Application Performance Snapshot (APS) Playbook

The Playbook contains command lines starting with S

Please change SPRG, SARGS into the path,name and parameters of your program!

Version 1.0, 18.02.2019

0. Environment

S module load Intel
S module load IntelMPI

S module load VTune

For Batch jobs

Please include: --disable-perfparanoid

in command line for sbatch or in scripts with #SBATCH --disable-perfparanoid

check for important executables

S which aps

check version

S aps —version

1.0 Application Performance Snapshot (APS) usage:

Please contain in your SLURM batch jobs:

--disable-perfparanoid

this will change the perf_event_paranoid to 0. With values > 0 you will get less information (1) and no
information for (>2)

Just put aps in front of the executable (non MPI):

S aps SPRG SARGS

For MPI programs:

S srun <srun parameter> aps -r aps_out SPRG SARGS

Poisson Example:

srun -n <N> aps -r aps_out ./poisson.x -n 3200

Output directory name "-r aps_out" may be omitted or chosen differently

Note: check with $ Is -Itr

for the last created directory.

please choose another directory name if you do another run in thesame directory.

2.0 View Results

Summary results can be displayed by

S aps-report aps_out -s

result-dir is starting with "aps_" if result dir is not specified.

HTML results

S aps-report -g aps_out

generates aps_report_<date>_<time>.html

more MPI statistics (functions) are available.

S aps-report aps_out -f

or for the full output:

S aps-report aps_out -a

For more detailed MPI output the program has to run under the environment variable:

S export MPS_STAT_LEVEL=4

The integer value may be 2 to 4 for even more infos. Higher values will cause more overhead.

Display rank to rank matrix with communication times:

S aps-report -x --format=html aps_out

3.0 Code block for analysis may be selected

Insert MPI_Pcontrol(0) right after MPI_Init() to switch off tracing
Insert MP1_Pcontrol(1) before code block to switch on tracing

Insert MPI_Pcontrol(0) after code block to switch off tracing

see: https://software.intel.com/en-us/get-started-with-application-performance-snapshot

MPI_Pcontrol will be applied only on the MPI part. For limiting the HW counters use the _itt

library found on web page above

4.0 Jube usage recently untested (please ask instructors)

Jube is developed by FZ Juelich (Juelich universal benchmark environment)

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/ _node.html

poisson.xml is running poisson.x under Jube. For your own program change poisson.x and parameter.

Additional include files for APS and VTune are available

S cd Poisson_1.3
S module load JUBE

S export JUBE_INCLUDE_PATH=SPWD/JUBE_INCLUDE:SJUBE_INCLUDE_PATH

4.1 run jube

run without tools

S jube run poisson.xml -a -r

more output

S jube run poisson.xml -a -r --tag long

with aps support

S jube run poisson.xml -a -r --tag aps

Alternative Environment (TBD)

Alternative PSXE 2019

S module load Intel

S source <path to 2019>

S which aps

