
INTRODUCTION	TO	SUPERCOMPUTING	AT
JSC

Andreas	Smolenko 	Benedikt	Steinbusch 	Alexandre	Strube

22	–	25	November	2021

Introduction
Access

Getting	a	JSC	account
Joining	a	compute	time	project
Login	procedure
Further	reading

Unix	shell	basics
Environment

Active	project
File	system	points	of	interest
Further	reading

Software	Modules
Further	reading

Custom	software
Compiled	languages
Scripting	languages

Accounting
General	information
Job	accounting

Running	jobs
Interactive	mode
Batch	mode
Affinity	and	multi-threading
Further	reading

Using	GPUs
GPU	Affinity
Further	reading

Useful	Links
System	Documentation
Job	Reporting
Apply	for	Computing	Time
JSC	Course	Programme

Supercomputing	Support

INTRODUCTION
The	largest	computers	used	for	computational	science	have	exhibited	an	exponential
increase	in	the	rate	of	basic	operations	they	can	perform	since	at	least	the	1990s.	For
more	than	a	decade,	this	growth	has	been	enabled,	not	by	increasing	clock	speeds	of
individual	processing	units,	but	by	assembling	systems	that	consist	of	ever	greater
numbers	of	processing	units.	Scientific	applications	that	are	meant	to	run	on	these
systems	are	expected	to	orchestrate	many	of	these	computational	units	to	collaborate
on	solving	a	given	computational	problem.	Building	these	kinds	of	applications	is
called	parallel	programming.	Parallel	programming	will	only	be	touched	on	briefly	in
this	course,	but	Jülich	Supercomputing	Centre	(JSC)	offers	several	courses	that	teach
various	techniques	related	to	the	topic.

Scientists	who	want	to	run	applications,	be	they	custom	made	or	third-party,	on	these
systems	are	expected	to	know	how	to	use	these	systems.	Working	through	this	guide
will	teach	you	how	to

access	the	systems	available	at	JSC,
navigate	the	file	system,
find	pre-installed	software,
build	your	own	software,	and	finally
run	software.

ACCESS
This	chapter	will	teach	you	how	to	log	in	to	one	of	the	systems	at	JSC.

Getting	a	JSC	account
A	basic	prerequisite	to	get	acces	to	the	HPC	system	and	other	services	at	JSC	is	a	JSC
account.	If	you	do	not	already	have	an	account	(they	have	the	form	<family	name>
<number>,	e.g.	steinbusch1),	one	can	be	created	through	JSCʼs	user	portal	JuDoor
(click	the	Register	button).

Joining	a	compute	time	project
To	be	allowed	to	log	in	to	an	HPC	system,	your	JSC	account	needs	to	be	a	member	of	a
computing	time	project	that	has	an	active	budget	on	the	system.	This	is	the	case	if

you	have	successfully	applied	for	test	computing	time	for	a	test	project	and	are
now	the	principal	investigator	(PI)	of	your	own	project,	or

https://www.top500.org/statistics/perfdevel/
https://en.wikipedia.org/wiki/Dennard_scaling
https://judoor.fz-juelich.de
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/ComputingTime/computingTime_node

you	have	successfully	applied	for	computing	time	during	one	of	our	calls	for
project	proposals	and	are	now	the	principal	investigator	(PI)	of	your	own	project,
or
you	have	gained	access	to	a	project	either	by	being	invited	by	the	PI	or	project
administrator	(PA)	or	by	being	granted	access	upon	requesting	to	join	a	project
through	JuDoor.

We	have	created	a	computing	time	project	for	this	course	with	a	project	id	of	
training2126.	To	join	the	project,	log	in	to	JuDoor	and	click	Join	a	project	under	the
Projects	heading.	Enter	the	project	id	and,	if	you	want	to,	a	message	to	remind	the
PI/PA	(one	of	the	instructors)	why	you	should	be	allowed	to	join	the	project.
Afterwards	the	PI/PA	will	be	automatically	informed	about	your	join	request	and	can
add	you	to	the	different	systems	available	in	the	project.	As	soon	as	you	are	unlocked
for	the	system,	the	system	entry	will	be	shown	on	your	JuDoor	main	page.	You	have	to
accept	our	Usage	Agreement	before	you	can	continue	with	the	next	step.

Login	procedure
Logging	in	to	our	systems	is	usually	done	through	the	Secure	Shell	(SSH)	mechanism,
although	there	are	alternatives	such	as	UNICORE	and	JupyterLab.	Our	SSH
configuration	uses	an	authentication	mechanism	based	on	public	and	private	keys
rather	than	passwords.	A	pair	of	public	and	private	keys	has	to	be	generated	on	your
personal	computer.	The	private	key	has	to	be	protected	by	a	passphrase.	The	public
key	is	then	registered	for	access	to	the	system	through	JuDoor.

NEVER	SHARE	YOUR	PRIVATE	KEY!!!

Several	software	packages	can	be	used	for	logging	in	through	SSH.	The	procedure	is
documented	below	for	some	popular	choices:

OpenSSH	which	is	a	popular	choice	on	GNU/Linux,	macOS,	and	other	Unix-like
operating	systems
PuTTY	which	is	a	popular	choice	on	Windows

Generating	a	key	pair	with	OpenSSH

OpenSSH	is	a	set	of	command	line	tools,	so	open	up	a	terminal.	We	suggest	you	start
by	creating	a	fresh	pair	of	public	and	private	key	(a	key	pair).	To	generate	a	key	pair
enter	the	command	below.	The	program	asks	for	a	passphrase.	This	passphrase	is	not
used	for	authenticating	to	the	remote	system,	but	rather	acts	as	an	encryption	key	for
the	private	part	of	the	key	pair	stored	on	the	local	file	system.	In	case	the	private	key
file	is	stolen	by	an	attacker,	they	will	not	be	able	to	use	the	key	without	knowing	the
passphrase,	so	make	sure	to	use	one	that	is	hard	to	guess.

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/ComputingTime/computingTime_node
https://judoor.fz-juelich.de
https://en.wikipedia.org/wiki/Secure_Shell
https://www.unicore.eu/
https://jupyter-jsc.fz-juelich.de/
https://en.wikipedia.org/wiki/Password_strength

$	ssh-keygen	-a	100	-t	ed25519	-f	~/.ssh/id_ed25519
Generating	public/private	ed25519	key	pair.
Enter	passphrase	(empty	for	no	passphrase):
Enter	same	passphrase	again:
Your	identification	has	been	saved	in	/Users/bsteinb/.ssh/id_ed25519.
Your	public	key	has	been	saved	in	/Users/bsteinb/.ssh/id_ed25519.pub.
The	key	fingerprint	is:
SHA256:tHin8v4j4cyVVe2BEWAinq/vlhFExupY+37s94216uA	bsteinb@zam478
The	key's	randomart	image	is:
+--[ED25519	256]--+
|							.o+	o.o+.	|
|						.	+oo	|
|							o+				.	..|
|							=.o		.			.|
|						=	S.oo					|
|					.	+o+o						|
|						.=oo+.				.|
|							o*+oo..	oo|
|							.**+Eoo+o.|
+----[SHA256]-----+

If	the	designated	output	file	(~/.ssh/id_ed25519)	already	exists,	the	program	asks
to	overwrite	it.	This	is	probably	not	what	you	want,	since	you	might	be	using	the	key
contained	therein.	Change	the	output	name	by	using	the	arguments	-f	
~/.ssh/id_ed25519_jsc	instead	of	-f	~/.ssh/id_ed25519.	If	you	do	so,	keep
in	mind	that	your	keys	are	in	a	non-default	location	for	the	remainder	of	the	course.

Print	the	contents	of	the	public	key	to	the	terminal	by	entering:

$	cat	~/.ssh/id_ed25519.pub
ssh-ed25519	AAAAC3NzaC1lZDI1N	[...]	6BRJMTyE4voyqJGm36P+	bsteinb@zam478

and	copy	it	to	the	clipboard	(do	not	copy	the	key	above,	that	one	is	mine,	yours	will	be
different).	Continue	by	uploading	the	public	key	to	JuDoor.

Generating	a	key	pair	with	PuTTY

Open	puttygen.exe	to	generate	a	key	pair.	Select	Ed25519	as	the	key	type	then	click
Generate	and	follow	the	instructions	of	the	program.	Once	the	key	has	been	generated,
enter	a	strong	passphrase	that	cannot	be	guessed	easily.	This	passphrase	is	used	to
encrypt	the	key	while	it	is	stored	on	disk	so	that	it	cannot	be	used	if	it	is	stolen.

Click	Save	private	key	to	save	the	private	key	to	a	.ppk	file.

Now	copy	the	contents	of	the	field	Public	key	for	pasting	into	OpenSSH	authorized_keys
file	to	the	clipboard.

Key	generation	with	PuTTY

Uploading	the	public	key

Navigate	to	JuDoor	and	click	on	Manage	SSH-keys	next	to	the	entry	for	the	system	you
want	to	use	under	the	Systems	heading.	Paste	the	public	key	into	the	form	in	the	field
labeled	Your	public	key	and	options	string,	but	do	not	submit	yet.	As	a	further	security
measure,	you	have	to	specify	the	systems	that	your	log	in	attempts	will	come	from.
This	is	done	via	an	additional	from-clause	on	your	public	key,	that	can	contain	single
IP-addresses	and	address	ranges	as	well	as	host	names	and	even	wildcard	patterns
based	on	either	of	these.

Specifying	a	from-clause	is	relatively	easy	if	you	have	access	to	a	system	with	a	fixed
IP-address	or	an	IP-address	that	changes	dynamically,	but	comes	from	a	range	of
addresses	that	can	be	specified	concisely.	This	is	typically	the	case	for	systems	which
are	connected	to	university	or	research	centre	networks	(even	via	VPN	when	working
from	home).	For	example,	systems	connected	to	the	network	of	Forschungszentrum
Jülich	will	be	assigned	an	IP-address	from	the	range	134.94.0.0/16,	so	a	valid	
from-clause	would	be	from="134.94.0.0/16".	Other	institutions	will	use	different
address	ranges,	you	should	be	able	to	find	these	out	from	your	institutions	network
operations	centre.

Sometimes,	patterns	based	on	host	names	will	work	better	than	those	based	on	IP
addresses.	For	example,	Forschungszentrum	Jülich	assigns	host	names	that	end	in

either	fz-juelich.de	or	kfa-juelich.de,	so	a	valid	from-clause	could	also	be	
from="*.fz-juelich.de,*.kfa-juelich.de"	(notice	how	multiple	patterns
can	be	combined	with	a	comma	in	between).	Once	again,	the	host	names	assigned	by
other	institutions	will	be	different.	To	some	extent,	this	scheme	also	works	for	home
internet	access.	Internet	providers	typically	assign	IP	addresses	dynamically	drawing
from	fragmented	pools	that	are	hard	to	specify	completely	in	terms	of	address	ranges,
but	they	often	assign	host	names	which	follow	a	pattern	that	can	be	found	out.	The
command	nslookup	<your	IP>	will	tell	you	the	host	name	assigned	to	your	system
by	the	provider	(find	out	your	IP	either	from	the	JuDoor	key	upload	form	or	by	asking
a	search	engine	“what	is	my	ip”).	This	host	name	might	look	something	like	2909a2-
ip.nrw.provider.net.	Chop	name	components	off	the	beginning	and	replace
them	with	*	to	come	up	with	a	pattern,	e.g.	*.nrw.provider.net.

Add	your	from-clause	in	front	of	the	public	key	you	already	pasted	into	the	form.	The
result	should	be	something	like:

from="134.94.0.0/16"	ssh-ed25519	AAAA	[...]

Then	click	Start	upload	of	SSH	keys.	It	will	take	some	time	for	the	key	you	uploaded	to
JuDoor	to	be	synched	to	the	actual	system.	Eventually	though,	you	will	be	able	to	log
in.	Once	again,	we	have	instructions	for

OpenSSH
PuTTY

Logging	in	with	OpenSSH

To	log	in	with	OpenSSH,	enter	the	following	command:

$	ssh	-i	~/.ssh/id_ed25519	<account	name>@<system	name>.fz-juelich.de

(Remember	to	change	the	location	of	the	key	~/.ssh/id_ed25519	if	you	saved	it	to
a	non-default	location.)	For	example,	if	I	wanted	to	log	in	to	JUWELS	Cluster	it	would
be:

$	ssh	steinbusch1@juwels-cluster.fz-juelich.de

The	following	table	lists	the	host	names	of	login	nodes	for	the	different	systems.	Pick
the	one	you	want	to	use.

System Login	node	host	name

JURECA	DC	and
Booster

jureca.fz-juelich.de

JUWELS	Cluster juwels-cluster.fz-juelich.de

JUWELS	Booster juwels-booster.fz-juelich.de

JUSUF jusuf.fz-juelich.de

System Login	node	host	name

When	connection	for	the	first	time,	OpenSSH	will	prompt	you	to	confirm	the	server
key	fingerprint:

The	authenticity	of	host	'jusuf.fz-juelich.de	(134.94.0.184)'	can't	be	established.
ECDSA	key	fingerprint	is	SHA256:tuswM7JtVcWNS5wRCVIfv1h4uRHReHIN77C4zTYaPjs.
Are	you	sure	you	want	to	continue	connecting	(yes/no/[fingerprint])?

JSC	publishes	SSH	fingerprints	for	its	systems	through	JuDoor.	You	can	find	them	on
the	page	you	used	to	upload	your	public	key.	Either	compare	the	keys	or,	in	newer
versions	of	OpenSSH,	you	can	paste	the	fingerprint	from	JuDoor	into	the	prompt	to
confirm	it.

Then	you	should	see	an	informational	message	(the	message	of	the	day,	MOTD)
followed	by	a	shell	prompt	similar	to	the	following:

**
*		Welcome	to																																																																		*
*							_	_			___								_______	_					____																																				*
*						|	|	|	|	\	\						/	/	____|	|			/	___|					Juelich	Wizard																*
*			_		|	|	|	|	|\	\	/\	/	/|		_|	|	|			___	\								for																								*
*		|	|_|	|	|_|	|	\	V		V	/	|	|___|	|___	___)	|						European	Leadership									*
*			___/	___/			_/_/		|_____|_____|____/									Science																			*
*																																																																														*
**
																																																										2020-11-19T14:00+0200
	###	Status	information	JUWELS	###

Known	issues:					https://apps.fz-juelich.de/jsc/hps/juwels/known-issues.html

**
steinbusch1@jwlogin01:~	$

Once	you	have	logged	in	successfully,	you	can	continue	with	Unix	shell	basics.

Logging	in	with	PuTTY

Launch	putty.exe	to	log	in.	Set	the	Host	name	for	the	system	you	want	to	connect	to,
e.g.	juwels-cluster.fz-juelich.de.

https://dispatch.fz-juelich.de:8812/HIGHMESSAGES

PuTTY	session	configuration

The	following	table	lists	the	host	names	of	login	nodes	for	the	different	systems.	Pick
the	one	you	want	to	use.

System Login	node	host	name

JURECA	DC	and
Booster

jureca.fz-juelich.de

JUWELS	Cluster juwels-cluster.fz-juelich.de

JUWELS	Booster juwels-booster.fz-juelich.de

JUSUF jusuf.fz-juelich.de

Navigate	to	Connection	>	SSH	>	Auth	and	under	Private	key	file	for	authentication:	select
the	key	you	just	generated.

PuTTY	auth	configuration

If	you	want	to	save	this	configuration,	you	can	navigate	back	to	the	Session	screen	to
give	the	session	a	name	and	save	it.	Now	click	Open	to	connect.	When	you	connect	for
the	first	time,	PuTTY	will	display	a	dialog	like	the	following:

PuTTY	security	alert

This	is	not	an	error,	but	a	security	feature.	The	server	key	fingerprint	displayed	in	the
dialog	has	to	be	verified	by	comparing	it	to	the	known	good	fingerprint.	JSC	publishes
SSH	fingerprints	for	its	systems	through	JuDoor.	You	can	find	them	on	the	page	you
used	to	upload	your	public	key.

Once	you	have	logged	in	successfully,	you	can	continue	with	Unix	shell	basics.

JupyterLab

Alternatively,	you	can	use	JupyterLab	to	log	in.	The	authentication	credentials	are	the
same	as	for	JuDoor.	Once	you	have	logged	in,	you	need	to	create	a	JupyterLab
instance	by	clicking	Add	New	JupyterLab.	On	the	next	screen	you	must	select	which
system	you	want	to	log	in	to,	what	project	to	use	for	accounting	and	what	part	of	the
system	you	want	to	log	in	to	(more	about	this	later),	login	nodes	are	the	right	choice
for	the	moment.	Startup	of	JupyterLab	may	take	a	while,	but	once	it	is	done,	you	can
launch	a	terminal	running	a	shell	on	the	system	of	your	choice	inside	the	browser.	To
do	so,	click	File	>	New	>	Terminal	and	you	should	see	a	shell	prompt	similar	to	this:

[steinbusch1@jrl06	~]$

Further	reading
Our	online	documentation	has	more	information	on	accessing	the	systems.	It
provides	further	examples	of	from-clauses,	discusses	configuration	of	SSH	clients	to
set	up	short-cuts	and	gives	hints	for	troubleshooting.	If	you	want	more	details,	you
can	find	the	documentation	for	our	various	systems	here:

JUWELS	documentation:	Access
JURECA	documentation:	Access
JUSUF	documentation:	Access

UNIX	SHELL	BASICS
Whether	you	log	in	via	OpenSSH	or	PuTTY	or	opening	a	Terminal	in	JupyterLab,	you
will	be	interacting	with	the	system	through	a	Unix	shell.	Unix	shells	are	text	based
interfaces	that	prompt	the	user	to	input	commands	and	display	the	result	of	executing
those	commands	back	to	the	user.	The	underlying	concepts	(the	file	system,	executing
programs,	etc.)	are	probably	familiar	to	you,	but	the	text	based	interface	can	seem
daunting	at	first.	This	section	will	teach	you	how	to	accomplish	essential	tasks	on	a
Unix	shell.	If	you	are	already	familiar	with	this	kind	of	interface,	you	may	want	to	skip
ahead	to	the	section	describing	the	environment.

Like	many	operating	systems,	Unix	provides	an	abstraction	for	storage	media	called	a
file	system.	Data	of	various	types	(text,	images,	executable	code,	etc.)	is	stored	in	files
which	can	be	organized	in	a	tree-like	hierarchy	of	directories	that	starts	at	a	single
root	(the	“root	directory”).	Objects	in	the	file	system	(files	or	directories)	are
addressed	using	strings	of	characters	called	“paths”	that	list	the	directories	one	has	to
traverse	to	get	to	an	object	plus	the	objects	name.	The	slash	/	serves	as	the	separator
between	elements	of	a	path	and	cannot	itself	appear	in	file	or	directory	names.	Some
examples	for	paths	are:

/etc
/usr/bin/env

https://jupyter-jsc.fz-juelich.de
https://apps.fz-juelich.de/jsc/hps/juwels/access.html
https://apps.fz-juelich.de/jsc/hps/jureca/access.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/access.html
https://en.wikipedia.org/wiki/Unix_shell

/home/bsteinb/Documents

These	paths	are	all	“absolute	paths”,	meaning,	they	describe	the	location	of	an	objects
in	relation	to	the	root	directory	(which	is	represented	by	a	single	slash	/):

etc	is	a	directory	that	is	found	inside	of	the	root	directory
env	is	a	file	found	in	the	directory	bin	which	itself	is	found	in	the	directory	usr
inside	the	root	directory
Documents	is	a	directory	in	bsteinb	which	is	a	directory	in	home	which	is	a
directory	in	the	root	directory

Since	absolute	paths	can	become	unwieldy	in	deep	directory	hierarchies,	Unix	also
allows	relative	paths.	To	this	end,	every	program	(including	the	shell	you	are	using)	is
executed	in	a	“working	directory”	(which	can	be	changed	during	the	execution	of	the
program).	Relative	path	specifications	are	then	interpreted	in	relation	to	this	working
directory.	They	are	written	without	the	initial	slash	/.	Some	examples	for	relative
paths	are:

Documents
bin/env
../etc/crontab

With	a	working	directory	of	/usr,	bin/env	refers	to	/usr/bin/env,	just	like	the
absolute	path	above.	The	path	component	..	above	has	a	special	function.	It	refers	to
the	parent	(the	containing	directory)	of	a	file	system	object	and	can	appear	in	both
relative	and	absolute	paths.	So	../etc/crontab	refers	to	a	file	crontab	in	a
directory	etc	that	can	be	found	in	the	parent	directory	of	the	current	working
directory.	/home/bsteinb/../janedoe/.bashrc	can	be	simplified	to	
/home/janedoe/.bashrc.

To	find	out	the	current	working	directory	of	the	shell	you	are	using,	type:

$	pwd

The	output	should	be	something	like:

/p/home/jusers/steinbusch1/juwels

which	is	the	“home	directory”	associated	with	your	account	on	the	system.	To	list	the
contents	of	the	working	directory,	execute	the	ls	command:

$	ls

If	you	are	working	with	a	fresh	user	account,	the	output	of	this	command	might	be
empty,	because	there	are	no	files	(or	only	hidden	files)	in	your	home	directory.	To
make	ls	display	the	hidden	files	as	well,	add	the	optional	argument	-a:

$	ls	-a

The	output	should	now	be	non-empty	and	contain	files	and	directories	with	names
that	start	with	the	period	..	In	Unix,	whether	a	file	system	item	is	hidden	or	not	is
determined	by	the	first	character	in	its	name	being	the	period	..

ls	-a	is	our	first	example	of	a	more	complex	command	invocation.	It	starts	with	the
name	of	a	command	(so	far,	we	have	seen	pwd	and	ls)	followed	by	a	list	of	arguments
(here	-a),	all	separated	by	spaces.	ls	can	be	used	to	list	the	contents	of	any	directory,
by	specifying	the	path	of	the	directory	in	the	last	position.	To	list	the	items	in	the	/etc
directory,	type:

$	ls	/etc

Most	commands	and	the	list	of	arguments	they	accept	are	documented	in	the	Unix
manual	pages.	They	can	be	accessed	through	a	command	–	man	–	that	takes	as	its	only
argument	the	name	of	the	manual	page	you	want	to	read.	For	most	commands	there	is
a	manual	page	with	the	same	name	as	the	command.	To	read	the	manual	page	for	ls,
type:

$	man	ls

You	can	scroll	through	the	manual	page	using	the	arrow	keys.	When	you	are	done
reading,	close	the	manual	by	pressing	q	on	the	keyboard.	To	find	manual	pages	for	a
specific	topic,	you	can	use	the	apropos	command	which	searches	the	library	of
manual	pages	for	a	given	keyword.

To	change	the	working	directory	of	your	shell	and	all	commands	you	invoke
subsequently,	use	the	cd	command:

$	cd	/

This	will	take	you	to	the	root	directory.	If	you	now	execute	ls	without	specifying	a
path,	it	should	show	you	all	items	in	the	root	directory,	e.g.:

$	ls
arch			bin			dev		gpfs		lib				media		opt		proc		run			selinux		sys		usr
arch2		boot		etc		home		lib64		mnt				p				root		sbin		srv						tmp		var

Invoking	cd	without	an	argument	takes	you	back	to	your	home	directory:

$	cd
$	pwd
/p/home/jusers/steinbusch1/juwels

Alternatively,	the	path	to	your	home	directory	is	also	availably	as	the	value	of	an
“environment	variable”.	Environment	variables	map	names	(strings)	to	values	(also
strings)	and	can	be	seen	as	implicit	input	to	commands	while	arguments	on	the
command	line	are	explicit	inputs.	The	name	of	the	environment	variable	that	contains
the	path	to	your	home	directory	is	HOME.	Its	value	can	be	inspected	using	the	

printenv	command:

$	printenv	HOME
/p/home/jusers/steinbusch1/juwels

The	printenv	command	asks	the	environment	for	the	value	of	the	variable	HOME
(using	the	getenv	function)	and	prints	it	to	the	terminal.	In	some	situations	it	makes
sense,	to	use	the	value	of	environment	variables	as	explicit	arguments	to	a	command
(e.g.	if	you	want	to	cd	to	the	value	of	HOME).	This	is	supported	by	a	shell	mechanism
called	“variable	expansion”:	mention	the	name	of	a	variable,	prefixed	by	the	dollar
sign	$	in	a	command	line	and	the	shell	will	substitute	the	value	of	the	variable	and
pass	that	as	an	argument	to	the	command:

$	cd	$HOME
$	pwd
/p/home/jusers/steinbusch1/juwels

The	env	command	can	be	used	to	inspect	the	environment.	When	invoked	without
any	arguments	it	prints	a	list	of	all	variables	currently	defined	and	their	values.

$	env
[...]
HOME=/p/home/jusers/steinbusch1/juwels
[...]

pwd,	cd	and	ls	let	you	navigate	the	file	system.	The	following	commands	can	be	used
to	make	modifications	to	the	file	system.	First	is	mkdir	which	allows	you	to	make	a
directory:

mkdir	<directory_path>

To	create	an	empty	file	at	a	given	location,	use:

touch	<file_path>

In	your	home	directory,	create	two	directories	and	a	file:

$	mkdir	dir1	dir2
$	touch	dir1/file1

You	can	use	ls	to	confirm	that	you	have	created	two	directories	next	to	each	other,
one	of	which	contains	an	empty	file.

$	ls
dir1	dir2
$	ls	dir1
file1
$	ls	dir2

Files	and	directories	can	be	moved,	copied	and	deleted	with	the	commands:

$	mv	<source_path>	<destination_path>
$	cp	-r	<source_path>	<destination_path>

$	rm	-r	<path>

Make	a	copy	of	dir1	and	check	that	it	also	contains	file1.

$	cp	-r	dir1	dir3
$	ls	dir3
file1

Move	the	copy	of	the	file	into	dir2.

$	mv	dir3/file1	dir2
$	ls	dir2
file1
$	ls	dir3

Finally,	remove	all	three	directories.

$	rm	-r	dir1	dir2	dir3
$	ls

Lastly,	we	will	mention	one	way	of	editing	text	files:	the	nano	editor.	To	open	a	file	in	
nano,	type:

$	module	load	nano
$	nano	<file_path>

(The	module	command	will	be	explained	in	detail	later	on.)

To	insert	something	into	the	file,	just	start	typing.	Save	your	changes	by	pressing
CTRL-O.	Exit	the	editor	by	pressing	CTRL-X.	The	bottom	part	of	the	terminal	will
display	more	functions	which	can	be	reached	using	certain	key	bindings.	Interaction
with	the	editor,	such	as	specifying	a	file	name	when	saving,	will	also	happen	here.

ENVIRONMENT
Now	that	you	know	about	the	basic	Unix	commands,	this	section	will	teach	you	about
some	of	the	peculiarities	of	the	environment	on	the	systems	at	JSC.

Active	project
The	first	point	to	talk	about	is	the	active	project.	You	already	know	about	accounts	and
computing	time	projects	and	by	this	point	you	should	be	a	member	of	at	least	one
project	to	have	access	to	one	of	our	systems.	However,	in	general,	a	single	user
account	can	be	a	member	of	multiple	computing	time	(“C”)	projects	(and	also	data
projects	(“D”))	at	the	same	time.	You	can	see	the	projects	that	you	are	currently	a
member	of	in	your	user	profile	on	JuDoor,	or,	if	you	are	logged	in	to	one	of	the	HPC
systems,	you	can	use	the	jutil	command:

$	jutil	user	projects
					project				unixgroup						PI-uid	project-type	budget-accounts

------------	------------	-----------	------------	---------------
							hello								hello				hellopi1												D															-
						chello							chello				hellopi1												C											hello
		training00			training00						coach2												C						training00

Certain	system	resources,	like	file	system	space	and	compute	time,	are	associated	with
the	projects	that	you	are	a	member	of.	Performing	actions	that	consume	these
resources,	storing	files	or	running	a	computation,	have	to	be	counted	against	the
resource	pool	available	to	the	project.	This	is	done	by	storing	files	in	certain	locations
or	specifying	a	compute	time	budget	when	running	computations.	It	is	possible	to
explicitly	specify	a	project,	each	time	one	of	these	actions	is	performed.	For	brevityʼs
sake,	one	can	also	make	one	of	the	projects	the	“active	project”	and	then	all	actions
performed	in	the	remainder	of	the	session	will	implicitly	be	performed	in	the	context
of	that	project.	This	can	also	be	done	through	the	jutil	command:

$	jutil	env	activate	-p	training2126	-A	training2126

Now	training2126	is	the	active	project.	Any	computational	jobs	will	be	accounted
against	its	budget	and	the	special	file	system	locations	associated	with	it	can	be
reached	through	certain	environment	variables.	More	about	that	in	the	next	section.

Hint:	In	case	you	are	working	on	different	compute	budgets	we	recommend	to	set	the
budget	explicitly	as	it	is	described	later	in	the	document	to	avoid	using	the	“wrong”
budget	for	a	specific	simulation	job.

File	system	points	of	interest
Every	user	account	on	the	systems	has	a	home	directory	(reachable	through	the	HOME
environment	variable)	where	the	user	can	store	his	personal	files.	However,	there	is	a
limit	on	the	volume	of	data	and	also	the	number	of	files	that	can	be	stored	in	this
directory.	Furthermore,	the	file	system	performance	in	HOME	is	reduced.	It	is
recommended	to	use	HOME	only	for	configuration	files.	More	storage	space	is	granted
to	computing	time	projects.	At	least	two	directories	are	created	for	each	project:

a	PROJECT	directory,	that	can	store	medium	amounts	of	data,	offers	modest
performance	and	is	backed	up	regularly,	and
a	SCRATCH	directory,	that	offers	high	I/O	bandwidth,	should	be	used	for	input
and	output	of	computations	(however,	no	back	up	is	performed	and	files	that
have	not	been	touched	in	90	days	get	deleted	automatically).

Data	projects	have	access	to	other	storage	locations,	e.g.	the	tape	based	ARCHIVE	for
long	term	storage	of	results.

The	path	of	these	directories	is	available	as	the	value	of	environment	variables	of	the
form	<directory>_<project>,	e.g.	PROJECT_training2126	or	

SCRATCH_training2126.	If	you	have	activated	a	project	in	the	previous	section,	you
will	also	have	environment	variables	that	are	just	PROJECT	and	SCRATCH	that	point	to
the	respective	directories	of	the	active	project.

Print	the	contents	of	PROJECT_training2126	and	PROJECT:

$	printenv	PROJECT_training2126
/p/project/training2126
$	printenv	PROJECT
/p/project/training2126

Change	into	that	directory	and	see	what	is	already	there:

$	cd	$PROJECT_training2126
$	ls

Inside	the	PROJECT	directory,	make	a	directory	to	contain	the	files	that	you	work	on.
In	order	to	avoid	collisions,	use	your	account	name	as	the	name	of	the	directory	(the	
USER	environment	variable	contains	your	user	name):

$	mkdir	$USER

There	is	more	information	on	file	system	points	of	interest	in	the	documentation.

Further	reading
Our	online	documentation	has	more	information	on	the	system	environment.	It
describes	further	file	systems	covering	more	specialised	use	cases	and	discusses
transferring	files	to	and	from	the	systems	via	SSH	and	Git.	If	you	want	more	details,
you	can	find	the	documentation	for	our	various	systems	here:

JUWELS	documentation:	Environment
JURECA	documentation:	Environment
JUSUF	documentation:	Environment

SOFTWARE	MODULES
HPC	centres	will	usually	make	some	effort	to	provide	software	that	is	commonly	used
for	scientific	purposes.	This	includes	compilers,	parallel	programming	libraries	like
MPI,	numerical	libraries,	and	even	complete	simulation	programs.	These	software
packages	form	a	hierarchy	of	dependencies	(simulation	programs	use	the	numerical
and	parallel	programming	libraries	and	all	of	it	is	compiled	with	a	certain	compiler).
Towards	the	bottom	of	this	hierarchy,	packages	tend	to	be	interchangeable	(several
compilers	for	C	or	Fortran,	several	libraries	implement	the	MPI	standard)	and	some
of	the	higher	up	packages	perform	better	for	example	when	compiled	with	a	certain
compiler.	Therefore,	it	makes	sense	to	offer	a	range	of	software	packages	that
implement	low	level	functions	and	then	build	a	software	landscape	upon	each

https://apps.fz-juelich.de/jsc/hps/judac/faq.html
https://apps.fz-juelich.de/jsc/hps/juwels/environment.html
https://apps.fz-juelich.de/jsc/hps/jureca/environment.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/environment.html

combination	of	those	low	level	packages.	The	two	lowest	levels	in	this	hierarchy,
compiler	and	MPI	library	together	form	a	“toolchain”.	To	help	keep	the	complexity	of
accessing	these	different	collections	of	software	in	check,	JSC	uses	a	combination	of
EasyBuild	and	Lmod	to	build	software	and	make	it	available	as	software	modules.
During	a	log	in	session,	modules	can	be	loaded	and	unloaded	using	the	module
command	to	use	the	software	that	is	provided	by	them.	When	you	log	in,	a	set	of
default	modules	is	loaded	for	you,	e.g.	on	JUWELS:

$	module	list

Currently	Loaded	Modules:
		1)	GCCcore/.9.3.0	(H)			3)	binutils/.2.34	(H)
		2)	zlib/.1.2.11			(H)			4)	StdEnv/2020

		Where:
			H:		Hidden	Module

To	see	what	other	modules	can	currently	be	loaded,	type:

$	module	avail

--------------------------	Core	packages	---------------------------
			Advisor/2020_update3
			Autotools/20200321
			Autotools/20200321																																	(D)

			[...]

			unzip/6.0
			xpra/4.0.4-Python-3.8.5
			zsh/5.8

----------------------------	Compilers	-----------------------------
			GCC/9.3.0																									NVHPC/20.9-GCC-9.3.0		(g)
			Intel/2020.2.254-GCC-9.3.0								NVHPC/20.11-GCC-9.3.0	(g,D)
			NVHPC/20.7-GCC-9.3.0							(g)				NVHPC/21.1-GCC-9.3.0		(g)

-----------------	User-based	install	configuration	-----------------
			UserInstallations/easybuild

		Where:
			S:								Module	is	Sticky,	requires	--force	to	unload	or	purge
			g:								built	for	GPU
			L:								Module	is	loaded
			Aliases:		Aliases	exist:	foo/1.2.3	(1.2)	means	that	"module	load	foo/1.2"	will	load	
foo/1.2.3
			D:								Default	Module

Use	"module	spider"	to	find	all	possible	modules	and	extensions.
Use	"module	keyword	key1	key2	..."	to	search	for	all	possible	modules	matching
any	of	the	"keys".

The	available	modules	are	grouped	into	categories:

https://easybuild.readthedocs.io
https://lmod.readthedocs.io

Core	packages,	which	are	independent	of	the	choice	of	toolchain
Compilers,	which	are	the	first	ingredient	of	a	toolchain
Archictectures,	that	can	be	used	to	load	software	for	different	processor
architectures,	this	category	does	not	exist	on	all	systems

Go	ahead	and	load	a	compiler:

$	module	load	GCC

If	you	now	run	module	avail	again,	you	will	notice	two	additional	software
categories:

$	module	avail

-------------	MPI	runtimes	available	for	GNU	compilers	-------------
[...]

---------------	Packages	compiled	with	GNU	compilers	---------------
[...]

These	contain	modules	that	depend	on	(or	were	built	with)	the	GCC	module	that	you
just	loaded.	Loading	one	of	the	available	MPI	modules	will	complete	your	choice	of	a
toolchain	and	make	more	software	available:

$	module	load	OpenMPI
$	module	avail

-------------------------	OpenMPI	settings	-------------------------
			mpi-settings/CUDA-low-latency				mpi-settings/CUDA	(L,D)

---------	Packages	compiled	with	OpenMPI	and	GCC	compilers	---------
[...]

If	you	are	looking	for	a	particular	piece	of	software	that	you	know	the	name	of,	rather
than	rummaging	through	all	the	toolchains,	you	can	use	the	module	spider
subcommand,	as	the	output	of	module	avail	suggests:

$	module	spider	LAMMPS

--
		LAMMPS:
--
				Description:
						LAMMPS	is	a	classical	molecular	dynamics	code,	and	an	acronym	for
						Large-scale	Atomic/Molecular	Massively	Parallel	Simulator.	LAMMPS	has
						potentials	for	solid-state	materials	(metals,	semiconductors)	and
						soft	matter	(biomolecules,	polymers)	and	coarse-grained	or	mesoscopic
						systems.	It	can	be	used	to	model	atoms	or,	more	generically,	as	a
						parallel	particle	simulator	at	the	atomic,	meso,	or	continuum	scale.
						LAMMPS	runs	on	single	processors	or	in	parallel	using	message-passing
						techniques	and	a	spatial-decomposition	of	the	simulation	domain.	The
						code	is	designed	to	be	easy	to	modify	or	extend	with	new

						functionality.	

					Versions:
								LAMMPS/24Dec2020-CUDA
								LAMMPS/24Dec2020
								LAMMPS/29Oct2020-CUDA
								LAMMPS/29Oct2020

--
		For	detailed	information	about	a	specific	"LAMMPS"	package	(including	how	to	load	the	
modules)	use	the	module's	full	name.
		Note	that	names	that	have	a	trailing	(E)	are	extensions	provided	by	other	modules.
		For	example:

					$	module	spider	LAMMPS/29Oct2020
--

Loading	the	LAMMPS	module	with	OpenMPI	loaded	fails:

$	module	load	LAMMPS
Lmod	has	detected	the	following	error:		These	module(s)	or
extension(s)	exist	but	cannot	be	loaded	as	requested:	"LAMMPS"
		Try:	"module	spider	LAMMPS"	to	see	how	to	load	the	module(s).

module	spider	with	a	specific	module	version	provides	details	on	how	the	module
can	be	loaded:

$	module	spider	LAMMPS/24Dec2020

--
		LAMMPS:	LAMMPS/24Dec2020
--
				Description:
						LAMMPS	is	a	classical	molecular	dynamics	code,	and	an	acronym	for
						Large-scale	Atomic/Molecular	Massively	Parallel	Simulator.	LAMMPS	has
						potentials	for	solid-state	materials	(metals,	semiconductors)	and
						soft	matter	(biomolecules,	polymers)	and	coarse-grained	or	mesoscopic
						systems.	It	can	be	used	to	model	atoms	or,	more	generically,	as	a
						parallel	particle	simulator	at	the	atomic,	meso,	or	continuum	scale.
						LAMMPS	runs	on	single	processors	or	in	parallel	using	message-passing
						techniques	and	a	spatial-decomposition	of	the	simulation	domain.	The
						code	is	designed	to	be	easy	to	modify	or	extend	with	new
						functionality.	

				You	will	need	to	load	all	module(s)	on	any	one	of	the	lines	below	before	the	
"LAMMPS/24Dec2020"	module	is	available	to	load.

						GCC/9.3.0		ParaStationMPI/5.4.7-1
						Intel/2020.2.254-GCC-9.3.0		ParaStationMPI/5.4.7-1

				Help:
						Description
						===========
						LAMMPS	is	a	classical	molecular	dynamics	code,	and	an	acronym

						for	Large-scale	Atomic/Molecular	Massively	Parallel	Simulator.	LAMMPS	has
						potentials	for	solid-state	materials	(metals,	semiconductors)	and	soft	matter
						(biomolecules,	polymers)	and	coarse-grained	or	mesoscopic	systems.	It	can	be
						used	to	model	atoms	or,	more	generically,	as	a	parallel	particle	simulator	at
						the	atomic,	meso,	or	continuum	scale.	LAMMPS	runs	on	single	processors	or	in
						parallel	using	message-passing	techniques	and	a	spatial-decomposition	of	the
						simulation	domain.	The	code	is	designed	to	be	easy	to	modify	or	extend	with	new
						functionality.

						More	information
						================
							-	Homepage:	https://lammps.sandia.gov/
							-	Site	contact:	a.kreuzer@fz-juelich.de

The	problem	is	that	LAMMPS	is	only	available	in	toolchains	which	include
ParaStationMPI.	It	is	not	necessary	to	reload	the	entire	toolchain,	it	is	enough	to
reload	the	MPI	runtime:

$	module	load	ParaStationMPI
$	module	load	LAMMPS

Specific	modules	can	be	unloaded	again	using	the	module	unload	command.	To
unload	(almost)	all	modules	and	start	with	a	fresh	environment,	use	module	purge.

JURECA	and	JUWELS	consist	of	multiple	system	modules	(as	opposed	to	software
modules)	based	on	different	compute	technologies	(AMD	and	Intel	CPUs	on	JURECA,
CPUs	and	GPUs	on	JUWELS).	The	software	we	provide	on	these	systems	is	also	split
into	different	hierarchies,	one	per	system	module.	On	JUWELS,	which	uses	different
login	nodes	for	the	different	system	modules,	the	correct	software	collection	is	loaded
automatically	based	on	which	login	node	you	use.	On	JURECA,	which	uses	one	set	of
login	nodes	for	both	system	modules,	the	default	software	collection	is	the	one	for	the
DC	module.	To	access	software	for	JURECA	Booster,	you	have	to	use:

$	module	load	Architecture/jurecabooster

The	module	command	is	part	of	the	Lmod	software	package.	It	comes	with	its	own
help	document	which	you	can	access	by	running	module	help	and	a	user	guide	is
available	online.

Further	reading
Our	online	documentation	has	more	information	on	software	modules.	It	lists	the
basic	tool	chains	(compiler	+	communication	library	+	math	library)	available	on	our
systems	and	discusses	using	older	software	stages.	If	you	want	more	details,	you	can
find	the	documentation	for	our	various	systems	here:

JUWELS	documentation:	Software	Modules
JURECA	documentation:	Software	Modules

https://lmod.readthedocs.io
https://apps.fz-juelich.de/jsc/hps/juwels/software-modules.html
https://apps.fz-juelich.de/jsc/hps/jureca/software-modules.html

JUSUF	documentation:	Software	Modules

CUSTOM	SOFTWARE
For	some,	the	software	that	is	made	available	via	the	module	system	is	enough	to	do
their	daily	work.	Others	will	want	to	bring	their	own	software	to	the	systems.	This
chapter	will	teach	you	how	to	run	software	distributed	as	source	code	for	both
compiled	programming	languages	and	scripting	languages.

Compiled	languages
For	the	three	most	common	compiled	languages	in	scientific	computing,	C,	C++,	and
Fortran,	the	basic	workflow	is	very	similar.	Open	the	file	hellompi.c	in	the	nano
editor	(or	a	different	editor	of	your	choice).	(nano	is	available	as	a	module,	if	you	want
to	use	it,	type	module	load	nano.)

$	nano	hellompi.c

Paste	the	following	listing	into	the	file,	save	and	close	the	editor.

Once	you	have	a	compiler	and	an	MPI	library	loaded	(e.g.	module	load	GCC	
OpenMPI),	the	file	can	be	compiled	as	follows:

$	mpicc	-std=c11	-o	hellompi	hellompi.c

We	will	explain	how	to	run	the	program	in	a	later	chapter.

A	lot	of	software	is	not	compiled	and	installed	by	invoking	the	compiler	directly,	but
by	using	a	build	system.	GNU	make	is	installed	from	the	operating	system	package
sources	and	GNU	autotools	as	well	as	CMake	are	available	as	modules.	More	exotic
build	systems	are	also	available,	as	are	compilers	for	other	languages	like	Go	or	Rust.

Scripting	languages

#include	<stdio.h>
#include	<mpi.h>

int	main(int	argc,	char*	argv[])	{
		MPI_Init(&argc,	&argv);

		int	r,	s;
		MPI_Comm_rank(MPI_COMM_WORLD,	&r);
		MPI_Comm_size(MPI_COMM_WORLD,	&s);
		printf("hello	from	process	%d	of	%d\n",	r,	s);

		MPI_Finalize();
}

https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/software-modules.html

Scripting	languages	have	become	more	popular	in	scientific	computing	recently.
Modules	are	available	for	Python	and	Julia.

Python

The	Python	interpreter	can	be	loaded	as	a	module	as	well	as	the	mpi4py	package	that
allows	you	to	use	MPI	from	your	Python	programs.

$	module	load	Python	mpi4py

Edit	a	file	hellompi.py:

($	module	load	nano)
$	nano	hellompi.py

And	paste	the	following	content	into	it,	then	save	and	exit	the	editor.

We	will	explain	how	to	run	the	program	in	a	later	chapter.

More	Python	packages	are	available	as	modules.	For	scientific	computing,	the	
SciPy-Stack	collection	is	especially	interesting.

ACCOUNTING

General	information
Each	computing	time	project	has	been	granted	a	certain	amount	of	compute	time
(core	hours)	on	an	HPC	system.	This	budget	is	split	monthly	over	the	runtime	of	a
project	so	that	a	regular	project	that	runs	for	12	months	has	1/12	of	the	total	amount	of
the	granted	core-h	available	each	month.	To	allow	further	flexibility	we	have
established	a	“3-month-window”:	Core	hours	that	have	not	been	used	in	the	previous
month	can	be	used	in	the	current	month	and	will	be	lost	in	the	next	month	if	they	are
not	used	in	the	current	month.	Whereby	in	the	current	month	you	can	also	use	the
quota	of	the	next	month	but	with	a	decreased	priority	of	the	submitted	jobs.	The
priority	will	be	further	decreased	if	you	have	used	up	even	the	quota	of	the	next
month.

Job	accounting
Users	are	charged	for	complete	nodes	they	occupy,	regardless	of	the	number	of	CPUs

from	mpi4py	import	MPI

r	=	MPI.COMM_WORLD.rank
s	=	MPI.COMM_WORLD.size

print(f"hello	from	process	{r}	of	{s}")

used	since	the	requested	compute	nodes	for	your	application	are	not	shared	among
users.	The	comute	time	used	for	one	job	will	be	accounted	by	the	following	formula:	
#nodes	*	#AvailableCoresPerNode	*	walltime.

Jobs	that	run	on	nodes	equipped	with	GPUs	are	charged	in	the	same	way.
Independent	of	the	usage	of	the	GPUs	the	available	cores	on	the	host	CPU	node	are
taken	into	account.

Detailed	information	of	each	job	can	be	found	in	KontView	which	is	accessible	via	the
button	ʻshow	extended	statisticsʼ	for	each	project	in	Judoor.

Alternatively,	you	can	execute	the	following	command	on	the	login	nodes	to	query
your	CPU	quota	usage:	jutil	user	cpuquota.	Further	information	can	be	found	in
the	“Accounting”	chapter	of	the	corresponding	System	Documentation.

RUNNING	JOBS
Up	to	now,	you	have	been	working	on	the	log	in	nodes	of	the	system.	These	nodes	are
set	aside	for	working	interactively	on	tasks	that	are	needed	to	prepare	your
computations,	such	as	compiling	your	applications,	moving	input	data	into	place,	and
writing	configuration	files	for	your	programs.	Since	the	number	of	log	in	nodes	for
each	system	is	small	and	they	are	shared	between	all	users,	we	ask	you	to	keep	the
resource	consumption	on	these	systems	as	low	as	possible.	Building	software	should
be	restricted	to	using	only	a	few	processes	in	parallel,	simulations	and	post-processing
jobs	should	be	run	on	the	compute	nodes.	Use	the	who	command	to	see	who	else	is
logged	in	to	the	log	in	node	you	are	currently	using:

$	who
steinbusch1	pts/71							2021-03-11	09:51	(pool-148-54.vpn.kfa-juelich.de)
[...]
$	who	|	wc	-l
59

Unlike	the	log	in	nodes,	users	are	not	given	free	access	to	the	compute	nodes	at	any
time.	Instead	they	form	a	pool	of	resources	managed	by	the	resource	manager
software.	Due	to	our	collaboration	with	the	company	Partec	we	use	“psslurm”	which
is	based	on	Slurm	and	optimized	for	our	systems	to	manage	these	resources.	To	run	a
computation	on	the	compute	nodes,	you	have	to	specify	to	the	resource	manager	what
amount	of	resources	you	need	and	for	which	duration.	Once	the	resources	have
become	available,	you	will	be	allowed	to	execute	programs	on	them.	Two	modes	of
operation	are	possible:

interactive	mode	where	programs	can	be	run	on	the	allocated	resources	from	a
shell,	possibly	repeatedly,	and
batch	mode	where	a	shell	script	describing	the	commands	to	run	as	part	of	a

https://judoor.fz-juelich.de/projects/training2126/
https://www.par-tec.com/
https://slurm.schedmd.com/documentation.html

computation	is	handed	off	to	the	resource	manager	for	asynchronous	execution.

Interactive	mode

One-shot

The	srun	command	is	used	to	execute	commands	on	a	set	of	allocated	resources.	If
no	resources	are	currently	allocated,	srun	can	infer	from	its	command	line
arguments	what	resources	are	needed,	request	them	from	the	resource	manager	and
defer	the	execution	of	the	associated	commands	until	the	resources	are	available.
After	the	associated	commands	have	been	run,	the	resources	are	relinquished	and
running	further	commands	will	have	to	ask	for	resources	again.	This	one-shot	mode
can	be	useful	when	you	want	to	interactively	run	a	few	quick	jobs	with	varying	sets	of
resources	allocated	for	them.	Run	the	hostname	command	to	see	how	srun	will	run
commands	on	different	nodes	than	the	log	in	nodes.	On	JURECA	DC,	JUWELS	Cluster
and	JUSUF,	use	this	command:

$	hostname
jwlogin08.juwels
$	srun	-A	training2126	--reservation	hands-on	hostname
srun:	job	3472578	queued	and	waiting	for	resources
srun:	job	3472578	has	been	allocated	resources
jwc00n075.juwels

For	the	boosters,	JURECA	Booster	and	JUWELS	Booster,	there	are	a	few	differences:
On	both	boosters,	the	name	of	the	reservation	is	hands-on-booster	instead	of	
hands-on.	Furthermore,	to	submit	to	JURECA	Booster,	you	have	to	specify	a	non-
default	partition	(more	about	partitions	below):

$	hostname
jrlogin02.jureca
$	srun	-A	training2126	--reservation	hands-on	--partition	booster	hostname
srun:	job	9792359	queued	and	waiting	for	resources
srun:	job	9792359	has	been	allocated	resources
jrc6617.jureca

To	submit	to	JUWELS	Booster,	you	want	to	be	logged	in	to	the	Booster	login	nodes	and
you	have	to	specify	the	number	of	GPUs	you	want	to	use:

$	hostname
jwlogin24.juwels
$	srun	-A	training2126	--reservation	hands-on	--gres	gpu:4	hostname
srun:	job	4575092	queued	and	waiting	for	resources
srun:	job	4575092	has	been	allocated	resources
jwb0053.juwels

Please	keep	these	differences	in	mind	if	you	are	using	one	of	the	Boosters,	they	will
not	be	repeated	in	further	examples.

Invocations	of	the	srun	command	have	the	following	syntax:

$	srun	<srun	options...>	<program>	<program	options...>

Above	we	have	seen	four	srun	options:

-A	(short	for	--account)	to	charge	the	resources	consumed	by	the	computation
to	the	budget	allotted	to	this	course	(if	you	have	used	jutil	env	activate	-
A	training2126	earlier	on,	you	do	not	need	this)
--reservation	to	use	nodes	which	have	been	set	aside	for	this	course.	As
before,	to	work	on	Booster	modules,	you	have	to	replace	hands-on	with	hands-
on-booster.
--partition	specifies	which	set	of	compute	nodes	to	request	resources	from.
We	typically	group	nodes	of	the	same	hardware	type	into	a	partition.
--gres	specifies	additional	resources,	other	than	compute	nodes,	in	this	case
the	presence	of	four	GPUs	in	the	compute	nodes.

For	the	<program>	we	used	hostname	with	no	arguments	of	its	own.

To	run	more	parallel	instances	of	a	program,	increase	the	number	of	Slurm	tasks	using
the	-n	option	to	srun:

$	srun	--label	-A	training2126	--reservation	hands-on	-n	10	hostname
srun:	job	3472812	queued	and	waiting	for	resources
srun:	job	3472812	has	been	allocated	resources
8:	jwc00n002.juwels
9:	jwc00n002.juwels
0:	jwc00n002.juwels
1:	jwc00n002.juwels
6:	jwc00n002.juwels
3:	jwc00n002.juwels
5:	jwc00n002.juwels
2:	jwc00n002.juwels
7:	jwc00n002.juwels
4:	jwc00n002.juwels

If	you	do	not	tell	Slurm	that	your	commands	are	multi-threaded	(hostname	is	not),	it
will	assume	each	task	only	needs	a	single	CPU	core	and	pack	as	many	as	possible	into
a	node.	Note	also	the	--label	option	to	srun	which	prefixes	every	line	of	output	by	a
number	that	identifies	the	task	that	generated	the	output.

Running	more	tasks	than	will	fit	on	a	single	node	will	allocate	two	nodes	and	split	the
tasks	between	nodes:

$	srun	--label	-A	training2126	--reservation	hands-on	-n	100	hostname
srun:	job	3473040	queued	and	waiting	for	resources
srun:	job	3473040	has	been	allocated	resources
	0:	jwc00n007.juwels
[...]
50:	jwc00n008.juwels

[...]

Allocations	always	contain	entire	nodes	exclusively.	So	your	jobs	should	request	a
number	of	tasks	that	is	divisible	by	the	number	of	tasks	which	can	fit	on	a	node	to
avoid	losing	parts	of	your	budget.

You	can	now	also	use	srun	to	run	the	hellompi	program	introduced	in	the	previous
section	on	deploying	custom	software:

$	srun	-A	training2126	--reservation	hands-on	-n	5	./hellompi
srun:	job	3471349	queued	and	waiting	for	resources
srun:	job	3471349	has	been	allocated	resources
hello	from	process	4	of	5
hello	from	process	0	of	5
hello	from	process	3	of	5
hello	from	process	1	of	5
hello	from	process	2	of	5

Interlude:	Partitions

The	systems	at	JSC	typically	provide	more	than	one	pool	of	resources,	called	partitions.
The	resources	in	the	different	partitions	might	have	diferent	hardware	characteristics
or	cater	to	different	use	cases.

Unless	you	are	using	JURECA	Booster,	the	previous	examples	were	run	on	the	default
partition	of	the	system	you	are	using,	batch	on	JUWELS	Cluster	and	JUSUF	Cluster,	
booster	on	JUWELS	Booster	and	dc-cpu	on	JURECA.	You	can	find	out	what
partitions	the	different	systems	have	in	the	documentation	for	JURECA,	JUWELS,	and
JUSUF.

Of	particular	interest	are	the	development	partitions	on	each	system	(look	for	devel
in	their	name).	These	consist	of	a	small	number	of	nodes	which	are	set	aside	to
prioritise	small	and	short	jobs	which	are	typically	run	as	part	of	development	work	on
your	application	rather	than	production	use	of	the	system.

Try	running	the	previous	two	examples	using	hostname	on	the	development
partition	of	your	system	by	specifying	it	through	srunʼs	-p	option.	Remove	the	--
reservation	option,	because	the	reservation	does	not	include	nodes	from	the
development	partition.

We	will	have	a	look	at	other	partitions	later.

Interactive	allocation

If,	instead	of	requesting	resources	anew	everytime	you	want	to	run	a	command	on	the
compute	nodes,	you	want	to	hold	on	to	a	specific	set	of	resources	and	quickly	dispatch
a	series	of	commands	to	run	on	them,	you	can	use	the	salloc	command	in

https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html#slurm-partitions
https://apps.fz-juelich.de/jsc/hps/juwels/batchsystem.html#slurm-partitions
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/batchsystem.html#slurm-partitions

combination	with	srun.	To	do	so,	you	specify	the	amount	of	resources	you	will	need
for	your	computations	when	calling	salloc.	salloc	will	request	these	resources
from	the	resource	manager	and	block	until	they	are	available.	Then	it	will	launch	a
new	shell	for	you	from	which	you	can	call	srun,	possibly	multiple	times,	to	dispatch
commands	onto	the	allocated	resources.

In	the	previous	section	you	took	a	task-centric	approach	to	requesting	resources	by
using	the	-n	command	line	argument	to	srun	to	specify	a	number	of	tasks	you	want
to	run.	This	approach	also	works	with	salloc	–	in	fact	the	way	you	specify	resources
is	mostly	the	same	between	all	different	modes	Slurm	supports.	However,	since	the
number	of	CPU	cores	is	always	rounded	up	to	the	next	multiple	of	the	number	of	CPU
cores	in	a	single	node,	it	might	make	sense	to	take	a	hardware	centric	approach	to
requesting	resources.	Using	the	-N	command	line	argument,	you	can	request	a
number	of	nodes	from	the	resource	manager	(remember	to	specify	--partition	
booster	for	JURECA	Booster	or	--gres	gpu:4	for	the	JUWELS	Booster):

$	salloc	-A	training2126	--reservation	hands-on	-N	1
salloc:	Pending	job	allocation	3475519
salloc:	job	3475519	queued	and	waiting	for	resources
salloc:	job	3475519	has	been	allocated	resources
salloc:	Granted	job	allocation	3475519
salloc:	Waiting	for	resource	configuration
salloc:	Nodes	jwc00n014	are	ready	for	job
$

At	the	new	shell	prompt,	you	can	use	srun	to	run	commands	without	having	to
specify	resources	again:

$	srun	hostname
jwc00n014.juwels

By	default,	Slurm	assumes	that	your	program	is	single-threaded,	but	still	only
launches	one	task	per	allocated	node.	This	can	be	changed	by	specifying	the	CPUs	per
task	with	the	-c	argument.

$	srun	-c	1	hostname
jwc00n014.juwels
[...]
jwc00n014.juwels

If	you	want	to	run	several	commands	on	a	node	without	having	to	go	through	srun
each	time,	you	can	use	srun	to	launch	a	shell	on	the	node:

$	srun	--pty	--cpu-bind=none	/bin/bash
$	hostname
jwc00n014.juwels
$	exit

When	using	srun	in	one-shot	mode,	your	account	is	charged	for	the	time	it	takes	to

run	the	associated	command.	With	salloc	your	account	is	charged	for	the	duration
of	time	you	spend	in	the	shell	launched	by	salloc	(and	commands	launched	by	that
shell).	Once	you	are	done	with	the	allocated	resources,	do	not	forget	to	exit	from	the
shell:

$	exit
salloc:	Relinquishing	job	allocation	3475519
salloc:	Job	allocation	3475519	has	been	revoked.
$	printenv	SLURM_JOB_ID
$

If	the	printenv	SLURM_JOB_ID	prints	a	number,	then	you	are	still	inside	the
allocation.

Batch	mode
If	the	system	is	relatively	quiet	and	you	are	asking	for	a	small	amount	of	resources	(or
working	on	the	devel	partitions),	salloc	or	one-shot	srun	should	allow	you	to	work
with	the	system	more	or	less	interactively.	Large	production	jobs	on	the	other	hand
might	have	to	wait	an	uncomfortably	long	time	for	resources	and	so	running	them
interactively	is	not	really	convenient.	Imagine	you	salloc	a	large	number	of	nodes
and	while	you	wait	you	decide	to	go	have	lunch.	If	the	allocation	comes	through	while
you	are	away	you	will	still	be	charged	for	the	resources	even	if	they	idle.

Also,	if	the	systems	were	only	used	interactively,	resource	utilization	would	drop	off
in	the	late	hours	of	the	evening	and	ramp	up	in	the	mornings.

To	enable	better	resource	utilization	and	allow	users	to	schedule	jobs	asynchronously,
Slurm	offers	a	batch	mode	through	the	sbatch	command.	It	too	requests	resources
from	the	resource	manager,	but	unlike	salloc	which	presents	you	with	an
interactive	shell	prompt	from	which	you	can	call	srun,	sbatch	runs	commands	from
a	shell	script	(the	“job	script”)	without	needing	user	intervention.	The	resources	can
be	specified	as	command	line	arguments	to	sbatch,	same	as	with	salloc	and	srun,
but	can	also	be	described	in	the	job	script.	Open	a	new	shell	script	in	the	editor:

($	module	load	nano)
$	nano	testjob.sh

And	enter	the	following	script:

Remember	to	specify	the	booster	partition	for	JURECA	Booster	or	the	gpu:4	gres
for	JUWELS	Booster.

Then	save	the	script	and	submit	it	for	execution	with:

$	sbatch	testjob.sh
Submitted	batch	job	3476793

After	the	first	line	(the	shebang	line)	the	script	contains	specially	formatted	comments
that	act	like	arguments	to	sbatch.	These	arguments	are	written	in	their	long	form.
Previously,	you	used	the	short	form	(e.g.	-N	is	the	same	as	--nodes).	After	the	block
of	comments	come	regular	shell	comands.	Inside	the	job	script,	we	use	the	module
command	to	make	the	software	modules	needed	by	the	job	programs	available	(here
the	compiler	with	its	runtime	libraries	and	an	MPI	library).	The	tasks	are	once	again
created	using	the	srun	command	which	works	the	same	as	before.

The	job	created	by	sbatch	has	to	wait	in	a	queue	until	the	necessary	resources
become	available.	Use	the	squeue	command	to	inspect	the	queue:

$	squeue	-u	$USER
													JOBID	PARTITION					NAME					USER	ST							TIME		NODES	NODELIST(REASON)	
											3476793					batch	testjob.	steinbus	PD							0:00						2	(Priority)	

You	might	have	to	wait	for	a	while,	but	eventually	your	job	will	be	run.	While	your	job
is	pending	in	the	queue	or	already	running	you	can	execute	another	command	to
retrieve	further	information	about	your	job:

$	scontrol	show	job	<JOBID>

Once	it	is	running,	you	will	find	two	files	next	to	the	job	script,	mpi-err.XXXXXXX
and	mpi-out.XXXXXXX	where	X	are	decimal	digits.	These	contain	what	was	written
to	the	standard	error	and	output	streams	by	your	job.

Affinity	and	multi-threading
Computers	today	are	typically	equipped	with	multi-core	CPUs	which	can	work	on
multiple	streams	of	instructions	at	the	same	time.	The	operating	system	is	in	charge	of

#!/bin/bash
#SBATCH	--account=training2126
#SBATCH	--reservation=hands-on
#SBATCH	--nodes=2
#SBATCH	--cpus-per-task=1
#SBATCH	--output=mpi-out.%j
#SBATCH	--error=mpi-err.%j
#SBATCH	--time=00:05:00

module	load	GCC	ParaStationMPI

srun	./hellompi

deciding	which	program	gets	to	use	which	CPU	core	at	a	given	point	in	time.	Usually,
it	will	let	those	programs	which	need	access	to	resources	run	wherever	resources	are
available,	meaning	one	and	the	same	program	can	end	up	using	different	CPU	cores	at
different	points	in	time.	On	a	desktop	machine	this	is	not	a	problem.	In	fact	it	is	a	good
thing,	since	we	typically	run	far	more	programs	than	we	have	CPU	cores	available.

In	an	HPC	setting	things	are	different	in	that	the	workloads	are	adapted	to	use	a
number	of	processes	or	threads	which	matches	the	number	of	CPU	cores	(normally,
you	will	have	n_processes	x	n_threads	=	n_nodes	x	
n_CPU_cores_per_node).	If	there	is	exactly	one	process	or	thread	per	CPU	core,	it
would	be	wasteful	to	shuffle	them	around	between	different	CPU	cores.	In	order	to
avoid	this	shuffling,	the	resource	manager	assigns	to	the	processes	that	it	spawns	an
affinity	mask.	An	affinity	mask	is	a	set	of	numbers	identifying	the	CPU	cores	a	process
is	allowed	to	use.	By	default,	Slurm	assumes	that	the	processes	you	create	are	single
threaded	and	gives	each	process	access	to	a	single	CPU	core.	Allocate	a	node	for
playing	around	with	this	mechanism:

$	salloc	-A	training2126	--reservation	hands-on	-N	1
salloc:	Pending	job	allocation	3499694
salloc:	job	3499694	queued	and	waiting	for	resources
salloc:	job	3499694	has	been	allocated	resources
salloc:	Granted	job	allocation	3499694
salloc:	Waiting	for	resource	configuration
salloc:	Nodes	jwc00n001	are	ready	for	job

Use	the	numactl	command	to	inspect	the	affinity	masks	created	by	Slurm:

$	srun	--label	numactl	--show
0:	policy:	default
0:	preferred	node:	current
0:	physcpubind:	0	
0:	cpubind:	0	
0:	nodebind:	0	
0:	membind:	0	1	

The	identifiers	of	accessible	CPU	cores	are	listed	in	physcpubind.	Here,	the	single
process	that	is	created	has	access	to	a	single	CPU	core,	0.	Now,	confirm	that	different
processes	will	get	access	to	different	CPU	cores:

$	srun	--label	-n	3	numactl	--show
2:	policy:	default
2:	preferred	node:	current
2:	physcpubind:	1	
2:	cpubind:	0	
2:	nodebind:	0	
2:	membind:	0	1	
1:	policy:	default
1:	preferred	node:	current
1:	physcpubind:	24	
1:	cpubind:	1	

1:	nodebind:	1	
1:	membind:	0	1	
0:	policy:	default
0:	preferred	node:	current
0:	physcpubind:	0	
0:	cpubind:	0	
0:	nodebind:	0	
0:	membind:	0	1	

The	three	processes	get	access	to	CPU	cores	0,	1,	and	24	respectively.	If	your
processes	are	not	single-threaded,	you	will	have	to	give	them	access	to	more	CPU
cores	(otherwise	all	threads	will	run	on	the	same	CPU	core).	This	can	be	done	using
Slurmʼs	--cpus-per-task	parameter,	or	-c:

$	srun	--label	-c	24	numactl	--show
1:	policy:	default
1:	preferred	node:	current
1:	physcpubind:	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	
1:	cpubind:	1	
1:	nodebind:	1	
1:	membind:	0	1	
0:	policy:	default
0:	preferred	node:	current
0:	physcpubind:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
0:	cpubind:	0	
0:	nodebind:	0	
0:	membind:	0	1	
2:	policy:	default
2:	preferred	node:	current
2:	physcpubind:	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
2:	cpubind:	0	
2:	nodebind:	0	
2:	membind:	0	1	
3:	policy:	default
3:	preferred	node:	current
3:	physcpubind:	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	
3:	cpubind:	1	
3:	nodebind:	1	
3:	membind:	0	1	

Note	how	once	you	specify	the	number	of	CPU	cores	per	task,	Slurm	switches	its
behavior	from	creating	one	process	per	node	to	filling	the	node	with	as	many
processes	as	possible.	Each	process	gets	access	to	24	different	CPU	cores.

Copy	the	following	small	program	into	a	file	hellohybrid.c:

And	compile	it	with:

$	mpicc	-fopenmp	-o	hellohybrid	hellohybrid.c

Now	run	the	program:

$	srun	./hellohybrid
hello	from	process	0	of	1,	using	1	threads

Again,	using	default	settings,	Slurm	creates	a	single	process	and	restricts	it	to	a	single
CPU	core.	The	OpenMP	run	time	library	queries	the	number	of	CPU	cores	accessible
to	the	process	and	creates	just	as	many	threads	(here	only	one).	If	you	specify	a
number	of	CPU	cores	per	process	this	changes:

$	srun	-c	24	./hellohybrid
hello	from	process	2	of	4,	using	24	threads
hello	from	process	0	of	4,	using	24	threads
hello	from	process	3	of	4,	using	24	threads
hello	from	process	1	of	4,	using	24	threads

Once	more,	Slurm	fills	the	node	with	four	processes	having	appropriate	affinity
masks.	The	OpenMP	run	time	figures	out	that	each	process	is	allowed	to	use	24	CPU
cores	and	creates	a	team	of	threads	to	fill	those	CPU	cores.

JSC	Affinity	Tools

Since	we	are	using	psslurm	we	have	implemented	a	few	options	different	than	the
default	in	Slurm.	For	this	reason	we	are	offering	two	tools	that	can	help	you	to
understand	the	process	affinity	on	our	systems:

1.	 The	command	line	executable:	psslurmgetbind
2.	 An	online	pinning	tool

#include	<stdio.h>
#include	<mpi.h>
#include	<omp.h>

int	main(int	argc,	char*	argv[])	{
		MPI_Init(&argc,	&argv);

		int	r,	s;
		MPI_Comm_rank(MPI_COMM_WORLD,	&r);
		MPI_Comm_size(MPI_COMM_WORLD,	&s);
		#pragma	omp	parallel
		if	(!omp_get_thread_num())
				printf(
						"hello	from	process	%d	of	%d,	using	%d	threads\n",
						r,	s,	omp_get_num_threads()
);

		MPI_Finalize();
}

https://apps.fz-juelich.de/jsc/llview/pinning/

Further	information	can	be	found	in	the	“Processor	Affinity”	chapter	of	the
corresponding	System	Documentation.

Further	reading
Our	online	documentation	has	more	information	on	working	with	the	resource
manager.	It	has	detailed	lists	with	the	hardware	available	in	various	partitions	as	well
as	job	limits.	Also,	it	discusses	advanced	topics	like	multiple	job	steps,	dependency
chains	and	heterogeneous	jobs.	If	you	want	more	details,	you	can	find	the
documentation	for	our	various	systems	here:

JUWELS	documentation:	Batch	system
JURECA	documentation:	Batch	system
JUSUF	documentation:	Batch	system

You	can	also	have	a	look	at	the	official	Slurm	documentation.

USING	GPUS
All	systems	at	JSC	have	nodes	which	are	accelerated	by	General	Purpose	Graphics
Processing	Units	(GPGPUs	or	just	GPUs).	Since	they	GPUs	are	all	made	by	NVIDIA,
using	them	is	accomplished	through	their	CUDA	SDK.	CUDA	is	available	as	a	module:

$	module	load	CUDA

To	demonstrate	how	to	compile	and	run	a	program	that	uses	GPUs,	we	will	use	one	of
the	examples	included	in	CUDA:

$	cp	-r	$EBROOTCUDA/samples/0_Simple/simpleMPI	$PROJECT_training2126/$USER
$	cd	$PROJECT_training2126/$USER/simpleMPI
$	make
/p/software/juwels/stages/2020/software/psmpi/5.4.7-1-GCC-9.3.0/bin/mpicxx	-
I../../common/inc				-o	simpleMPI_mpi.o	-c	simpleMPI.cpp
/p/software/juwels/stages/2020/software/CUDA/11.0/bin/nvcc	-ccbin	g++	-I../../common/inc		
-m64				-gencode	arch=compute_35,code=sm_35	-gencode	arch=compute_37,code=sm_37	-gencode	
arch=compute_50,code=sm_50	-gencode	arch=compute_52,code=sm_52	-gencode	
arch=compute_60,code=sm_60	-gencode	arch=compute_61,code=sm_61	-gencode	
arch=compute_70,code=sm_70	-gencode	arch=compute_75,code=sm_75	-gencode	
arch=compute_80,code=sm_80	-gencode	arch=compute_80,code=compute_80	-o	simpleMPI.o	-c	
simpleMPI.cu
nvcc	warning	:	The	'compute_35',	'compute_37',	'compute_50',	'sm_35',	'sm_37'	and	'sm_50'
architectures	are	deprecated,	and	may	be	removed	in	a	future	release	(Use	-Wno-
deprecated-gpu-targets	to	suppress	warning).
/p/software/juwels/stages/2020/software/psmpi/5.4.7-1-GCC-9.3.0/bin/mpicxx				-o	
simpleMPI	simpleMPI_mpi.o	simpleMPI.o		-
L/p/software/juwels/stages/2020/software/CUDA/11.0/lib64	-lcudart
mkdir	-p	../../bin/x86_64/linux/release
mkdir:	cannot	create	directory	‘../../bin’:	Permission	denied
make:	***	[Makefile:377:	simpleMPI]	Error	1

https://apps.fz-juelich.de/jsc/hps/juwels/batchsystem.html
https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/batchsystem.html
https://slurm.schedmd.com/documentation.html

You	can	ignore	the	error	at	the	end.	There	should	now	be	an	executable	called	
simpleMPI	inside	the	simpleMPI	directory.	To	run	the	program,	use	srun	like
before:

$	srun	-A	training2126	-p	<gpu	partition>	--gres	gpu:4	-N	1	-n	4	./simpleMPI
srun:	job	3490053	queued	and	waiting	for	resources
srun:	job	3490053	has	been	allocated	resources
Running	on	4	nodes
Average	of	square	roots	is:	0.667305
PASSED

You	have	to	specify	a	partition	that	contains	nodes	equipped	with	GPUs,	-p	
develgpus	for	JUWELS	and	JUSUF,	-p	dc-gpu-devel	for	JURECA,	or	-p	
develbooster	for	JUWELS	Booster,	and	you	have	to	specify	how	many	GPUs	you
want	those	nodes	to	have,	--gres	gpu:4	(or	--gres	gpu:1	on	JUSUF).

GPU	Affinity
On	systems	with	more	than	one	GPU	per	node,	a	choice	presents	itself	of	which	GPU
should	be	visible	to	which	application	task.	This	is	controlled	through	the
environment	variable	CUDA_VISIBLE_DEVICES,	which	can	be	set	to	a	comma
separated	list	of	integers	identifying	devices	to	make	visible	to	a	task.	You	can
manually	define	this	variable	before	running	your	tasks	with	srun.	If	the	variable	is
not	defined	by	you,	srun	will	provide	a	default:

for	jobs	with	a	single	task	(-n	1)	all	devices	will	be	visible	
CUDA_VISIBLE_DEVICES=0,1,2,3
for	all	other	jobs,	only	a	single	device	will	be	visible	per	task,	with	the	same
device	being	visible	to	multiple	tasks	if	there	are	more	tasks	than	GPUs

Note:	The	behavior	described	above	is	currently	only	implemented	on	JURECA.	On	all
other	systems,	only	a	single	GPU	is	visible	by	default,	even	for	jobs	with	a	single	task.
This	is	a	known	issue	which	we	expect	to	be	resolved	soon.

Further	reading
Our	online	documentation	has	more	information	on	software	modules.	It	lists	the
basic	tool	chains	(compiler	+	communication	library	+	math	library)	available	on	our
systems	and	discusses	using	older	software	stages.	If	you	want	more	details,	you	can
find	the	documentation	for	our	various	systems	here:

JUWELS	documentation:	GPU	Computing
JURECA	documentation:	GPU	Computing
JUSUF	documentation:	GPU	Computing

https://apps.fz-juelich.de/jsc/hps/juwels/gpu-computing.html
https://apps.fz-juelich.de/jsc/hps/jureca/gpu-computing.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/gpu-computing.html

USEFUL	LINKS

System	Documentation
JSC	offers	documentation	for	the	production	systems:

JUWELS
JURECA
JUSUF

Job	Reporting
The	Job	Reporting	service	gives	you	access	to	PDF	reports	which	contain	certain
performance	metrics	that	the	system	automatically	collects	about	your	jobs.	It	also
includes	an	overview	over	the	system	utilization	and	queue.	You	can	access	the	Job
Reporting	service	for	the	different	systems	here:

JUWELS
JURECA
JUSUF

Apply	for	Computing	Time
The	JSC	web	site	describes	how	to	apply	for	computing	time.

JSC	Course	Programme
JSC	offers	many	courses	throughout	the	year	covering	topics	such	as	parallel
programming,	machine	learning,	and	visualization.	Please	have	a	look	at	the	course
programme	on	the	JSC	web	site.

Supercomputing	Support
Our	high-level	support	team	supports	the	users	in	case	of	problems	on	our	systems,
e.g.	porting	of	the	application,	parallelisation	and	performance	issues	as	well	as	usage
of	the	HPC	system.	So	if	you	are	having	a	question,	you	cannot	sort	out	by	yourself,	by
working	through	this	document	or	by	having	a	look	into	the	documentation,	just	drop
a	mail	to	sc@fz-juelich.de.

https://apps.fz-juelich.de/jsc/hps/juwels/index.html
https://apps.fz-juelich.de/jsc/hps/jureca/index.html
https://apps.fz-juelich.de/jsc/hps/jusuf/index.html
https://llview.fz-juelich.de/LLweb/juwels/jobreport/login.php
https://llview.fz-juelich.de/LLweb/jureca/jobreport/login.php
https://llview.fz-juelich.de/LLweb/jusuf/jobreport/login.php
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/ComputingTime/computingTime_node.html#doc934990bodyText6
https://www.fz-juelich.de/ias/jsc/EN/News/Events/events_node.html
mailto:sc@fz-juelich.de

	INTRODUCTION TO SUPERCOMPUTING AT JSC
	INTRODUCTION
	ACCESS
	Getting a JSC account
	Joining a compute time project
	Login procedure
	Generating a key pair with OpenSSH
	Generating a key pair with PuTTY
	Uploading the public key
	Logging in with OpenSSH
	Logging in with PuTTY
	JupyterLab

	Further reading

	UNIX SHELL BASICS
	ENVIRONMENT
	Active project
	File system points of interest
	Further reading

	SOFTWARE MODULES
	Further reading

	CUSTOM SOFTWARE
	Compiled languages
	Scripting languages
	Python

	ACCOUNTING
	General information
	Job accounting

	RUNNING JOBS
	Interactive mode
	One-shot
	Interlude: Partitions
	Interactive allocation

	Batch mode
	Affinity and multi-threading
	JSC Affinity Tools

	Further reading

	USING GPUS
	GPU Affinity
	Further reading

	USEFUL LINKS
	System Documentation
	Job Reporting
	Apply for Computing Time
	JSC Course Programme
	Supercomputing Support

