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Vorwort

Die Ausbildung im Wissenschaftlichen Rechnen ist neben der Bereitstellung von Supercomputer-Leistung
und der Durchfiihrung eigener Forschung eine der Hauptaufgaben des John von Neumann-Instituts fir
Computing (NIC) und hiermit des ZAM als wesentlicher Séule des NIC. Um den akademischen Nach-
wuchs mit verschiedenen Aspekten des Wissenschaftlichen Rechnens vertraut zu machen, flhrte das
ZAM in diesem Jahr zum flinften Mal wahrend der Sommersemesterferien ein Gaststudentenprogramm
durch. Entsprechend dem facherlbergreifenden Charakter des Wissenschaftlichen Rechnens waren Stu-
denten der Natur- und Ingenieurwissenschaften, der Mathematik und Informatik angesprochen. Die Be-
werber mussten das Vordiplom abgelegt haben und von einem Professor empfohlen sein.

Die neun vom NIC ausgewahlten Teilnehmer kamen fir zehn Wochen, vom 2. August bis 8. Oktober
2004, ins Forschungszentrum. Sie beteiligten sich hier an den Forschungs- und Entwicklungsarbeiten
des ZAM und wurden jeweils einem Wissenschaftler zugeordnet, der mit ihnen zusammen eine Aufgabe
festlegte und sie bei der Durchfiihrung anleitete.

Die Gaststudenten und ihre Betreuer waren;

Nikos Elpidoforou Paul Gibbon

Ivo Kabadshow Holger Dachsel

Slawomir Pitula Thomas Muiller

Nikolas Pomplun Guido Arnold, Marcus Richter
Armin Rund Bernhard Steffen

Sebastian Schiffner Herwig Zilken

Jakob Schluttig Godehard Sutmann

Jiulong Shan \Volker Sander

Jonas Wiebke Thomas Miller

Zu Beginn ihres Aufenthalts erhielten die Gaststudenten eine viertagige Einfiihrung in die Programmie-
rung und Nutzung der Parallelrechner im ZAM. Um den Erfahrungsaustausch untereinander zu férdern,
prasentierten die Gaststudenten am Ende ihres Aufenthalts ihre Aufgabenstellung und die erreichten
Ergebnisse. Sie verfassten zudem Beitrage mit den Ergebnissen fiir diesen Internen Bericht des ZAM.

Dieser Band enthalt zusétzlich den Arbeitsbericht von Benjamin Sohn, der - betreut von Inge Gutheil -
wahrend der Sommer-Semesterferien ein I&ngeres Praktikum im ZAM durchgefuhrt hat.

Wir danken den Teilnehmern fir ihre engagierte Mitarbeit - schlieBlich haben sie geholfen, einige aktuel-
le Forschungsarbeiten weiterzubringen - und den Betreuern, die tatkraftige Unterstiitzung dabei geleistet
haben.

Ebenso danken wir allen, die im ZAM und in der Verwaltung des Forschungszentrums bei Organisation
und Durchfiihrung des diesjahrigen Gaststudentenprogramms mitgewirkt haben. Besonders hervorzuhe-
ben ist die finanzielle Unterstltzung durch den Verein der Freunde und Férderer des FZJ und die Firma
IBM. Das erfolgreiche Programm soll auch in den kommenden Jahren weitergefiihrt werden, schlieflich
ist die Forderung des wissenschaftlichen Nachwuchses dem Forschungszentrum ein besonderes Anlie-
gen.

Weitere Informationen uber das Gaststudentenprogramm, auch die Ankiindigung fur das kommende Jahr,
findet man unter http://www.fz-juelich.de/zam/gaststudenten.

Jilich, November 2004 Rudiger Esser
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Fast Near-Neighbour Search in Molecular Dynamics Simulation
Using a Hashed Oct Tree

Nikos Elpidoforou

University of Athens, Greece,
Department of Chemistry,
Laboratory of Physical Chemistry

E-mail: finwue@yahoo.com

Abstract:

The traditional near-neighbour searches in molecular dynamics codes require an O(N) com-
putational effort per particle. Tree Algorithms can reduce this to O(logN) exploiting the tree
structure to obtain an initial list of neighbour boxes’. The aim of this article is to explore a
fast near-neighbour search algorithm based on the Hashed Oct Tree data structure. The particle
coordinates are mapped onto a sorted list of binary keys, which can be used to rapidly determine
the location of the particles within the tree. The introduced algorithm is exploiting the properties
of the particle keys to create a near-neighbour list.

Introduction

The basic role of a computer simulation is to provide us with approximate solutions for a series of prob-
lems concerning Statistical Mechanics or any other domain of science where we need to study a set of N
interacting objects. This challenge is well known as the N-body problem. Simulation can be either a test
of theory or a test of models. It is because of that particular connection that it is often called *Computer
Experiment’. In the field of Statistical Mechanics the simulation gives us a straightforward connection
between the microscopic and the macroscopic properties of a system of N molecules. In other words
through some simulation techniques we can obtain properties of experimental interest (e.g. transport
coefficients) from the molecular details of a particular system. One of those techniques is Molecular
Dynamics [1]. We will give a short overview of the method in the following chapter.

Molecular Dynamics

Molecular Dynamics (MD) is the term we use to describe the solution of the classical equations of motion
for a set of N molecules. The aim is to generate the molecular trajectories as accurately as possible.
Considering a set of N interacting molecules with Cartesian coordinates r; and the usual definitions of
kinetic and potential energy the equations of motions can take a quite simple and familiar form:

mi; = f; ()

This shows that MD involves the quite difficult task of solving a system of 3N second order differential
equations. A standard method that helps our cause is the finite difference approach which has two basic
algorithmic forms:



The Gear Predictor-Corrector and the Verlet algorithm

The general idea of these approaches is to try to get the positions, velocities etc at a certain time t with a
desired degree of accuracy using the positions, velocities etc of a previous time t-dt before. In this way
the equations of motion can be solved on a step-by-step basis. The basic formulas of the two algorithms
mentioned above are given in brief in the next sections.

Finite difference methods

The Verlet algorithm

The Verlet algorithm is based on the positions r(t) and the accelerations a(t) of a certain time step and the
positions r(t-dt) of the previous step. So, in order to get the position of the next time step r(t+dt) we use
the following equation:

P(E+0t) = 20(t) — r(t — 6t) + 5t2%f(t) @

Having the new positions, we can estimate the new accelerations through the forces that are acting over
all molecules and thus move the whole system forward for another time step. We observe that the \Verlet
algorithm is time-reversible and that the velocities do not appear in the basic Eq. 2. The velocities are
given by the next equation:

_r(t+0t) —r(t—dt)

The reason that they do not show up is that they are being eliminated by addition of the next equations.
r(t+0t) = r(t) + dto(t) + %5t2%f(t) + ... (4)
1,1
r(t — 0t) = r(t) — Sto(t) + 5575 —f(t) — ... (5)
m

Egs.(4-5) are the Taylor expansions about r(t). There are several other forms of the basic Verlet algorithm
that have been proposed to deal with problems that occur due to numerical imprecision. The most famous
is the half step leap-frog algorithm that has the following form:

r(t+6t) = r(t) + dto(t + %575) (6)

ot + %&) — ot — %&) + 5t%f(t) @)

It is obvious that if we eliminate the velocities we will get the basic scheme of Verlet algorithm which is
showing us that the two forms are mathematically equivalent.

The Gear Predictor-Corrector

The Gear predictor-corrector algorithm tries to generate the trajectories of the molecules obtaining first
an estimate of the positions, velocities etc at time t+dt. The equations for such a prediction are given
below:

rP(t + 6t) = r(t) + dtu(t) + %&Qa(t) + éét?’b(t) + ... (8)



VP (t + 6t) = v(t) + dta(t) + %5t2b(t) + ... 9)

aP(t + ot) = a(t) + otb(t) + ... (10)

WP(t+ 6t) = b(t) + ... (11)

Afterwards we apply a correction step. That is, we calculate the *correct’ new accelerations from the pre-
dicted values of the new positions. This is done by evaluating the forces over all molecules. The "correct’
new accelerations are compared with the *predicted’ new accelerations and we obtain an estimate of the
error in the prediction step. The comparison is performed with the following equation;

Aa(t + 8t) = a(t + 0t) — aP(t + 6t) (12)

The error we calculate in Eq.(12) is used to correct the predicted values as we can see through the next
equations:

re(t + 8t) = 1P (t + 8t) + coAa(t + 6t) (13)
V(E+ 6t) = 0P (t + 6t) + ¢1Aa(t + 6t) (14)
a“(t + 6t) = aP(t + 6t) + cala(t + 5t) (15)
bE(t+ St) = bP(t + 5t) + c3Aalt + 5t) (16)

The corrected values obtained by Eqgs.(13-16) are better approximations to the real values of the positions,
velocities etc. If we want we can repeat the correction step in order to achieve a further refinement to the
obtained values. The coefficients in Egs.(13-16) depend on the order of the differential equation being
solved and many different sets of values have been proposed [1].

Neighbour lists

The algorithms presented in the two previous sections show that the most crucial part in a MD simulation
is where we evaluate the forces and hence the new accelerations obtained from the new positions of
the molecules. That is true as long as we consider that the greatest amount of computational time is
spent examining the set of the pairs of molecules and identifying those pairs separated by less than a
given radius and computing the forces for this subset. For each molecule the set of neighbours within
this specific radius changes with time and the task of identifying and rejecting molecules is very time
consuming. Our goal is to reduce the time needed to build a certain near-neighbour list using a Hashed
Oct-Tree data structure. In the next sections we will present the basic neighbour listing techniques that
are used and the basics of the Hashed Oct Tree algorithm.

We have already mentioned the presence of a certain radius around a molecule. That radius is actually the
distance up to where we consider that this molecule can ’sense’ the presence of a different one due to their
pairwise interaction. If a molecule lies outside of this radius we do not take into account any interaction
with the certain one. This radius is called the potential cut-off. Physically this is justified because the
interactions at great distances between neutral molecules are negligible. A quite simple approach in MD
simulation is for a certain molecule i to loop over all molecules j searching for the ones which lie inside
the cut-off. This is very time consuming proportional to N2 and it slows down our simulation. To avoid
this there are two methods of building neighbour lists for each molecule. The Verlet algorithm and the
cell structures and linked lists method [1].



The Verlet Algorithm

The idea behind this algorithm is to create a thick ’skin’ around the cut-off sphere of a molecule. The
molecule is now sitting in the centre of two spheres at the same time. The one sphere has a radii equal
to the cut-off and the second sphere has a radii r(l) which is greater than the cut-off. Then a large array
NEIGHBOUR is constructed which contains all of the neighbours of each molecule inside the r(l). In
order to find the neighbours of a given molecule we need an index and that is satisfied by an another array
INDEX which points to the position of the array NEIGHBOUR where the first neighbour of the given
molecule lies. The code locates the neighbours of a molecule (i) by checking the array NEIGHBOUR
from the position INDEX(i) to INDEX(i+1)-1. This neighbour list is then updated at intervals of 10-20
timesteps.

Cell structures and linked lists

The previous neighbour listing fails when we are dealing with sets of more than 1000 molecules. The size
of the array NEIGHBOR becomes too large and creates storage problems. So an alternative method has
been proposed: the cell index method. We divide the simulation box into a lattice of cells. The side of the
cell is greater than the cut-off radius. We create a separate list of molecules in each of those cells and we
can speed up the neighbouring search checking only the cells we are interested in. The whole procedure
is carried out by the method of linked lists. We first sort the molecules into the cells while we create two
arrays. The first array HEAD has one element for each cell that contains the identification number for
one of the molecules in that cell. This number is used to address the element of the second array LIST
which has the number of the next molecule in that cell. After that the element for that molecule is the
index of the next molecule in the cell and so on. Finally after several indexing numbers of molecules we
will reach an element of LIST which is zero. That means that we have checked all the molecules of this
cell and we can move forward to the next cell through the array HEAD.

The Hashed Oct Tree Algorithm (HOT)
Introduction

One of the motivations for using a tree data structure for the neighbour searching problem is that we have
the opportunity to reject large sets of molecules or particles quickly and easily. That is due to the oct-tree
data structure that distributes’ the particles into cubical regions called from now on ’cells’. There is a
great cube, representing the whole simulation box, called the root’. We can divide each of the dimensions
of the root into half and produce eight subcells inside the root. This "cutting’ procedure is continued
for every subcell, until each cell is either empty or contains only one particle. This operation can be
optimised by constructing binary keys to map the 3-dimensional spatial coordinates of the particles onto
a one dimensional curve. The keys do not replace the particles’ coordinates, but give us a rapid means of
sorting them and building the oct-tree structure around them. The keys are constructed from the following
operation, if we are referring to an oct-tree (3d):

nbits—1
key = placebit + > 87 (4 x BIT(i., 5) + 2 x BIT(iy, 5) + BIT(ix, j)) (17)

j=0

The function BIT () selects the j-bit of the integer coordinate components which are given from:

Iy = ) Zy = ) 1z = ; (18)



where:

L

§= onlev

(19)
and L is the length of the simulation box. Actually nbits is the length of the dimensions of the ’root’. nlev
is the maximum refinement level. That means that s is referring to the length of the dimensions of the
subcells in the maximum refinement level. The placebit is defined by:

placebit = 20Nl (20)

where D=3.

We add this placebit to avoid any ambiguity among keys at different levels. This placebit is also called the
place-holder bit and represents the 'root’. The construction of the keys, if we are referring to a quad-tree
(D=2) is the same:

nbits—1
key = placebit + > 47 (2 x BIT(iy, ) + BIT(is, j)) (21)
=0

The parameters are defined the same way like in Egs.(18-20). Figure 1 shows how a tree structure is built
in 2 dimensions.

NLEV=1

NLEV=2 ROOT

/

Figure 1: Tree structure in 2 dimensions.

All particles are first attached to the root’. The ’root’ is divided into 4 sub-squares and the particles re-
attached accordingly. A sub-square containing only one particle is defined as a ’leaf’, while sub-squares
with more than one are defined as "twigs’ and subsquares with no particles are discarded. This procedure
is continued until each particle sits in its own square. Each key identifies the location in the tree of a
particular collection of data. To retrieve the data corresponding to any key, we must translate the key to
a pointer that shows the memory location containing the data. So, obviously an indexing problem arises
because of the very large number of possible keys. To overcome this, we map the values from the very
large set of possible keys into a smaller set which is used as an index into a hash table. This mapping is
called hashing. For more details about the Hashed Oct Tree algorithm the reader can refer to [2].



The HOT Neighbour Search

We have already mentioned that we want to build near-neighbour lists exploiting the tree structure and
basically the properties of the particle keys. The initial goal is to invent a fast bit operation in order to find
the neighbouring keys of a specific particle key. This key is actually representing a sub-cell (a box) in
the tree structure and may contain more than one particle. So we will try to find a way of calculating the
neighbouring sub-cells from the given key (sub-cell). This is clear in Fig. 2 where we give a 2D example.
We consider a maximum refinement level of 2 and for a given particle we find its key (sub-square) and
try to calculate from that the neighbouring keys (sub-squares).

Figure 2: 2D example.

Moving inside the same parent box

The construction of the tree structure deals with a very simple operation; getting the parent and the
child keys of a particle key in a specific level of refinement. The parent and the child keys can be found
by simple bit shifting operations [3] and represent the directly lower and higher levels of refinement
respectively. So, for a given level of refinement we have to consider first how to move inside the same
parent box. We will consider a 2 dimensional example (Fig.3) to illustrate our discussion.

11010 11011 11110 11111

11000 11001 11100 11101

10110 10111

10100 10101

Figure 3: Moving inside the same parent.

When we want to get the square that lies on the right of the given square we will use the phrase; "to



move right". Equal expressions will be used to get the squares that lie on the left and so on. Moving right
inside the same parent box means that we have to add one (+1) to the key and moving left means we need
to substract one (-1). Moving up we add two (+2) and moving down we substract two (-2). Diagonally
movement can be achieved with linear combination of those two simple operations. So, a first form of
neighbour searching can be the following:

K(ij) = particle_key + c(i) + c() (22)
where c(i) determines the movement on the x direction and c(j) determines the movement on the y
direction.

Those two components are given by the next equations.

c(i) = |i] sign(i) , i=-1,0,1 (23)

cd) = 2 1yl signQ) , j=-1,0,1 (24)

Crossing the boundaries of the parent boxes

A problem arises when a neighbouring box lies in the neighbouring parent box (Fig.4). So, in order to
get it we have to cross the boundaries of the parent box to which our particle key belongs. As one can
see, crossing a right boundary we need to add three (+3) and crossing the left one we have to substract
three (-3). A top boundary forces us to add six (+6) and the opposite make us substract six (-6). That
means we must think of a way to extend the Eqgs. (23-24) in the case of crossing the boundaries of the
parent boxes. We formalise this procedure with the following logic:

Moving rightwards we have to add one or three.

c = 1 AND same-parent OR 3 AND not-same-parent
cC=1Xsp+ 3 Xnsp
c=1x (1-nsp) + 3 x nsp

c=1+ 2 x nsp (25)

We consider sp and nsp being logical variables which take the values 1 or O if they are true or false
respectively. Proceeding the same way for moving left we end up in the following.

c=-1-2xnsp (26)

How can we replace the logical variable nsp which is only known a posteriori? We can do this by setting
nsp = BIT (particle_key, 0) (27)

when we move right and
nsp = 1 - BIT (particle_key, 0) (28)

when we move left. This bit operation is just picking the 0 bit of the particle key. If this is 0 we know it
is at the left edge of the parent box; if it is 1, we know it is at he right edge of the parent box. So, if we
substitute Eqs.(27),(28) into (25),(26) we end up with:
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Figure 4: Crossing the boundaries of the parent boxes.

Right

c =1 + 2*BlIT(particle_key, 0) (29)
Left

c = -3 + 2*BlT(particle_key, 0) (30)

We must combine Egs.(29)(30) to get a general form for the movement in the x direction. This combina-
tion gives us the next equation:

c(i) = |i] sign(i){1 + 2[ w(i) + sign(i)BIT(particle_key,0)]} (31)
where

i = -1,0,1 and w(i)=(1-i)/2

When we use i=1 we end up in Eqg.(29) that is valid for moves to the right. When we use i=-1 we end up
in Eg. (30) that is valid for moves to the left. The value i=0 does not move the particle in the x direction.
Extending this argument to the y direction we end up with a quite similar equation to Eq.(31).

c@) = 2 Lil signGd{1 + 2[ w(@) + sign(i)BIT(particle_key,1)1} (32)
where
j = -1,0,1 and w(§)=1-j)/2

The only difference between Egs.(31) and (32) is that we check the 2nd bit and that we multiply by two.
But what happens when we have to cross boundaries of grand-parent boxes and so on? Clearly we must
generalise the introduced Egs. (31)(32) for any given level of refinement.

Crossing the boundaries of the grand-parent boxes-General formulation

We can see in Figure 5 the problem arising when crossing the boundaries of a grand-parent box. We see
that to cross boundaries on the right one has to add eleven (+11) and on the left one has substracts eleven
(-11). These increments are doubled for the y direction. Thus moving to the right is now expressed by:

c=1+2xnsp + 8 X nsgp (33)
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Figure 5: Crossing the boundaries of the grand parent boxes.

and moving to the left is:
c=-1-2xnsp -8 X nsgp (34)
where nsgp signifies that we have crossed a grand-parent bounding.

We recall that:

o — {BIT(K, 0) (right) (35)
1 —BIT(K,0) (left)
and one can show by inspection that:
nsgp — {BIT(K,2) x BIT(K,0) (right) (36)
(1-BIT(K,2)) x (1 —BIT(K,0)) (left)

We must ensure through Eqgs.(36) that the box we are examining is placed on the boundaries of the grand
parent box. The algebra involved with replacing in Egs.(33),(34) the Egs.(35),(36) is simple and we end
up to the following for the x dimension.

¢i = |i|si{1 4 2[w; + s; x BIT(K,0)] x [1 4+ 4(w; + s; x BIT(K,2))]} (37)
The same logic leads us to the equation for the y dimension:
c; = Q‘j’Sj{l + 2[wj + 55 X B|T(K7 1)] X [1 + 4(wj + 85 X B|T(K, 3))]} (38)

The similarities and differences are obvious and simple. We can continue the procedure when we cross
great grandparent boxes and build new equations for any given higher level. Those equations will con-
tain the already mentioned characteristics for the lower levels but can also give us the numbers needed
crossing the highest boundaries at the refinement level we are. The general formula for any given level is
finally the following:

nlev-1 A

ci=lils; |1+ > 227 [ [wi + si x BIT(Kgo , 26 — 2)] (39)
=1 p=1
nlev-1 A

¢j =2ljls; |14+ Y 22 ] [wy + s; x BIT(Koo , 26 — 1)] (40)
A=1 o=1



Implementation
Coding the algorithm

We have used Fortran-90 programming language to code the algorithm of the neighbour searching in 2
dimensions. The code has two inputs: the number of particles and the search radius. The length of the 2
dimensional simulation box is fixed as is fixed the maximum number of particles. The maximum level
of refinement we reach is defined by the search radius inside the code. We give random coordinates to
the particles and we construct the particles keys for the maximum refinement level as we have already
explained. That means that every particle has a key which is pointing to a box inside the root. We perform
a simple sorting of the particles inside every box just before the neighbour searching starts. After that we
are ready to start the searching. We pick one particle for which we know its particle key. Therefore we
know inside which box it is sitting. Next, we apply the bit operations we have just introduced and find all
the neighbouring boxes. We can now check which of the particles that are contained in the neighbouring
boxes are inside the search radius of the given particle. The core part of the algorithm is given in the
Appendix.

Time scaling

Is it working properly? This is the first question that arises. We must check if the algorithm is finding
the correct neighbours or producing mistakes. The checks on several particles for different radi proves
that it does indeed find the neighbours correctly. We show five examples of this below. Figure 6 has a
2 dimensional simulation box which contains 1000 particles represented as dots. The cross represents
a randomly chosen particle. In figures 7 and 8 we can see the neighbours of this particle in a radius 5,
10, 15 and 20 per cent of the simulation box length respectively. These neighbours have been identified
correctly by our algorithm.

The next question that arises concerns the time scaling of the algorithm. We have measured the time
needed for our method and the time needed for the naive method looping over all particles j for a specific
particle i. We have made time measurements for the already given radius and for a number of particles
that vary from 1000 up to 8000. We can see through the figures 9 and 10 that the time needed for the
naive method does not depend on the search radius, as expected and shows a time scaling proportional to
N2, Our new algorithm on the other hand has a strong dependency on the search radius. For short radius
compared to the simulation box length it is much faster than the classical search and it is proportional
to N. As we grow the search radius our method is slowing down and loses its linear dependency to the
number of particles due to the increase in box size.

Conclusions

We have investigated a new algorithm for the fast near-neighbour search in MD simulation using a tree
data structure. The algorithm has satisfying time scaling for short search radius. Further optimisation
is necessary in order to speed up the neighbour searching in longer distances. This could be possible
through further refinement of the boxes inside the search radius and thus automatically capturing a large
proportion of particles that lie by definition inside the given radius. In that case we just need to search
through a number of boxes that contain a small amount of particles and lie on the edges of the circle
defined by our radius. We can also find a way to replace some time consuming intrinsic functions we
have applied in the detailed search algorithm inside every box. During this project we have found the
generalisations to the Eqs.(39),(40) that should be applied in a 3 dimensional simulation box and make
the algorithm valid for 3 dimensional neighbour searching; this will be tested in future work. Finally,
we note that a detailed time comparison between our algorithm and the cell index method has still to be
performed.
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Appendix
Fortran-90 form

do z=1,npart
p=0
do i=-1,1
do j=-1,1
c(i)=0
d@d)=0
do lam=1,nlev-1
proti=1
protj=1
do g=1,lam
proti=proti*(((1-1)/2)+sign(1, ) *ibits(pkey(z),2*g-2,1))
protj=protj*(((1-3)/2)+sign(1,j)*ibits(pkey(z),2*g-1,1))
end do
c(i)= c(i) + (2**(2*1am-1))*proti
dd)=dg) + (@**(2*lam-1))*protj
end do
c(i)=abs(i)*sign(1,1)*(c(i)+1)
d@)=abs()*sign(2,J)*(d(@)+1)
K(i, J)=pkey(2)+c(i)+d(d)
p_key = K(1,J)
do w=1,nei(p_key)
di=sqrt(((x(box_list(p_key,w))-x(z))**2)+((y(box_list(p_key,w))-y(z))**2))
if ((di.LE.radius).AND.(di.GT.0)) then
p=p+1
list_neigh(z,p)
else
p=p+1
list_neigh(z,p)
end if
end do
end do
end do
end do

box_list(p_key,w)

1
o

12



Figures

10

Figure 6: 1000 particles.
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Figure 7:

5% and 10% of the box length.
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Figure 8: 15% and 20% of the box length.
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The Estimation of Charge Extensions in the Continuous Fast
Multipole Method (CFMM)

lvo Kabadshow
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Abstract: The Fast Multipole Method is advantageous, if one wants to examine large num-
bers of particles because of its O(N) scaling. However, generalizing this method to continuous
charges, correspondingly called Continuous Fast Multipole method, leads to new problems.
Especially the treatment of the arising non-zero extents must be studied carefully. For s-type
distributions one can calculate the extent analytically. However, such an analytical solution
does not exist for higher angular momenta. For that reason one has to estimate an upper bound
for these extents that reflects the real extent very well since it affects the performance of the
Continuous Fast Multipole Method.

In computational physics one often deals with large ensembles of particles and their pairwise interactions.
This is known as a IN-body problem. Especially in present molecular dynamic calculations one has to
evaluate the pairwise interactions, known as Coulomb interaction.

N-1 N o
-y 3 qrﬂ (1)
i=1 j=i+1 Y
This equation sums up the Coulomb energy for IV particles, with center r; and charge ¢;. However, for a
large ensemble several problems arise from this equation. Because one had to take every interaction into
account the computational cost scales O(IN2). For millions or even billions of particles the direct calcu-
lation of this potential is not reasonable because of large computational times. Also, it is not a helpful
approximation to introduce a cut-off to the system and neglect the interaction between particles far from
each other, because the coulomb potential is a long-range potential. To overcome the O(N?) scaling
another approach should be used. One method is the Fast Multipole Method introduced by Greengard
[1]. The basic concept is to group distant particles and treat them like a single charge. If we use this
approach, we can achieve O(N) scaling.

Fundamentals

Consider two charges located at positions ro = (re,a,3) and r; = (r1,60,¢). The inverse distance
between these two charges can also be written as an expansion of the associated Legendre polynomials
P, under the condition o < r;. The bottom line is that 1/|r; — ro| factorizes.

1 > rh
_ = cos ro <1 2
o = DAl e @

[e%) l
- > Z 'm’ Z"ilsz<cos(a>>le<cos<9>>exp<—im(ﬁ—e>> )
=0m

[r1 — 1o
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Figure 1: left: direct interaction; each line labels an interaction between two particles, since we have
(e.g.) 15 particles there occur 105 interactions, right: scaled FMM box, all light-gray boxes can interact
via multipoles with the white box.

Therewith one can define moments of a multipole expansion and coefficients of a Taylor expansion. This
implicitly defines Oy,,, and M;,,, as well.

Wim = qum = qal( le(cos(a))eiimﬁ (4)

[+ |m|)
1 im
Him = ¢Mim = g7 (= [m]) P (cos(8)) ™ (5)

Using the last three equations one can write the inverse distance as:

1 o) l
m = Z Z Wimim (6)

=0 m=-1
The infinite sum in Eq. [6] can be approximated to any given precision by a finite sum.
FMM Translation Operators
The FMM needs three operators (A, B, C) to perform transformations on the multipole and Taylor ex-

pansions. If we want to shift a multipole expansion located at point a to point a + b we use operator
A.

L J
wim(@a+b) =" Y All(b)wjk(a) ™
J=0 k=—j
Operator A is defined as:
Al (b) = O1_jm—i(b) (8)

The B operator is used to transform a multipole expansion centered at the origin into a local Taylor
expansion about another center with shift b

pum(a—1b) =YY" Bji(b)"wj(a) ©)

=0 k=—j
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Figure 2: 2D FMM, every parentbox divides into 4 child boxes, level 4 contains 256 child boxes.

Operator B is defined as:
Bl (b) = Mj 11 +m(b) (10)

The third operator is required for translating a Taylor expansion at a point r about the origin to a Taylor
expansion about point a

o0 J

pm(r —a) =Y Y Ci(a)uu(r) (11)
§=0 k=—j
Operator C'is defined as: ‘
Clit(@) = Afp,(2) = O5-t-m(a) (12)

The Fast Multipole Method
Building up the FMM tree - initial step

Every particle is represented by its charge ¢; and its coordinates x;, y;, z;. First we have to scale the
particle coordinates to fit into a box with coordinate range [0..1,0..1,0..1]. This parent box is divided
into a set of 8 equal child boxes. Each child box is subdivided recursively to build up the tree. The depth
of the tree, respectively the number of divisions, is chosen to keep the number of particles in the lowest
level box approximately independent from the total number of particles in the simulation box. A depth d
leads to 8¢ child boxes.

Generating and Translating multipoles - Pass 1

Having sorted all particle coordinates into the lowest level child boxes one can build up a multipole
expansion in each lowest level box about its center. Now we can shift the multipole expansion of each
lowest level box to the center of the associated parent box using operator A. These translated moments are
summed and stored in the parent box. The procedure is continued until we reach level 3. This down-top
shifting makes all children multipole expansions available in their parent boxes.

Converting Multipole Expansions into Taylor Coefficients - Pass 2

The generated box structure is used to determine whether particles (or boxes) can interact via multipole
expansions or not. Interaction is only possible if the considered boxes are "well separated”. Thus all
particles in the first box must be well separated from all particles in the second box. The most distant
particle in a box can be positioned in one of eight box corners. Therefore one has to draw a sphere
around the box center with radius v/3d. Such as Fig. [3] shows 2d is defined as the box length. Since the
sphere overlaps with neighboring boxes, only interaction between particles in boxes which are not nearest
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Bl

Figure 3: The sketch shows the minimal distance for two interacting boxes. The shaded box is well-
separated from the box By, thus ws = 1. The length of each box is chosen to 2d. The most distant
charges in the corners of box By have a distance of v/3d to the center.

neighbors are allowed. Now we can convert the distant multipole expansions into Taylor expansions
about the center of box B;. Therewith we create a local expansion representing all distant boxes. To
achieve linear scaling, we only transform multipole expansions from boxes at the same level which are
well separated from By, but are not well separated from B;’s parent box. The remaining child boxes
interact via their parent boxes. To take the neglected information into account, we need the third operator
C.

Local Taylor Expansions of Full Far-Field Potential - Pass 3

The third part is responsible for the transfer of neglected information from a parent box to a child box.
It translates the parent’s Taylor expansion to the center of all parent’s children. This top-down shifting is
repeated until we have reached the lowest level boxes of the FMM tree. Now all boxes contain the Taylor
expansion from all "well-separated™ boxes. Pass 3 is the converse of pass 1, where we shift the multipole
expansions up the tree.

Particle Far-Field Interaction - Pass 4

This pass calculates the far-field potential. Each lowest level box contains a Taylor expansion represen-
ting all “well-separated” particles. By summing up the box energies ), wimtm We get the far field
energy.

Particle Near-Field Interaction - Pass 5

The remaining near field interaction of particles not "well separated” is done in the fifth pass. All remain-
ing neighboring particles which did not contribute their charge to the current box interact directly. Now
all interaction had been carried out and the total potential can be calculated by summing up the far and
near field parts.

Parameters of the FMM are the length of the multipole expansion, the "well-separated” index ws and the
depth of the FMM tree.
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Gaussian Basis Sets

So far we can only treat point charges. But ab-initio calculations on Hartree-Fock or DFT level deal
with charge distributions instead of point charges. Within the next section we want to clarify the use of
Gaussian basis sets. Historically, the ab-initio calculations for molecules were performed with LCAO,
i.e. Linear Combination of Atomic Orbitals. Thus, molecular orbitals are formed as a linear combination
of atomic orbitals:

vi =Y cijbi (13)
i=1

where 1); is the j-th molecular orbital, c;; are the coefficients of linear combinations, ¢; is the i-th atomic
orbital, and n is the number of atomic orbitals. Solving the Hartree-Fock equations one obtains Molecular
Orbitals (MO), describing the wavefunction for a single electron. Some implementations use Slater-
Type Orbitals (STO’s) due to their similarity to atomic orbitals of the hydrogen atom. With spherical
coordinates one can describe them as follows:

gf)i(oz,n,l,m,r,ﬁgi)) = Nrnileiariflm(e)(ﬁ) (14)

where IV is normalization constant, « is the Slater exponent, r, 8, ¢ are spherical coordinates, and Y7,
is the angular momentum part and is described by spherical harmonics. The values n,m and [ represent
the principal, angular momentum and magnetic quantum numbers. Unfortunately, functions of this kind
are not suitable for calculations of two-electron integrals needed by the CFMM. For this reason Gaus-
sian Type Orbitals are used. By summing up a certain number of GTO’s with different exponents and
coefficients one can reproduce the shape of the original STO, however with a much easier handling with
respect to integration. Even with ten contracted Gaussians the two electron integral can be solved faster
than by the original method (Fig. [4]). The Gaussian type orbitals (GTO’s) can be written as:

G (2,1, 2) = Ne ™7 glym 2" (15)

where N is a normalization constant, « is called "Gaussian exponent”. The x,y,z are Cartesian coordi-
nates. Notice that in this formula, [, m and n are not quantum numbers but integral exponents. These
basis functions or primitives can approximate s, p, d, f orbitals. Possible Cartesian Gaussian functions
are shown in Fig. [4]

The sum of the exponents at Cartesian coordinates (I + m + n) is used to mark functions as s-type
(! +m+n=0), p-type (l + m +n = 1), d-type (I + m + n = 2), etc.

The Gaussian Product Theorem

The Gaussian Product Theorem shows that a product of two arbitrary angular momentum Gaussian
functions can be written as a Gaussian function again:

G1G2 = Gi(ai, A, l;,m1,n1)Ga(ag, B, ly, ma,ng)
= exp [~a1a2(AB)? /]

M1+
x [ fill, 52,m;c7ﬁx)$zjse_w’2’]
L i=0

mi+ms2 __ ‘ )
X Z fi(mi,ma, PAy, PBy )ype "
7=0

[m1+n2 __ A )
X Z fk(m,nQ,PAZ,PBZ)zgge—%] (16)
L k=0
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Figure 4: left: possible Cartesian Gaussian functions, right: a Slater-Type orbital (STO) is approximated
by several Gaussian orbitals forming a contraction. STO-1G contains a single gaussian, STO-3G contains
3 gaussians, etc.

The charge distribution 12, a product of two gaussian basis functions can be expressed in cartesian or
spherical coordinates:

X1X2 = ]\/vlj\TQ-TllJrlgymlerQZ’nlJrnge*(OflJron)r2 (17)
2

Xix2 = NyNyphitmitmtletmatnaginltm gyeosn(9)cos! (¢)sin™ (¢)e (@1 taz)r (18)
If we neglect all angular-dependent parts the product xx2 simplifies to
X12 = erll+m1+nl+12+m2+n26ffp [_(041 + a2)r2] (19)

with a normalization constants N1, Ny is

e (@>3/4 NG @2 /ap)rtmm

7T 201 — 1)”(2m1 — 1)”(2n1 — 1)”

R () IV i
2 \n V@l — DI2ms — DI(2ng — DI

The Continuous Fast Multipole Method (CFMM)

Differences between FMM and CFMM

The classical point charge FMM systematically organizes multipole representations of local charge dis-
tributions, so that each particle interacts with local expansions of the potential due to all distant particles.
To group particles they are placed in a box which is repeatedly subdivided to create local collections of
point charges. Local and distant distributions are distinguished by the global well-separated index (ws),
defined as the number of boxes which must separate two collections of charges before they may be con-
sidered distant, and can interact through multipole expansions. However, this method fails for continuous
distributions, because a single distribution can cover the whole box.

CFMM is a generalization of the Fast Multipole Method, which allows one to calculate the Coulomb
interactions of a collection of finite extent distributions represented by continuous functions scaling lin-
early with system size. A linear scaling method based on the FMM approach rapidly handles the distant
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distributions by collecting charge distributions and expanding them into multipoles. The remaining local
contributions must be evaluated explicitly, but their number is only linear, scaling as O(N M) where M
is an effective number of neighboring charges The CFMM takes account of the extent of distributions by
assigning a "well-separated” index value to each distribution based on the following equation:

WScEMM = max(2[r@<t/l],wsref) (20)

where [ is the length of a box, and wsye is the ws value chosen for point charges. Thus the ws index
and hence the number of interacting neighbor boxes is determined by the extent of the distribution.
Distributions covering the entire box, cannot interact via multipoles and have to be computed directly.
In comparison to the FMM, where we have to sum up over all particles in a box to gain the multipole
moment, CFMM requires integration over charge distributions.

1 Pim (sin(0;), cos(0;))

FMM: Wim = ) 4i"; Tt m) (cos(mepj) — i - sin(ma;)) (21)
CFMM:  wyy, = / / / K XiXjT ptfim S(Zln fiﬁs(e)) (22)
(cos(ma;) — i - sin(mae;)) r*sin(0)dpdodr (23)

The restriction to point charges means the FMM is not immediately applicable to problems in which the
charge distributions have significant extent. But within a given error bound it is possible to treat charge
distributions as point charges.

Computing the two-Electron Integral

A charge distribution is composed of two Gaussian basis functions. For s-type basis functions (I + m +
n = Imn = 0) one can solve the two electron integral analytically. For a given s-type Gaussian

2 :

4

Xs = — e—or? (24)
T

the integral with four s-type functions (two distributions) can be written as:

3
200\ 4 (2« 200 200 e~ 1rie—0lr2—R[?
<X51Xs2‘Xs3Xs4> = <—1> (—2> ( 3> ( 4> // dI‘ldI‘Q (25)
T T ‘I‘l — 1‘2‘

in which «; and oo are the Gaussian exponents of the first charge distribution, a3 and ay the exponents
of the second charge distribution, ~ is the sum of «; and «a», and d the sum of a3 and a4. R is defined as
the distance between these two distributions.

erf (/22 R
—+6
<Xles2‘Xs3Xs4> = % (26)

erf(z) is the error-function and defined as:

erf(z \/_ / (27)

For large R, increasing separation respectively, the two charge distributions can be treated as classical
point charges.Thus we can define an error:

§
1 erf < #R)
=5 2
(.. R) = 5 — 29)
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Figure 5. Gaussian charge distribution: a) two distributions having non-zero extents, every distribution
contributes to R, b) one charge distribution and one point charge, only the charge distribution contributes
to R

Using the relation erfc(z) = 1 — erf(z) we can write:

erfc < j—&R)
R

By defining one of these charge distribution as a point charge, the two-electron integral Eq. [25] can

be used to calculate the extent of the remaining charge distribution. Therefore two of four Gaussian

exponents are chosen infinite. Treating for example the second distribution as a point charge with a3 —

00, ag — oo Eq. [30] gives us the extent of the first charge distribution.

6(7» 5, R) = (29)

(. 1,) = ML) (30
Y
For higher angular momenta distributions the two electron integral cannot be solved analytically. For
this reason we have to estimate an upper limit for the extent of these distributions. Since we can solve
the two electron integral analytically for s-type charge distributions, it would be helpful to use these s-
type distributions to estimate the extent for higher angular momenta functions. As a first step we tried to
approximate the basis functions by s-type basis functions. A given arbitrary basis function

_ (20 (2y/@)!tmn N
X ( ﬂ) \/(2l—1)!!(2m—1)!!(2n—1)!!r ¢ (31)

is estimated by a s-type basis function
3
Xs = C (%> ! e’ (32)
T

Satisfying the following conditions, we find a optimal s-type basis function for a given arbitrary type of
basis function with the property xs > x

X = Xs (33)
dX dXs

- = 34
dr dr (34)
d2X
— =0 35
o (35)



These equations can be solved analytically and one gets:

5 = a(y/8(Imn) +1+1) (36)

2(Ilmn) + /8(lmn) + 1

‘ (2(lmn) + 1 + \/8(Imn) + 1)e~1/2(mn) an
N 3/4
8(Imn)+1+1 —T —; —
2(lmn) -1+ /Bmm) 11 V(@20 = DN(2m — )!I(2n — 1!

where (Imn) is the shortened syntax for [ + m + n We can now estimate the extent of higher angular
momenta basis functions.

a l+m+n I6] c

1 1 0.666666 2.013709
2 1 1.333333 2.013709
3 1 1.999999 2.013709
1 2 0.561553 2.987065
2 2 1.123105 2.987065
3 2 1.684658 2.987065

Table 1: calculated parameters 5 and ¢ for a given o« and Imn, a small 3 denotes a large R and vice versa.

Since we are treating charge distributions and not only basis functions, the resulting (5 is not necessarily
the best solution. Thus, it would be better to estimate the extent of a product of basis functions, compared
to only one basis function. This idea leads us to the following equation for arbitrary angular momenta
distributions:

Y1X2 = N1N2r(lmn)1+(lmn)gef(a1 +az)r? (38)
Our s-type charge distribution now looks like:
3/4 3/4
X1sX2s = C (2—51> (%> e[_(ﬁl—’—ﬁQ)TQ] (39)
™ ™
The conditions look similar to the basis function estimate.
X1X2 = Xs1Xs2 (40)
d(x1x2) d(xs1Xs2)
— 41
dr dr (41)
dR
—— = 42
dR
— =0 43

At this point we want to emphasize that 5, and G, must have the same value to obtain the minimal R. So
we can simplify a little and set 3; = (B, = . The final equation can be written as:

erfc(v26R(B)) 1 (2 8/2 2e n/2 3/2  omn/2
S ow () (5) e - -

where R is the extent of the charge distribution, N, the normalization constant and e the given error
bound. Unfortunately there exists no analytical solution for R and 3, so one has to find the solution
numerically. To simplify the expression we can write:

IR _ o (5) 4s)
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Figure 6: computational scheme finding 5 and R

R implicitly depends on 3. However, using the conditions % = 0 and &£ = 0 leads to

In i
VrB(—)
R g -
20

(46)

Unfortunately the attained R((3) dependency is not really helpful. If one puts this equation into the final
equation [44] to eliminate the R dependency, one has to deal with a lot of discontinuity problems instead,
especially for higher angular momenta. Several attempts to solve the resulting equation with a simple
newton algorithm failed because of these discontinuities. For that reason we chose another approach.

Another approach for further decreasing R

Considering Eq. [45] again:

SMEWZIR) _ 4(s) @)

We can implicitly plot the R = R(/3) dependency (Fig. [7]). From this equation we can also derive the
limits 31, B2 in-between the minimal R can be found:

lower limit:  §;; = goq 132 (48)
n
.. 1
upper limit: B = 5(041 +a2) B < B < B (49)

Performing a binary search on the given interval |31, 32], we can find a § and a corresponding minimal
R within a given precision. However, binary search converges too slowly. Treating millions or billions
of distributions possibly slows down the entire calculation, since we have to calculate an extent for every
charge distribution.To improve the performance the binary search is replaced by a Fibonacci search that
scales only O(log(n)).
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Figure 7: left:using condition dR/d3 = 0 our function f depends on /3 only, however discontinuities
occur. right: implicit plot R(/3). Between the considered limits this function is unimodal, and thus the
minimum dR/d = 0 can be determined by a Fibonacci search.

Fibonacci Line Search

The Fibonacci Line Search algorithm allows to find a maximum of a unimodal function f(x) over a
given interval [3;1, B;2]. A user-defined precision allows to limit the total number of iterations. This limit
is defined as:

Fy > (Bi2 — Bi1)/eps (50)
where F,, is the n-th Fibonacci number and (;1, B;2 the given search interval. The Fibonacci humbers
are defined in the following manner:

F = 0
P =1
F, = F, 1+F, o for n>2

The search concept involves placing two test points in-between the interval limits [3;1, 8;2] using the
ratio of Fibonacci numbers. The test points are positioned at:

Fy o

L o= 8o+ ; (8% — B) (51)
n
F,q

= B?2+—; (8% — BY) (52)
n

Now the function is evaluated at these two new points. Since we want to minimize our function, we keep
the smaller functional value and the opposite interval-limit. After all required iterations have been passed
through, a final interval is the answer. The procedure is also illustrated on Fig. [6].

Determining R by a Newton algorithm.

To choose the new interval limits we need the functional values R(3}}) and R(3%). These are determined
by a Newton algorithm.

f(R) = erfc(\/28R) — g(B)R (53)
f(Ry)
RnJrl - Rn_f,(Rn) (54)



The initial value for this iterative Newton algorithm is Ry = 0.

Comparison of the determined extents

Obviously the second algorithm finds a lower upper limit for the extent of higher angular momenta
distributions. Especially for large distributions with small 3 the latter method allows minimizing the
costs for a direct interaction of these charge distributions. (Tab. [2])

a l+m+n | @lstalgorithm R; 1stalgorithm 3 2nd algorithm R, 2nd algorithm
1 1 0.666666 0.608559 0.821384 0.570837
2 1 1.333333 0.260212 1.579524 0.247564
3 1 1.999999 0.144235 2.327489 0.138089
1 2 0.561553 0.649036 0.696932 0.618961
2 2 1.123105 0.221573 1.279649 0.216687
3 2 1.684658 0.100091 1.859443 0.098656

Table 2: obtained extents from approximated basis functions and approximated charge distributions. The
estimated upper bound can be reduced by using the second algorithm.

Conclusions

We have introduced an algorithm to perform extent estimations of high angular momenta charge dis-
tributions. It was shown that the upper bound for these distribution extents can be reduced prefering a
combined Fibonacci-Newton algorithm on the charge distribution instead of using a Newton algorithm
on a single basis function.
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Abstract:

1251 transforms to highly excited '25Te via electron capture [1], leaving core shell vacancies that
result in massive Auger emission. Molecular systems incorporating 12°1 will, following the 21 decay,
fragment into molecular and atomic positive ions with individual charges of up to +18 [2], a process
commonly referred to as "Coulomb explosion". Auger emitters are highly radiotoxic, and have been
subject to radiomedical research for decades [3]. Whereas the investigation of the effects Auger processes
on biological systems could improve the understanding of basic aspects of radiotoxicity in general, 1251
Auger electron emission may play a pioneering role in therapeutical applications, such as tumor-specific
radionuclide deposition.

However, there is still much uncertainty in the molecular and cellular mechanisms following Auger
processes in vivo. In this work, the response of a ""Br-substituted 10 base pair DNA sequence on ex-
cessive ionization was investigated by quantum chemical methods on a DFT level of theory. Here and
in further systems 7"Br was chosen as the Auger emitter instead of 12°1, to overcome certain problems
as discussed below. In a first approach, the Coulomb explosion of CH; 1251, CoH512%1, and n-C3H 1221,
was studied systematically to draw connections between electronic structures and observed fragmen-
tation patterns. This was done by considering the Auger electron emission as being finished, and cal-
culating the nuclear relaxation for the electronic ground state of the molecular ions. More calculations
were carried out on the Coulomb explosion of '2°lodouracil, 7”Bromouridine-5’-monophosphate, and
the “"Bromouridine-5’-monophosphate—Adenosine-5-monophosphate nucleotide pair.

Introduction

It was not until the early 1970s when Hofer et al. [4, 5], and Feindegen et al. [6, 7] confirmed chromatin
damage and the impressive radiotoxic effects due to 21 Auger electron emission in mammalian cells
experimentally. Several pathways to cell death have so far been discussed, including radiation and low-
energy electron bombardment due to the initial decay, 2°Te recoil energy and the chemistry involved
with the transformation of 12°1 to '25Te, and Coulomb explosion of molecules covalently binding 251,
The radiomedial aspects of Auger Processes appear to be a surprisingly wide field of research. Despite
that, the chain of cause and effect, concerning Auger processes in vivo, is far from being revealed.

The cell lethality pattern due to intracellular Auger emission is comparable to that due to « particle
exposure. It is confirmed that the effect of 121 Auger emission on cellular structure critically depends
on the intracellular location of the decay. '2°1 located outside of the cell nucleus, e.g. plasma membrane-
bound via ?°I-labeled Concanavalin A, is relatively non-toxic [8], requiring ~ 20,000 decays per cell to
cause 50% cell death, compared to ~ 60 decays per cell for DNA incorporated '2°1UdR.



Considering intranuclear 251 decay, there is evidence that there is no direct correlation between radia-
tion or particle emission energy deposition and nucleus damaging. For example, '2°I-labeled oligonu-
cleotides not inserting in DNA, but being accumulated in the nucleus by liposome transportation, only
gave lethalities comparable to extranuclear Auger processes [9]. In contrast, DNA damage—which is
closely connected to cell death—is mostly due to decay events of direct DNA-bound Auger emitters,
causing Single (SSBs) and Double Strand Breaks (DSBs) in DNA, and, more globally, mutations and
chromosome aberrations. '2°1-labeled oligonucleotides incorporated in DNA caused SSBs and DSBs
within a range of 10 base pairs of the decay site [10]. DNA triplex forming 2°I-labeled oligonucletides
yielded similar results, though located at a seperate DNA strand [11].

Stating that intranuclear ?°1 decay alone was responsible for cell death is furthermore challenged by
the findings of several groups that chemical radioprotectors as Dimethylsulfoxide [12], Vitamin C [13],
and others, can mitigate the radiotoxic effects of Auger processes. Though they exhibit similar lethality
patterns, this is not true for « radiation [12]. So, evidence arises that DNA damage due to Auger processes
may be mediated by somewhat indirect effects [14], e.g. water radicals from DNA solvation shells, or
reactive organic fragments due to Auger process induced Coulomb explosions.

Using calculated Auger electron emission spectra, e.g. by Monte Carlo methods [15], several theoretical
models have been applied to investigate DNA [16] and nucleosome DNA superstructure [17] damage due
to Auger processes. On a very qualitative level, these and other theoretical approaches fit to experimental
observation, agreeing that indirect effects to DNA damage due to Auger processes cannot be neglected,
if they are not even a major part.

Because of their striking radiotoxicity and, on the other hand, their strong dependence on intracellular
location, several radiomedical applications of Auger emitters are recently discussed, reviewed e.g. by
Hofer [3]. For example, in radiodiagnostics, one always has to find a reasonable compromise between
detectable radioactivity, accumulated in a specific tissue type to investigate, and the least possible expo-
sure of the system to damaging radiation effects, and Auger emitters could be applicable to that field.
Second, the selective transport of Auger emitters into tumor cell nuclei, e.g. by tumor epitope-specific
antibodies, could prove to deliver a great deal to cancer therapy and other types of molecular surgery.

The aim of this work is to find out if, and in which way bioorganic compounds will fragment due
to the radioactive decay of the covalently bound Auger emitters 251 and ““Br, and which fragments
will occur. To achieve comparable results, these questions were approached by calculations on the
simple alkyliodides CH3'251, CoH5'2°1, and n-C3H-'251, because the Coulomb explosion CH3'21 and
C,H5'251 was investigated experimentally by mass spectrometry methods [2, 18, 19]. Further calcula-
tions focussed the bioorganic systems '2®lodouracil (*2°1UdR), 7" Bromouridine-5’-monophosphate, and
the 7"Bromouridine-5’-monophosphate—Adenosine-5’-monophosphate nucleotide pair, because of their
importance to radiomedical research.

Another intent was to prove if DFT is an applicable technique to calculate highly charged systems like
products of Auger processes because most methods can hardly describe states which are not in their
ground states. The investigation with DFT technique has of course several limitations and these were
also to be detected by this work.

Theoretical Basics

Auger Process
The Auger process was first discovered in 1925 by the french physicist Pierre Auger [20] when he

irradiated some atoms by low-energy x-rays and thereby removed a single electron from the core region
of the atom. After the initial ionization process, the system was left in an highly excited electronic state,
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possibly well above the ionization levels. It follows the fast electronic relaxation process to the various
electronic ground states associated with a different number of electrons escaping from the system. The
Auger process takes place on a time scale of 10716 s < ¢ < 10! s [21], i.e. much faster than the
relaxation process of the molecular geometry which appears on the timescale of a molecular vibration
(1012 s) [22].

Later it was proved that this Auger ionization process could be initiated by electron capture and ensuing
nuclear conversion of the nucleus. Certain isotopes such as '2°1, 7"Br, known as Auger emitters, sponta-
neously convert into positively charged '2>Te and “Se. Molecules bound to Auger emitters turn into the
corresponding positively charged molecular system with the Auger emitter replaced by its decay product
at the molecular geometry of the initial compound.

Density Functional Theory

Density Functional Theory (DFT), which was developed by Thomas [23], Fermi [24], and Dirac [25] in
the 1920s and 30s, became applicable for routine quantum chemical calculations in the early 1980s with
the development of continuously more accurate exchange functionals. Because of its moderate scaling
with molecular size, compared to HF, or more advanced approaches such as many-body-perturbation
theory and coupled-cluster techniques, DFT has become a widely used tool for molecular structure cal-
culations .

In DFT, the electron density p(r), depending on the location r, is chosen to be the basis variable, which
is formally justified by the proof of the Hohenberg—Kohn theorems [26]
Z *n; [|¢i(x)|?do interacting, 0 <n; <1 W
e Z f [;(x)[2do non-interacting

where N is the number of electrons, and n; are the occupation numbers (probabilities) of the spin orbitals
¥i(x) = ;(r, o). The integral is over the spin variable o to give spin-independent densities |v;(x)|> =
po(r).

The total electronic energy expression in terms of DFT, according to the Kohn—Sham method, is

Elpo] = T[po] + Ulpo] + Vpo] = Fuxl[po] + Vp] = T%[po] + J[po] + Exclpol + VIpo]  (2)

Exclpol = Tlpo] — T*[po] + Ulpo] — J{po] ©)

Here, V[po] is the electron—nuclei potential functional given by the molecular geometry, and Exc[po] is
the exchange energy functional explained below. The universal Hohenberg—Kohn functional Fyk[po] =
T'[po] + Ulpo] includes several unknown non-classical contributions to the kinetic energy 7'[po] and
electron—electron interaction Ul[pg]. However, this problem can be overcome indirectly by the Kohn—
Sham method.

Its basic idea is to set up an non-interacting N electron reference system s as H® = —>,V?/2 +
ZZ.Vis(r) that gives the same (non-interacting) ground state density po(r) as the (interacting) system to
investigate does, where VS( ) is some general effective potentlal Because Hj is non-interacting, H* can
be separated in a sum of N one-electron Hamiltonians 3,43 = H®, and the N eigenfunctions of Hy can
be expresses as a single Slater determinant W*(x;,xo,..xx) = (N)~Y2 32 (=1)"P, [[,45(x). So
one has NV one-electron problems instead of one IV electron problem.

The Hohenberg—Kohn functional can then be handled in terms of this non-interacting reference system,
that is Fuuk[po] = T%[po] + J[po] + Exclpo] + V' [po], where T*[pg] is the non-interacting Kinetic energy
contribution, and J[po] the classical Coulomb repulsion. The unknown classical contributions are col-
lected in the so called exchange energy functional E'xc[po], as given in (3). By the Kohn—Sham method,
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one gets an indirect, but nevertheless exact description of an interacting system by a non-interacting
model system, that does not exist physically, but gives the same energy and density.

One can express the energy (2) in terms of a set of V spin orbitals, {)j(x)}, by (1). Then, minimizing
the energy functional E[py] — E[{¢$(x)}] with the N2 constraints of spin orbital orthonormality,
one obtains NV one-electron equations of non-interacting type. Unitary transforming the orbitals {«$ (x)}
then gives the canonical Kohn—Sham orbital equations

e (%) = i) = (~VY2+ W) wix) = (~VZ2+ J() + Bxo(r) + V(1)) 4G @)

Because of the dependence of H;?' on the {¢$(x)} via the Coulomb repulsion potential, the KS equations
are non-linear, and have to be solved self-consistently. However—the KS equations have the same form
as the canonical Hartree—Fock equations, except they consider a more general, but still local effective
potential T/ (r) = V3(r). In contrast to this, HF theory uses an essentially non-local exchange potential,
and still is by definition approximate, considering no electron correlation at all.

Exchange Functionals

As one can see from the previous section, the exchange functional Exc[po] proves to be the crucial part
of any DFT calculation. Several approaches have been made to more and more accurate exchange func-
tionals, including local spin density approach, LSDA, generalized gradient corrected approach, GGA,
and hybride methods, mixing LSDA and GGA methods with HF exchange correlation. However, finding
new and better exchange functionals still remains to be a challenging field of research.

In this work, the GGA type BP86 functional, and the hybride type functional B3LYP were used to
cover different methods of exchange treatment. Both functionals, EZE56 and EZ3MYP base on the same
Thomas LSDA approach EX?PA = f(p) and Beckes gradient correction AELESS = f(p,|Vp|), but
differ in their treatment of correlation energy Ec.

E)%886 — )%SCDA + axAE)B()SB + aCE886

E}I%%LYP — E)IZSéDA 4+ GO(E)I-(IF o E)IiSDA) + axAE)]?SS + aCEéYP

where, in both, AEES® = f(p, |Vp|) and AEEYY = f(p, |Vp|). In praxis, one major difference between
BP86 and B3LYP is that RI-J and MARI-J approximations can be applied to non-hybrid functionals,
only.

Computational Methods

In general, all calculations were set up in the same basic way. The '2°I incorporating structures to inves-
tigate for possibly occuring Coulomb explosions were optimized to ground state geometries and elec-
tronic energies. The special isotope mass of 1251 was ignored here. Then, 2°I was replaced by '25Te, and
the new ground state geometries and electronic energies were calculated to obtain the systems to start
with. Different charged states of these systems were then optimized, to give either still bound molecular
structures, or separate fragments repelling each other. The nature of all fragments obtained was further
investigated by applying wave function analysis techniques, especially Mulliken population analysis,
and assorting charges to fragments. All fragments were then tested for stability by separate optimization
isolated from external fields.

All calculations were carried out within the TURBOMOLE V5-7 [27] program. Generally, DFT was
chosen to apply because it gives results—considering molecular geometries and, qualitatively, relative
electronic energies—accurate enough for the given problem, while scaling less than quadratically with
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the size of the molecular system (i.e. the number of basis functions). Essentially no dynamic methods
were applied, because of the expected loss in computational speed and their irrelevancy to the given task.

To approach the more complex bioorganic systems, it first had to be ensured that DFT is a viable level
of theory for quantum chemical investigations of Coulomb explosions in general, and, second, whether
one could draw any connections between calculated electronic structures and observed fragmentation
patterns. Therefore, the Coulomb explosion fragmentation of the simple iodides CH32%1, CoH5'%°I,
and n-C3H-'251 were investigated by the methods explained above. To test the results to obtain for
consistency, different exchange functional types, BP86 and B3LYP, and different basis sets, i.e. SVP
and 25Te relativistic effective core potential ecp-46-mwb [28], SVPall, TZVP/25Te ecp-46-mwhb, and
TZVPall were used for CH3'?°Te. For CoH5'2°Te and n-C3H;'25Te only SVP/!251 ecp-46-mwhb [29]
and SVP/'25| ecp-46-mwhb, respectively, were used, because molecular geometries and fragmentation
patterns were found to be very similar, if not identical for larger basis sets (see results sections). For all
calculations using the BP86 functional, the RI-.J option was chosen to give faster performance.

Because 251 is inserted in DNA via '2°IUdR, the systems of radiomedical relevance to investigate
were chosen to be 2°lodouracil, “"Bromouridine-5’-monophosphate, and the isolated 2lodouridine-
5’-monophosphate—Adenosine-5’'-monophosphate nucleotide pair. Further, a 10 base pair sequence of
alternating Adenine and Thymine, with one Thymine unit replaced by ""Bromouracil, was also possi-
ble to investigate. All calculations on the bioorganic systems were carried out using the RI-J option.
Additionally, the fast multipole method option MARI-J was applied to the calculation of DNA.

Several technical problems were encountered when investigating the bioorganic systems. First, all cal-
culations on systems combining the heavy elements 2°I and '25Te, and phosphorous acid mono- or
diester groups did only converge slowly. Standard geometry optimization techniques did not give any
stable iodides, in contrast to numerous experimental experience. This was observed for several non-
hybride functionals, but not for HF calculations. Although the reasons remain unknown, DFT using
non-hybride functionals appears to be not applicable to systems of that kind. To overcome this, 1251 and
125Te were replaced by their lighter homologous “"Br and “"Se, respectively, since 7"Br is an Auger
emitter, too, and these systems seem not to be affected by the problem discussed above. Furthermore,
""Br and 77Se qualitatively exhibit a very similar chemical behavior, and were therefore used for the in-
vestigations on the 7"Bromouridine-5’-monophosphate, '?lodouridine-5’-monophosphate—Adenosine-
5’-monophosphate nucleotide pair, and DNA system instead of 1251 and 125 Te.

Second, it appeared to be impossible to carry out any calculation on the 10 base pairs DNA double
strand in its proposed form. This is due to the negative charge located on every phosphorous acid diester
group, which would repel the two single strands so strongly that they could not remain connected by
hydrogen bonds. Physiologically, these negative charges would be compensated by larger histone protein
complexes rich in basic—and therefore positively charged—amino acids as Lysine and Arginine, to
which DNA binds forming the nucleosome DNA superstructure. Explicitly treating solvation effects or
countercharges seems to be impossible. For placing counterions around the DNA sequence one would
need a reasonable geometry to start with, which does not exist, and geometry optimization would not
succeed because of the general flexibility of the investigated system. Conductor-like screening models
like COSMO can not be applied simply because of the size of the system, increasing the computational
cost by some orders of magnitude, and would not compensate charge in any way. Thus, each phosphorous
acid diester group was saturated with one proton to achieve neutrality. This is supposed to have the least
impact on computational speed and molecular geometry, and seems to be without any option within the
DFT method applied. To compare results, the same treatment was applied to the '>®lodouridine, and
1251 odouridine-5’-monophosphate — Adenosine-5’ -monophosphate nucleotide pair system.
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Results

Below are the obtained results of the RI-DFT BP86 and DFT B3LYP calculations on the alkyiodides
CH5'251, CoH5'251, and n-C3H-'2?1. The pictures herein give the results of the RI-DFT BP86 calcula-

tions.
f
C( ;:*O .
+0 +1 +2 +3
- -
@ O O
“-*:O . . o
8 O o
{ Qo .
+4 +5 +6 +7
O .1 O ..| @, ®
® . " ‘
+8 +9 +10 +11
Figure 1: Picture sequence of CH3'25Te as a function of charge
Table 1: CH3'2%1 fragments as a function of total charge Q,
RI-DFT BP86, for different basis sets
| Q | SVPlecp-46-mwb | SVPall TZVPlecp-46-mwb | TZVPall

+1 3CH3Te™ 3CHsTe" 3CHsTe" 3CHsTe"
+2 2CH3Te2" 2CH3Te2 2CH3Te2" 2CH5Te2
+3 TCH;Te>T TCH;Te> " TCH;Te>T TCH;Te>
+4 | 2CHy +3Te?T + HY | 2CHJ +3Te?T + HT | 2CHJ +3Te?t + HT | 2CHj +3Te?t + HT
+5 | SCHT + 1T+ + 2HT [ 3CHT + 1Te?T + 2HT [ 3CH3T + 1Te?T + HY | 3CH3T + 1Te? T + HT
+6 2ct + ITe2+ + 3HT 2Ct + ITe2+ + 3HT 2CF + ITe2+ + 3HTF 2Ct + ITe2+ + 3HT
+7 2C+ + 2Te3+ + 3H+ 2C+ + 2Te3+ + 3H+ 2C+ + 2Te3+ + 3H+ 2C+ + 2Te3+ + 3H+
+8 | 1C?+ +2Te3t + 3HT | IC2T +2Ted3t + 3HT | 1C?F +2Te3t + 3HT | IC2F + 2Tedt + 3HT
+9 | 1C?H+ + ITedt + 3HT | IC2F + 1Tedt + 3HT | 1C?F + 1Tett + 3HT | IC2F + 1Te T + 3HT
+10 | 2C3+ + ITett + 3HT | 2C3+ + 1Tt + 3HT | 2C3+ + 1Te?+ + 3HT | 2C3F + 1Te? T + 3HT
+11 | 2C3+ +2Tedt + 3HT | 2C3+ +2Ted+ + 3HT | 2C3+ +2Ted+ + 3HT | 2C3F +2Te® + 3HT
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Table 2: CH3'251 fragments as a function of total charge Q,
DFT B3LYP, for different basis sets

Q | SVPlecp-46-mwb | SVPall | TZVPlecp-46-mwb | TZVPall \
+1 SCH;Te" SCH;Te" SCHyTe™ SCH;Te"

+2 2CH,Te*™ 2CH,Te’" CH,Te’" 2CH,Te*™

+3 [CH;Te?™ [CH,Te?™ CH;Te?™ [CH;Te?™

+4 | 2CHj +3Te*t + HT | 2CHj +3Te?t + HT | 2CHj +3Te?" + HT | 2CHy +3Te’t + HT
+5 | ICHT +3Te** + 2HT | 'CHT + !Te? ™ + 2HT | 3CHT +3Te?* + 2HT | ICHT +3Te?" + 2H ™"
+6 2Ct +3Te2+ + 3HT ICHT +2Te3+ + 2HT 3C + 2Te3+ + 3HT 2ct + ITe2+ + 3HT
+7 2c+ + 2Te3+ +3H* 2c+ + 2Te3+ +3H* 2C+ + 2Te3+ +3H* 3CH+ + 1Te4+ +2HT
+8 1c2+ + 2Te3+ +3HT 102+ + 2Te3+ +3H* 2C+ + 1Te4+ +3H* 2c+ + 1Te4+ +3H*
+9 | 1C?F + 1Tett + 3HT | 1C2F + 1Tedt + 3HT | 1C2F + 1Te?t +3HT | IC2F + 1TetT + 3HT
+10 | 2C3T + 1Tt +3HT | IC?+ +2Tedt + 3HT | IC2F + 2T +3HT | 1C?F +2Te5t + 3HT
+11 | 2C3T +2Tedt +3HT | 2C3F +2Tet +3HT | 2C3F + 2T’ ™ + 3HT | 2C3F +2Te® ™ + 3HT
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Figure 2: Picture sequence of CoH525Te as a function of charge
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Figure 3: Picture sequence of C3H;25Te as a function of charge

Table 3: 251-alkyliodide fragments as a function of total charge Q,

RI-DFT BP86 SVP/ecp-46-mwb

‘ Q ‘ CH3125Te ‘ C2H5125Te ‘ n-C3H7125Te
+1 3CH3Te+ 3C2H5Te+ 3C3H7Te+
+2 2CH;Tet 2CyH, TeH?H IC,HZT +2CHyTe "
+3 ICH;Te3* ICH,TeCH;* IC3H,Te*t
+4 | 2CHJ +3Te*" +HT 2CoH5 " +9Te? " *CgH,Te'"
+5 | SCHT +1Te?F + 2HT | IC,HIT + 1Te? + HY ICoHI™ + ICHyTe2t + HT
+6 | 2CT +1Te?t +3HT | 2CoH3T +3Te?t + 2HT SCsHZT + 1Tt + 2H
+7 | 2CT 42Tt +3HT | 3CoH3T +3Te?t + 3HT | ICHT + ICoHT + 1T + 2HT
+8 | IC* +2Te3t + 3HT | IC,H3T + 2Tt + 2HT ICsHTT +2Te®t + 3HT
+9 | 1C?F +1Te?t +3HT | ICoH3T +1Te T +3HT ICsH™ + 1Te?" +4HT
+10 | 2C3F + 1Tett + 3HT | 2CoH?T + 1Tett + 4HT IC3H3T +2Te3+ + 5HT
+11 | 2C3F + 2Tt +3HT | 2°C* + 1Tett + 5HT IC3H3T + 1Te!t + 5HF
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Table 4: 1251-alkyliodide fragments, as a function of total charge @

DFT B3LYP SVP/ecp-46-mwhb

Q CH3125Te ‘ C2H5125Te ‘ n-C3H7125Te

+1 3CH3Te+ 302H5Te+ 303H7Te+

+2 2CH;Te?" ICoHT +2Te " ICoHZ +2CHyTe

+3 ICH;Te? " 2CoH; T +2Te® ICsH,Te3t

+4 | 2CHj +3Te?" + H* 2CoHZT + 3Tt 2CgH;Tett

+5 | ICHT +3Te?t + 2HT | IC,HTT + 1Te? T + HF ICoHT™ +3CH Te2 + HY
+6 2C+ +3Te2+ + 3HT 2C2H§+ +3Te2+ + 2H+ ICH§+ + 2C2HZ+ + 172+ + Ht
+7 | 2CT +2Te®T + 3HT | ICoH3T + 3Tt + 3HT | ICHT + ICoH T + 3Te?t + 2HT
+8 | 1C?T + 2T’ +3HT | IC,H;T +2Te3t + 2HT ICsHTT +2Tet + 3HT

+9 | 1C?F +1Te?* +3HT [ IC,H3T +2Te3t + 3HT ICsHIT +2Tet + 4HT
+10 | 2C3T +1Ted T + 3HT | 2CoH%F + 1Tett + 4HT IC3HST +2Ted T + 4HT
+11 | 2C3F +2TeT + HT | 22CT +1Te!f +5HT IC3H T +1Tel T + 5HT

Table 5: 12Te—C bond lenghts as a function of charge Q for stable alkyliodides, in A,

RI-DFT BP86 SVP/ecp-46-mwb

‘ Q ‘ CH3125Te ‘ C2H5125Te ‘ C3H7125Te ‘

0 2.17 2.20 2.19
+1 2.13 2.17 2.17
+2 2.04 2.16/2.44 —

+3 1.98 2.16 2.13
+4 — — 2.19

Table 6: 12°Te—C bond lenghts as a function of charge Q for stable 12> TeUdR systems, in A,

[Q [ ™TeUdR |
0] 208

+1| 204

2| 203

3| 205

4| 214

5| 234
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Figure 4: Picture sequence of 12°TeUdR as a function of charge
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Figure 5: Picture sequence of Thymine nucleotides as a function of charge
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Figure 6: Picture of a DNA molecule
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Discussion
Alkyliodides

The results obtained from the mass spectrometry investigations of Coulomb explosion fragmentation of
CH5'?51 and CoH5'2°1 [2, 18] have been verified in a way that qualitatively most experimentally yielded
fragments were found in the current work. However, comparison of experimental data with calculations
must be handled with care, because of observed secondary field ionization processes inside MS devices
[19]. The obtained results can not answer the question about the relative abundances of the fragments
because the method of the calculations carried out here can not simulate the Auger process itself.

Table 1 give the obtained fragmentations of CH3'2%1, using the exchange functional BP86. The fragmen-
tation patterns are identical for all charges and basis sets, i.e. SVP/ecp-46-mwb, i.e. SVPall, TZVVP/ecp-
46-mwb, and TZVPall. The only exception was found for CH3'2°Te®*+ for TZVP/ecp-46-mwb, where
one additional proton appears to be bound to the carbohydrate fragment.

Table 2 give the obtained fragmentations of CH3'2%1, using the exchange functional B3LYP. All basis
sets give identical fragmentation patterns for systems up to a total charge of +5, except of the different
multiplicities for the CH3'251°+ systems. For higher charged systems different basis sets yield different
fragmentation patterns. Generally, basis sets bigger than SVP/ecp-46-mwb result in smaller charges on
the carbon atom, as observed for CH3'2%15+ with SVPall and TZVP/ecp-46-mwb, and CH3'2°17+ for
TZVPall. With increasing sizes of the basis sets applied, that is SVP/ecp-46-mwb < SVPall < TZVP/ecp-
46-mwb < TZVPall, 125Te appears to bear higher charges. Whereas all basis sets give a 2Te5* cation
for the maximum total charge calculated, higher charges appear for lower total charges with increasing
basis set size.

For both exchange functionals the effect of applied ECPs—which divide all electrons into two groups,
one valence shell and one core shell for all others—onto the observed fragmentation patterns can not
be ascertained. One could expect that the 125Te-ECP should result in lower charges on '25Te. In fact it
appears that using ECPs or not does not have any impact on the charge distributions on 12°Te cations,
whereas this seems to be affected only by basis set size. However, for BP86 no differences between ECP
and all-electron basis sets were observed.

Tables 3 and 4 give the obtained fragmentation patterns of the alkyliodides CH3'2?1, CoH5'2%1, and n-
C3H-'251, using the different exchange functionals BP86 and B3LYP. The investigated CoH5'2°1 struc-
tures, using the BP86 functional, converged up to a charge of +3. At higher charges the further fragmen-
tation started first by cutting off '25Te. Successive charging the CoH5'2°Te system undergoes loss of a
growing number of protons until complete fragmentation.

B3LYP calculations show much earlier fragmentation at a charge of +2 and +3 for CoH5'2°1. The fol-
lowing higher charged systems give similar fragmentation patterns for both functionals, especially in
C,H5'25Te for ethyl ions and protons. The only difference between these two functionals is in the charges
of their fragments.

In case of the n-C3H-'2°Te both functionals (B3LYP, BP86) give almost the same results. As in calcu-
lations on CH3'2°Te the same fragments occur in different charges, and the fragmentation patterns are
even almost equal.

The BP86 functional seems to exhibit a more systematic fragmentation pattern (see below), concerning
different basis sets, than B3LYP, because of the inconsistent appearing of fragments like CH ions and
several ions of 12°Te and Carbon for different basis sets (tables 1 and 2). These ions differ in charges and
multiplicities for systems of equal total charge, but calculated with different functionals. All systems un-
dergo fragmentation by similar principles, like loss of '25Te cations and protons with the very beginning
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Figure 7: Qualitative MO scheme of CH3!25Te

of fragmentation. These atomic ions can carry relatively high charges out of the system, whereas they
provide quite low bonding energies to the formerly bound molecule. In all cases the carbon backbone
remains intact, though charged and successively loosing more protons, for almost all calculated total
charges. Few exceptions are observed e.g. for n-C3H;12°Te?t, n-C3H;25Te5*, n-C3H,!2°Teb*, and n-
C3H-'25Te"™ for both BP86 and B3LYP. However, all fragments turned out to be stable when calculated
separately.

To interpret obtained results it is an appropriate way to use MO schemes to derive fragmentation patterns
for smaller molecules. The CH3'?°Te MO scheme gives an easy understanding of its fragmentation and
in basic qualitative aspects this could be valid to higher alkyliodides, too. In table 3 the 12°Te—C bond
length became shorter by charging CH3'?5Te. In classical way one would assume the other direction
because of more repulsive interactions in cations—an increasing bond length. This was not observed.

In Fig.7 is a representing MO scheme of CH3!'?°Te in Cs,, symmetry and full occupation of binding MOs
by its 13 electrons from their valence shells. If one up to three electrons are removed this scheme develops
right behavior of the 25Te—C bond length—it becomes shorter (see table 5). It could be stated that the
repulsion between the methyl group and the non-binding electrons from 25Te reduces when electrons
are removed out of this area. Attractive interaction towards the binding electrons from the nuclei of 12°Te
and Carbon is another possible reason for a shortened bond length. For a normal '2°Te—C single bond
length one has to derive values from covalent radii of both atoms [31].

When four electrons are removed the repulsive energy of the nuclei increases due to the loss of binding
energy, and the molecule fragments just as seen before on the pictures. From a charge of +4 on, CH3'?°Te
is not stable.

Going on removing electrons one recognizes that an interesting constellation appears at a charge of
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+9. At this point all hydrogens have left and all p shells from '25Te and Carbon are empty, and only
the s shells are occupied. In Fig.8 this C'25Te*® ion is seen. This is an artifact because of its o MO
levels, which have fully occupied antibinding and binding MOs. The antibinding energy is higher than
the binding. Thus C!25Te ™6 can not exist, it has to be an artifact. This could also be possible because
of electrostatic reasons. For higher charged systems one can develop an interpretation for the CH3'2°Te
fragmentation pattern, calculated with BP86. As presented in table 1 one sees, that in every calculation
on this molecule, using different basis sets, the completely fragmented systems have got the same charge
distribution pattern. To understand this, obviously, the MOs have to be replaced by the AOs of 2°Te
and Carbon. If considered that the 12°Te and Carbon p shells are on a similar energetic level (see Fig.8),
one recognizes that a mechanism of alternating ionization can be established. First two 12°Te electrons
are removed to get to an equal electronic configuration as Carbon has. Then this mechanism starts by
removing an electron from the Carbon (total charge +6), then from '25Te, then from Carbon again, and
so on, until the maximum calculated total charge of +11 is reached.

For higher alkylioides the obtained fragmentation patterns could be equal because of their similar MO
levels. Of course many other alkyl group fragments should appear at bigger systems. But in general the
same ions like 25Te and protons would be first obtained in similar calculations.

All CH3'25Te and CoH5'2°Te fragments obtained in this work were found experimentally [2, 18] by
mass spectrometry investigations (i.e. CH3Tet, CH3Te**, CHyTet, CHY, CHJ, CoHY, CoH2T, CoH],
CaH3t, CoHy, CoH3H, CoH3t, CoHT, CoH2H, and atomic ions). More fragments were found in exper-
iments than in this work, because of secondary ionization [19] and ion recombination reactions in the
mass spectrometer.

Concluding, it can be stated that DFT is a viable technique for calculating extremely charged systems
by means of quantum chemistry. Basis sets as small as SVP, using effective core potentials for heavy
elements like Te, appear to give satisfying results compared to much larger and though more time con-
suming basis sets like TZVPall. Thus small basis sets for DFT calculations can be sufficient to derive
molecular ground state geometries.
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Even conceptually different exchange functionals as BP86 and B3LYP seem not to have any impact
on the fragmentation patterns due to Coulomb explosions. For very simple systems one can understand
fragmentation of highly charged molecular systems from their MO energies and occupations.

Bioorganic Compounds

12510douracil (*2°IUdR) and 7”Bromouridine-5 -monophosphate were chosen to be the systems to inves-
tigate because 1221 is commonly inserted into mammalian DNA by 2°IUdR. The systems were calculated
with charges of +1 to +10, +15, and +20. Similar calculations were carried out by Pomplun [21, 30] on
125]UdR with the semiempirical method PM3.

1251 odouracil

Table 6 and Fig.4 give the results of the calculations on '?°TeUdR. In good agreement to Pomplun’s
[21, 30] results, stable molecules were found for lower charges. Even the same deformations of the
Tellurium—Carbon bond were found. Increasing charge turns '25Te towards the neighbored O of the
keto function. Up to charge of +5 Pomplun found stable molecules in relative normal conformations.
For +6 charge enormous deformations of the aromatic ring were observed, but this is probably due to
the semiempirical PM3 level of theory applied, which is not able to describe bond dissociation properly.
Instead of deforming at higher charges, '25TeUdR fragments into two parts in this work. From +6 to very
high charges one finds, like in case of the alkyliodides, similar fragmentation patterns: First there will be
125Te and Hydrogen ions emitted, and then the aromatic ring will be destroyed. A possible reason for the
stability of the ring system is, of course, its aromaticity, contributing additional binding energy to this
ring system. At high charges 12> TeUdR fragments in several ions. In cases of very high charges artifacts
could possibly be obtained, as e.g. the opened ring group binding '?®Te (charge +20), or retained ring
groups (charges +10, +15), though ring fragmentation already occured at charges of +8 and higher.

Similar to the former discussion about the alkyliodides there are 12°Te and Hydrogen as first fugitive
components. The size of this molecule makes it hard to build a MO scheme, so it could be considered
that the occupied MOs rearrange in a special way such that artifacts appear. As in Pomplun’s work [21],
the 125Te—C bond length found here shortens up to charge +2, and then increases with growing charge
(table 6). Pomplun found that the 12°Te—C distance in +5 charged '?*TeUdR is about 20% longer than
of the +4 charged system. Looking at table 6, here the bond length increases only about 10% from
+4 to +5 charged '?*TeUdR. Comparing with Pomplun’s results [21], it seems that different methods
for calculating Coulomb explosions of bioorganic systems yield comparable results for at least lower
charged systems. So it could be stated that DFT method is one appropriate way for theoretical DNA
investigation.

Uridine Nucleotide

In several DFT calculations the 2°Te incorporating uridine nucleotides could not converge because of
the 125Te separating from the thymine nucleotide group. To keep the results comparable a similar element
was chosen to replace the not binding 25Te. So “"Se with thymine nucleotide was investigated instead.
It gave comparable geometry parameters like similar C—77Se bond length and angles.

The investigation of the uridine nucleotides with “"Se inserted lead to the results shown in Fig.5. For
lower charged systems, up to a charge of +6, no fragmentation appears, like in case of the '>°TeUdR
system. At a charge of +7 first protons and 7 Se are cut off from the nucleotide. A reason for this might
be the ability of this ions to carry positive charges as discussed in the former chapters. In +7 charged
nucleotides the structure also deforms in a way that a proton binds at an O from the uracil to form a new
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O—H bond, and also undergoes a hydrogen bond to another O from the ribose ring system. The 77Se is
also twisted to its neighbored O like in 25TeUdR. This twisting towards its neighbor is even observed
in +8 charged system, until the 7”Se separates from the nucleotide group in +9 charged system. In every
case of fragmentation the C—"7Se bond is deformed or cut. For higher charged systems, as +10, +15,
and +20, the fragmentation patterns are similar to the lower charged systems.

An interesting point is the C—C bond breaking in the ribose ring system. This is observed for charges
of +8 to +10, and +15. At all structures the same bonds are broken in the ribose ring. The reason could
be that the two separated parts can handle their charges because of the neighbored O groups, which can
stabilize positive charges by their lone pairs. Here, the O can give one of its lone pairs to bear some
positive charge of the alkyl groups. So, the calculated fragments with this broken ribose parts could
probably be no artifacts. So far this ribose breaking might be a possible route to cause SSB in the DNA.

The uracil base subsystems appeared to be stable in all performed calculations, probably because of
its aromatic ring system. This gives additional binding energy to the ring so that fragmentation of the
ring system was not observed. This could also be understood by the argument that the whole nucleotide
molecule could carry more positive charges than the smaller thymine base with 125Te.

In one case (charge +8) even H,PO3 was formed, but its charge and multiplicity was not investigated.
Thus this fragment could be a kind of phosphoric acid derivative.

DNA

The 10 base pair DNA double helix was optimized using MARI-J-DFT BP86 methods, with a SVP basis
set for all atoms (see Fig.6). This system was saturated with one proton for each bridging phosphorous
acid diester for electroneutrality reasons (see methods).

RHF-SCF convergence appeared to be relatively fast within an energy treshold of 106 a.u. (about 100
steps). However, no minimum geometry could be found using the standard geometry optimization tech-
niques of TURBOMOLE. This is, first, possibly due to the overall flexibility of the molecular structure,
the two double strands being connected only by hydrogen bonds. Thus the potential energy hypersurface
is assumed to exhibit several local minima near the global one. Second, the initial EHT start orbitals
were found to be energetically very close to each other, and a manifold of almost degenerate states near
the HOMO—LUMO gap must be expected. Therefore, several optimization cycles were carried out until
the total energy gradient dropped below 10! a.u., and the geometry obtained by this was used as a start
geometry for the further investigations.

The situation became worse for substituting the methyl group of one thymine base by 77Br, to get a Auger
emitter incorporating DNA model system. This system was calculated neutral, and with a positive charge
of +15. For both cases, it appeared to be impossible by standard techniques to reach UHF-SCF conver-
gence, even to converge to a set of MOs changing less than about 10~ a.u. in its total electronic energy.
HOMO-LUMO gaps dropped below 0.005 a.u. in every calculation, and could not be fixed by any com-
binations of UHF-SCF or occupation number options in TURBOMOLE, e.g. orbital shift—automatic
or manual—or SCF damping methods. One possible reason for that might be the unrestricted nature
of the calculations carried out on that system. By any means, this was absolutely necessary because
fragmentation, or at least any response to the high charge, was expected.

Conclusions
It was shown that Density Functional Theory (DFT), though a non-dynamical approach, is an appropriate

method to calculate the Coulomb explosion of organic and bioorganic compounds. Molecular fragments
formed by Auger process induced Coulomb explosions could be predicted, agreeing with experimental
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results, and characterized in terms of charge, multiplicity, and stability.

The identified fragments show a qualitative but clear trend in fragmentation reactions—following the
much faster Auger process—for different investigated systems. H* and 25Te cations, and H* and
"TSe cations, respectively, were the first components to be repelled from the fragmenting molecule in
every single calculation. For the calculations on bioorganic systems containing phosphorous acid mono-
or diesters, ""Br was chosen for the Auger emitter instead of 251, because the latter appeared to be
impossible to investigate by DFT techniques. No stable iodide structures were found here, in contrast to
various experimental results. Similarly, no fragmentation of highly charged 10 base pair DNA sequences
could be calculated successfully.

Assuming that the fragmentation found for simple organic systems, i.e. CH3'251, CoH5'?°I, and n-
C3H-'251, and larger systems as 7" Br incorporating uridine nucleotides, could be a model for bioorganic
compounds in living cells, the Coulomb explosion could in fact be a viable pathway to Auger process
induced DNA damage. As seen for uridine, C—C bond breaking in the ribose ring may be, for example,
a possible fragmentation reaction. On the other hand, aromatic systems appear to hold great stability
against fragmentation due to high charges, as shown by comparable results on the 2> TeUdR system,
calculated with DFT, HF, and semiempirical PM3 methods.
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Abstract: The aim of this work was to simulate the time evolution of a quantum computer sys-
tem. The simulation code was optimized to run on a parallel computer that provides the needed
resources to model the time evolution in a reasonable time. Thereby the attention was focused on
two major features. First the Suzuki-Trotter algorithm that was used to model the time evolution
and second the adjustment to a specific realisation of such a computer: the Nuclear Magnetic
Resonance Quantum Computer.

Introduction

A gquantum computer can solve certain computationally hard problems much faster than a classical com-
puter under the circumstances that the algorithm makes use of the quantum parallelism. Thus in order to
exploit the huge potential of a quantum computer a simulator is indispensable for gaining further knowl-
edge in particular since theory is far ahead of the experiment. The basic task of a quantum computer
simulator is to solve the time dependent Schrodinger-equation for all the qubits involved. For a system
of n qubits the dimension of our problem and the number of equations to be solved scales with 2. If we
have for example 25 qubits we are dealing with 225 = 33.554.432 equations not considering the amount
of memory that would be needed to store the state vector or the operators. Furthermore, by taking the step
from an ideal (theoretical) quantum computer to a real physical system we have to take into account a lot
of unwanted side-effects as explained later in this text that turn the system into a many-body problem.
Hence the problem can no longer be solved analytically. It becomes necessary to approximate the system
by numerical calculations. Both of the aspects that are mentioned here demonstrate that it is necessary
to use a parallel (still classical) supercomputer. Nowadays simulations with up to 30 qubits can be han-
dled. To make a quantum computer competitive to a contemporary classical computer we would need at
least tens to hundred qubits. This also shows the limits of a classical simulation because to store only a
state vector of a 250 qubit system it would require as many bytes as there are particles in the universe
(~ 1089,

In the theory section some basics of quantum computing will be introduced covering the main aspects of
the ideal quantum computer and the time evolution. The differences that have to be considered regarding
a real NMR-quantum computer are followed by a closer look at the Suzuki-Trotter algorithm. After a
short overview of the structure of the program itself the programming section addresses the issue of how
to implement OpenMP and MPI and explains the functioning of the core subroutine that does the actual
computation. At last there will be a conclusion showing some results, difficulties and further ideas.



Theory

The Ideal Quantum Computer

Where a classical computer uses bits a quantum computer uses qubits to store its data. A qubit can be
thought of as a 2-level system e.g. a spin % system that is described by a state vector in a 2-dimensional
complex Hilbert space. If we choose the Eigenstates of the z-Pauli-operator |0) = (;;) and |1) = () as
basis states the state of the qubit can be written as

|¥) = al0) + B[1) @
o +18°=1 a,8€C @)

The parameter « can be assumed real since we can always extract an overall phase that does not con-
tribute to the expectation value. While in classical computers either « or 3 is exactly equal to 1 in quan-
tum mechanics a superposition of |0) and |1) is possible as far as the normalisation condition (equation
2) holds. Superposition is a special quantum property that e.g. allows faster computation in comparison
to a classical computer if we can implement this quantum parallelism in the algorithm. Qubits also have
other non-classical properties like entanglement for example that opens up new ways of computation
quite different from the well known classical ones.

Since « can be assumed real we can picture the state of a qubit in the so called Bloch-sphere where a state
is represented by a point inside the unit sphere determined by 3 real parameters 6, ¢ and r. The states for
which » = 1 holds are called pure states and are located on the surface of the Bloch-sphere. States inside
the Bloch-sphere correspond to mixed states which we will not consider here for reasons of simplicity.
Since every additional qubit doubles the number of basis states our system has dim = 2[mo-ofQubits] oy

Z[O:-

1>
Figure 1: Bloch sphere
a 2-qubit system as it is considered in this work we are dealing with 4 basis states. The state vector is
then given by

|\I/> = a|00> + ﬂ|01> +'y\10> + 6|11> 3)
lal> + B2+ y* + 0] =1 (4)

Single qubit operations can be pictured as rotations of the Bloch-vector around a certain axis.
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In analogy to classical computing, it turns out that there is a universal gate set for a quantum computer
that is sufficient to perform every possible operation. One possible set contains the rotations around the
x-,y- and z— axis together with the CNOT operation that acts on 2 qubits and flips the spin of the second
qubit if the the spin of the first qubit is up (figure 2).

X Y
T a T b T a T —-ib
> = Xhy> = > = Y > =
b a b +Ha
7 x> x>
RN
|W> = Z|l|]> =
b —b ly> W lx+y>

Figure 2: a universal gate set

Time Evolution

The time evolution of a quantum system is governed by the Schrédinger-equation

d
1= W) =H(O() Q)

Integration yields

t+T1 )
[W(t+7)) = exp (—z' / der) W (1)) = U@L = e ™0 (r)) (6)

where U (¢, t+7) is a unitary operator the so called time propagator that transforms |¥(¢)) into | ¥ (¢+47)).
Note that e—“"7/() is unitary by construction. The most general form of a Hamiltonian describing a
guantum spin system reads

Z >TSS - Z > he(t)sy (7)

i,j=1a=x,y,z i=1 a=z,y,z

The first factor describes the qubit-qubit interaction between the qubit-pairs while the second factor
describes the external influences acting on single qubits. In the case of 2 qubits this expression reduces
to

H(t) = —JPa()SF88 = > > ke (1)Sy (8)

i=1,2 a=x,y,2
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The Nuclear Magnetic Resonance Quantum Computer

While we can compute the propagation of an ideal quantum computer analytically in the non-ideal case
there are additional impacts on our system dependent on the physical realisation of the quantum com-
puter that make the Schrddinger-equation no longer solvable analytically. In addition to that the order
of the applied operations matters so that a different order results in different outcomes. In the Nuclear-
Magnetic-Resonance computer a whole ensemble of spins enclosed in a suited liquid is used to represent
the qubits. There is a static magnetic field along the z—axis which splits up the spin-energy-states due to
the Zeeman-effect. Each spin rotates with its Larmor frequency around the z—axis while it also couples
in z—direction to the magnetic field of the other spins. So according to the Ising model our Hamiltonian
for a freely evolving system reads

H(t) = —Ji2(t)ST55 — hiST — h353 ©)

Single-qubit operations are carried out by short sinusoidal radio-pulses tuned to the Larmor-frequency w
of the qubit. Thus if a radio-pulse H, 1(t) = —(h{ST + h§S5)sin(wt) is applied to qubit 1 along the
x—axis the Hamiltonian becomes

H(t) = —Jio(t)STS5 — hiST — h3S5 — (A7 ST + h3S5) sin(wt) (10)

Ji o and h{* are time dependent and can be controlled during the experiment. The duration of the radio-
pulses determines the angle about which the spin rotates.

The Suzuki-Trotter-Algorithm
In order to solve the Schrodinger-equation we try to approximate the exact solution U (t) = e~ py an
approximation U (t).

The Suzuki-Trotter formula

K m

_—itH _ —it(Hit A HE) 1 —itHy /m

Ult)=e =e = ngnoo (H e ) (11)
k=1

enables us to split up the operator U (¢) into time slices. This is mathematically exact for m — oc. For a

numerical approximation we have to stop m at some point. The Baker-Hausdorff formula

ot(A+B) _ etAetBetQ[A,B} o (12)
allows us in the case tHHlH < 1 to rewrite the whole unitary propagator U(¢) as a product of a number
of small (2x2) and (4x4)-matrices U (). So for sufficiently small t Suzuki-Trotter applied to 1st and 2nd
order gives us

(71(75) = ML | TiHK (13)
(14)
Ua(t) = Uf (—t/2)Un(1/2) = e "HK/2 | e7iT0/2emitM/2 | omitTc/2 (15)

For the 2nd order approximation we can estimate the numerical error of the approximation to O(2).

Summarizing to compute the transition from |¥(¢)) to | ¥ (¢ 4 7)) we decompose U(¢) into small time
steps of length §

Ult+7,t)=U{t+md,t+ (m—1)5)...U(t+25,t+6U(t+4,t) (16)

48



Then we use the 2nd order Suzuki-Trotter for each time step yielding

Ua(t +mé,t + (m —1)8) = e~ "Ht+Hm=3)0/2 | omitic(t(m=3)0 | =itHa(t+(m=3)0/2 (17
where again Hy is a single term of the Hamiltonian

H(t) = —Jia(t)S7S5 — D > hi(®)s? (18)

i=1,2 a=x,y,2

Programming and Parallelisation

So far the program runs for 2 qubits and is able to perform all single qubit operations and different reali-
sations of the CNOT gate. In the following a 2-qubit system is assumed with qubit 1 and 2 respectively.

Structure of the Program

Each elementary operation as for example the single-bit rotations is called a microinstruction (MI). In the
program there are Mls for the rotations about the z—, y—, z—axis by § and —7 for each qubit denoted
by Xi,)?i, Yi,ffi, Zi, Z with ¢ = 1,2 as well as an interaction operator 115 that can be interpreted as
a rotation of one spin in the other’s magnetic field. These operations are determined by the parameters
Ji o and kg in the Hamiltonian (eq.10). Considering a NMR quantum computer we have to keep in mind
that the qubit-qubit interaction term has also to be applied during an external radio-pulse. Even though
Ji 5 is usually much smaller than A the perturbation during the time of the radio-pulse is not that big.
It is also important to consider that the radio pulse also influences not only the desired qubit to whose
resonance frequency it is tuned but also with a smaller impact of course the other qubit. Therefore the
X—,X—,Y—,Y—MIs consist of 2 operations: One that is applied to spin 1 and one that is applied to
spin 2. The course of the program is as follows:

1. selection of the parameters h{,.Jf , and the step length ¢ (this defines the number of steps that it
takes a MI to rotate the spin about the desired angle)

2. initialisation of the input state
3. for all successive operations being applied for the same time period

e for each time step

(a) compute the matrices for the next iteration step according to the Suzuki-Trotter decom-
position and the time step length

(b) call qubitlww or qubit2ww (see next section)

4. readout of the expectation values

The Subroutines qubi t 1wwand qubi t 2ww

The core of the program are the subroutines qub i t1ww and qub i t2ww that do the actual application of
the (2 x 2)— and (4 x 4)—matrices to the state vector that is stored as an array containing the amplitudes
of the basis states. The difficulty is that in order to apply the (2 x 2)—matrix in the case of a single-qubit
operation to the correct pairs of amplitudes these have to be reordered. In this case the two amplitudes
that belong together are the ones that have the same value for all qubits except the one the operation acts
on. Therefore we use an auxiliary index array of the same length as the amplitude array initialised to the
values 0. .. 2™. Depending on which qubit the rotation is supposed to act on a bit-wise resorting algorithm
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is used to bring the index array into the right order. Then the index array contains the order of the
amplitudes in the amplitude array. Now the routine just takes the first two entries of the index array and
uses these as indices to access the right amplitudes from the amplitude array, performs the multiplication
and writes back the new amplitude values to the amplitude array. This procedure is shown in figure 3.
Since especially for the 2-qubit-operations the matrices often have diagonal shape, the multiplication can
be accelerated by implementing it manually.

sort accegsg

index — index ——> amplitude
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Figure 3: a single-qubit operation on the 2nd qubit of a 3-qubit system

OpenMP and MPI

The JUMP supercomputer consists of 40 nodes. Each of them has again 32 processors that have access
to the same memory. OpenMP provides the programming commands for the communication between
the processors of one node while MPI does the same for inter-node communication. The parallelisation
process has been started with OpenMP because at the first glance there is one amplitude array on that
all computations are carried out. So all processors that are participating in the computation have to
access the same memory space. That makes OpenMP preferable as long as we use only one node or
up to 32 processors respectively. For further parallelisation with MPI another strategy has to be thought
of to integrate the already existing OpenMP code. The crucial point is that all MIs have to be applied
successively and on a non-ideal quantum computer the outcome depends on the order of the applications.
As a consequence parallelisation can only take place within one time step.

Coming back to the OpenMP parallelisation there are 2 major work steps that can be parallelised. On the
one hand before every call of the subroutines qubitlww and qubit2ww the actual matrices have to
be computed. Thus while one processor is performing the actual computation another processor prepares
the matrices for the next time step. On the other hand if the system consists of more than 2 qubits a
partition of the index array and so a distribution of the amplitude array onto different processors makes
sense having every processor just computing a part of the amplitude array. This is possible since within
one MI acting on one qubit no further sorting is necessary and no confusion with the array entries can
occur. This partition scheme is shown in figure 4.
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sort access

index — index — amplitude
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Figure 4: parallelisation in the case of 3 qubits

Memory Usage

To provide sufficient accuracy the variable type *double complex’ is used which occupies 2 bytes per
complex number. Storing the 27 x 2" matrix U(t) = e~ of our n—qubit system would require
22n+4 pytes. The state vector requires additional 2+ bytes of memory. Especially if we consider larger
systems of about 20 qubits the needed memory size comes close to the available 5.2 Terabyte of the
JUMP architecture. The decomposition of U(¢) into (2 x 2)— and (4 x 4)— matrices would allow us to
simulate up to 38 qubits since now the state vector would take up most of the memory. In this case the
memory consumption of the small operator matrices is negligible. This reduction of memory is of course
at the expense of speed since every 2-qubit operation has to be applied 27! times every 4-qubit 22
times.

Conclusion and Outlook

Simulations of ideal problems give the correct results as it is easy to check with a pen and a paper. For
the computation of different realisations of CNOT gates in the NMR case measuring the expectation
values for the 2 qubits gives rudimentary the same results for the outcome states as published in [1]
and [2]. The next step will be to implement other gates and algorithms as the Toffoli gate for example
or the Grover’s data search algorithm as well as to increase the number of qubits to be able to analyse
decoherence phenomena.

Results

In order to test the program 3 different C NOT —gate implementations have been applied to the 4 basis
states. The results seem to show the right tendency and the C' N OT, implementation seems to be closest
to the ideal C NOT-gate. Table 1 shows the expectation values (Q%) and (Q3) of qubit 1 and qubit 2.
Here the differences between the ideal and the NMR-quantum computer become clearly apparent.
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Ideal quantum computer s=28 s =16 s =32 s =64

Operation @ Q3 QF Q5 QF @ QF Q5 QF @5
(CNOT1)|00) 0.00 0.00 0.61 0.02 058 0.02 063 001 052 0.02
(CNOT3)|00) 0.00 0.00 0.15 0.02 0.15 0.02 0.16 001 0.13 0.02
(CNOT3)|00) 0.00 0.00 0.77 0.02 072 0.02 080 002 0.65 0.00
(CNOTy)|01) 0.00 1.00 061 098 058 098 063 099 052 098
(CNOT»)|01) 0.00 1.00 0.15 098 015 098 016 099 013 0.98
(CNOT3)|01) 0.00 1.00 0.77 098 072 098 080 098 0.65 1.00
(CNOTy)[10) 1.00 1.00 039 098 042 098 037 099 048 0.98
(CNOT)|10) 1.00 1.00 085 098 085 098 084 099 0.87 0098
(CNOT3)|10) 1.00 1.00 023 098 028 098 020 098 035 1.00
(CNOTY)|11) 1.00 0.00 039 0.02 042 002 036 001 048 0.02
(CNOT,)|11) 1.00 0.00 0.85 0.02 085 0.02 084 001 0.87 0.02
(CNOT3)|11) 1.00 0.00 023 0.02 028 002 020 002 035 0.00

Table 1: expectation values for the differnt C N OT—operations, the parameter s can be seen as a measure
of accuracy of the calculations
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Abstract:

This article describes different approaches to speed up matrix-matrix multiplications. In the
serial case three algorithms are compared. An optimized assembler code is combined with the
serial and parallel algorithms. A concept for parallel matrix-matrix multiplication is discussed.

Introduction

Multiplication of two matrices is one of the most basic operations in scientific computing. Its central role
is emphasised by its inclusion in portable libraries, such as the Level 3 BLAS. A speed up of this basic
operation would increase the performance of every application using matrix-matrix multiplications.

There are two possibilities to reduce the runtime of the computation. Tuning the classical algorithm to
a given machine architecture, and applying alternative algorithms with asymptotic complexity less than
the O (m?) operations required by the classical algorithm.

This paper addresses speeding up the matrix-matrix multiplication of dense matrices using both ap-
proaches. The results show that both an alternative algorithm and an adjustment of the existing algorithm
to the architectures can accelerate the computation and indicate how these approaches may be combined.



Background

This section gives a short overview of the libraries, programming language, and the architecture, that
were related to the work.

JUMP

The JUMP (JUelich Multi Processor) is a distributed shared memory parallel computer situated at the
ZAM, Forschungszentrum Julich. It consists of 41 nodes each containing 32 IBM POWER4+ processors
running at 1.7 GHz. Each node has a shared 128 GB main memory and a 3-step cache hierarchy where
the most important cache level is the L2 cache with 1.5 MB per chip (2 processors) and an access time of
10-12 cycles. All in all, there are 1312 processors and an aggregate peak performance of 8.9 TFLOPS.

MPI

MPI (Message Passing Interface) is a library of functions and macros that can be used in C, FORTRAN
and C++ programs. It is intended for use in programs that make use of multiple processors on distrib-
uted memory machines by message passing. It is one of the first standards for programming parallel
Processors.

BLACS

The BLACS (Basic Linear Algebra Communication Subprograms) are a linear algebra oriented message
passing interface. It is implemented for a variety of hardware architectures. The interface is identical
across the different distributed memory platforms and independent of the message passing libraries,
which makes it easy to develop portable applications for linear algebra problems. On the JUMP, the
BLACS are built upon the IBM communication interface LAPI (Low-level Application Programming
Interface). The BLACS are used as communication layer for the ScaLAPACK project and for the PESSL.

BLAS

The BLAS (Basic Linear Algebra Subprograms) are high quality routines for performing basic vector
and matrix operations. Optimised versions of this library exist for almost all systems. Thus programs that
are based on the BLAS perform very well on different architectures. The BLAS are organised in 3 parts.
The Level 1 BLAS perform vector-vector operations like vector addition or copy operations. The Level
2 BLAS do matrix-vector operations like the matrix-vector product or rank-one updates of a matrix. The
Level 3 BLAS do matrix-matrix operations, among other things the matrix-matrix multiplication routine
DGEMM. It is a very efficient algorithm for matrix multiplication and is thus widely used. BLAS are
included in ESSL.

PBLAS
The Parallel BLAS routines are distributed-memory versions of the BLAS. The PBLAS use the BLACS

for communication between processes and the BLAS for computation in a process. The PBLAS are
written in C, but with Fortran 77 interfaces. Both, ScaLAPACK and PESSL, contain the PBLAS.
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GOTO

GOTO are high-performance BLAS routines provided by Kazushige Goto [6]. The routines are written
in assembler code. They achieve better performance on current generation architectures by reducing the
overhead originating from Translation Look-aside Buffer (TLB) table misses. The library is available for
about 20 different architectures and can be accessed via the internet [5]. Especially, GOTO contains an
optimised version of DGEMM for matrix multiplication. It replaces the BLAS routine by linking it prior
to or instead of ESSL.

FORTRAN

The software developed is written in FORTRAN 90. Compared to older versions of FORTRAN, it offers
modern language features like dynamic memory allocation or the module concept. The FORTRAN 90
standard was designed to exist along with older versions of FORTRAN, although the cooperation is not
always easy to handle. Since the PBLAS are written in C, also some C files exist.

Serial General Matrix Multiplication

Consider the problem of computing a product of two matrices:
A:mxk and B:kxn

The first attempt to program a matrix multiplication makes use of three loops (Figure 1).

DO i=1,m
DO j=1,n
DO 1=1,k
C(i,j) + = A@,D*B(,]J)
ENDDO
ENDDO
ENDDO

Figure 1. Matrix multiplication with 3 loops

Adaptation to the Architecture

Since current computers have a hierarchical memory structure in which the access to data in upper levels
(registers, cache) is faster than to data in lower levels, it is a common technique to use the data stored in
the upper levels as often as possible. Therefore, the matrices are partitioned into blocks and the compu-
tations are then performed on the blocks generated.

The computation deals with m - k- n multiplications and additions. Since the matrices A, B, C have to be
stored, memory for m - k+ k- n +m -n numbers is needed. Assuming quadratic matrices and treating an
addition together with a multiplication as an operation, we obtain /m> operations and a storage of 3m?2.

As the dimension m increases, the matrices exceed the cache of the architecture leading to an accumula-
tion of cache misses. To avoid this, a blocked algorithm is applied. The matrices are recursively split up
into parts, until the resulting parts suit the cache size. One level of this splitting process bisectioning the
dimensions is illustrated in Figure 2.
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Figure 2: Classical matrix multiplication

A set of 8 independent matrix multiplications are created. These need only a fourth of the memory
compared to the original matrix multiplication. Recursively, the matrix size decreases, thereby allowing
the matrices to fit into the cache.

The number of operations remains the same. Nevertheless, the computation is sped up, as the number of
cache misses drops dramatically.

Splitting further than to blocks that fit into L2 cache is counter-productive, so an optimal crossover point
can be computed for every architecture, above which a partitioning is more effective than computation at
that level.

C<=aop(A) - op(B) + 6C
with op(X) = X or X7
a, B ER

Figure 3: Operation of DGEMM

The Level 3 BLAS routine DGEMM makes use of such a cache optimization. It performs the operation
pictured in Figure 3. To further accelerate the computation of a general matrix-matrix multiplication,
the number of operations has to be reduced. There are some algorithms offering a lower amount of
(computational) complexity. A class of them is discussed in the next section.

Applying an Alternative Algorithm

One algorithm which offers an asymptotic complexity less than the classical algorithm is Strassen’s
algorithm. It was introduced in 1969 ([7]).

The idea of Strassen’s algorithm is to avoid 1 of the 8 multiplications that are generated in the partitioning
depicted in Figure 2. The procedure is divided into 3 phases, the pre-additions, the multiplications and
the post-additions (Figure 4).

The standard algorithm that performs O(m3) is shown in Figure 2. Strassen’s algorithm uses algebraic
identities to reduce the number of multiplications to 7 at a cost of 18 additions instead of 4. Recursion
leads to a drop of the complexity down to O (m?807),

Note that asymptotically (m » 18), the matrix additions can be neglected, because of complexity of
O(m?) compared to the complexity of matrix multiplication (O(m?)). The additions do cause a higher
amount of memory accesses. This plays a central role in designing a parallel matrix multiplication algo-
rithm.

Winograd’s variant of Strassen’s algorithm ([1]) uses 7 recursive matrix multiplications and 15 additions.
It is depicted in Figure 5. It can be shown that this is the minimum number of multiplications and
additions for any recursive matrix multiplication based on a partition into quadrants ([2]). The number of
additions compared to Strassen’s algorithm is reduced at the cost of a slightly further increased number
of memory accesses. For a serial implementation memory accesses can be cheap, if the sequence of the
operations is arranged properly. Thus Winograd’s algorithm is preferable in this case.

Both algorithms outperform the classical algorithm above a critical matrix dimension, referred to as

56



mindim. Below that dimension the classical algorithm is preferable. It is a characteristic value of the
architecture. C. Douglas et. al. ([1]) recommend mindim to be between 32 and 256. For current systems
it should be somewhat higher. A suitable crossover point for JUMP is between 800 and 1650.

S1 =An+ A My =558 T1= M+ M,
Sy = A1+ A My = 5By1 To = M7 — Ms
Sy =An+ A1z Mz = AnSr Tz = M+ M3
Sy = Ay — A My = A»Sy Ty= Mg — M,
S5 = A1z — Baa M5 = S3B2;

S¢ = Bi1+ B Mg = 5459

S7 = Big— By M7;=55519 Cn=T1+1T

Ss = B9 — Bn Chi2 = M3 + M5
Sg = B11 + B2 Co1 = My + My
S10 = Ba1 + B2 Cop=T3+1T)

Figure 4: Strassen’s algorithm

S1 = Ag1 + Ay My = S35 Ty = My + My
Sp=581—-An My=AnBy T =T+ M,

S3 = A11 — Aoy M3z = A28

Sy =A13 -5 My=S357

S5 =DBia— By M5=515 - Cn= M+ M;

S¢ = Boa — S5 Mg = S4B  Cia =11 + M5 + Mg
S7 = By — B1a M7= A2Ssy  Coy =Ty — My

Sg = S — Bay Co =T5 + Mj

Figure 5: Winograd*s variant of Strassen’s algorithm

Implementation

A serial Winograd algorithm was coded in FORTRAN 90. The routine is named DGEMMW. It has the same
functionality and parameters as the Level 3 BLAS routine DGEMM. It executes the operation depicted in
Figure 3 with matrices containing values in DOUBLE PRECISION.

The algorithm is consistent with [1]. There are two features to point out:

At first, one has to take care of dealing with odd dimensions. As pointed out in [4], there are several
possibilities to solve the problem: by embedding the matrix into a larger one (static padding), by cutting
off some rows / columns at each level and compute their contribution to the outcome separately (dy-
namic peeling) or by decomposing the matrix into parts that overlap by one row / column at each level
(dynamic overlap). Here dynamic overlap is used. Note, that the duplication of rows or columns is only
conceptionally. There is almost no extra storage or extra computation. In FORTRAN 90 one only has to
select the right submatrices, then the whole algorithm requires only 10 extra lines of code for handling
odd sized matrices. For details on dynamic overlap, refer to [1].

The second feature to emphasise is the low amount of extra storage required in an implementation ac-
cording to [1]. The operations are arranged in a special order to maximise the reuse of auxiliary storage.
For quadratic matrices, the auxiliary storage is 2/3m? in the case 3 # 0, otherwise 5/3m? because
the matrix C has to be stored. In the last case, the amount of storage could further be reduced ([3]) at
the expense of extra arithmetic operations and a more complex implementation. It is not further covered
here.
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The performance of DGEMMW is depicted in Figure 7. To gain further performance, DGEMMW is combined
with the cache-optimised assembler code of K. Goto ([6]). See the results in Figure 8.

Parallel General Matrix Multiplication

In this chapter, a concept for parallel matrix-matrix multiplication is discussed.

Array Layouts

Parallel algorithms require that the global data is distributed across the processes prior to computation.
The layout of the data is critical for the performance of parallel code. There are two main issues to
consider in choosing a data layout for matrix-matrix computations. On the one hand, the load balance is
important. That means the work should be evenly distributed among the processes thus reducing the idle
waiting time of the processors. On the other hand, the amount of communication affects the efficiency
of the algorithm. Since the distribution should allow an application of BLAS routines at the lowest level,
communication arises throughout the parallel computations and especially prior to the call of BLAS
routines. A minimal amount of message passing throughout the algorithm is the second main objective.

Block Cyclic Data Distribution

The block cyclic data distribution provides a simple and flexible way of distributing a block-partitioned
matrix on distributed memory machines. It is the recommended distribution scheme for dense matrix
operations with the PBLAS ([8]). The p processes are ordered in a 2-dimensional rectangular p,. x p.
grid with p = p,. - p.. The matrices are partitioned into equal blocks of blocksize M B x K B beginning
from the upper left. If the dimensions can not be divided by the blocksize, the rightmost column or
the lowest row might consist of fragmentary blocks. Afterwards, the blocks are distributed on the grid,
starting again from the upper left.

Figure 6 shows an example of a block cyclic data distribution on a rectangular grid of 2 x 3 processes.
The processes are numbered from 0 to 5. All blocks labeled with the same number belong to the same
process.

In general, this distribution allows an reasonable load balance for a great variety of problems, e.g. for
the LU-decomposition, especially if M B - p,. < m. Nevertheless there are distributions with better load
balance, for instance imagine the last row in Figure 6 distributed on 0|1|23|4]5.

Moreover, block cyclic data distribution is very flexible. It can reproduce most data distributions that are
used in linear algebra computations like the column block distribution or the column cyclic distribution.

o|lw|lo|lw|lo
[ N SN I NG
[SIN& 1N SRS 1N N
o|lw|lo|lw|lo
I N S I NG
N o1 | o1 o

Figure 6: Block cyclic data distribution

Other Array Layouts

Another approach for improving both load balance and locality is the use of quadtrees (Morton ordering)
or space filling curves (Hilbert ordering). According to [2] recursive array layouts outperform tradi-
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tional layouts for the standard algorithm. For Strassen’s and Winograd’s algorithm they offer only little
improvement.

Parallel Algorithms

There are two possibilities to take advantage of the reduced complexity that Strassen’s or Winograd’s
algorithm provide: The serial level and the parallel level.

Applying Winograd in the Serial Level

A serial version of Winograd can substitute the DGEMM above the crossover point. Because all of the data
is locally available, the larger number of memory accesses can be compensated for by clever organisation.
Thus Winograd’s algorithm outperforms DGEMM and Strassen’s algorithm, as it offers the lowest number
of operations. Adapting the crossover point optimally will speed up each serial computation and thereby
accelerate the parallel matrix multiplication.

Note, that the matrices passed from the parallel algorithm to the sequential Winograd should be nearly
quadratic. If one of the dimensions is very small compared to the others, the Winograd algorithm will do
only few iterations or in the worst case no iterations at all. In this case, the algorithm is slowed down.

Applying Winograd in the Parallel Level

Strassen’s or Winograd’s algorithm can also be applied in the parallel case. Unfortunately, the increase
in memory accesses can in general not be negleted as in the serial case. According to [2] the algorithmic
locality of reference is much worse in case of Strassen’s and Winograd’s algorithms than in case of
the standard algorithm. Thus the benefits of the reduced complexity are offset by the larger number of
memory accesses, which increases the amount of message passing. It is dependent on the architecture,
more precisely on the ratio of communication latency to local memory latency, whether there is a speed-
up or a slow-down compared to applying the classical blocking algorithm in the parallel part.

S. Chatterjee et. al. ([2]) observed, that there is indeed no advantage of Winograd’s algorithm compared
to Strassen’s algorithm, as Winograd’s loss of algorithmic locality compensates for its advantage of lower
complexity. Furthermore, Strassen’s algorithm shows a better possibility to parallelize the code. Compare
Figure 4 to Figure 5: In case of a Winograd’s variant, the pre- and post-additions are serial leading to a
limited possibility of parallelisation as some processes have to wait for others finishing their additions.
In case of Strassen’s algorithm, all pre- and post-additions could be executed simultaneously. Hence,
Strassen’s algorithm is preferable in the parallel case.

However, the choice between Strassen’s algorithm and the classical algorithm also depends on some other
factors. A parallel Strassen’s algorithm has a high dependency on the number of processes. Remember
that the number of generated multiplications is a power of 7, so the load balance is quite difficult to
handle. Moreover, the array layout plays an important role. A general array layout like the block cyclic
distribution generates a poor locality of the data needed in the pre-additions and post-additions, leading
to a loss of speed through additional traffic.

As the performance of a parallel Strassen’s algorithm is not predictable in general, the first choice is to
combine a parallel classical algorithm with a serial Winograd’s algorithm.
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Hybrid Algorithm

In the following, a hybrid algorithm based on serial Winograd combined with a classical parallel algo-
rithm is exposed.

The first attempt is to connect the widely spread PBLAS routine PDGEMM with a serial Winograd. Un-
fortunately, this concept does not succeed. As mentioned above, the serial Winograd requires nearly
quadratic matrices for a speed-up. In contrast, PDGEMM works with a block cyclic distribution where, in
the lowest parallel level, each process gets several small matrix multiplications with by far not quadratic
dimensions, because PDGEMM mainly partitions the column-dimension of A and the row-dimension of B.
This dimension is cut down to the blocksize. Since the resulting size is usually smaller than mindim, the
sequential Winograd algorithm will immediately call the DGEMM routine, just generating organisational
overhead.

For example, DGEMMW was combined with PDGEMM from ScaLAPACK (since the code is open). A
matrix multiplication of quadratic matrices with m = 4000 on a grid of 1 x 2 processes created on
each process 40 calls to the serial Winograd containing matrix multiplications with the dimensions m =
2000, £ = 100, n = 4000. Therefore, its run-time of 30 sec. compared to 14 sec. of the conventional
PDGEMM is no surprise.

To embed a sequential Winograd effectively into a parallel routine, each process should compute only
one big and nearly quadratic matrix multiplication. Besides, the parallel routine has to fulfil the following
conditions:

e Data distribution should be compatible to the other routines working on that data
e Overall communication should be minimal

e Overall amount of memory should be minimal

C. Douglas et. al ([1]) offer a possible combination of a parallel algorithm performing O (m3) with a
serial Winograd. The parallel algorithm is based on a partitioning according to the prime factors of the
number of processes. Assuming the number of processes to have some prime factors, this partitioning
has the following advantages:

e Very good load balance
e Best condition for applying a Winograd algorithm (1 nearly quadratic multiplication)

e Low memory demand

The disadvantages are the additional communication compared to PDGEMM and the unconventional dis-
tribution of the matrices. Prior to and after the computation, a conversion to a common data distribution
like the block cyclic will be necessary.

In [1] this hybrid algorithm shows better results than a classical parallel implementation.
By the way, this algorithm provides a starting point for a combination of OpenMP with MPI, since a
group of processes collaborates on each part of the matrices.

Tuning the Existing Algorithm

As an alternative to introducing new algorithms, the existing PBLAS routine PDGEMM could be modi-
fied. This approach involves the advantage of working with a compatible data distribution (block cyclic
distribution).
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As explained above, the efforts of combining PDGEMM with a serial Winograd’s algorithm failed due to
the unbalanced partitioning of PDGEMM. In another attempt, the call to DGEMM (ESSL) in the lower level
is linked to the GOTO assembler code. According to Figure 8 the assembler code outperforms DGEMM.
In the parallel case, there is also a gain in performance (Figure 10 ).

Performance Results

For performance analysis the time is measured using the FORTRAN 95 intrinsic subroutine CPU_T IME.
The matrices are assumed as quadratic. The figures show the time of computation plotted against the
dimension m of the matrices.
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Figure 7: Comparison of DGEMM and DGEMMW

Figure 7 shows the run duration of the level 3 BLAS DGEMM taken from the ESSL in comparison to
DGEMMW. As crossover point, mindim = 800 is chosen. DGEMMW outperforms DGEMM above a dimen-
sion of 3200, where at least 3 levels of Winograd’s algorithm are carried out. The two peaks in the upper
curve are due to the known performance breakdown of DGEMM as soon as the dimensions approximate
powers of 2. In contrast, DGEMMW shows no striking breakdown at these points, as the dimensions passed
to DGEMM at the crossover point are always around 512 independent of the actual exponent of 2. Since
DGEMM gets on with that small dimension, the high peak is not transfered to DGEMMW.

In Figure 8, the middle curve describes the runtime of the assembler code GOTO. There is also no
significant performance breakdown at certain dimensions. The lowest curve shows the performance of
combining the serial Winograd with the assembler code. Compared to DGEMM ESSL, there is a speed-
up of up to 20% at dimensions around 4500. As the asymptotic complexity of Winograd is lower, this
percentage will generally rise with the dimension.
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Figure 9: PDGEMM PESSL for different blocksizes
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Because of the block cyclic distribution, the performance of PDGEMM depends on the blocksize. So at first
one has to choose a suitable blocksize. Figure 9 illustrates the performance of PDGEMM in PESSL for 3
different blocksizes. The curves oscillate around each other, since the load balance changes periodically.
Increasing the matrix size with a fixed blocksize causes the block-cyclic data distribution to vary from
the best case to the worst case, where only one row of processes gets a full additional row of blocks.
Thereby, there is an optimal blocksize for each matrix dimension (the lowest curve). In contrast, if the
matrix dimensions to deal with are not given in advance, it does not make a serious difference which
blocksize is chosen, since on average all 3 plots show the same behaviour. In this case, the blocksize can
be chosen suitable for other routines working with the distribution.
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Figure 10: PDGEMM PESSL with GOTO

Figure 10 illustrates the connection between the existing routine PDGEMM (PESSL) and the assembler
code. As expected, GOTO accelerates the computation by a certain rate.

Conclusion and Outlook

Alternative algorithms can bring a certain speed-up in matrix-matrix multiplication, especially consider-
ing problems with great complexity. However, the application of alternative algorithms is not generally
preferable as they also bring disadvantages.

Applying cache optimisation techniques on algorithms allows further speed-up. It is a surprising result
that a public domain assembler code can even outperform the optimised IBM code.

The next step would be an implementation of the hybrid algorithm described above. It is expected to be
a competitive alternative to PDGEMM.

An application of Strassen’s algorithm in the parallel level is also possible, but the implementation would
be quite difficult and the outcome unpredictable.
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Zusammenfassung:

Ziel der Arbeit war die Erweiterung eines bestehenden OpenGL Programms zur Visualisie-
rung von Magneto-Hydro-Dynamischen Vorgéngen im Erdinneren. Realisiert wurden eine flexi-
ble Isolinien-Darstellung sowie die Visualisierung von Isofldchen, welche mittels des Marching-
Cube-Algorithmus gewonnen werden. Zur interaktiven 3D-Steuerung wurde das Trackingsys-
tem 3Space(’?) Fastrak(®) von Polhemus in das Programm integriert. Ferner wurde eine Stereo-
Darstellung der Anzeige durch die Verwendung von zwei Framebuffern implementiert. Somit
wurde erreicht, dass das Visualisierungsprogramm auch in Virtual-Reality-Systemen zum Ein-
satz kommen kann.

Einfuhrung

Das Programm bezieht seine Eingabedaten aus einer Bindr-Datei, welche durch Computersimulation im
Zentralinstitut fir Angewandte Mathematik (ZAM), Forschungszentrum Julich, gewonnen wurde. Die
Grundlagen der Magneto-Hydro-Dynamik bauen darauf auf, dass schnell stromende heie Gase und
Flussigkeiten unter Einfluss eines dufleren Magnetfeldes eine Spannung induzieren. Durch Konvektions-
strome aufgrund der Erdrotation und Gravitation entsteht das Erdmagnetfeld, denn ein stromdurchflos-
sener Leiter erzeugt nach der "Rechten-Hand-Regel’ ein Magnetfeld. Die Simulation des Erdmagnet-
feldes beruht auf den Gleichungen der MHD, welche im Ubrigen ein Zusammenspiel aus Elektro- und
Hydro-Dynamik sind. Die Simulation geschah in einer Zeitskala von ca. 1 Million Jahren (ungeféahr 2000
Zeit-Schritte zu je 500 Jahren), vgl. [1]. In der Datei ist neben dem Magnetfeld und der Strémung auch
noch die Temperatur der Erde gespeichert. Dabei ist das Gitter relativ Klein, je nach Datentyp ungefahr
15 x 15 x 15 Werte.

Abbildung 1 vermittelt einen ersten Eindruck, wie das Programm die MHD-Daten darstellt. Die Grund-
funktionen der Software waren schon vor Beginn dieser Arbeit voll implementiert. Das rechte Bild in
Abbildung 1 zeigt die Verwendung der Option ’contouring’, mit der Isolinien eingezeichnet werden. Da-
bei ist zum Zeitpunkt der Aufnahme schon der Wert fiir die zweite (weie) Linie frei wéhlbar. Zusétzlich
zur Erzeugung der Isolinien wurde das Visualisierungsprogramm um die Mdglichkeit der Darstellung
von Isofléchen erweitert. Dies wird im Abschnitt Visualisierung von Isoflachen ndher erklért. Danach
kommen Erlauterungen zum verwendeten Trackingsystem. Es wird darauf eingegangen, was beim Ein-
satz solcher Hardware beachtet werden muss. Da die Software das Bild stereoskopisch darstellen sollte,
mussten noch zusétzlich einige OpenGL Befehle eingebaut werden. Welche genau das waren und wie
sie funktionieren wird im Absatz OpenGL Feinheiten beschrieben. Den Abschluss bildet ein Ausblick
uber noch weitere denkbare und gewiinschte Funktionen.
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Abbildung 1: Links Temperatur der Erde, rechts daneben mit aktiviertem Contour-Plot

Visualisierung von Isoflachen

Es gibt mehrere Arten, wie sich Isoflachen finden und darstellen lassen. Denkbar ist zum Beispiel, dass
die Funktion, die es darzustellen gilt, explizit gegeben ist. Dies ist in unserem Fall nicht so, weswegen
die Daten nach solchen Fléchen erst durchsucht werden missen. Ein Algorithmus, der dies erledigt und
mit dem man die gefundene Fl&che auch gleich darstellen kann, ist der Marching-Cube-Algorithmus.
Der Algorithmus ermdglicht es, aus skalaren Volumen-Daten Flachen gleichen Wertes, also Isoflachen,
zu erzeugen. Hierbei wird ein Dreiecksnetz erzeugt, welches die gesuchte Isoflache approximiert. An-
schaulich kann man sich das Vorgehen so vorstellen:

Nehme einen Wirfel und setze ihn an den Anfang des Volumendatensatzes

Immer dann, wenn der Daten-Wert an einer der Ecken des Wiirfels (iber und an einer anderen Ecke
unter dem gesuchten Schwellenwert liegt, schneidet die gesuchte Isoflache die Kante zwischen
diesen Ecken. In diesem Fall wird auf der Kante ein Eckpunkt eines Dreiecks gelegt.

Uberpriife dies fiir alle Ecken des Wiirfels

Setze den Wiirfel im Volumen-Datensatz eine Position weiter und wandere so durch den Datensatz

Es gibt eine ganze Menge an Feinheiten zu dem Algorithmus. Es gibt zum Beispiel 28 = 256 Moglichkei-
ten, wie der Wiirfel geschnitten werden kann. Daraus ergeben sich nach Lorenson und Cline [2] aber nur
fiinfzehn nichtreduzierbare Félle. Aus diesen kann man durch Rotation, Spiegelung und Komplementar-
Bildung alle anderen erzeugen. Als Beispiel Uberlege man sich, dass es keinen Unterschied macht, ob
alle acht Eckpunkte unter dem gesuchten Schwellenwert oder dartiber liegen, in beiden Fallen wird keine
Kante geschnitten, dies entspricht Fall 1 in Abbildung 2.

Programmiertechnisch werden diese Félle und die daraus resultierenden Schnittpunkte in einer so ge-
nannten Lookup-Tabelle gespeichert. Die Tabelle enthélt sémtliche resultierenden Schnittpunkte fur alle
256 Falle. Welcher Fall vorliegt hangt von dem Vergleich der acht Eckpunkte mit dem Schwellenwert
ab.

Da die MHD-Daten, die zur Verfligung standen, sehr grob gerastert waren (vergleiche Einfiihrung), wur-
de linear interpoliert, um die Werte an den Eckpunkten zu bestimmen. Die Interpolation wird noch an
weiteren Stellen im Visualisierungsprogramm verwendet. So sind auch die Farbverldufe bei der Dar-
stellung skalarer Daten, z.B. der Temperatur, der Interpolation zu verdanken. Der Marching-Cube Algo-
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Abbildung 2: Die fiinfzehn Félle von Lorenson und Cline

rithmus kann im Prinzip beliebig genau die Oberfl&che finden und darstellen. Die Zeit fur die Berech-
nung der Isofldchen hédngt stark von der gewlinschten Genauigkeit und damit von der Rate, mit welcher
der Volumendatensatz im Marching-Cube Algorithmus abgetastet wird, ab. Es wurden Untersuchungen
durchgefihrt, bei welcher Auflésung und der damit verbundenen Schleifen-Iterationszahl im Programm
ein guter Mittelwert zwischen Performance und Optik liegt. Abbildung 3 zeigt, wie viele Dreiecke pro
Anzahl der Schleifendurchlaufe gefunden wurden. Die Schleifendurchldufe sind hierbei direkt kubisch
proportional zur Dimensionsauflosung. Dabei bedeutet eine Dimensionsauflésung von z. B. 10, dass jede
Raumrichtung mit zehn Teilschritten durchwandert wird. Das Laufzeitverhalten wird immer schlechter,
je hoher man die Auflésung wahlt. Die Laufzeit wéchst praktisch linear mit der Anzahl der Schleifen-
durchldufe an. Ab einer Auflésung von 20 wurde das Programm merklich langsamer.

Damit das im Marching-Cube Algorithmus erzeugte Dreiecksnetz in OpenGL unter Berlcksichtigung
von Beleuchtung gezeichnet werden kann, mussen die Oberflachennormalen des Netzes an den Eck-
punkten der Dreiecke vorliegen. Dies ist nétig, da in die Berechnung der Beleuchtungseffekte der Ein-
fallswinkel von Lichtstrahlen auf der beleuchteten Oberflache einfliet. OpenGL funktioniert prozedural,
d.h. es benutzt einen Mechanismus, den man sich als ’processing pipeline’ vorstellen kann (siehe [3]).
Schickt man einmal eine Farbe in die Pipe, zum Beispiel Rot mit:

glColor3f(1.0, 0.0, 0.0);

so werden alle weiteren Punkte, Linien und Polygone in rot gezeichnet, bis dies durch ein erneutes Setzen
der Farbe wieder geandert wird. Genau so ist es auch mit dem Befehl, der die Normale setzt:

gINormal3f(x, y, z);
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Plot1: Leistungsfaehigkeit des Marchingcube Algorithmuses
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Abbildung 3: Effizienz des Marching-Cube Algorithmuses in Abhéngigkeit der Dimensionsauflésung

Bei den Oberflachen, die bisher gezeichnet wurden, lag bzgl. der Oberflachennormalen ein Spezialfall
vor. Es handelte sich um die Oberflache der Einheitskugel (Globus), fir die die Oberflichennormalen
gerade gleich den Punktkoordinaten sind. Daher war es bisher ausreichend, die Normale in Richtung des
zu zeichnenden Punktes zu setzen:

gINormal3f(x, y, z);
glVertex3f(x, vy, 2);

Dies erzeugt eine Kkorrekt beleuchtete Kugeloberflache, da der Ursprung des OpenGL-
Koordinatensystems im Mittelpunkt der Kugel liegt. Fur die Isoflachen ist dies aber nicht korrekt,
da diese Flachen eine beliebige Ausrichtung im Raum haben. Dies verdeutlicht Abbildung 4. Diese
Bildserie zeigt die Isofldche zuerst mit Punkten als Normalen, dann mit den Normalen der tatséchli-
chen Marching-Cube Dreiecke und schlieflich mit gemittelten Normalen unter Berlicksichtigung der
Nachbar-Dreiecke. Da alle Darstellungsarten ihre Vor- und Nachteile haben, kann man im Programm
diese Anzeige-Art verédndern. Der Algorithmus zum Mitteln der Normalen ist zum Beispiel langsamer
als die anderen beiden, erzeugt aber optisch eine glatte Oberflache. Wéhlt man die direkten Dreiecks-
Normalen als Eckpunktnormalen, so ergibt sich zwar eine schnelle Berechnung, die Oberflache sieht
aber nicht mehr glatt aus.

Da der Marching-Cube Algorithmus die Dreiecke, beziehungsweise die Eckpunkte der Dreiecke nicht
sortiert ausgibt, musste man, um die Normalen zu gléatten, erst einmal gleiche Eckpunkte finden. Erst
dann kann man die Normalen miteinander verrechnen. In einem ersten Ansatz brauchte die Suche nach
den gleichen Eckpunkten quadratische Laufzeit, da jeder Eckpunkt mit jedem verglichen wurde. Dies
konnte jedoch drastisch optimiert werden dadurch, dass erstens die innere Schleife nicht mehr von Null
bis zum Ende geht, sondern nur noch vom aktuellen Wert der &uf3eren Schleife bis zum Ende und zwei-
tens nur noch dort nach passenden Eckpunkten gesucht wurde, wo der Marching-Cube Algorithmus
auch welche gefunden hat. Abbildung 5 zeigt, wie drastisch dies die Anzahl von Schleifendurchlaufen
reduziert hat.

68



srector data: magnetic field 0.77108

0.77108 wector data: ragnetic field,

052103

'.27093

002002
IU.22913

0.77108

052108

.ﬂ o

007092

IU 22913

time: 000000 radius 0821439 {13) phixd. 108236 (9) time:0.00000  zadius:0 B21429 {13) phird. 108236 (9)

E ectox data: wagretic field.

052103

'.27093

002002

IU.22913

Abbildung 4: Bilder-Serie: Das erste Bild zeigt die Isoflache, bei der die Normalen gleich den Punkt-
koordinaten gesetzt wurden, rechts daneben wurde fur jedes im Marching-Cube Algorithmus gefundene
Dreieck die Normale berechnet und im letzten Bild wurde diese dann noch mit den Nachbarnormalen
gemittelt.
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Trackingsystem

Um eine virtuelle Welt zu schaffen, ist es sehr wichtig, dass der Benutzer sich in diese Welt integriert
fihlt. Um dies zu ermdglichen muss die Software die Bilder, die sie ausgibt, den Bewegungen und Tatig-
keiten des Benutzers anpassen. Dies bedeutet zum Beispiel, dass ein Objekt grofRer wird, wenn man auf
es zu geht. Ein weiterer wichtiger Teil ist die Kontrolle Uber die Gegenstande der Virtual-Reality, so dass
hier Bewegungen nicht nur zweidimensional wie mit einer herkdmmlichen Maus, sondern dreidimen-
sional interpretiert werden mussen. Beide Aufgaben werden durch so genannte Trackingsysteme gelost,
welche die Position und die Ausrichtung von am Trackingsystem angeschlossenen Sensoren messen kén-
nen. Hier kam das Trackingsystem 3Space*) Fastrak(*) von Polhemus zum Einsatz. Dieses besteht aus
mehreren Komponenten, die im folgenden kurz vorgestellt werden, um die Funktionsweise des Systems
zu verdeutlichen. Der Artikel beschrénkt sich dabei auf die englischen Original-Namen.

e Systems Electronic Unit (SEU)
e Transmitter

e mehrere Receiver (Sensoren), z.B. der 3D-Eingabestift Stylus sowie der Sensor fur das Kopf-
tracking
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Plot2: Gegenueberstellung der Schleifendurchlaeufe
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Abbildung 5: Laufzeit-Verbesserung der Normalen-Gléttung des Marching-Cube Algorithmus

Die SEU ist das Herzstiick des Systems; sie flihrt die zur Positionsbestimmung nétigen Berechnungen
durch und gibt diese an den PC weiter. Im hier vorliegenden Aufbau wird dazu die serielle Schnittstelle
(RS-232) verwendet. An die SEU wird der so genannte Transmitter angeschlossen. Dieser generiert
niedrigfrequente Nahfeld-Magnetfelder und zwar mittels drei stationdrer Antennen. Dieses Feld wird
von den Receivern gemessen, abermals mit drei Antennen. Diese Ubermitteln ihre Daten zurlick an die
SEU, welche die Daten dann verarbeitet. Das Gerat arbeitet auf einer Tragerfrequenz von 12019 Hz und
schafft 120 updates/Sekunde/Receiver.

Beim Anschluss des Gerétes an ein Linux-System muf beachtet werden, dass die Rechte flr den seriellen
Port (oft auch als COM-Port bezeichnet) fir den Benutzer nicht eingeschrankt sind. Dies kann Uber
folgenden Befehl, der vom Super-User ausgefiihrt werden muss, erreicht werden:

chmod +rw,o /dev/ttySO

Dabei ist /dev/ttySO der erste serielle Port. Der Befehl bewirkt, dass sémtliche Nutzer auf den Port le-
sen und schreiben dirfen. Es hat sich spater heraus gestellt, dass dies eigentlich nur fiir einen Test der
Kommunikation nétig zu sein scheint. Um den Tracker zu testen, kann man einfach ein ’P” an das Ge-
rat schicken. P’ ist hierbei der Befehl, der das Trackingsystem anweist, die aktuellen Sensorparameter
tber die serielle Schnittstelle zu schicken. Als Antwort erhdlt man die Koordinaten der Receiver. Zum
Beispiel:

cat /dev/ttySO &

echo "P" > /dev/ttySO

01 10.40 0.97 24.56 155.05 -65.23-127.12
02 9.88 1.71 -3.20 -12.90 54.99-115.75
03 2.90 -3.14 20.31-165.65 -1.36 80.34

Der Ausgabe kann entnommen werden, dass drei Receiver angeschlossen sind. Die Einheiten der Trans-
lationswerte sind standardmé&Rig Inches, dies lasst sich aber auf Zentimeter &ndern. Es gibt auch die
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Maglichkeit, ungewollte Werte auszublenden, bzw. Receiver zu deaktivieren. Im diesem Beispiel hat je-
der Receiver seine x-, y- und z-Koordinate gesendet so wie den Azimuth-, Neigungs- und Rollwinkel
jeweils in Grad.

Bei der Interpretation der vom Polhemus-Fastrak Tracker gelieferten Werte muss beachtet werden, dass
das System die Position nur eindeutig in einer Halbkugel um den Transmitter herum bestimmen kann.
Beim Verlassen und wieder Eintreten in diese Hemisphare kommt es zu Wert-Spriingen. Daher muss die
Hemisphére so eingestellt werden, dass der Benutzer sie wahrend der Arbeit mit dem Tracking-System
typischerweise nicht verlat. Auf den Transmitter ist ein Koordinatensystem gedruckt, welches dabei
hilft, die Hemisphare zu wahlen. Mit dem Befehl:

echo "H3, 1.0, 0.0, 0.0" > /dev/ttySO

setzt man die Hemisphére fur den dritten Receiver in Richtung der X-Achse, so dass es keine Spriinge
gibt, so lange man im Positiven bzw. Negativen X bleibt. Es gibt auch noch die Einschrankung, dass nur
an Receiver-Port 1 der Button des 3D-Eingabestiftes Stylus funktioniert. Weiteres ist [6] zu entnehmen.

OpenGL Feinheiten

Wie schon im Abschnitt Gber die Visualisierung von Isofldchen angedeutet, ist OpenGL keine beschrei-
bende, sondern eine prozedurale Architektur. Dies hat zur Folge, dass bei der Umsetzung von Transla-
tionen, Rotationen, usw. genau auf die Reihenfolge geachtet werden muss. Ausser 3D-Transformationen
geht in die Darstellung einer Szene auch eine Projektion ein. In diesem Abschnitt soll geklart werden,
welche Art der Perspektive fiir ein Virtual-Reality System zu wahlen ist und wie dann das Bild zu Stande
kommt.

In OpenGL gibt es drei Darstellungsmodi, die festlegen, wie eine berechnete Szene auf dem Bildschirm
angezeigt wird. Diese sind:

gluPerspective(), glFrustum(), glortho().

gluPerspective() und gl Frustum() entsprechen unserer normalen Wahrnehmung und erzeugen eine
perspektivische Projektion, d.h. Objekte, die weiter hinten sind, werden kleiner gezeichnet. glOrtho()
hingegen realisiert eine Orthogonal-Projektion, die die Welt ohne Flucht-Punkt zeigt. Diese wird
zum Beispiel in der Architektur verwendet, da sie GroRenverhéltnisse nicht zerstort. Im Gegen-
satz zu gluPerspective() kann man mit glFrustum() sein Blickfeld frei bestimmen. Wéhrend
gluPerspective() immer frontal auf die Szene schaut und von einer symmetrischen Sichtpyramide
ausgeht, kann mit gl Frustum() eine beliebige Sichtpyramide definiert werden, in welche die aktuel-
le Tracker-Position einfliet. Ein einfaches Beispiel kann in [4] auf Seite 124 gefunden werden. Der
aktuelle Aufruf, berechnet mit dem Strahlen-Satz

MYNFEAR _ Kantelinks

= 1
trak_pos_z  screenborderleft — trak_pos x’ ()
sieht dann so aus:
ratio = MYNEAR/trak pos z; //nach Strahlen-Satz
glFrustum(ratio*(screenborderleft - trak _pos x), //Kante links
ratio*(screenborderright - trak pos x), //Kante rechts
ratio*(screenborderbottom - trak _pos_y), //Kante unten
ratio*(screenbordertop -trak pos y), //Kante oben
MYNEAR, MYFAR); //cliping-planes

71



Screenborders

| \
> Die gesuchten Punkte '

Abbildung 6: Skizze zur Erklarung des glFrustum()-Befehls

Damit hat man das Sichtfeld, aber noch ist das Bild nicht stereoskopisch. Um das Bild stereoskopisch
darzustellen, standen schon einige Mdglichkeiten zur Verfligung, allerdings wurde das Trackingsystem
noch nicht berticksichtigt. Die verschiedenen Anzeigemodi sind im Programm wie folgt definiert:

typedef enum { MONO, STEREO_ACTIVE, STEREO_LEFTRIGHT } tStereoMode;

Wihrend STEREO_LEFTRIGHT fir ein uberbreites Fenster auf zwei Monitoren gedacht ist und
auf beiden das Bild zeichnet, funktioniert STEREO_ACTIV E durch das Verwenden von zwei Frame-
buffern. Der Framebuffer enthalt in OpenGL die fertige Szene, ist also das Ende der processing pipeline
und enthalt die Daten, die an den Monitor geschickt werden. Besitzt man eine Grafikkarte, die einen so
genannten Quad-Buffer Stereo-Modus unterstiitzt, so stehen getrennte Framebuffer flr das linke und das
rechte Auge zur Verfiigung. Das Ansprechen dieser zwei Framebuffer geschieht schematisch so:

glTranslatef(linkes_Auge); //Setze die Kamera fur das linke Auge
glDrawBuffer(GL_BACK LEFT); //In den linken Framebuffer schreiben
drawScene();

glTranslatef(rechtes Auge); //Setzt die Kamera fir das rechte Auge
glDrawBuffer (GL_BACK_RIGHT); //Ab hier in den Rechten

drawScene();

Um die Kamera unter Beriicksichtigung der Positionen der zwei Augen des Betrachters richtig zu setz-
ten, wurde wieder auf die Tracker-Daten zuriickgegriffen. Es wurde diesmal aber nicht nur die Position
berlicksichtigt, sondern auch die Rotation (Neigung) des Sensors. Diese Rotationen liefert der Tracker
in Form von Quaternionen. Eine Quaternion kann in die entsprechende Rotationsmatrix umgerechnet
werden ([6], Seite 163). Diese Rotationsmatrix wird mit dem Vektor, welcher die Position des linken
bzw. rechten Auges relativ zum Trackingsensor angibt, multipliziert:

eye_x @B+ad—dd—a 2(qee — qg3) 2(q193 + 9092) eyeshiftx
eyey | = 20qs+ae) @B-G+dE-d 2@ —qn) | x| eyeshifty
eye_z 2(q143 — q0q2) 2(qoq1 + q2q3) q% — q% — q% + q§ eyeshiftz
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Abbildung 7: Links die grafische Benutzer-Schnittstelle mit den neuen Auswahlméglichkeiten. Auf der
rechten Seite das dazu entsprechende Bild, mit eingeschaltetem ’sphere slicing’.

Danach muss man nur noch
glTranslatef(eye_x, eye y, eye 2z);

ausfiihren und flr die eyeshi fts einmal die Werte furs linke und einmal fiirs rechte Auge einsetzen.

Ausblick

Als erstes ist anzumerken, dass ein Visualisierungsprogramm wie das hier beschriebene wohl immer
»work in progress* sein wird, und dass es immer etwas gibt, was noch fehlt. Im Folgenden wird kurz
eine Liste von Funktionen genannt, die es beispielsweise noch zu implementieren gibt:

e Anzeige mehrerer Isofldchen von unterschiedlichen Feldern
e Anzeige mehrerer Vektor-Daten

e Vereinheitlichtes Daten-Einlesen, so dass in Zukunft auch andere Daten berlicksichtigt werden
kénnen

e Beschleunigung der Software im Allgemeinen und héhere Stabilitat im Zusammenhang mit dem
Trackingsystem

Das Visualisieren von zwei Isoflachen wurde im Rahmen dieser Arbeit bereits implementiert, jedoch mit
der Einschrankung, dass dies bei eingeschalteter Normalen-Glattung nicht richtig funktioniert. Die zwei
Flachen sind in Abbildung 7 dokumentiert, so wie die von mir neu implementierten Wahlmdglichkeiten.
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Abstract:

Cluster methods are used in Monte Carlo simulations to decrease the autocorrelation time,
i.e. the interval between statistically independent configurations, which becomes crucial close to
critical points and phase transitions. The aim of this work is to build the basis for a Monte Carlo
cluster algorithm for continuous two dimensional spin systems. First the Kornyshev-Leikin
model potential is introduced which is applied to Monte Carlo simulations of DNA systems.
Afterwards a purely geometrical technique for searching clusters is described. Furthermore it
is extended to an energetic cluster criterion, which is the basis in Monte Carlo cluster meth-
ods. The scaling of the implementation is measured and analyzed. Finally it is used to study
geometric clusters as a function of different DNA characteristics, e.g. the charge compensation
parameter 6.

Kornyshev-Leikin Pair Potential for Rigid Helical Molecules

It is well known that DNA forms close packed aggregates of various structures, e.g. in human chromo-
somes or viruses. Experimentally it was observed that short fragments form columnar aggregates which
are suitable to study interactions, e.g. like charge attractions between molecules and global structures.

At first glance a whole DNA is far too complex to describe its interaction with other molecules in a closed
analytical framework. However, A. A. Kornyshev and S. Leikin [1] described DNA molecules as long
cylinders, carrying helical, continuous line charges on their surface, taking advantage of the symmetries
in helical molecules. Thus it was possible to derive an exact formalism which can be used to calculate
interactions between two stranded helical molecules like the DNA. The theory in [1] is formulated in a
rather general way, so the potential that is finally used for the simulation had to be derived and adapted
to the actual application. The whole interaction energy is obtained by a sum of three different terms. The
first one, labeled as wey, corresponds to the interaction between two homogeneously charged cylinders.
wegf 1S @ “self correlation” energy, which is due to correlated discrete surface charge distributions on each
molecule. Ultimately weross IS @ “cross correlation” energy, which is caused by nonrandom alignment of
discrete charges on the opposing molecules. The following formulae describe an energy density, where
the energy is normalized to the persistence length L), [2].
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Due to the very rapid convergence, the sums in egs. 3 and 4 may be truncated at n = 5and —5 < j < 5.

Figure 1: Simple scheme of important structural values for two interacting DNA double strands.

The parameters appearing in egs. 1-5 are briefly explained [5]:

First there are the structural parameters of the phosphate pattern (see fig. 1, taken from [4]): the helical
pitch H, the azimuthal half-width of the minor groove ¢, and the hard-core radius a. Furthermore each
DNA duplex carries the negative charge of phosphates with surface charge density o plus a compensat-
ing positive charge arising from adsorbed counter ions. The degree of compensation is described by the
parameter 6, where 0 < 6 < 1. In eqn. 2 the term wqy vanishes if ¢ = 1. The mobile counter ions in
solution cause an exponential decay of the Coulomb interaction of the two helices for large separations.
This exponential decay is parameterized by the inverse Debye screening length . The solution is also
considered by its dielectric constant . Actually the dielectric constant and the Debye screening length
are both temperature dependent and « is also a function of e. Although this is not taken into account here

[3].

The simulations were carried out considering B-DNA structure. The proper parameters were taken from
[4] and are collected in table 1.
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L[A] a[A] HI[A] ¢s/n[rad] o0o[nClem?] e
500.0 9.0 33.8 0.4 16.8 80

Table 1: Structural and chemical parameters for the DNA-B molecules.

From egs. 2 to 4 it can be seen that there is a two dimensional potential energy landscape for a pair of
DNA molecules depending on the distance of two strands » = |R/| and the relative azimuthal orientation
¢. The latter can be simply calculated as the difference of the respective angles ¢ and ¢/, of the 5’ —
3’ strand, relative to a reference direction. A shift in the axial direction Az therefore translates into a
different azimuthal orientation.

Due to a lack of time it was not possible to study the DNA aggregates with respect to different screening
lengths . For all discussions and measurements in this report it is fixed to x = 0.1A~!. The following
pictures should help to get an imagination of the potential energy and support the understanding of the
expected effects.
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Figure 2: a: Kornyshev-Leikin potential at ¢ = 0.47 for 6 = {1.0,0.9,0.85,0.8}, where § = 1.0 is the
lowest plot and & = 0.8 the uppermost. b: Calculated with ¢ = 1.0. The values of the potential energy
are expressed in artificial units.

Fig. 2.a shows four qualitative different types of the interaction potential obtained for different values
of 6. For high compensation ¢ the interaction of the two DNA strands is purely attractive for a nearly
perpendicular azimuthal alignment until a certain equilibrium distance of about 22A is reached. That
is very short considering the hard core distance of 2 x 9A= 18A. As the number of adsorbed counter
ions decreases a local maximum arises which separates a condensed and a crystalline state, while the
local minimum is still below zero and the energy barrier gets lower. For even lower values of 8 the
local minimum at short distances exceeds zero and thus the bound (clustered) state is obviously not any
longer more preferable than the crystal state. Finally there is a certain - probably critical - point of charge
compensation where the local minimum vanishes and the potential gets completely repulsive.

Keeping in mind that the potential energy landscape is not 1- but 2- dimensional (see fig. 2.b) it becomes
clear that even in the case of & = 1 it is not sure whether all the DNA strands will go into the equilibrium
distance and form one big cluster in the ground state. The preferred orientation between two molecules
at short distances is =~ 7 /2 (cmp. fig. 2.b). A clustering of three molecules will result in an energetically
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frustrated configuration and therefore the formation of big clusters is not obvious. Also it can be seen
from fig. 2.b that for large distances of two interacting strands the parallel orientation is favorable. Inter-
estingly even if the system would be simulated on a lattice the potential would therefore still be density
dependent. This makes it clear that there is a rich phase behavior to be expected. For § = 0.7, i.e. in the
repulsive regime, this was studied for the ground state in ref. [5].
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Figure 3: These pictures illustrate the critical behavior of the Kornyshev-Leikin potential at « = 0.1 and
0 ~ 0.86. Also it is shown that it is important to look for a local minimum with respect to » and ¢.
a, b: 0 =0.864. ¢, d: 8 = 0.860. b and d are both obtained for ¢ = 0.38.

Another important fact that results from the dependency of the orientation ¢ is visualized in fig. 3. The
two plots b and d show the potential for fixed mutual orientations. They seem to be qualitatively similar.
However, this is not so, which is proven by a and ¢ from where it is obvious that for § = 0.860 there is no
potential barrier as seen in fig. 3.d since the two strands can always loose energy by orientating parallel
and separate from each other at the same time. Whereas for § = 0.864 a real local minimum exists. This
demonstrates that the critical value for # must be in the range of 6. € [0.86,0.864] and not at 0.85 as it
could be expected from fig. 2.a.

Simulations

All simulations were carried out with the program “SpinCG24”” by G. Sutmann [6]. As it is seen from
egs. 1-4, the only variables describing the interaction between two DNA molecules are their interaxial
distance and their mutual orientation. This picture corresponds to a 2-dimensional spin system, where
spins have three degrees of freedom (position, orientation), i.e. a kind of generalized X-Y-Model.

The starting configuration of DNA strands consists of a hexagonal structure with lattice constant d.
This distance is related to the DNA density. Afterwards a mixture of down-hill and simulated annealing
algorithm is performed, i.e. the temperature is decreased by a certain amount after each Monte Carlo
step. In so doing the system is cooled down from T'(tmc = 1) = 1000K to T'(tmc = Nmc) = 30K.
Nmc is the number of Monte Carlo steps performed in a whole simulation and ¢y is the Monte Carlo
time. This means that not only the system is given no time to equilibrate but in the whole simulation the
forming of an equilibrium state is actually prevented. On the other hand as we are mostly interested in
energetically favorable states the cooling to very low temperatures will definitely lead to ground state
like structures of the aggregate. These are naturally somehow artificial since the DNA would probably
change its configuration dramatically at such low temperatures. It can be assumed that for long simulation
times Numc the influence of the non equilibrating kind of the simulation can be neglected. In [2] the
temperature was kept constant over a certain number of Monte Carlo steps and similar results were
observed. During the simulation the size of the trial moves is adapted to have an acceptance rate of 0.5.
Since the explicit evaluation of the potential is rather expensive it is interpolated during the simulation
by a second order interpolation from a table. For the cross correlation energy the first 5 terms of the sum
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over n are interpolated and multiplied by the orientation dependent cos(ng).

Geometrical Cluster Search

Thinking of an efficient way to identify neighbors in a certain distance, which still has to be defined, it is
most important to consider the continuous properties of the particles in the system on the one hand and the
spatial decomposition of “SpinCG29”* on the other. The latter is mostly significant for the parallelization.
The whole program is written using MPI for distributed memory systems without memory replication,
so the cluster search also has to deal with this distributed data handling.

The basic approach consists of:

1. identifying clusters sequentially and independently on each processor
2. communicate with other processors to link global clusters

3. scatter the whole linking information

First of all it is necessary to introduce a geometric cluster criterion. If the distance of two molecules
exceeds a threshold length r( they are not considered as neighbors. Since the structures of aggregate
configurations are extremely varying, it seems to be a good choice to correlate this criterion with the
Kornyshev-Leikin potential and thus introduce a barrier dependent threshold length 4. By some test runs
it turned out that postulating rq as the distance where the potential barrier is overcome by 4/5 provided
acceptable results (see fig. 4). Because of the form of the potential it was always quite obvious which
particles were in the short distance of the potential minimum, and which were in a kind of crystalline
state with respect to each other. That is the clusters were clearly separated and the identification could be
verified easily.

0.06
0.04
0.02

I
30 35 40
-0.02 \./%5 ______

Figure 4: The maximum distance of two particles belonging to one cluster is derived from the interaction
potential.

Sequential Local Cluster Identification

There is a variety of algorithms for searching clusters on a lattice. One of the most well known is probably
the Hoshen-Kopelman algorithm [7]. A lattice system is particularly simple in that way, that firstly the
particles (i.e. the lattice sites) are in a given order which makes them easy to address. Furthermore there
is a definite number of neighbors at given positions. Both of these lattice properties are not given in the
considered system. Since there is no way to order the particles systematically, it would be necessary to
check every particle against every other particle which would result in a complexity of O(N?2). Even if
the particles would be sorted by the x- or y-coordinate, the quadratic scaling behavior would probably be
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only decreased by a factor. This is of course undesirable. Thus the idea is to alter a lattice based algorithm
to fit the needs without loosing its benefits.

Virtual Lattice Sructure

This is accomplished by introducing a virtual lattice and sort the molecules into the lattice cells by a
linked list (see fig. 5). In so doing a small number of particles belonging to one cell can be addressed
nearly as fast as if they actually were particles in a lattice system. Furthermore this method makes it
possible to check only pairs of molecules in a number of potential neighbor cells. But the structure of the
lattice still needs some more investigation.

©lo QO
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Figure 5: Schematic view of the sorting of particles into a virtual lattice at the border of a processor.

It is plausible that the preferable structure is a square lattice. It is easy to address and the particles can
be assigned efficiently to the cells. How to choose the lattice constant [? A very small [ means that in
one lattice cell there will be only few molecules and hence the step of checking each particle in one cell
against any particle in another one will not be expensive although it has a complexity of O(N 2), where
N, is the number of particles in a cell. On the other hand for large [ the number of cells in the whole
lattice and also the number of possible neighbor cells decreases. The latter two factors are both scaling
with 1/12. Whereas the number of particles N, is scaling with /2. So the overall scaling with respect to
I will be 1/1% x 1/1? x (1?)* = 1. From that it is not obvious why the introduction of a lattice should
improve the performance.

It has to be noted that every particle has a certain size (hard core radius a in the viewed application)
which gives an upper bound for the density of the system, i.e. there is a certain [ where on average only
one or two particles are located in each cell. Decreasing [ even further would result in many empty lattice
cells which still have to be checked as potential neighbor cells. On the other hand for very small [ there
are cells whose particles are always within the radius r¢ which avoids an explicit check of particle pairs
within cells. But since for the specific example ro is not much larger than twice the hard core radius
of one of the molecules it would surely not make sense to decrease [ to such low values. So there is a
lower bound of . Also a minimum of 8 neighbor cells exists which always have to be checked because
they have bordering corners or edges and could therefore contain molecules bound to molecules from
the currently considered cell. So it is also apparent that it is no use in increasing [ to very large numbers
because the number of neighbor cells does not reduce anymore after reaching 8.

An important fact is that for a lattice constant smaller or equal to r/+/2 it is sure that particles belonging
to one cell are in the same geometric cluster (see fig. 6). Otherwise this has also to be checked which
results in another V2 step for every lattice cell! Taking all these actualities into account it seems to be a
good choice to set I = ro/+/2. Still it is possible that for certain parameters like extremely low or high
densities a change of the virtual lattice constant [ could result in some speedup. From fig. 6 it can be seen
that for this particular [ there are 20 cells possibly containing neighbors. For checking each pair of cells
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only once it is enough to check 10 neighbors from each cell. There is no cell that definitely can only
contain molecules in the neighboring distance, so every cell has to be checked.

Figure 6: Study of the virtual square lattice with lattice constant [ = rq/+/2.

For the later communication with other processors it is mandatory that the lattice coordinates are some-
how global. Otherwise the linking would get complicated. This is achieved by sorting the particles into a
global grid structure, where single grid cells may belong to different processors. Technically this is real-
ized by truncating the decimal places of the two dimensional floating point coordinates of each molecule,
which are global, divided by the lattice constant [ = ro/+/2. In Fortran code it would look like this:

lattice_coordinate=FLOOR(real_coordinate/lattice_constant)

This also explains the gap between the edge of the processor and the edge of the lattice in fig. 5.

Adapted Hoshen-Kopelman Algorithm

The Hoshen-Kopelman algorithm works iteratively by using a linked list. Fig. 7 is a scheme of the
underlying idea. If two clusters are linked, the list entry of the one with the higher proper cluster label
becomes a pointer to the smaller cluster label, which is represented by a negative integer number. The
list entry of the other one contains a positive integer which is the total number of particles in the certain
cluster, including all clusters which are linked with this one. Now the proper cluster label has to be found
in the list by following these pointers until an entry equal or greater than 0 is reached.

list entry no. 1 2 3 1 2 3 1 2 3
value 1 1 0 2 3 -2 8 -1 =2

Figure 7: Visualization of the Hoshen-Kopelman cluster search for next neighbors in a small square
lattice.

The algorithm is capable of handling any number of potential next neighbor cells. Now some pseudo
code will show how the actual sequential local cluster search is done.
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DO FOR all lattice cells i
DO FOR half of the possible neighbor cells j
search for proper cluster label of j
IF this label is not yet marked as linked with i
IF there is a pair of molecules from 1 and j with distance<r_ 0O
mark label of j as linked with i -> j_|1
END IF
END IF
END DO
IF number of linked clusters is
O: 1 gets new cluster label
>=1: find smallest proper label j s from {j 1}
link all other linked neighbors j I and i to j_s in the list
save sum of all cluster sizes as new size of J s
END IF
END DO

For the later parallelization it is important that the newly introduced cluster labels are globally unique.
This is no problem since every processor has a non-ambiguous number for identification and there is an
upper bound of particles that can be on one processor. So a new cluster label will be calculated like this:

cluster_label=local_counter+local cpu_id*max_particles per_cpu .

To provide the ability of linking local clusters to global ones the linked list array, which will be called
cluster_idin the following, should have a dimension of

number_of _processors*max_particles_per_cpu

on every processor. This makes sure that also the linking information is somehow global from the begin-
ning and can therefore be easily exchanged.

Parallel Global Cluster Identification

In “SpinCG24”” the whole two dimensional system is divided into Npe domains, where Npg is the num-
ber of processors on which the application runs. These domains are not stripes, which would mean that
the effort of communication for the Monte Carlo simulation is not decreasing by higher amount of pro-
cessors, but the program tries to make the domains as close to a square as possible. Hereby through
adding more processors the edge length of each processor is reduced which is the driving factor for the
communication.

123 4 1 2 4 L T S
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Figure 8: With only next neighbor communication this example would need 5 communication steps until
all of the local clusters are connected to one global one.

N

Now a good strategy has to be found for identifying the global clusters which means clusters that span
the domains of more than one processor. Fig. 8 depicts that it is not possible, or at least not efficient,
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to do this only by communication between next neighbor processors. The specific example shows that
one could probably construct an artificial global cluster to get the necessity of any “desired” number of
communication steps until the local clusters would be linked correctly. From that it is obvious that there
has to be some kind of all-to-all communication.

To realize this with an acceptable scaling the idea is to use a communication tree. While descending to
the root no information from the domain borders may be lost. This is achieved by introducing virtual
domains as shown in fig. 9. One of two communicating processors is always the master which receives
the whole border information from the slave. Afterwards it processes the bordering edge to link the
clusters. This linking is done exactly like the identification of local clusters before. Thereafter it uses the
rest of the received information to build up the virtual border of the domain containing the whole area of
the two processors before. Since the bordering edge information is already translated into cluster linking
pointers and it is obviously not part of the edge of the new virtual domain, it does not have to be sent in
the next step of communication and can be rejected. Now the master is capable of communicating with
other masters of the same level in the tree which will have similar dimensions relating to their virtual
domains. Thus the number of communication steps is proportional to the logarithm of the number of
processors in a certain direction.

Figure 9: During the communication process the only important thing is the edge of the domain of a
processor. These edges grow and become the borders of virtual domains which include the real domains
of many processors.

Since communication is very expensive it is important to reduce the information that has to be exchanged
to a minimum. First of all there is no way to avoid sending the positions of the particles near the border of
the processor domains. The appropriate array will be called rxyz_border in the following. Also it is
necessary to have the correct cluster labels which are assigned to the bordering lattice cells. And finally
the global linking cannot be done without partly knowing the entries of cluster_id, i.e. all entries
dealing with cluster labels which exist on or which are pointed at from the lattice border. Therefore an
array cluster_id_border is introduced, whose dimension is two times the number of linked list
entries as described before, one for the address and one with the actual value of each entry. In order not
to loose any information during the communication, especially concerning the finally broadcast feedback
which tells every processor the global labels of the clusters which are contained by it, it is necessary to
always keep this information up-to-date with the global linking and never reject any of this data, even if
it lies on a border inside a virtual domain. This makes up a difference to the other two communication
arrays. To reduce the amount of distributed data it is useful to link the clusters lying on the edge of each
processor directly to the proper labels before starting the communication. Therefore only proper labels
and the labels that they point to, which is important for their size, have to be sent. Fortunately it is always
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possible to calculate the dimension of the lattice on the edge of a virtual domain. That is the cluster
labels in the lattice can be sent first because there is no uncertainty about the length of the array that has
to be received. At the end of the array the size of the other two arrays can be stored, so absolutely no
unnecessary information is exchanged.

The amount of communication is dependent on the overall edge length of virtual domains during the
whole global cluster linking process. For rectangular areas the optimal form with respect to the edge
length would be of course the square. So at first glance it should be faster to build up quadratic virtual
domains instead of first linking global lines as it is done in the scheme in fig. 9. But after the global
lines are linked, the vertical edges do not contain any relevant information for linking anymore. It is
important that for a system with periodic boundary conditions this would be the point of time to apply
periodic boundary conditions in horizontal direction. A short calculation example shall confirm the speed
up coming from neglecting the vertical edges for further communication. Consider a number of 16 pro-
cessors and fully quadratic domains with an edge length a. A communication tree which uses quadratic
virtual domains if possible would have a whole edge length of 4a + 6a + 8a + 12a = 30a to be sent
while communicating. Using the approach shown in fig. 9 and rejecting the vertical edge information for
the last two communication steps it is only 4a + 6a + 8a + 8a = 26a. As shown before the size of the
linked list table is independent from the chosen type of communication since it is never shrunk.

The hexagonal setup of the system in “SpinCG29”* |eads to a system that expands more in the y-direction.
For that reason it should even be faster to first build up global lines rather than global columns. Since
afterwards the amount of communication is only dependent on the length of the lines, which is smaller
than the length of columns would be, and does not increase anymore. Also the number of processors in
the y-direction is greater than the decomposition in x-direction, that is why the rejection of the vertical
borders can be done one communication step earlier under certain circumstances. Finally if we consider
the architecture of a parallel computer, e.g. the ZAMpano [11], it is likely that neighboring processors
in x-direction have shared memory, which makes the first one or two steps of communication fast in the
case of first building global lines. But it would need some thorough investigations to prove this.

After all this there will be a global master. In its local array cluster__id it contains the whole global
linking information. If it is enough for every processor to know only the size of clusters whose global
labels originate from it, the global master must only send back the updated entries of the linked list
array which originally came from the specific processor. If in contrast it is important that every processor
knows the size of every cluster which can be found in its domain, then the whole linked list array of
former edge cluster entries will have to be broadcast to every processor.

Extension to Capability of Building Clusters for a Monte Carlo Cluster Algorithm

An Energetic Cluster Criterion

A very important fact about a Monte Carlo algorithm in general is, that it has to fulfill detailed balance.
That is the probability of going from one state into another in a Monte Carlo step must be the same
as the probability of getting back. In cluster algorithms this is ensured by the introduction of a certain
probability to cut a geometric cluster into smaller parts dependent on energy and temperature as it was
postulated by R. H. Swendsen and J. S. Wang in 1986 [8]. Actually every bond between two particles
that geometrically belong to one cluster is cut by a probability calculated from their pair energy. The
original algorithm dealt with systems of discrete degrees of freedom like the Potts spin models. U. Wolff
extended this to a theory which could be applied to continuous spin systems like the O(n) models in
general [9]. To compare two spins his approach uses a projection of the spins to a predefined direction.
But still the system has to be simulated on a lattice and the energy is not distance dependent. It is not
yet clear, how the criterion of detailed balance can be fulfilled for the cluster building for a system with
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positional and angular degrees of freedom exhibiting frustrated configurations.

Necessary Modifications

Due to these considerations the present work was focused to building the basis of a Monte Carlo cluster
algorithm. This implies some modifications of the previously described algorithm. The most important
difference is that the cluster labels are obviously no longer associated with cells of the virtual lattice but
with each molecule in the system since it must be possible that every molecule belongs to an independent
cluster, even if two or more of them are assigned to one cell.

A short pseudo code shows the approach for the local cluster identification.

initialize every particle with a globally unique cluster label
all clusters have size 1
DO FOR every cell
DO FOR every pair of molecules in this cell
IF energetic criterion fulfilled
get proper labels of both particles
# ~ ™ important to do this here, can change In every step!
link referring clusters to smaller proper label, sum size
END IF
END DO
DO FOR every molecule inside this cell
DO FOR all molecules in (half of) the neighboring cells
IF both cluster criteria fulfilled
get proper labels of both particles
# ~ N important to do this here, can change in every step!
link referring clusters to smaller proper label, sum size
END IF
END DO
END DO
END DO

The previously described order of (i) do the linking within each cell and (ii) through the neighboring cells
in the lattice; is not necessary. However it seems to be impossible to have real speed up at this spot. The
checking has to be done for all molecules and cannot be stopped for a certain cell if one link is found, as
it was possible in the method described before. This is a serious loss in performance.

Thinking about the communication the overall scheme will be conserved while the data that have to
be exchanged will be different. The cluster_id_border array is handled exactly as it was done
in the purely geometric cluster search. It is clear that also the positions and orientations have to be
sent for every particle on the border. These are saved in rxyz_border again. To identify the entries
of the rxyz_border array with the linking information in cluster_id_border also the former,
globally unique label of every particle is important (see the initialization part of the pseudo code). This
means there will be an additional array with 1 integer value for each molecule in the virtual bordering
area of a processor, containing the original label. Obviously none of the sizes of these arrays is given in
advance. So it is a good way to let the receiving processor guess the dimension of the original label array
(which has the least amount of data inside) plus an uncertainty and receive an array of that size with
the amount of data in the other arrays attached to the end. It would be possible to send the dimensions
of the arrays in an additional communication step before transmitting them, however it seems that some
overhead cannot be avoided.
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Scaling

After all the theoretical discussions about a good implementation of the desired functionality it is now
time to look at real time measurements. All measurements were carried out on the ZAMpano [11], a
parallel computer with 8 compute nodes. One node consists of 4 processors and has 2GB shared memory.
Therefore the memory model is only partly distributed. At first glance the communication tree should
provide a tree-like scaling as it is described in [10]. That is the scaling is nearly linear for low numbers of
processors and saturates at a constant value for large numbers. It does not show the behavior of all-to-all
communication where for large processor numbers the performance is getting worse.
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cluster + mc, N = 101124
cluster, N = 10404 %
cluster + mc, N = 10404 o
cluster, N = 2304
cluster + mc, N = 2304 —-—e--
ideal scaling -~~~

=
o
T
Q

2 T(2)T(M)

n=#PEs

Figure 10: Scaling of the cluster algorithm itself and attached to the Monte Carlo step in “SpinCG2%”” for
different system sizes and processor numbers.

Fig. 10 shows the measured scaling of the cluster routine itself and in combination with the “SpinCG2”’
program. Since the latter has an outstanding scaling behavior it is easy to accept that the combination
of both always shows a better scaling compared to the pure cluster search. However it is found that the
described technique scales more like an all-to-all communication scheme. Remembering fig. 8 and the
conclusion that some kind of all-to-all communication is necessary this is not really astonishing. The
reason for the difference of the tree-like communication and the scheme in the existing case is that the
amount of data that has to be transmitted is also rising with the number of processors since the overall
edge length is rising. This is not the case in the underlying eqn. 107 in [10]:

(6)

logy (Np) 2n_1X
c(Np) = logy(Np)A + Z N,
n=1 p

where )\ is the latency and y the bandwith. To have a better view on the real complexity with respect to
N,, the sum can be simplified to:

c(Np) = loga(Np) A + (1 - N%) X ()

Here NV, is the number of processors, ¢(N,,) expresses the relative portion of communication with respect

to communication. In egn. 6 the term 27~1/N,, is a normalized amount of data to be sent within each
step. The overall amount is always 1, so in the last step of communication 1/2 is sent. The edge length
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is growing with about log, (1V,,) in two dimensions. So the leading behavior can be derived from 6:

logy (Np) 2n_1X
c(Np) = logy(Np)A + Z logy(Np)
n=1 p
1
o N+ o) (1= 1) v ®
P

ideal ——
tree-like -~
existing —x--

Speedup

1 10 100 1000

Np

Figure 11: Comparison of tree-like scaling and that one which is theoretically expected for the commu-
nication scheme used in the cluster search algorithm for A = 10~ and y = 0.05.

Since it cannot be avoided that the sum of the edges of all processors grows by increasing the number of
nodes, it is at least satisfactory that after the slope of speedup got negative it is slowly increasing again
(see fig. 11). The most important fact is that the good scaling behavior of “SpinCG29” is not destroyed
by implementing the cluster algorithm into it. For that reason fig. 12 shows the absolute running times
of different routines called in ““SpinCG29” and the cluster labeling algorithm. The “local cluster” search
is done absolutely independently on every processor and therefore it exhibits a good scaling behavior.
The critical part of the “SpinCG29”” concerning the number of processors is the “spatial decomposition”
which contains communication. Its time consumption is more or less constant, independent of the number
of PEs. The two parts of the cluster algorithm containing communication are fast enough not to make
the negative scaling a real problem. The most time consuming but absolutely parallel “interaction” part
is probably slowed down by the “spatial decomposition” at nearly the same number of processors where
the global cluster identification becomes important, maybe this happens even earlier.

Cluster Size Distributions

Besides the important fact that the cluster search can extend the functionality of the Monte Carlo simula-
tion, it is of course also possible to measure cluster size histograms or study percolation in final config-
urations. Due to the limited time only the distributions of cluster sizes in simulation of DNA molecules
was studied. The measurement was done by creating 100 final configurations of a system with N = 5184
DNA strands by ““SpinCG29”” starting from a density p = 2//3d?, where d = 35.0A was chosen. From
final configurations an average distribution of cluster sizes was obtained. Since every configuration was
obtained by a definite number of Monte Carlo steps originating from the same initial set-up (a hexagonal
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Figure 12: The runtime of different routines called in “SpinCG2%”” and necessary steps of the cluster
search for various numbers of processors and a system size of about 200000 molecules.

lattice) the final systems were statistically absolutely independent and the error bars were calculated just
as the standard deviation.

The measurements were carried out for different values of the charge compensation 8. The Debye screen-
ing length was always given by x~! = 10A. As it was discussed in the beginning for this » a phase
transition is to be expected for 8 =~ 0.86. For smaller charge compensations the potential becomes com-
pletely repulsive which results in a kind of crystalline state of the system. For this reason there is no way
to identify clusters, because it is even not possible to define a cluster criterion. Either all particles would
be in one large cluster, or every particle would be identified to be separate from all others. Because of the
repulsive form of the potential it is more reasonable to talk of a crystalline phase without any clusters. For
higher values of the charge compensation 6 the structure will be interesting because of the frustrations
arising from the orientation dependent part of the Kornyshev-Leikin potential. It is interesting if there
can be found some power law for the cluster size distribution in analogy to percolation on lattices for
example.

Fig. 13.a shows a system with 324 DNA strands that was obtained by a simulation of 10000 Monte Carlo
steps for & = 0.95. For this small number of molecules the picture is not capable to show the overall
structure of such a system. But it depicts the qualitative fact that large clusters arise where the strands
orient perpendicular to each other according to the minimum in the two dimensional potential energy
landscape. Unlike in 13.b, where the same simulation was done with 6 = 0.865 close to the expected
critical point. Most of the particles have a serious distance from each other while some of them gather
into very small clusters at the flat minimum in the potential curve. This difference will be reflected in
the cluster size histograms which allow qualitative statements about the structure of the system. In fig.
13.c and d the corresponding histograms to the structures in 13.a and b manifest this difference. For
high charge compensation the probability of huge clusters is still in an acceptable range. Clusters at
sizes greater than 2000 are likely to be percolating because they contain about half of all molecules in
the system. The searched power law is well reproduced for long simulation times and the according
exponent can be measured. For a rapid cooling and less Monte Carlo steps a deviation from the power
law at a certain point can be observed. Obviously this can be taken as a sign for too short simulation
times. Near to the critical point (fig. 13.d) the slope of the cluster size curve changes dramatically (see
also fig. 14). It can also be seen that the deviation from a power law which could be observed for short
simulation times in fig. 13.c appears even for 10000 Monte Carlo steps in this case. Therefore for the
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Figure 13: a, b: Final configuration of a model DNA aggregate with 324 molecules for 8 = 0.95 (a) and
0 = 0.865 (b) after simulated annealing over 10000 steps. The vectors show the azimuthal orientation
of a molecule. ¢, d: The according cluster size histograms, averaged over 100 final configurations of a
system with 5184 particles.

rough estimation of an exponent only the first values were taken into account. This behavior seems to be
similar to the critical slowing down which often occurs at phase transitions in spin simulations. It would
be interesting to see the effect of a real cluster algorithm in the Monte Carlo step. May be it would help
to increase the quality of the data.

Finally in fig. 14 the exponents of the cluster size distributions are plotted for several 6. Although the
error bars are only obtained from the least square fit (double standard deviation) the qualitative drop of
the exponent close to # = 0.86 is obvious.

Conclusion and Outlook

The introduced cluster search algorithm can be used to build a Monte Carlo cluster algorithm for con-
tinuous two dimensional off-lattice spin systems on the one hand, and the study of cluster distributions
and percolation on the other. It is designed for parallel, distributed memory systems and does not need to
replicate memory. Although a variety of optimizations were implemented it cannot be avoided that the
scaling of the method can have negative slopes. But since its absolute run time is very short it does not
have any considerable influence on the good scaling behavior of “SpinCG29”” and can therefore extend
the functionality of the existing code.

It will be very interesting to implement an energetic criterion which could make the method capable
of lowering the autocorrelation times in the described systems. Measurements of autocorrelation times
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Figure 14: The rough exponent of the cluster size distributions for different values of 6.

in the current and extended version would be necessary to prove that. Also the measurements on sys-
tem structure exponents should be carried out more thoroughly. An extension of the technique to three
dimensions would be desirable and should not be complicated in principle.
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Abstract: UNICORE, a popular Grid Computing software, facilitates the seamless and secure
sharing of computing resources among distributed supercomputers. In its current implemen-
tation, UNICORE adopts a static resource management model which can not fully meet the
user’s requirement on resource provisioning. In this work, we propose the incorporation of a
Web Services (WS) Agreement based resource negotiation model to advance the current re-
source management model of UNICORE. The feasibility of the proposed approach is validated
through experiments based on a prototype implementation.

Introduction

Grids [1], geographically distributed computing platforms, aim at resource sharing and problem solving
among heterogeneous, potentially large-scale resources. According to the underlying resource types,
Grids can be further classified into Computing Grids and Data Grids. Computing Grids aim at the sharing
of computing resources among supercomputers deployed among different HPC Centers while Data Grids
aim at synthesizing new information from data repositories distributed in a wide area network.

Among all the Grid software, UNICORE [2] and Globus [3] are the two most important ones. Globus is
an open source project that intends to provide Grid building tools for a Grid infrastructure. These tools
include a set of core services, a set of advanced services and a set of well-defined APIs for Grid appli-
cation construction. UNICORE, on the other hand, currently provides a vertically integrated solution for
combining computing resources on the Internet. On the basis of a uniform access to distributed com-
puting resources, it supports a powerful workflow management and a friendly client side user interface.
UNICORE has recently been released as open source software as well.

While the resource management functionality of UNICORE is rich, in its current implementation it
adopts a static resource management approach which can not fully meet the user’s requirements on
resource provision. This motivates the main goal of this work: to support dynamic resource negotiation
in UNICORE.

The paper is organized as follows: The next section discusses the current resource management model in
UNICORE and its weak points. Section 3 introduces the architecture of WS Agreement based resource
negotiation. The implementation is shown in section 4. Finally, section 5 concludes the discussion and
outlines future work.



Current Resource Management in UNICORE

UNICORE is the acronym of Uniform Interface to Computing Resources [4]. As shown in Fig. 1, the
main components of UNICORE are Gateway, Network Job Superviser (NJS), Target System Interface
(TSI) and Client.

wWW. unicors. de

UNICORE Client

Preparation and
Control of jobs
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[JP A (M C) Unsafe Intarnet
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Figure 1: UNICORE System Architecture

TSI provides an interface between the abstract resource model of the NJS and the target supercomputer
or storage server, through which NJS can submit jobs to the target system. These two parts establish a
virtual site in UNICORE (Vsite). By connecting to a Gateway that is common for a single administrative
domain, several Vsites build a UNICORE Grid site (Usite). The end-user uses the UNICORE client to
connect to a Usite Gateway and control his job.

When preparing a job, end-users should first have the information of the available resources (Vsites) and
then they can select the appropriate destination to run their job. In the current static resource management
model, this information is managed through the following steps:

1. The resource information of a target system are configured in the static text Incarnation DataBase
(IDB) file on NJS, such as the listed PROCESSOR information means there are totally 10 proces-
sors per Node and the request number must be between 1 and 10.

PROCESSOR [ Number of PEs per Node] DEFAULT [1] MAXI MUM [10] M NI MUM [ 1]

2. Inthe initialization process, the NJS reads this information into a static member variable resources
and keeps it unchanged during its lifetime.
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3. When connected to a Usite, the Client submits a GetResourceDescription action® to the NJS.
The corresponding handler DoGetResources within the NJS reads the information from the static
variable resources and returns it back to the Client.

4. After obtaining the resource information, end-users can make a match between their jobs and
the resources. Finally, the end-users will submit their jobs to a Usite with a specified resource
requirement.

Although this model can help the end-user to perform their job submission, it only provides a static
resource view for a VSite and can thus not fully meet the requirements of both parties, the end-user and
the provider, on resource provisioning.

First, end-users can not obtain the up-to-date resource information of a target system. For example the
current system load, the free processor number, or the available memory size. Surely, this information
affects the end-user to make a suitable resource selection. Second, the current model doesn’t support
the policy based resource provisioning as demanded by providers. For example the target system can
not provide specified resource information according to the userid and it’s the same for other policies.
Third, the system can not provide a QoS ensured resource provisioning. It only provides the resource
information and transfers the job to the selected target system. There are no intermediate assurance
components. Finally, economic models of resource provisioning [5] will play an important role in Grid
Computing. But in the current model, it is hardly possible to implement this.

To meet the above requirements, we introduce a negotiation based resource management model into
UNICORE.

WS Agreement based Resource Negotiation in UNICORE

Currently, there are several Service Level Agreement (SLA) protocols that can support resource nego-
tiation in distributed systems, such as WSLA [6], BPEL [7] and WS Agreement [8]. Among them, WS
Agreement is a newly proposed and WSRF based protocol.
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Figure 2: Interaction Schema of WS Agreement

1See Appendix A
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Web Services Agreement

WS Agreement describes an XML language for the specification of an agreement between a resource
provider and a consumer. WS Agreement also specifies a protocol for the creation of an agreement using
agreement templates. The specification includes not only the scheme for specifying an agreement but
also a set of port types and operations for managing the agreement.

Fig. 2 shows the basic interaction scheme of WS Agreement. First, the consumer needs to request for
a resource template from the provider and after several negotiation steps there will be an agreement
between these two parties. In the specification, an EPR will be returned to the WS Agreement Client as
a unique identification of the created agreement, which is used for further agreement managing.
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Figure 3: Interaction Scheme of UNICORE

System Architecture of Resource Negotiation Model

According to the WS Agreement specification and the requirements for resource provision, we designed
the interaction schemes for the resource negotiation of UNICORE. As shown in Fig. 3, the approach
follows that of WS Agreement. However, within the UNICORE architecture the NJS communicates with
the WS Agreement Server on behalf of the end-user.

The system architecture for this resource negotiation model of UNICORE is shown in Fig. 4. Compared
with the original model, the resource information is managed as follows:
1. The same as the original model, NJS reads the resource information into a static member variable

at initialization. But it’s only taken as a reference for future use.

2. The Client can make a GetResourceDescription request to NJS. Acting as a representative of the
end-user and also as a WS Agreement Client, NJS will request the resource template, make an
agreement offer, and query the agreement properties according to the contents of this request.
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Figure 4: Architecture for Resource Negotiation in UNICORE

(a) If the request doesn’t contain any attached information, NJS will send GetTemplate to the
WS Agreement Server in order to get dynamic and user specified resource information. This
information will be returned to the end-user through the Gateway.

(b) If the request contains a ResourceSet, the NJS will treat it as a resource request action and
will send a MakeOffer message to the WS Agreement Server to create an agreement. When
an agreement is successfully created, the corresponding End-Point-Reference (EPR) will be
sent back to the end-user.

(c) If the request contains a valid EPR, it means that this is a resource query action. The NJS
will use this EPR to query multiple properties of the corresponding agreement and returns
the information to the end-user.

3. With the returned EPR, an end-user can make full use of this resource agreement.

With all the above functions, the new negotiation based resource management model can surely meet the
requirements described in section 2.

System Implementation and Demos

Based on the architecture shown in Fig. 4, we implemented a prototype system. In the implementation, we
modified NJS to support the new resource management model. Also, we integrated the new UNICORE
version with WS Agreement. After that, we modified the Client of UNICORE to validate the feasibility
of this new model. In addition to the negotiation requirements, the compatibility with the original system
was another requirement of this work.

Modification of NJS

As described in Appendix A, each request from the Client can be seen as an action. In this framework,
there are two ways to do the modification:
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First, we can add some new actions into the Abstract Job Object (AJO) to support resource negotia-
tion. While this approach is relatively easy to perform and without changing the original system design
principle, the modification of AJO will affect almost every part of UNICORE, which means losing of
compatibility.

Second, by modifying the existing actions we can also achieve the same goal. Although it will disobey
the design principle of UNICORE, this method will limit the modification inside NJS and can meet the
compatibility requirement.

In the prototype implementation, we chose the latter one and modified the handler for the action GetRe-
sourceDescription. The pseudo-code is listed below:

String globallnfo = this.getUspace().getDirectory() + ".UN CORE_GLOBAL_I NFO';
if ((new File(globallnfo)).exists()) {

ResSet = read ResoruceSet from Fil e gl obal I nfo;
ag_epr = read resource from ResSet;

/1 1f there is a valid EPR then this is a resource query Request
/1 else this is an nmake offer request
if (ag_epr == null) {
ERP = make an agreenent offer;
return EPR;
} else {
newResSet = query resource properties;
return newResSet ;
}
} else {
/1 This is a get tenplate request
newResSet = get resource tenpl ate;
return newResSet ;

Besides this, we also modified the task management components of NJS to check whether the incoming
job has a valid resource agreement.

Integration of WS Agreement

WS Agreement is an developing specification. We used a prototype implementation [9] based on the
specification version 1.1, draft 20.

By introducing the class DoGetDynamicResInfo, we can also use NJS as a WS Agreement Client. Class
GenerateResourceOffer and ParseResourceTemplate are used to deal with the resource template and
agreement offer. The pseudo-code is listed below:

public class DoGet Dynam cReslnfo {

/**

* Read the Dynami c Resources Info form WS Agreenent by Get Tenpl ate,

* the EPR here doesn’t contain the agreenent infornmation but for the

* W5 Agreenent Server

*

/

public static ResourceSet getDynam cResource(String xlogin, String vsite_epr,
ResourceSet current_rs) {

}

/**

* Read the Dynam c Resources Info form W Agreenent by Get Multi Properties,
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* here the EPR stands for the agreenent
*/
public static ResourceSet getDynam cResource(String vsite_epr, String ag_epr) {

}

Modification of Client

In order to validate the implementation of a new resource management model, it was needed to create a
client for communicating with NJS. There are also two ways to achieve this:

First, we can use the Arcon Client of UNICORE to test this implementation. The Arcon Client is a
library that provides a simple, lightweight interface to the UNICORE servers and can be used to build
UNICORE clients. It is easy for programming, but it only provides a limited set of functions and does
not have a graphic user interface.

Second, we can modify the normal UNICORE Client to add new functions. The normal client has rich
functions and a well designed graphic user interface. But the complex architecture makes it difficult for
modification.

In this work, we chose the second one. Below is a list of classes that we modified or added: Client,
ResourceManager, GetResources, JobGroupPanel, JobResourcePanel, ResourceQueryPanel, Resource-
QueryDialog, JMCTree, JPATree.

Demos

By using the modified Client we can get the up-to-date resource information, create an agreement and
can query the resource properties of this agreement. Some screen captures are collected in Fig. 5.
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Figure 5: Demos of the Negotiation based Resource Management Model
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Conclusion and Future Work

In this work, we identified some weak points of the current resource management model in UNICORE
and proposed the negotiation based model as a solution. Through the prototype implementation and a set
of experiments, we demonstrated the feasibility of this new model.

With the exploration of this work, this model can be easily adopted by the next version of WSRF based
UNICORE software. Furthermore, on top of this model, we can also achieve resource scheduling and
work flow management to provide a better resource provisioning.
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Appendix

Resource Information Management in NJS

The following descriptions are mainly concentrated on where and how the resource information is man-
aged in NJS, including initialization and action handling.

Initialization of NJS
As shown in Fig. 6, class NJS is in charge of the initialization phase and the whole process is listed as
follwos:
1. Class NJS gets the name of property file (njs.properties) and some other parameters from startup
script and then passes them to class Configuration.

2. Class Configuration reads all the predefined properties for NJS from the property file and stores
them into the static member variables of class NJSGlobal. These properties in class NJSGlobal
will be used by other parts of NJS.

3. Class NJS calls the function initialise() of class Seminaries to read the static resource information
from IDB file. When finished parsing IDB file, the resource information is stored in the static
member variable resources of class DoGetResources.
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Figure 6: Initialization of NJS

In NJS, there are two kinds of objects working together for parsing the resource information: Missal and
Reader. Missal contains a set of raw resource information and a dictionary of different kinds of resource
readers. For example, class ResourceReader contains the readers for Textinfo Resource, Numericlnfo
Resource, Capacity Resource, and class TargetSystem contains the readers for Software Resource.

In initialization, the content of IDB file will be read into a Missal object first. And then this Missal object
can parse the resource information by using different resource readers.

Action Handling in NJS

In UNICORE each kind of request is taken as an action and there are four kinds of actions defined in
AJO: RAction, XAction, EAction and NAction. NAction refers to those requests that should be executed
by NJS itself.

For each action there is the corresponding KnownActionFactory and Handler, such as GetRe-
sourceDescription, DoGetResources.Factory and DoGetResources. In UNICORE GetResourceDescrip-
tion is a NAction responsible for providing the static resource information to the end-user.

In the initialization of NJS, class NJS calls the init() function of class KnownActionFactory to initialize
the relationship between Action and Factory, such as the GetResourceDescription action has the follow-
ing registration sentences:

cl asses_e. add((new Get Resour ceDescription()).getC ass().getNane());
handl ers_e. add(new DoGet Resour ces. Factory());

With the help of this relation KnownActionDB, NJS can first create a handler instance and then dispatch
the action to it for processing.
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Zusammenfassung: Die Performance der parallelen Matrix-Matrix-Multiplikationsroutinen
PDGEMM und PDSY MM wurden auf dem JUelich Multi Processor Jump [1] untersucht.

EinfUhrung

Untersucht wurde die Routine PDGEMM (P fur Parallel, D fir Double precision, GE fiur die Matrix-
Eigenschaft GEneral und MM fiir Matrix x Matrix) aus PESSL, die die folgende Operation durchfiihrt:

C — aop(A)op(B) + BC, op(X) = X, XT
mit A € R™*k B ¢ RF*n O ¢ R

Des weiteren wurde die Routine PDSYMM (P fur Parallel, D fur Double precision, SY fir die Matrix-
Eigenschaft SYmmetric und MM fir Matrix x Matrix) aus PESSL untersucht, die die nachfolgende
Operation ausfihrt:

C — aAB + C, C «— aBA+3C mitAT = A ¢ Rmxm

Diese Routine benétigt keine vollstandige Matrix, sondern nur eine obere bzw. untere Dreiecksma-
trix, der Rest dieser Matrix kann beliebig besetzt sein. In diesem Dokument wurde der Einfachheit
halber nur mit quadratischen Matrizen gerechnet, also & = m = n. Es wurden folgende Werte
zur Berechnung benutzt: « = 1, [ = 1. Die Matrizen wurden auf folgende Weise erzeugt:
A(i,j) = B(i,7) = (i + 7)/100 und, sofern nicht anders bezeichnet, wurden alle Messungen mit der
Multiplikation zweier 1000 x 1000-Matrizen durchgefiihrt.

Bei der Verteilung der Matrizen auf die einzelnen Prozessoren (siehe auf Seite 105) muss noch gesagt
werden handelt es sich um eine block-zyklische Verteilung (siehe ScaLAPACK User’s Guide [2]).
Dies bedeutet, dass zunadchst die Matrix in Blocke aufgeteilt wird. Dann wird das Prozessor-Gitter
immer wieder Uber die Matrix mit ihren einzelnen Bldcken gelegt. Dadurch entstehen unter Umstanden
Last-Ungleichgewichte, da nicht alle Prozessoren dieselbe Menge zur Berechnung erhalten. Naheres
wird in dem dazugehdrigen Kapitel auf Seite 105 erklért und veranschaulicht.



Der JUelich Multi Processor Jump besteht aus 41 IBM p690 Knoten, wobei jeder Knoten mit 32
Power4+ Prozessoren mit 1.7 GHz Taktung bestlckt ist, was einer Gesamt-Anzahl von 1312 Prozes-
soren entspricht. Die Leistung pro Prozessor betragt 6.8 GFlops, woraus sich eine Gesamtleistung von
8.9 TFLOPS ergibt. Jeder Prozessor verfiigt Uiber 64 / 32 KB instruction / data internen Levell Cache.
Je zwei Prozessoren teilen sich 1.5 MB Level2 Cache und kénnen auf 512 MB Level3 Cache pro
Knoten zugreifen. Jeder Knoten verfiigt des weiteren (iber 512 GB Speicher. Die Berechnungen wurden
unter dem Betriebssystem AIX 5.2 mit ESSL V4.1 [3], PESSL V3.1 [4] und dem Fortran Compiler
XL Fortran 8.1 durchgefiihrt. Die Zeiten wurden mit der Routine MPI_WTIME gemessen.

Die Messungen wurden alle auf ganzen Knoten durchgefiihrt. Die Option @node_usage = not_shared im
LoadLeveler bewirkte, dass keine anderen Benutzer die noch freien Prozessoren nutzten, um eventuellen
Kommunikations- oder Speicher-Konflikten aus dem Weg zu gehen. Da man es gerade bei kleineren
Matrizen mit extrem kurzen Zeitspannen zu tun hat, wurden die Messungen mehrfach wiederholt
und die Ergebnisse gemittelt. In den folgenden Graphiken werden oft die MFLOPS angegeben. Diese
wurden anhand der Annahme, dass eine Multiplikation zweier n x n - Matrizen 2n3 Floating Point
Operationen bendtigt, berechnet.

Ein weiteres Problem stellt das Betriebssystem dar, da in regelméRigen Abstdnden bestimmte Dienste
aufgerufen werden, die die Zeitmessungen verfalschen. Die Zeit lauft weiter, obwohl eigentlich keine
fur die Berechnung relevanten Ausfiihrungen getatigt werden. Dies ist durch Ausreifer in den Grafiken
zu erkennen.

Performance von PDGEMM

Bei der Nutzung der parallelen Matrixmultiplikationsroutinen PDGEMM und PDSYMM mudissen, um
eine maximale Leistungs-Ausnutzung des Computers erreichen zu kénnen, mehrere Parameter beachtet
werden: Prozessor-Anordnung, Prozessor-Anzahl und Blockgrofe.

MFLOPS

Abbildung 1: Performance von PDGEMM: unterschiedliche BlockgroRen, verschiedene Prozessoran-

ordnungen
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In Abbildung 1 auf der vorherigen Seite erkennt man die starke Abhangigkeit der Performance von
BlockgroRe und Prozessoranordnung, wobei die Performance auf nichtquadratischen Gittern bei
groBeren BlockgroRen stark zurtick geht, da nicht mehr alle Prozessoren arbeiten.

Wenn einer der oben genannten Parameter ungunstig gewéhlt wird, muss man mit starken Performance-
Einbulen rechnen. Im folgenden werden die einzelnen Parameter und die damit verbundenen Probleme
naher erlautert.

Die Prozessor-Anordnung

Nicht nur die eigentliche Anzahl der Prozessoren (siehe ,,Die Prozessoranzahl* auf der néchsten
Seite), sondern auch deren Anordnung spielt fur eine optimale Performance ein grofRe Rolle. Dies
hangt damit zusammen, dass die Prozessoren bei einer gut verteilten Anordnung bessere Kommu-
nikationsmdglichkeiten haben, da dann mehrere Prozessor-Spalten oder -Zeilen parallel miteinander
kommunizieren kénnen und nicht nur eine globale Kommunikation ablauft. Wie in Abbildung 1 zu
erkennen ist, erhalt man bei einem 16 x 1 Gitter eine akzeptable Performance bei kleineren BlockgroRen
(siehe ,,Die Blockgroe” auf Seite 105), danach bricht die Performance ein. Bei dieser Anordnung
liegen alle 16 Prozessoren in einer Reihe und es ist nur eine einzige Kommunikation realisierbar. Die
beste Performance bei diesem Gitter betragt 53963 MFLOPS. Im Vergleich dazu betrégt die hochste
Performance bei einem 4 x 4 Gitter 63929 MFLOPS, also circa 18 Prozent mehr. In diesem Gitter liegen
die Prozessoren optimal verteilt und kénnen so besser miteinander kommunizieren.
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Abbildung 2: Performance von PDGEMM: unterschiedliche BlockgroRen, verschiedene Prozessoran-
ordnungen (horizontal und vertikal)

Abbildung 2 zeigt, dass es auch Unterschiede macht in welcher Richtung die Gitter angeordnet sind, dies
I&sst sich auf die unterschiedlich Ausnutzung des Caches zurickfiihren, denn Fortran speichert Matrizen
immer spaltenweise ab. In dieser Abbildung werden bereits ab einer BlockgréRe von 67 nicht mehr alle
Prozessoren beansprucht.
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Die Prozessor-Anzahl

Es ist wichtig eine ,,geschickte” Anzahl von Prozessoren auszuwdéhlen, denn diese ist eng mit der Effek-
tivitat verbunden. Der Speedup von PDGEMM ist durch die Kommunikation nach oben begrenzt, da bei
mehr Prozessoren, zwar der Anteil an der sequenziellen Berechnung auf jedem Prozessor geringer wird,
aber gleichzeitig der Kommunikations-Aufwand steigt.

Die Effizienz mehrerer Prozessoren gegenueber einem Prozessor"
100 T T T T

80 + + * R

60 - —

40 | :

Effizienz in Prozent

20 .

0 1 1 1 1
5 10 15 20

Anzahl an Prozessoren

Abbildung 3: Effektivitit von PDGEMM: verschiedene Prozessoranzahlen bei optimalem Gitter und
optimaler BlockgréRe

In Abbildung 3 kann man sehen, wie die Effektivitat (1 Prozessor = 100 Prozent) bei steigender Anzahl
von Prozessoren immer weiter nachlasst. Des weiteren sieht man, dass Primzahlen als Anzahl von
Prozessoren vollkommen ungeeignet sind, was damit zusammenhangt, dass die Prozessoren entweder in
einer Reihe oder in einer Spalte angeordnet und nicht gleichméaBig verteilt sind, wohingegen mit einer
Prozessor-Anzahl die gut teilbar ist, deutlich bessere Ergebnisse zu erzielen sind - am Besten ist eine
quadratische Anzahl, da die Prozessoren dann ideal aufgeteilt sind.

Prozessoren 1 2 4 8 16 32 64 128
Zeitins 42079 | 22047 | 11630 | .06206 | .03128 | .01883 | .01162 | .01007
Speedup 1 1.91 3.62 6.78 13.45 22.35 36.22 41.78

Tabelle 1: Speedups bei Multiplikation von 1000 x 1000 Matrizen

Tabelle 1 zeigt den Speedup bei fester Matrixgréfie und Verdopplung der Prozessorzahlen. Man sieht,
dass man in der Realitat niemals 128 Prozessoren fiir eine so geringe MatrixgréRe nutzen wiirde, da jeder
einzelne Prozessor bei einer 1000 x 1000-Matrix nur noch sehr kleine Blécke zur Berechnung erhilt.
Bei groReren Matrizen ware jedoch der Speedup auch mit mehr Prozessoren noch akzeptabel.

Man benétigt, um die Zeiten zu halbieren, eine immer gréfRere Anzahl an Prozessoren, dadurch muss
man abschétzen, bis wohin sich eine Beschleunigung noch lohnt und ab wann man eher wieder auf
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weniger Prozessoren zuruckgreift, um Ressourcen zu sparen. Der \ergleich zwischen 36 und 72
Prozessoren in Tabelle auf Seite 120 zeigt dies deutlich, trotz Verdopplung der Prozessor-Anzahl betragt
der Zeitgewinn gerade noch 26 %.

0.45 T T T T

Zeitins

0 1 1 1 1
5 10 15 20

Anzahl an Prozessoren

Abbildung 4: Dauer in Sekunden fur Berechnung mit verschiedener Prozessoranzahl (optimales Gitter /
optimale Blockgrofie)

Abbildung 4 veranschaulicht, wie der Nutzen von mehr Prozessoren immer geringer wird, und die
Ausfuhrungszeit teilweise sogar wieder ansteigt, wenn eine unginstige Anzahl an Prozessoren gewahlt
wurde.

Die Blockgrofie

Die Blockgrolie ist fur die eigentliche Performance der alles entscheidende Faktor, denn diese GroRe gibt
an, wie grol die Blocke sind, die jedem Prozessor zugeteilt werden. Dabei sind gréRere Blocke kleineren
vorzuziehen.

Sind diese Blocke ungunstig gewahlt, so kann es passieren, dass ein Ungleichgewicht bei der Berech-
nung entsteht - ein Prozessor muss bedeutend mehr berechnen, als ein anderer. Im Extremfall kann es
bei viel zu gro} gewahlten Blécken sogar passieren, dass einige Prozessoren nichts mehr berechnen und
die Last auf die anderen fallt.

Hierzu ein Beispiel: Es wurde eine 300 x 300-Matrix flr 4 Prozessoren auf einem 2 x 2-Prozessor-Gitter
aufgeteilt, als BlockgroRe wurde 100 gewahlt.
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Man sieht an der Matrix-Darstellung, welcher Prozessor welche Teile der Matrix zur Berechnung zu-
gewiesen bekommt, dabei féallt auf, dass Prozessor O vier Teile, Prozessor 1 und Prozessor 2 jeweils
zwei Teile und Prozessor 3 nur ein Teil der Matrix erhalt, dadurch entsteht ein Ungleichgewicht bei der
Berechnung.

Es ist also sinnvoll die Blocke so zu wahlen, dass die einzelnen Prozessoren in etwa gleich viel zu tun
haben. Dies lasst sich durch folgende Formel gewahrleisten:

Matrixgrolie
ute BlockgroRe = +1 1
g g [Anzahl an Prozessoren1 (1)
In Abbildung 5 ist dies gut zu erkennen:
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+ et +++ + +
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Abbildung 5: Performance von PDGEMM auf einem 5 x 3-Gitter, variable BlockgréRe

Das Maximum der Performance liegt bei der BlockgréRe 68, laut Formel erhdlt man 67 + 1, was also mit
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der Berechnung Ubereinstimmt.
Wird die berechnete Blockgrole allerdings zu Kklein oder zu grof3, weil zum Beispiel eine sehr hohe
Anzahl an Prozessoren vorhanden ist, ist die nachfolgende Formel besser geeignet:

. Matrixgrole .
ute BlockgroRe = [ ———1]/a £2mita € N 2
9 g [ kY (0.0) 1/ )

waobei p, g die Dimensionen des Prozessorgitters sind

Dadurch dass die MatrixgrofRe durch das kgV der Dimension des Gitters geteilt wird, erhélt man die
groBRtmagliche BlockgroRe, bei der alle Prozessoren gleichviel Last haben. a sollte hierbei wenn mdglich
so gewahlt werden, dass eine Blockgréfie im Bereich von 50 - 200 zustande kommt.

180000 T T T
et
s -
160000 . + thr 4
ha ++
gl +# + +t
*t t 4 e + ++
140000 |- T . e 4
T
iy - #+ "
H T+ e + o+ T+
120000 + + - + et -
4 T
ij tr e + + 4+
&+ b + " iy
+ ik + et o+
® 100000 |- Yo e -
T
(e}
T £ e ++
= 80000 - A
s Tt
+ ++F F‘ﬁ
60000 + 4
i
4
40000 + B
4
b " 4
20000 B
0 1 1 1
0 50 100 150 200

Blockgroesse

Abbildung 6: Performance von PDGEMM auf einem 8 x 8-Gitter, variable BlockgroRe

Laut Formel 1 auf der vorherigen Seite misste man das Maximum der Performance in Abbildung bei
einer Blockgrole von circa 16 + 1 erhalten, die gemessen MFLOPS betragen dort allerdings nur 119485,
im Gegensatz zu 172175 MFLOPS bei einer Blockgrdfie von 125, wie man mittels Formel 2 errechnet.

Mit diesen beiden Formeln, l&sst sich eine ,,brauchbare* BlockgréRe errechnen (siehe auch Tabelle 2 im
Anhang), es sei denn das Ergebnis liefert einen Wert in der Nédhe einer 2-er Potenz die groRer als 512 ist.
Dort gibt es Cache-Probleme, die die Performance einbrechen lassen. Diese Cache Probleme kommen
von der auf jedem Prozessor sequenziell ausgefiihrten DGEMM - Routine, siehe auch [5], bei der bei

2-er Potenzen extrem viel Ladeaufwand betrieben wird.
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Abbildung 7: Performanceeinbriiche bei Blockgrofen in der Nahe von 2-er Potenzen

Bei einer Blockgrolie von 1024 treten diese Probleme zum ersten Mal auf und machen sich nur in einzel-
nen Ausbriichen bemerkbar, sobald allerdings die BlockgréRe auf die néchste 2-er Potenz ansteigt oder
noch gréRer wird, gibt es massive Probleme, die einen Performance-Einbruch von tber 50 Prozent nach
sich ziehen und auch nicht mehr nur direkt diesen einen Wert betreffen, sondern auch die Performance
bei umliegenden BlockgroRen (siehe Abbildung 7).

Performance von PDSYMM

Die Voraussetzungen fiir eine gute Performance sind genau wie bei PDGEMM, die richtige Wahl der
Prozessor-Anordnung, der Prozessor-Anzahl und der Blockgrofe. Bei diesen Werten sind nur minimale
Unterschiede zu PDGEMM zu erkennen, was damit erklart werden kann, dass PDSYMM die Routine
DGEMM mehrfach fur Berechnungen benutzt, somit entstehen dieselben Probleme wie bei PDGEMM.

Die Prozessor-Anordnung

Noch wichtiger als bei PDGEMM ist die Prozessor-Anordnung bei PDSYMM, die Performance
schwankt stark, je nachdem ob man die Prozessoren in einer Reihe, in einer Spalte oder quadratisch
anordnet. Dies liegt daran, dass die Kommunikation bei PDSYMM komplizierter aufgebaut ist, da die
Matrix A nur zur Halfte besetzt ist und der Rest dann auf jedem Prozessor hinzugefiigt wird. Am lei-
stungsféahigsten ist wieder die gleichverteilte Variante, bei der kurze Kommunikationswege und bessere
Lastverteilungen entstehen.
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Abbildung 8: Performance von PDSYMM: 9 Prozessoren, verschiedene Gitter, variable BlockgroRe

Die Prozessor-Anzahl

Es ist bei PDSYMM sehr sinnvoll Prozessor-Anzahlen zu verwenden, die gut teilbar sind, damit eine
moglichst geschickte Anordnung genutzt werden kann; denn Primzahlen oder andere Werte, die dann
eine ungunstige Prozessor-Anordnung erfordern, sind noch performance-schwacher als bei PDGEMM,
siehe Abbildung 9 auf der néchsten Seite.
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Abbildung 9: Effektivitdt von PDSYMM: verschiedene Prozessoranzahl bei optimalem Gitter und opti-
maler Blockgrofiie

Im Allgemeinen ist zu sagen, dass PDSY MM eher mit einer geringen Anzahl an Prozessoren ausgefihrt
werden sollte, da die Routine sehr stark an Effektivitat verliert.

Prozessoren 1 2 4 8 16 32 64 128
Zeitins 46398 | .31944 | 18690 | .11203 | .06536 | .05345 | .03795 | .02972
Speedup 1 1.45 2.48 4.14 7.10 8.68 12.23 15.61

Tabelle 2: Speedups bei Verwendung von PDSYMM

Die Blockgrofie

Die grundlegenden Dinge, die auf Seite 105 zur Blockgrofie gesagt wurden, bleiben auch hier bestehen,
nur dass die Formeln nicht gelten. Fir PDSYMM sind Blockgréfien von unter 50, die durch 4 teilbar
sind, ideal.

Vergleich der verschiedenen Operationen von PDGEMM
Transposition der Matrizen

PDGEMM bietet die Mdglichkeit, eine der beiden Matrizen, die multipliziert werden, zu transponieren.
Darunter leidet die Performance, da mittels einer externen Routine transponiert wird. Am schnellsten
ist die normale Multiplikation, gefolgt von der Multiplikation, bei der eine Matrix transponiert ist. Am
schlechtesten schneidet hierbei die Berechnung von zwei transponierten Matrizen ab, was auch Klar ist,
da noch bevor die Berechnung beginnt, beide Matrizen umgerechnet werden missen.
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Abbildung 10: Performance von PDGEMM: verschiedene Transpositionsvarianten, 9 Prozessoren, 768 x
768 - Matrizen

Das grundlegende Verhalten von PDGEMM hat sich nicht veréndert, die BlockgréRe spielt auch wei-
terhin eine wichtige Rolle, nur die absolute Leistung ist durch die Vorberechnungen und zusatzliche
Kommunikation etwas heruntergegangen.

Mit der Darstellung von Prozentzahlen kann man sehr gut veranschaulichen, wie die Performance
schwankt. Die Operation mit einer transponierten Matrix ist circa 10 Prozent langsamer als die reine
Multiplikation. Die rein transponierten Matrizen sind sogar um circa 15 Prozent langsamer.
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Abbildung 11: Performance von PDGEMM: verschiedene Transpositionsvarianten auf 9 Prozessoren,
Berechnungsgrundlage 768 x 768 - Matrizen
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Im Weiteren folgen einige Abbildungen, die diese Beobachtungen zeigen, ebenso kann man an der
MFLOPS - Achse erkennen, wie die unterschiedlich grofRen BlockgréRen die Performance verandern.
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Abbildung 12: 9 Prozessoren, BlockgroRe 5
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Abbildung 13: 9 Prozessoren, BlockgroRe 25

112



' ' ' ' ' ' Maltrix X Matri;( +
40000 | Matrix x Trans x|
Trans x Matrix *
Trans x Trans o
35000 B
+ +
+ * ¥
¥ o o
30000 + —
% % *
o + o
25000 * y i .
% o O
&
> +
* ¥
% 20000 o 6} 1
15000 | E
f
10000 E
5000 E
*
0 1 1 1 1 1 1 1 1
300 400 500 600 700 800 900 1000 1100 1200
Matrixgroesse

Abbildung 14: 9 Prozessoren, BlockgroRe 75

Unterschiedliche Werte flr 8

Die Routine PDGEMM uberprift zu Beginn, ob die Matrix C wirklich hinzuaddiert wird und mit wel-
chem Faktor (G = 1 oder (3 # 1) oder ob durch ein 5 von 0 keine Addition stattfindet. Dementsprechend
gibt es Leistungsunterschiede zwischen 8 = 0, 3 = 1 und 8 # 1. Fur 8 = 0 ist der Algorithmus im
Schnitt circa 100 Mikrosekunden und fiir 5 = 1 circa 30 Mikrosekunden schneller als fur andere Werte,
bei einer 1000 x 1000-Matrix auf 16 Prozessoren.
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Abbildung 15: Performance von PDGEMM: 16 Prozessoren, variables 3
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Vergleich der verschiedene Operationen von PDSYMM

Die Routine PDSYMM bietet die Mdglichkeit anzugeben ob es sich um eine obere oder um eine untere
Dreiecksmatrix handelt. Bei den genaueren Betrachtungen stellt man fest, dass PDSYMM im Schnitt
circa 2 Prozent schneller ist, wenn es sich um eine obere Dreiecksmatrix handelt. Eine weitere Option von
PDSYMM besteht darin, dass man wéhlen kann, ob AB oder B A gerechnet wird. Diese Option wurde
bei der weiteren Analyse vernachl&ssigt, da sich zwischen den beiden Varianten keinerlei Unterschied
zeigte.

Unterschiedliche Werte flr 3

Auch die Routine PDSYMM hat eine G - Abfrage und Uberprift dementsprechend, was zu tun ist. Ein
£ von 0 bringt einen durchschnittlichen Geschwindigkeitsvorteil von circa 70 Mikrosekunden und ein
6 von 1 ungeféahr 25 Mikrosekunden gegeniiber einem anders gewahlten 3 (Werte stammen von einer
1000 x 1000-Matrix auf 16 Prozessoren).
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Abbildung 16: Performance von PDSYMM: 16 Prozessoren, variables (3

Vergleich zwischen PDGEMM und PDSYMM

Bei dem Vergleich der Routinen PDGEMM und PDSYMM stellt man mit Erstaunen fest, dass PD-
SYMM bedeutend langsamer ist als PDGEMM. Die Routine PDSY MM bendtigt meist mehr als doppelt
so lange, um das gleiche Ergebnis zu erhalten, dafiir hat man mit PDSYMM aber den Vorteil, dass nur
eine Dreiecksmatrix bendétigt wird. Es ist durchaus ublich, dass, falls das Ergebnis einer Berechnung
eine symmetrische Matrix ist, man nur eine Dreiecksmatrix erhélt, und nicht die komplette Matrix. Fur
eine anschlieBende Matrixmultiplikation entstlinde dann das Problem, dass diese Matrix erst kiinstlich
aufgeblaht werden muss, bevor sie dann an PDGEMM - zum weiterrechnen - ibergeben werden kann.
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Abbildung 17: Performance von PDGEMM und PDSYMM: 4 x 4 -Prozessor-Gitter, verschiedenen
BlockgroRen.

Die Kommunikation, die entsteht, wenn eine Dreiecksmatrix zur kompletten symmetrischen Matrix
erganzt werden muss, ist bedeutend aufwandiger als die bei einer kompletten Matrix. Dadurch ist es
sinnvoller, falls eine symmetrische Matrix existiert und sie nicht in Dreiecksform vorliegt, die Routine
PDGEMM zu nutzen.
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Abbildung 18: Diese Abbildung entspricht der Abbildung 17, Angaben in Prozent

Die Effektivitdt von PDGEMM ist bedeutend besser, als die von PDSYMM, schon bei einem Wechsel
von einen auf zwei Prozessoren gehen bei PDSYMM fast 30 Prozent an Leistung verloren, wohingegen
PDGEMM ,,nur*“ 9 Prozent verliert.
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Abbildung 19: Effizienz von PDGEMM und PDSYMM

Besonders drastisch ist der Performance-Einbruch bei einer Primzahl als Anzahl von Prozessoren, wobei
PDGEMM mit dieser Tatsache noch besser umgehen kann als PDSYMM. In Abbildung 20 sind die
absoluten Tiefpunkte des Vergleichs bei den gewdahlten Prozessor-anzahlen 17 und 19.
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Abbildung 20: Geschwindigkeit von PDSYMM gegeniiber PDGEMM, Daten basieren auf Abbildung 19.

Vergleich von DGEMM / DSYMM und PDGEMM / PDSYMM

Die Routine PDGEMM ruft intern die Routine DGEMM auf, PDSYMM hingegen ruft DGEMM und
DSYMM auf. Die beiden Routinen DGEMM und DSYMM erledigen die sequenzielle Berechnung auf
jedem Prozessor. Im folgenden wurden die parallelen mit den sequenziellen Routinen verglichen, inter-
essanterweise sind hierbei die sequenziellen Routinen DGEMM und DSYMM langsamer, als die paral-
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lelen Routinen. Woran dies genau liegt, ob die parallelen Routinen eine bessere Blockung realisieren, als
die sequenziellen, l&sst sich nicht mit Sicherheit sagen. Es kann auch daran liegen, dass unterschiedli-
che Versionen aufgerufen werden, dies kann man jedoch nicht tberpriifen, da der Sourcecode nicht frei
verfugbar ist.

Routine | DGEMM | DSYMM | PDGEMM | PDSYMM |
Zeitins | 3.23527360 | 353911656 | 3.22782028 | 3.55672908 |

Tabelle 3: Sequentielle gegenuber parallelen Versionen: 2000 x 2000-Matrizen

Bei den parallelen Versionen wurde mit verschiedenen BlockgréRen gerechnet. Hierbei ergaben sich nur
geringe Unterschiede, daher wurden die Zeiten Uber die Blockgrofien gemittelt.
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Tabellen

Gitter | Block- | MatrixgroRe

groRe | 500 1000 1500 2000 3000 4000 5000 6000

1x4 |32 14327.7 15043.3 15092.4 15495.6 13535.0 12984.5 13450.4 14242.3
50 12632.7 15275.3 149254 16453.8 13001.2 14423.4 14509.8 13456.0
64 14758.1 15768.6 15872.5 16829.3 14261.4 13824.0 13800.0 14363.2
100 9658.9 13817.8 15616.2 17429.4 12639.1 14563.2 14154.6 14310.5
128 13800.2 16008.0 16686.8 17632.6 14292.6 15391.1 15340.2 14841.4

2x2 |32 14129.6 142769 15378.9 15605.7 12504.2 13262.2 13555.6 12938.6
50 14823.8 15769.3 15839.6 16510.9 12702.1 13829.7 12610.6 12751.3
64 14826.2 15427.7 16287.8 14570.7 13368.9 14669.2 14785.3 14208.3

100 10954.1 16201.0 15556.8 17417.7 17204.3 15553.9 13640.0 13964.7
128 14406.7 15594.4 17138.8 16057.1 132719 15436.4 14414.8 14754.7

4x1 | 32 14016.8 14572.1 15072.8 14843.5 127335 11936.3 15069.0 12848.3
50 10899.3 14726.6 15708.0 15973.8 13885.1 12131.1 13457.4 13608.5
64 14808.5 15700.1 16760.8 16190.2 13177.5 12756.7 13954.4 13911.2

100 9966.1 13764.5 16518.6 16994.8 13459.6 17749.4 15406.7 14057.2
128 14614.0 16097.1 17431.2 17206.3 13801.6 16768.0 16338.2 15742.3
siehe nédchste Seite
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Gitter | Block- | MatrixgroRe
groRe | 500 1000 1500 2000 3000 4000 5000 6000
1x6 |32 18318.8 20049.9 21727.7 22064.3 16581.0 18452.0 20954.1 18690.7
50 17895.6 19148.0 22409.6 22789.0 19022.0 19761.2 21717.8 20431.9
64 14969.6 20081.0 229954 22304.6 18563.5 248315 20270.0 20345.1
100 16480.4 19476.3 20420.5 21684.6 17487.5 25249.6 20603.8 22315.1
128 13710.6 16177.0 23821.8 23023.3 17256.8 23244.6 18191.2 21985.9
2x3 |32 19401.2 20472.6 22629.0 22916.1 16774.2 18019.1 20626.5 19196.1
50 18579.8 22416.0 23357.3 23456.0 17338.8 18818.1 20639.8 20746.4
64 18857.6 21371.7 23754.2 20750.2 177142 25791.2 19604.6 20691.1
100 15680.2 199455 24096.8 24535.4 19165.5 25346.7 19871.2 20217.1
128 12816.3 20190.1 24601.0 22219.5 25001.2 17133.3 22104.1 21837.2
3x2 |32 194778 218519 21671.4 23513.2 17379.2 24121.4 21576.7 19523.7
50 18687.3 22627.1 23220.1 23371.4 17336.7 24449.0 20824.9 21346.7
64 19345.4 22714.6 23035.7 24316.7 15927.2 16523.7 21794.2 20631.1
100 15905.2 20988.1 23219.9 24113.3 20171.4 25097.4 19094.9 21492.6
128 15097.9 21619.6 23990.9 24638.4 17296.9 25388.5 19925.1 20410.6
6x1 |32 17929.1 19276.8 21000.3 22371.3 16292.1 18429.0 21082.7 16643.0
50 17392.9 18586.3 21782.7 22463.3 17641.0 23740.8 19175.1 19616.9
64 15407.7 210145 23446.0 22708.2 17130.8 18936.2 21979.4 18214.2
100 16935.1 19736.4 20763.2 22261.0 19524.1 24650.7 21457.6 20824.9
128 14478.2 16345.6 244315 23194.0 25481.6 23702.9 18567.5 20621.7
Tabelle 1. Vergleich von verschiedenen Gittern mit variabler
BlockgroRe bei unterschiedlich Matrizen
Prozessor- Gitter Optimale Zeit Effizienz Speedup
Anzahl BlockgroRe
1 1x1 32 42079163 100.00 1.00
2 2x1 504 22047365 95.43 191
1x2 504 .22293890 94.37 1.89
3 3x1 336 15033436 93.30 2.80
1x3 168 15377045 91.22 2.74
4 4x1 256 12015736 87.55 3.50
2x2 168 11630738 90.45 3.62
1x4 256 12051404 87.29 3.49
5 5x1 200 .09310162 90.39 4.52
1x5 200 .09646726 87.24 4.36
6 6x1 168 .08003068 87.63 5.26
3x2 168 .07859159 89.24 5.35
2x3 168 .08026040 87.38 5.24
1x6 168 .08299470 84.50 5.07
7 7x1 144 .06913877 86.95 6.09
1x7 144 .07204616 83.44 5.84
siehe néchste Seite
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Prozessor- Gitter Optimale Zeit Effizienz Speedup
Anzahl BlockgroRe
8 8x1 124 .06630576 79.33 6.35
4x2 63 .06300080 83.49 6.68
2x4 126 .06206417 84.75 6.78
1x8 124 .06660938 78.97 6.32
9 9x1 112 .05759871 81.17 7.31
3x3 84 .05373299 87.01 7.83
1x9 112 .06038260 77.43 6.97
10 10x1 100 .05681002 74.07 7.41
5x2 100 .05207336 80.81 8.08
2x5 100 .05250967 80.14 8.01
1x10 100 .05743062 73.27 7.33
11 11x1 96 .05227327 73.18 8.05
1x11 92 .05375373 71.16 7.83
12 12x1 84 .04995596 70.19 8.42
6x2 168 .04305708 81.44 9.77
4x3 84 .04130650 84.89 10.19
3x4 84 .04056323 86.45 10.37
2x6 168 .04379416 80.07 9.61
1x12 28 .04914212 71.36 8.56
13 13x1 80 .04713655 68.67 8.93
1x13 76 .04915500 65.85 8.56
14 14x1 72 04472661 67.20 9.41
2 48 .03881466 77.44 10.84
2x7 48 .03781235 79.49 11.13
1x14 24 .04455829 67.45 9.44
15 15x1 68 .04483080 62.57 9.39
5x3 67 .03413856 82.17 12.33
3x5 67 .03407776 82.28 12.34
1x15 68 .04616141 60.77 9.16
16 16x1 64 .03706253 70.96 11.35
8x2 62 .03285336 80.05 12.80
4x4 126 .03128493 84.06 13.45
2x8 63 .03325737 79.08 12.65
1x16 64 .03910947 67.24 10.76
17 17x1 64 .03783441 65.42 11.12
1x17 60 .03814173 64.90 11.03
18 18x1 56 .03588355 65.15 11.73
9x2 56 .03034425 77.04 13.87
6x3 84 .02942288 79.45 14.30
3x6 84 .02878416 81.22 14.62
2x9 56 .03094268 75.55 13.60
1x18 56 .03629863 64.40 11.59
19 19x1 53 .03622675 61.13 11.61
1x19 53 .03581226 61.84 11.75

siehe nédchste Seite
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Prozessor- Gitter Optimale Zeit Effizienz Speedup
Anzahl BlockgroRe
20 20x1 50 .03523636 59.71 11.94
10x2 50 .02925181 71.93 14.39
5x4 50 .02703536 77.82 15.56
4x5 50 .02787900 75.47 15.09
2x10 50 .02895558 72.66 14.53
1x20 50 .03557479 59.14 11.83
21 21x1 48 .03211558 62.39 13.10
7x3 48 .02679718 74.78 15.70
3x7 48 .02599728 77.08 16.19
1x21 48 .03325963 60.25 12.65
32 4x8 63 .01883137 69.84 22.35
36 6x6 168 .01667798 70.08 25.23
48 6x8 42 .01517379 57.77 27.73
64 8x8 125 .01161611 56.60 36.22
72 8x9 125 01323414 44.16 31.80
96 8x12 42 .01131868 38.73 37.18
128 8x16 62 .01007235 32.64 41.78

Tabelle 2: Vergleiche von verschiedenen Gittern mit unterschied-
licher Anzahl an Prozessoren es wurden Matrizen der GroRe

1000 x 1000 benutzt.
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