= You can log into nodes which have an allocation/running job step
= squeue -u <user>
= sgoto <jobid> <nodenumber>
-e.g. sgoto 2691804 0

ﬁ CLUSTER "
GART\E:G hello_mpi.c

/* C Example */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
int numprocs, rank, namelen;

char processor name[MPI MAX PROCESSOR NAME];

MPI Init (&argc, &argv);

MPI Comm_rank (MPI COMM WORLD, &rank);

MPI Comm size (MPI COMM WORLD, &numprocs);

MPI_ Get processor_name (processor name, &namelen);

printf ("Hello world from process %d of %d on %s\n",
rank, numprocs, processor name);

MPI Finalize ();

return 0;

GCC Running on JURECA (Intel chain)

= module load Intel
module load ParaStationMPI
mpicc -03 -o hello mpi hello mpi.c
Interactive:
salloc -N 2 # get an allocation
srun -n 2 ./hello mp1
= Hello world from process O of 2 on jrc0491

= Hello world from process 1 of 2 on jrc0492
Batch:

sbatch ./hello mpi.sh

Increase verbosity:

- PSP DEBUG=[1,2,3,...] srun -n 2 ./hello mpi

GCC Process Placement

= ParaStation process pinning:
= Avoid task switching
= Make better use of CPU cache
= JURECA is pinning by default:
= SO --cpu bind=rank may be omitted
= Manipulate pinning:
= e.q. for “large memory / few task” applications
= Manipulate via --cpu_bin=mask cpu:<maskl>,<mask2>,..
= CPU masks are always interpreted as hexadecimal values
= For example on JURECA:
srun --cpu bind=[verbose,]mask cpu:0x1,0x1000

-n 2 ./testcore
P A

= rank @ running on core 0
= rank 1 running on core 12

3 210

(wi(@ Hybrid MPI/OpenMP

Example:
#include <stdio.h> 2 Nodes. 2x2 Procs
#include <mpi.h> 2%2x12 _I’_h g d
#include <omp.h> XX reaads
int main(int argc, char *argv[]) { Node x Node)

int numprocs, rank, namelen;
char processor name[MPI MAX PROCESSOR NAME];
int iam = 0, np = 1;

MPI Init(&argc, &argv);
MPI_Comm_size(MPI COMM WORLD, &numprocs);
MPI_Comm_rank (MPI COMM WORLD, &rank);

MPI_Get processor_name(processor name, &namelen);

#pragma omp parallel default(shared) private(iam, np)

{

np = omp_get_num_threads();
iam = omp_get thread num();
printf("Hello from thread %02d out of %d from process %d out of %d on %s\n",

iam, np, rank, numprocs, processor _name);

}

MPI Finalize();
}

N
<E;QE'@%%“ On JURECA

= module load Intel ParaStationMPI/5.2.1-1-mt

mpicc -03 -gopenmp -0 hello hybrid hello hybrid.c
salloc -N 2 --cpus-per-task=12

export OMP NUM THREADS=${SLURM CPUS PER TASK}
srun -n 4 ./hello hybrid

Hello from thread 00 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 01 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 02 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 03 out of 12 from process 0 out of 4 on jrc0491
Hello from thread 09 out of 12 from process 3 out of 4 on jrc0492
Hello from thread 10 out of 12 from process 3 out of 4 on jrc0492
Hello from thread 11 out of 12 from process 3 out of 4 on jrc0492

Gmec <5« Pinning: Which core for a thread”?

= JURECA:
= 2 Sockets, 12 Cores per Socket
= 2 HW-Threads per Core
= — 48 Threads possible
= Normally (SMT):
= Threads 0-11, 24-35 — CPUO
= Threads 12-23, 36-47 — CPU1 “‘Package”

Node

Socket0 4 Socket1 4
Core 0 | Core 1 Core 10| Core 11||| Core 12| Core 13 Core 22| Core 23
HWT 0 HWT 1 HWT 10 | HWT 11 HWT 12 | HWT 13 HWT 22 | HWT 23

HWT 24 | HWT 25 HWT 34 | HWT 35 HWT 36 | HWT 37 HWT 46 | HWT 47

Gmec <5« Pinning: Which core for a thread”?

= JUWELS:
= 2 Sockets, 24 Cores per Socket
= 2 HW-Threads per Core
= — 96 Threads possible
= Normally (SMT):
= Threads 0-23, 48-71 — CPUO

= Threads 23-47, 72-95 — CPU1 “‘Package”
Node
Socket0 4 Socket1 4
Core 0 | Core 1 Core 22| Core 23||| Core 24| Core 25 Core 46| Core 47
HWTO | HWT1 HWT 22 | HWT 23 HWT 24 | HWT 25 HWT 46 | HWT 47

HWT 48 | HWT 49 HWT 70 | HWT 71 HWT 72 | HWT 73 HWT 94 | HWT 95

et (8« Pinning: Which core for a thread?
N

= No thread pinning by default on JURECA and JUWELS

= Allow the Intel OpenMP library thread placing
= export KMP AFFINITY=[verbose,modifier,]...
compact: place threads as close as possible
scatter: as evenly as possible
= KMP_AFFINITY=granularity=fine,verbose, scatter srun

OMP: Info #171: KMP AFFINITY: 0S proc O maps to
package 0 core 0

OMP: Info #242: KMP AFFINITY: pid 4940 thread 1
bound to 0S proc set {1}

= Full environment is exported via srun on JURECA and JUWELS

= For GCC: set GOMP_CPU_AFFINITY (see manual)

ﬁ CLUSTER - "
GLC Large Job Considerations

= Every MPI process talks to all others:
= (N-1) x 0.556 MB communication buffer space per process!

= Example 1 on JURECA:
= Job size 256 x 48 = 12,288 processes
= 12,288 x 0.65 MB — ~ 6,758 MB / process
= x 48 process / node — ~ 317 GB communication buffer space
= But there is only 128 GB of main memory per node

= Example 2 on JUWELS:
= Job size 256 x 96 = 24,576 processes
= 24,576 x 0.56 MB — ~ 13,617 MB / process
= X 96 process /node — ~ 1,267 GB mpi buffer space
= But there is only 96 GB of main memory per node

GC On Demand / Buffer Size

Two possible solutions: I\

16k

= 1. Create buffers on demand only:
= export PSP ONDEMAND=1
= Activated on JUWELS by default! 16k

= 2. Reduce the buffer queue length:
= (Default queue length is 16) 16K
export PSP OPENIB SENDQ SIZE=3
export PSP OPENIB RECVQ SIZE=3
Do not go below 3, deadlocks might occur!
Trade-off: Performance penalty 16k
(sending many small messages)

yibus| ananb

ﬁ CLUSTER - - I
GLC On-Demand / Queue Size Guidelines

= On-Demand works best with nearest neighbor communications
= (Halo) Exchange
= Scatter/Gather
= All-reduce

= But for All-to-All communication:
= queue size modification only viable option...
= Example
rank O: for (; ;) MPI Send ()
rank 1: for (; ;) MPI Recv ()
= PSP OPENIB SENDQ/RECVQ SIZE=4: 1.8 seconds
= PSP OPENIB SENDQ/RECVQ SIZE=16: 0.6 seconds
= PSP OPENIB SENDQ/RECVQ SIZE=64: 0.5 seconds

GC NUMA Considerations

= Non Uniform Memory Access (NUMA)

memory 0

=

Compute Node

Socket O Socket 1

memory 1

CPUO —P

CPU1 ¢

Cheap

Expensive

CC NUMA Policies

= [f memory is bound to processes, only local memory is
accessible — and can get exhausted (at about 55 GB):

= srun -n 1 --mem bind=rank|local ./blockmem mpi
srun: error: jrcO075: task 0: Killed
srun: Force Terminated job step 1505858.15
= [f memory is not bound to processes, all memory is accessible:
= srun -n 1 --mem bind=none ./blockmem mpi

= On JURECA and JUWELS is - -mem bind=none used by
default so it can be omitted

= But: membind off — data is crossing CPUs (NUMA)
— ~15-20% performance drop!

= First-Touch Policy: Memory is allocated locally

GC % Resources

= www.parastation.com
= www.fz-juelich.de/ias/jsc/jureca
= /opt/parastation/doc/pdf
= by mail: support@par-tec.com
= by mail: sc@fz-juelich.de
= Download ParaStation MPI at github:
= https.//github.com/ParaStation/psmgmt
= https.//github.com/ParaStation/pscom
= https.//github.com/ParaStation/psmpi2
= git clone https.//github.com/ParaStation/psmpiZ2.qgit

http://www.parastation.com/
http://www.fz-juelich.de/ias/jsc/jureca
mailto:support@par-tec.com
mailto:sc@fz-juelich.de
https://github.com/ParaStation/psmgmt
https://github.com/ParaStation/pscom
https://github.com/ParaStation/psmpi2
https://github.com/ParaStation/psmpi2.git

ﬁ CLUSTER
GART\E:G Summary

= You now should be able to
= compile
= run your application
= tune some runtime parameters
= diagnose and fix specific errors
= know where to turn to in case of problems

ParaStation

MPI

Thank you!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

