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Preface

One of the main missions of JSC besides providing and operating supercomputer resources, IT tools,
methods and knowhow for the Research Centre Jiilich and for European users through the John von Neu-
mann Institute for Computing is the education and encouragement of young and promising scientists in
the broad field of scientific computing. As one opportunity for young academics JSC hosted its tradition-
al 10-week guest student programme again during summer 2009. Within this programme students from
the natural sciences, engineering, computer science and mathematics had the opportunity to familiarize
themselves with different aspects of scientific computing. Mainly supported by staff members of JSC, the
participants worked on various topics in computational science including mathematics, physics, chem-
istry, software development tools, visualization, grid computing, operating systems and communication.
Special emphasis was placed on the use of the newly installed JUGENE and JUROPA supercomputers
at JSC, which have raised the attraction of the programme this year.

Guest students and their advisers:

Jonathan Grof3 Thomas Neuhaus, Michael Bachmann (IFF)
Ricardo Kennedy Thomas Neuhaus, Marcus Richter, Binh Trieu
Malik Kirchner Stefan Diirr

Lukasz Kucharski Jan Meinke, Sandipan Mohanty, Wolfgang Frings
Stilianos Louca Paul Gibbon, Benjamin Berberich

Stefan Maintz Thomas Miiller

Hannah Rittich Bernhard Steffen

Martin Riickl Walter Nadler

Theodros Zelleke Godehard Sutmann

Zu Beginn ihres Aufenthalts erhielten die Gaststudenten eine viertigige Einfilhrung in die Program-
mierung und Nutzung der Parallelrechner im JSC. Um den Erfahrungsaustausch untereinander zu fordern,
présentierten die Gaststudenten am Ende ihres Aufenthalts ihre Aufgabenstellung und die erreichten
Ergebnisse. Sie verfassten zudem Beitrége mit den Ergebnissen fiir diesen Internen Bericht des JSC. Wir
danken den Teilnehmern fiir ihre engagierte Mitarbeit - schlieBlich haben sie geholfen, einige aktuelle
Forschungsarbeiten weiterzubringen - und den Betreuern, die tatkréftige Unterstiitzung dabei geleistet
haben. Ein besonderer Dank gilt Wolfgang Frings und Marc-André Hermanns, die den Einfithrungskurs
gehalten haben, Anke Visser, die an der Erstellung dieses Berichtes mafgeblich mitgewirkt hat, und
Robert Speck, der mich bei der Organisation in diesem Jahr nach Kréften unterstiitzt hat. Ebenso danken
wir allen, die im JSC und der Verwaltung des Forschungszentrums bei Organisation und Durchfiihrung
des diesjdhrigen Gaststudentenprogramms mitgewirkt haben. Besonders hervorzuheben ist die finanzielle
Unterstiitzung durch den Verein der Freunde und Forderer des FZJ und die Firma IBM. Es ist beab-
sichtigt, das erfolgreiche Programm kiinftig fortzusetzen, schlieBlich ist die Forderung des wissenschaftlichen
Nachwuchses dem Forschungszentrum ein besonderes Anliegen. Weitere Informationen iiber das Gast-
studentenprogramm, auch die Ankiindigung fiir das kommende Jahr, findet man unter http://www.fz-
juelich.de/jsc/gaststudenten.

Jiilich, November 2009 Robert Speck
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Parallel Monte Carlo for Condensed Polymers

Jonathan Grof

Universitét Leipzig
Institut fiir Theoretische Physik
Vor dem Hospitaltore 1
04103 Leipzig

E-mail: pge03cnx@studserv.uni-leipzig.de

Abstract:

A simple model of a condensed polymer was simulated using the parallel tempering algo-
rithm. The implementation makes use of multiple cores in modern workstations utilizing POSIX
threads. Also there is an outlook to porting the parallel tempering algorithm to GPGPUs using
NVIDIA’s CUDA.

1 Introduction

One of the most challenging problems of biochemical research is to understand protein folding. All-
atom simulations with realistic interactions are extremely difficult. Due to the high complexity of real
life proteins, being complex macromolecules, one has to find models to simplify research on such sys-
tems. Coarse-grained models are one object of interest in computational polymer physics. Theses models
abstract from the influence of quantum chemical details and long range interactions of involved particles.
Especially a solvent is no necessary part of simulations. One is able to obtain a more global view of the
physical behavior of such systems and calculations are easier and faster.

This paper deals with a particularly simple model: A polymer consisting of not otherwise specified
monomers of the same type. The following energy function describes the interaction of the monomers:

o 12 o 6

withe = 1,0 = 1,k = 1 and 79 = 1. The first part is a Lennard-Jones interaction between pairs of
monomers of the chain. Between adjacent monomers there is a spring-like potential representing flexible
bonds.

The simulated chain consisted of 20 monomers. Even in this simple and small system one is able to see
a second-order-like transition — the so-called ©-collapse. This is a structural change of the conformation
from stretched, coil-like configurations at higher temperatures to more compact, globular configurations
at lower temperatures.

The focus of this work is to make use of efficient, parallel algorithms to obtain more statistics in a shorter
time.
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2 Parallel Monte Carlo

2.1 Maetropolis Update

Each configuration of the system is assigned a Boltzmann weight
wp(8,0) = e PP )

with 3 = 1/kgT being the inverse thermal energy. I have set kj to 1 throughout my simulations.
By running a simulation one obtains a Markov chain which resembles the canonical distribution at a
single temperature 7'

In a regular simulation in the canonical ensemble a configuration of one copy of the polymer structure is
updated using the Metropolis [1] algorithm. This in my case looks like this:

1. Calculate energy of conformation — E,q

2. Pick random monomer

3. Perform a random shift of each cartesian coordinate

4. Calculate energy of conformation — E,,,,

5. Accept update with probability w(C°¢ — C™¥) = min(1, e ?4F)

2.2 Parallel Tempering

In parallel tempering one generates a system of N non-interacting copies of the polymer at different
temperatures 7;:
C= {015021"'1071.}1 (3)

where C is a state the compound system and C; is the i-th copy of the polymer.

Because the copies do not interact with each other one can assign a weight to a configuration of the
artificial system as follows:

N
pr(C) =e Z’\ BE(C:) . HwB(ﬂi, E(Ci))' (4)

One can assume that the inverse temperatures are in order 3; < 3 < ... < On.

To construct a Markov chain of the compound system two steps are necessary.

1. A local update.
Updating only one copy of the system. Since the copies do not interact such an update is accepted
or rejected with the Metropolis algorithm as described above.

w(C — C"¥) = w(Co? — CM*%) = min(1, e PAiE) 5)
2. A global update.

Exchanging conformations of two copies % and j. Taking (4) into account one can see that the
probability to accept such an update is

w(cold - Cnew) — mz’n(l, eAﬂAE) (6)



The choice of pairs of neighboring inverse temperature is very important. One should choose small
enough intervals of inverse temperature differences, because the accept rate will decrease exponentially
with AS.

The idea behind parallel tempering is not only to parallelize the work, but also to improve sampling of
the conformational space. If a system is described by a more "realistic" energy function this can result
in a rough energy landscape. Conformations might get trapped in one of the many local minima. The
exchange of conformations can help to overcome high energy barriers.

3 Multithreading

3.1 Motivation

Over the last years we have seen a change in the CPU market. Up until a few years ago speed of com-
puters increased with increasing clock speed of CPUs. We have reached the "GHz era". But due to high
power consumption, physical limits in chip development and heat dissipation, further speed improve-
ments by increasing the clock speed are very limited.

The solution to that problem were so-called multi-core processors — chips that have more than one pro-
cessing unit. It seems the future of CPU design and development will take this step even further and we
will move from the "multi-core era" to even more cores on one chip — the "many-core era".

To make use of this power, available in nearly every PC these days, programming habits also have to
change.

There is a "native" way to program multi-core CPUs — threads.

3.2 Threads
3.2.1 Whatis a Thread?

One can think of a thread as a task run by a program. It is possible to have multiple tasks or threads
running per program or process. There are several advantages of using multiple threads over multiple pro-
cesses:

Process

e Threads share memory with main process

Time

e Creation of a thread faster than creating a fork (child process)

. . . . v
Since threads share the memory with the main process there is no need for mes-

sage passing between them. Also it is faster to create a thread within a running Figure 1: Visualiza-
process than forking the process and creating child processes. tion of threads in a
Every POSIX-like! operating system is capable of threads. There is a standard

process.
API to program on these systems called POSIX threads.

!"This includes AIX, *BSD, Linux, Mac OS X and even Windows



3.2.2 POSIX Threads

POSIX threads (Pthreads) is a collection of tools for the C programming language
which enable the programmer to create and manipulate threads. It is also possible
to synchronize threads using signals and mutexes.

4 Results

4.1 Simulation Parameters

1. Single Thread Monte Carlo
The serial implementation of the model was run sequentially at 28 different temperatures. Every
single run consisted of 5 - 10° thermalization sweeps followed by 5 - 10 measurement sweeps.

2. Parallel Tempering Monte Carlo
The parallel implementation was run with all 28 temperatures at once using 28 threads on a 4
core CPU. Again, there 5 - 10° thermalization and 5 - 10 measurement sweeps per temperature.
Additionally an exchange of copies was attempted every 50 local sweeps.

4.2 Interpretation of Results

Figure 2 shows the specific heat per monomer given by:

cy 10<E>

N-N or
As one can see there is a monotonic change in the run of the curve at 7' =~ 1.1. At temperatures below
T =~ 1.1 the specific heat is nearly constant. At higher temperatures it declines nearly linear. The peak is
an indicator for a phase-like transition in the system.
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Figure 2: Comparison of results for the specific heat obtained by single thread MC and Parallel Tempering
MC.



There are more physical quantities one can inspect to see this indication: the end-to-end distance

Ree = (rN - rl) ®)
and the square radius of gyration

1
ngr = N Z (rk - rmean)2 ) ©

k=1

1 N
where r,,con = N Z r}, is the center of the polymer. So one can think of the radius of gyration as the
k=1

mean distance of a monomer to the center of the polymer.
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Figure 3: The left figure shows a comparison between the fluctuation of the radius of gyration obtained
by single thread MC and Parallel Tempering MC. On the right one can see the fluctuation of R.. and
R, given by eq (10).

0 < Ree,gyr >

oT = ,32(< Reegyr - E > — < Reeygyr > - < E >) (10)

Both quantities, the mean end-to-end distance and the mean square radius of gyration, can be used to
evaluate the volume expansion of the polymer.

The fluctuation in the curve on the right in the results from single thread MC are due to too less statistical
data. Longer runs would have been necessary. This on the other hand shows the advantage of parallel
tempering.

Another interesting thing one can see in the figure on the right is that the maxima of the curves are not at
the same temperature. This is a finite size effect. Since my chain is only 20 monomers long one can not
see a sharp transition temperature but a section or an interval of temperature where a change happens. In
this case approximately 1.1 < 7' < 1.3.



Figure 4: On the left is shown a typical conformation at temperature 7' = 0.5. Conformations at lower
temperatures are of a globular structure. The right picture shows a conformation at temperature 7" = 1.5.
For higher temperatures this polymer forms coil-like structures.

Figure 4 now shows the expected structures. Below a certain temperature the polymer collapses to a
compact, globular shape. However, at higher temperatures the polymer is stretched.

43 Speed Results

Figure 5 illustrates the total run times for different number of threads while keeping the total work for
the whole program constant. 103 sweeps in total were run. The run time for 2 threads is 1.8 times faster
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Figure 5: Total time consumption per 100.000 sweeps with different number of threads.

than the run with 1 thread. For 3 threads the speedup is 2.3. From 4 threads up the speedup saturates
around a value of 3.

It is easy to understand that the speed does not increase anymore with more threads, because these test



were run on a 4 core machine. On the other hand it is more complicated to explain why there is not a
naive speedup factor equal to the number of threads. This is caused by the fact that I wait for all threads
to finish their work, sync them and then attempt to exchange conformations. This can be optimized by
trying to exchange neighboring conformations as soon as both are finished with their work, so that they
do not need to wait for all other threads to finish.

Also there are processes from the operating system running, so that not all of the power of all 4 cores are
available to my program.

5 Outlook

Another trend arises in high performance computing these days: General-purpose computing on graph-
ics processing units (GPGPU).
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Figure 6: Speed comparisons CPU vs GPU.

The figures above show a discrepancy between peak floating-point operations and memory bandwidth on
CPUs and GPUs. This is is due to highly specialized chip design of GPUs aiming for high performance.
Highly parallel computation of floating-points. More transistors are dedicated to data processing than
data caching or flow control like in CPUs (see below).

Control ALU ALU

ALU ALU

CPU GPU

Figure 7: Comparison of CPU and GPU architecture.

Problems with many data elements which can be processed in parallel can really profit from GPGPUs.
Modern graphic cards can have up to 240 cores. Arranged in blocks called multiprocessors they have
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a shared memory for processing data within this block. This local memory is fast cache memory. In
addition to that there is a global memory already in the range of gigabytes.

NVIDIA is providing an API (CUDA) to make use of the power of GPUs. There is also the Khronos
Group? which puts much effort into developing an independent and open standard for programming
hybrid architectures (CPU+GPU) — OpenCL.

The next step will be an implementation of the parallel tempering algorithm using CUDA, since it is
more mature than OpenCL at this point of time.
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Threshold Determination for the Fault-Tolerant Implementation
of the CNOT-Gate

Ricardo Kennedy

Universitét zu K6ln
Albertus-Magnus-Platz
50923 Kéln

E-mail: rkennedy @uni-koeln.de

Abstract:

The controlled-NOT (CNOT) gate is implemented fault-tolerantly using the Juelich Mas-
sively Parallel Ideal Quantum Computer Simulator (JUMPIQCS)[1] and its performance is
tested under the influence of two different error sources: For decoherence errors, we find that the
threshold for effective error correction (10_6 < pthr < 107%) is comparable to the single qubit
threshold found in [1]. In the case of operational errors, we find that the threshold is of the same
order of magnitude as in the single qubit case, but dependent on the initial state. It is determined
to be oypr1 = (5.5 £ 0.3) - 1072 for a separable initial state [11) and o439 = (2.0 £0.3) - 1072
for the maximally entangled state %(|01) — [10}).

1 Introduction

Classical computing uses bits with two values, O or 1. In a quantum computer, these values are encoded
as the eigenstates of a two-level quantum system, |0) and |1), such that all complex superpositions are
possible and the quantum bit (qubit) is generally in a state

%) = aol0) + au[1), ey
with a;, a5 € C and |og|? + |a1]? = 1.
In analogy to a classical register, a quantum register comprises a set of /N qubits in a general superposition
with 2%V complex amplitudes:

2N -1

[n) = Y aili). @)

=0

Here the binary representation is used, so for example [6) = [110) = |1) ® |1) ® |0) corresponds to the
first qubit (from right to left) being in the |0) state and the second and third qubit being in the |1) state.

The manipulation of this register is called a quantum algorithm and involves a general unitary operation
on the entire set of qubits followed by a measurement to read out the result of the computation, shown
schematically in the circuit diagram of figure 1.

There is a wealth of algorithms [2] that usually tackle very specialised problems. The most well-known
ones are the Grover algorithm for searching databases and the Shor algorithm for factorising large num-
bers. Both of them give a considerable speed-up over all known classical algorithms [4, 5]. A further



input measurements
qubit 1 A
qubit 2 U E

qub;t N \’Z,

Figure 1: General quantum algorithm: A unitary operation on the 2%V dimensional Hilbert space of the
input qubits is followed by measurements.

motivation to study quantum computation is the possibility of simulating quantum systems themselves,
which was first proposed by Richard Feynman in 1982. While this kind of simulation is inefficient on a
classical computer, it has been shown [7] that it can be done just as efficiently on a quantum computer as
a classical system can be simulated on a classical computer.

Another useful analogue between a quantum computer and a classical one is the notion of universal gates.
While classically either the NAND or the NOR gate are universal, more gates (unitary operations) are
required to form a universal set for a quantum computer. Figure 2 shows a common choice, which is a
combination of single qubit gates (Hadamard gate H , phase gate S and 7 /8-gate T') and a two-qubit gate
to create correlations (the controlled-NOT gate C NOT'). An arbitrary algorithm U (as in figure 1) can
therefore be implemented using these gates only.

Hadamard E%(i _11)
Phase (

O =
= O
—

1 0

/8 =\o eiﬂ/4)
1000
cnor | =0 100
S (R
0010

Figure 2: Universal set of gates for quantum computing.

2 Quantum Error Correction

The introduction to quantum computing given in the last section makes a crucial assumption: The qubits
constitute a completely isolated quantum system in which perfect unitary operations are performed. This
assumption obviously cannot hold in any physical realisation of a quantum computer and it is therefore
valid to ask whether or not any of the mentioned algorithms can be achieved in reality. Inspired by this
question the field of quantum error correction developed and showed that errors can indeed be corrected
for.
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2.1 Error Model

The error model used for the simulations introduces two error sources: Decoherence errors and opera-
tional errors. The former are modelled by the so-called depolarising channel, which represents a random
interaction with the environment. This picture is equivalent to the following: Given an arbitrary qubit
state, it will experience a random application of one of the Pauli gates with probability p/3 each and will
be left alone with probability 1 — p. An initial density matrix p will therefore evolve according to

p—*(l—p)p+§(XpX+YpY+ZpZ)- ©)

The interaction with the environment is assumed to take place over the entire duration of an algorithm.
Accordingly, the decoherence step (3) is performed at every time step in the simulation. The other error
source, operational errors, are caused by the experimental imprecision when manipulating the qubits,
which needs to be taken into account whenever a unitary operation is performed. They are modelled
by re-expressing the action of the quantum gate matrices U (in the {|0), |1)}-basis) in terms of planar
rotations R(6) and polarisations P(¢):

U=R(0)P(¢) =U(6,9), )
where
n0= (50 B0 wa o= (3 L) ®

To model the experimental imprecision, Gaussian errors €, 4 are added to the angles 6 and ¢, giving an
erroneous operation U, = U(6 + €y, ¢ + €;). The most significant erroneous gates in the context of the
later sections are the Hadamard gate H, and controlled-NOT gate CNOT:

™

Hf:R(4

+ 60) P(m + €g) (6)
and

CNOT, = [0){(0| ® T+ [1)(1] ® X,
= (00| ® I+ [1)(1| @ B (5 +€0) Pm+ o). ™

22 Steane Code

Classically, it is straightforward to correct for errors by simply adding redundancy to a bit-value and
performing a majority vote to detect any errors (that occur with low probability). In quantum computing,
more sophisticated encoding and error detection methods are needed as a quantum state cannot simply
be copied (in general) and direct measurements destroy any quantum superposition in the data.

In this project we have employed a 7-qubit encoding scheme called the Steane code [3, 4, 5], i.e. 7
physical qubits represent one logical qubit. Figure 3 shows the encoding circuit using gates from the
universal set, as discussed previously, where the basis states {|0),|1)} are encoded into a logical basis
{l02),[1L)} according to

1

|0L> = \/g

(10000000) + [0001111) + [0110011) + [0111100) ®
1010101) + [1011010) + [1100110) + [1101001))
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Figure 3: Encoding circuit for the Steane code. Multiple C NOT operations with the same control qubit
commute and are therefore combined. The decoding circuit is the same circuit applied inversely.

and

1
l11) = —=(|1111111) 4 |1110000) + |1001100) -+ |1000011)

V38 ©)
|0101010) + |0100101) + |0011001) + |0010110)).

Once encoded, some of the logical gates from the universal set of gates can be applied transversally
on the encoded qubit (Hadamard, Phase and controlled-NOT). In other words, manipulating the logical
qubit corresponds to a manipulation of the constituent physical qubits, such that the following identities
hold for the logical gates:

H =H®H®...9 H=H®" (10)
CNOTL = CNOT;§CNOTzyg...CNOT} 14, (11)

where the numbers in the subscript denote control and target qubit of the two-qubit C NOT -operation.
Transversality is a clear advantage over other common encoding schemes (e.g. 5- or 9-qubit codes [4, 5]),
as there is no need for intermittent decoding and re-encoding to allow for the application of gates. Once
encoded, single errors per block can be detected by using syndrome measurements as depicted in figure
4. Note that this is done indirectly using C' NOT'-gates to entangle auxiliary qubits to the original system,
so as to protect the encoded information.

2.3 Fault Tolerance

Taking the Steane code as an ideal correction algorithm guarantees that any single error per logical
qubit block and correction step can be corrected with certainty. However, in reality, the circuits used for
encoding, correction and decoding are made from the same building blocks as the error-prone algorithm
to be protected. This means that the correction mechanism is erroneous itself and the next question
arises: Can quantum error correction help at all? The answer to this question is given by the so-called
threshold theorem that states that if the error probability is below a certain value, the correction procedure
corrects more errors than it introduces itself. For this to work, the entire correction scheme needs to be
fault-tolerant, meaning that any single error per block of 7 qubits and per correction step needs to be
detectable. If this is the case and independent errors are assumed as in our error model, together with a
single error probability p, a block will only fail if two or more errors occur within the correction step,
which happens with probability O(p?). The encoding and decoding (figure 3) are necessarily non-fault-
tolerant (as they are not error corrected), but the syndrome measurement in figure 4 can be made fault-
tolerant by removing the vulnerability to error-propagation in the ancilla qubits: If these are affected by a

12
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Figure 4: Indirect syndrome measurement for the Steane code using three ancilla qubits. The location
of a Pauli-X error can be detected through the measurement results s;, such that it can be undone by
applying a Pauli-X matrix to qubit number s55; s (in binary notation). Repeating this circuit with logical
Hadamard gates on either side (change of basis) enables the detection of a Pauli-Z error and therefore
also a combination of the two, which is a Pauli-Y error. Note that this circuit is non-fault-tolerant. More
ancilla qubits are needed for a fault-tolerant implementation.

single error, this error may propagate through the block undetected and may eventually be transferred to
further blocks in the next correction steps. A fault-tolerant implementation is obtained by using 4 ancilla
qubits in an entangled state called the Shor state and a further qubit to detect errors in the preparation of
this state!. Accordingly, 5 qubits need to be added to the 7 qubits that encode the logical qubit, giving a
total of 12 physical qubits per logical qubit.

3 Simulation

The Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS) [1] was used to find
the threshold values based on the previously introduced error models. All 2V complex amplitudes of
the N-qubit quantum system are distributed among the available processes of the distributed memory
parallel computer that is used and gates are performed as functions which update these amplitudes on
the fly. The software includes the entire set of universal gates (figure 2) enabling simulations of arbitrary
algorithms.

3.1 Error-Prone Simulations

In general, the introduction of errors requires the notion of mixed states with corresponding density
matrices. However, as the memory needed to store the state vector of an N-qubit state is already 2V 4
bytes (using 8 byte double precision arithmetics) and would increase to 22V 8 for a density matrix, an
approach is implemented that uses pure states only. In this scheme, a general IN-qubit density matrix
p is sampled over M statistical runs, each yielding a resulting pure state |¢;). The final result is an
approximation pps according to

1
pM = r ;mi|¢z‘)<¢i|

M’EM%)WH = p,

!See [1, 6] for details
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where m; /M is the relative frequency approximating the probability p; of state |1);).

32 Involution Algorithm

To study the effects of quantum error correction, an artificial algorithm is used. It is based on involutions
of either the Hadamard gate (single qubit case, H?* = I, k € N) or, as studied here, the CNOT
gate (two qubit case, CNOT?* = I). This model gives the possibility of examining different algorithm
lengths while providing a direct comparison to the ideal state, which simply remains unchanged.

In previous work by Trieu [1] the fault-tolerant implementation of the 7-qubit code was tested on single
qubit algorithms of the form H?*. The threshold in the case of decoherence errors was found to be
Dthr = (5.2£0.2) - 1075 and in the case of operational errors o, = (4.31 +£0.02) - 102, where both
thresholds were determined in absence of the other error source respectively.

4 Results

For the sake of saving memory space it is possible to use the 5 ancilla qubits for both logical qubits in
the simulation of the C NOT?*-algorithm, giving a total of 7 4 7 + 5 = 19 qubits. As a measure for the
similarity of the resulting erroneous state to the ideal state at the end of the algorithm, a quantity called
the fidelity is used. The fidelity F' between two mixed states p; and py is defined as

F= [Tr( \/p_po\/p_l)]2, (12)

which can be sampled with pure states according to

z ¢znzt|¢] ) (13)

where M is the total number of iterations, |¢;) are the resulting states and |1;,;;) is the initial, unchanged
state.

4.1 Decoherence

For the decoherence simulation perfect gates were assumed in order to extract the influence of decoher-
ence errors only. In the uncorrected case of two qubits, the loss of fidelity can be determined analytically
by the density matrix p2* after 2k iterations, giving

Fee = <¢init|p(2k)|¢z‘m‘t)

2k
:}1<1+3(1—§p) ) (14)

where p is the error probability in eq. (3). This result is independent of the initial state and it is therefore
convenient for assessing, in the error correction case, the impact of different initial states on the resulting
fidelity. For this purpose, the separable initial state |00) and the maximally entangled state —- (|01) [10))
were chosen.

The results in figure 5 show that for both initial states the threshold error probability pp,. fulfils the
constraint 1075 < pg, < 1076, This is in agreement with the result of about psr &~ 5 - 1075 in the
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single qubit case. The noise in the p = 107° case is due to the high number of iterations required to
sample the slight decrease in fidelity. On the JUGENE [8] architecture a total of only 8192 iterations
took about 6 hours on a rack of 4096 processors.

p=107 p=10"

T T

ww\‘ﬁm . 0.998}

Fidelity
<)
=
W
Fidelity

09% 200 400 600 800 1000 099755 200 400 600 800 1000

CNOT? Iterations CNOT? Iterations

Figure 5: Decrease in fidelity for two unencoded qubits (dotted line) and the 19 qubit error correction
case for the initial states |00) (black) and %(|01) — |10)) (grey) with error probability p = 107> (left)
and p = 1075 (right). Number of statistical iterations: 2048 (left) and 8192 (right).

4.2 Operational Errors

In a similar fashion to the analysis of decoherence errors, the influence of operational errors was tested in
the absence of decoherence, i.e. with p = 0. For unprotected qubits, the fidelity can again be calculated
analytically by using density matrices and integrating over all possible Gaussian errors. Starting in a state
Pk the effect of operational errors in the time step k — k + 1 gives a density matrix py.; with

L[> [ to—(3+€3)/(20%)
pri1= 5 / / CNOT.pyCNOT e~ (a7 degdeg. (15)
MO J—00 J -0

The fidelity is now dependent on the initial state: For the separable state? |11), the analytical result after
k CNOT? iterations is

Fop = 5 (14 e7%), (16)

while for the singlet state %001) — [10)), the same analysis yields

—40’2k + 36—3/20‘216. (17)

oo |
o

3
Fop2:§+

The results in figure 6 show an influence of the initial state on the utility of quantum error correction.
While the order of magnitude confirms the threshold found in the single qubit case (o¢pr =~ 0.043), there
is a factor of about 3 between the thresholds for the separable state (left, o3, =~ 0.055) and the one of
the singlet state (right, 043, ~ 0.02). A source of this discrepancy may be the error model that introduces
errors only on the target qubit, therefore causing the entanglement of the singlet state to be destroyed,
which is accompanied with a decrease in fidelity.

2100) would not be affected at all, which follows from eq. (7)
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Figure 6: Value of the fidelity after 100 CNOT? iterations with varying standard deviation o for opera-
tional errors. The dashed curves are the analytical results for two unencoded qubits (left: eq. (16), right:
eq. (17)), the data points are the simulation results for error correction with 19 qubit (with spline fits)
and the grey vertical line indicates the threshold. Left panel: initial state |11). Right panel: initial state
ﬁ (|01) — |10)). Number of statistical iterations: 4096 per data point.

5 Outlook

5.1 Modification of Error Model

The error model used in the case of operational errors gives an erroneous C N OT, matrix

10 0 0
01 o0 0

0 0 —sin(eg) cos(eg)e’e |’ (18)
0 0 cos(ep) sin(ep)es

CNOTE =

which clearly shows that there is a bias on the target qubit, as only the lower right part does not correspond
to the identity matrix. A next goal in the investigation of a fault-tolerant implementation of the CNOT'-
gate would therefore be a generalisation of the error model as a rotation similar to the single qubit case
(see eq. (6)). As proposed in [9], a possible physical implementation of the C NOT-gate can be based
on the NMR Hamiltonian

Hxwvr = —JS; S5 — hi S — h3S3, (19)

where J is the coupling strength between the two qubits and A, /, represents the strength of the applied
magnetic fields. The time evolution ek | together with some additional rotations, yields the CNOT-
gate, so a more general error model can be formed by incorporating errors into the Hamiltonian. As a
result, a possible modification of the C NOT-gate can be the following:

CNOTG = 616171.1 01 el€2n2.0'2 CNOTe—’l,ﬂ’nl .Ule—Z€2n2.02 . (20)

Here n; are random unit vectors chosen isotropically and ¢; = (X;,Y;, Zz-)T is the vector of Pauli
matrices for qubit ¢. The errors €; now correspond to fluctuations in the spin operators of the Hamiltonian
(19).

52 Investigation of Arbitrary Algorithms

For the assessment of fault-tolerant error correction, a test of useful algorithms (rather than the artificial
ones used here) would give more relevant results concerning the threshold. Unfortunately, the number
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of qubits that can be simulated to this day is very limited. The largest run as of yet only simulated 40
qubits, and the requirement of at least 7 qubits to encode a single logical qubit therefore currently limits
the total number of logical qubits to about 5. With the necessary sampling of the density matrix and the
associated large number of iterations, this number is reduced even further, making it impossible to find
thresholds for larger algorithms. One possible approach to tackle this problem is to reduce the algorithm
size to 2 or 3 qubits in order to infer the threshold for larger systems, for example with a 2 qubit quantum
Fourier transform. However, this algorithm requires non-transversal gates like the 7 /8-gate, which would
require even more resources when implemented. These problems are clearly overcome with simply more
computing power and more memory space, SO more progress can be made in the future.

6 Conclusion

With the previously mentioned restrictions in mind, we have shown that fault-tolerant quantum error
correction works, within the introduced error model, for both decoherence and operational errors. Inde-
pendent of the initial state, the threshold was shown to be approximately of the same order using either
single qubit Hadamard or two qubit C NOT'-gates. Once this threshold is reached, there is the possibility
of refining the error correction by concatenation, i.e. by adding additional levels of error correction to the
already encoded qubits (7 - 7 = 49 physical qubits per logical qubit as a first concatenation step). While
the threshold for operational errors can be reached with devices already existing today, the decoherence
threshold is still out of reach for quantum computation. Nonetheless, once the thresholds are reached in
the future, the methods for establishing arbitrarily good quantum error correction will be readily avail-
able.
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Abstract:

Calculations in lattice QCD are very time consuming and need an enormous amount of mem-
ory and computing power. Inverting the Dirac-operator is very costly. Many architectures com-
pute faster in single than double precision. It is possible to speed up the inversion of the Dirac-
operator by iterative “mixed precision” solvers by a factor of almost two. The Monte-Carlo
integration is done by a multi-hit Metropolis algorithm based on random uniformly distributed
SU(N) elements.

1 QCD on the lattice

Quantum Chromo Dynamics QCD is the modern theory of quark gluon interactions. It is part of the Stan-
dard Model of elementary particle physics. The early construction of QCD and the Standard Model itself
were based on observed symmetries in the spectrum of particles. These symmetries were coded into a
Hamiltonian, including all known interactions beside gravity. It is possible to transform this Hamiltonian
into a Lagrangian form which is, quite apparently, Poincaré invariant (Legendre transformation). The
part concerning strong interactions was the starting point of my investigations. In Minkowski space it
takes the form

(T, T,0,09, A,04) = ¥(z) (iD(z) — m) ¥(z) - }lu (FC, () Fo (z)). )

The fields ¥ and ¥ are fermionic and hence anticommuting. These are the elementary quark fields. The
field strength tensor

F;,(2) = 8,45 () — 8, A5 () + gf P Af(2) A} (2) 2

contains the bosonic gluon fields. The last term vanishes in the Abelian case, where the structure con-
stants f°° are trivial. The coupling to the fermionic fields is expressed in the covariant derivative

with I) = ¥*D,,. The so-called gauge Lie group has generators 7. The vector potential A, lives in the
algebra of the gauge group and is therefore a linear combination A, = A7,7° € su(N) of the generators.



It has been shown!, that the only possible choices of gauge groups? are U(1) and SU(N). The gauge
group of the electro weak interaction is SU(2) x Uy(1), which are spontaneously broken via Higgs’s
mechanism. The strong interaction is described by a SU(3) local gauge group.

The coupling of the theory depends on the renormalization scale. In some cases this is indirectly the
energy scale of the problem. QCD is an asymptotically free theory, hence it has a vanishing coupling for
ultra high energies and an extremely high coupling for very small energies. It is possible to do asymptotic
expansions in the coupling g to describe scattering amplitudes for high particle energies. In the case of
low energies one can expand in the inverse coupling g~!. This is only possible with static fermions. The
Noether charge corresponding to the SU(3) gauge symmetry is called colour. It cannot be observed in
experiments directly — bound states of quarks must be colour singlets because of Fermi’s principle. This
property of QCD is called confinement and cannot be generated within perturbation theory. Therefore
one needs non-perturbational methods to describe real bound states like Mesons and Baryons.

The N-point correlation functions of the theory can be used to do spectroscopy of a /N-particle bound
state and can be expressed by Feynman path integrals:

_ 1 _ _ i & -
(T(zy)---U(zn)) = % / DUDUDA U(z,) - - - U(xy)e SILY:0¥.0%,4.04] @)

where the action S is the 4-integral over L. Path integrals of this type are not well defined. They need
a regulator. Here enters lattice QCD . It is possible to define a spacetime lattice of finite size, calculate
the correlations functions and do the continuum limit again with the help of phase transitions. One can
determine e.g. the mass ratios of different bound states.

The non-Abelian nature of the interaction results in the self interaction of the gluons. They can bind?
without fermions! My calculations are done in pure gauge theory. I have neglected the dynamics of
the fermions, which reduces the simulation to only gluodynamics. It is still possible to determine some
fermionic observables, which are astonishingly realistic.

The discretization of the spacetime and fermionic fields is done as follows.

zh — oh = ank JDY — I, [ o ®)
U(z) — U, =U(z,) [diz —a*- Y,

Let us assume the number of lattice sites is finite, this allows an estimate of the problem’s size. The are as
many integrals as lattice sites to evaluate by eqn. (5). Each of these integrals covers the whole lattice. To
achieve a physically realistic situations the lattice volume needs to be large and the lattice spacing small
against the scale of the events to observe. Doing these integrals by Monte-Carlo approximation is the
only known way to compute them in reasonable time. The most time is spend to matrix multiplications
of the gauge group elements and spinors. Let Nc be the number of colours and L be the number of
lattice sites in one direction. The number of FLOPS will scale approximately like L* x NZ. Realistic
dimensions for today’s workstations are L = 16...32and No = 2...5.

The covariant derivative was constructed under the assumption of an arbitrary small distance between
two neighbouring points in spacetime. This is no longer true, because of the finite lattice spacing. The

!The Coleman-Mandula theorem is based on following assumptions:

1. The S-Matrix is based on a local, relativistic quantum field theory in 4-spacetime;

2. there are only a finite number of different particles associated with one-particle states of given mass and
3. there is an energy gap between the vacuum and the one particle states.

There exists a supersymmetric extension to graded SU(N, M) groups by Haag-Lopuszanski-Sohnius theorem.

2More exactly: the symmetry Lie-group of the S-Matrix is a direct product of the Poincaré-group and a semisimple internal
gauge Lie-group.

3Bound states of gluons only are called "glue-balls".
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mathematical structure* of a Yang-Mills theory like QCD allows to define a parallel transporter:

ig [T2 A(z(t))dt
U(zs, 21) = Pe et AFOE ©)
T + dz"¥ z + dz* + dx¥ n+v n+up+v
—igA,(z + dz") Ul(n+v)
4 _
L. : S\
S
> 8 = 1._
bR < & =
8
) E’ )
+
+igA,(z) Uu(n)
T z + dz* n n+p

Figure 1: The plaquette is the smallest loop along the links of a lattice. The gauge fields are assigned to
the links of the lattice. They take the role of an affine connection in the continuous case. In the discretized
version they are parallel transporters along the links.

where z(t) is a continuously differentiable path from z; to z2. The pathordering symbol P [-] makes
sure that the path is monotonously parameterized in ¢. This parallel transporter simplifies in terms of
its Taylor expansion to A, itself if the path is arbitrary short. Let us define the so-called Wilson-link
Uu(n) = U(zn + aey, ) = U'(zn, Tn + ae,), where v is the direct line from z;, to ,, + ae,,. The
symmetric discrete covariant derivative of W is written using the Wilson-link.

_ 1

V¥, oa

(Vw0 ¥ = Uf (0 — ) T,,) )
The dual lattice corresponds to the momentum space. A regular lattice has a Brillouin zone of finite size.
At the surface of the Brillouin zone and at the origin the lattice momentum vanishes. This would lead
to non physical states, because the Green’s function of the Dirac-operator would have extra residues for
each solution of p? + M? = 0 with bare quark mass M. But one can shift these solutions by adding
a second order derivative, which is vanishing in the continuum limit. The content of only one Brillouin
zone is sufficient to describe a system on a lattice with periodic boundaries. With this in mind a lattice
analogue of the Dirac operator can be defined:

1
Drvr‘:n = (4r +aM)dypn — % Z [("' - 'Yu)Uu('n')am,n+u +(r+ 'YM)U:E("' - /‘)5m,n—p] . 8
m

The superscript ‘“W* stands for Wilson who first proposed this operator. The constant 7(= 1) shifts the
residues.

2 Mixed Precision Solver

The fermion propagator contains the solution of the equations of motion of the system. For lattice calcu-
lations it is necessary to do a Wick rotation of the spacetime. This transforms a Minkowski metric to a
Euclidean metric by analytic continuation to the complex plane. It is now possible, e.g., to determine the

“The gauge fields living in the vectorbundle of the gauge algebra over the spacetime manifold.
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mass of bound states. To do that one must invert the Dirac operator. The fermionic part of the action is
integrated® and set to a constant:

(T {8 Ua)) = 257 [ DU U@)¥a)e ) = (D Wam) O
det D é const. (10)

This is connected to the Euclidean Green’s function of the system in the means of contraction [5, p. 32]
and [5, p. 109]. The time ordering symbol 7 [-] makes sure causality is preserved. Propagators are not
gauge invariant — they need gauge fixing.

The Dirac operator is linear and local. Hence it can be written as sparse matrix eqn. (8). The linear system
Az =D ri =b— Azx; (11)

stands for that. The vector z; is the best available guess and r; its residual. One is interested in the
application of the inverse Dirac operator to a source vector, to determine its propagation. There are
several iterative solver which project the inverse matrix application on a vector to a Krylov subspace,
which is the span of monomes of the matrix itself applied the same vector:

A0 = agb+ a1 A + a A% + a3 A3b + - - - . (12)

A very efficient choice is the Conjugate Gradient algorithm (CG) which was implemented as described
in [6, p. 176]. It comes with the drawback that it is only applicable to hermitian and positive definite
matrices. The Dirac operator itself is not, but (D D)~ D' = D! is a workaround for that®. An alterna-
tive to CG is the Minimal Residual algorithm (MinRes). To solve the problem directly’ one can use the
bi-Conjugate Gradient Stabilized algorithm (BiCGStab) [6, p. 217] or the Generalized Minimal Residual
algorithm (GMRes).

The desired accuracy of these solvers is of order 10713, which can be done in at least double precision.
In real world simulations this is a problem. The partial derivatives require at least nearest neighbour
knowledge, which means on distributed memory systems one must communicate these at each applica-
tion of the Dirac operator. There is a possibility to reduce the amount of data by using “mixed precision”
solvers. An outer solver refines the solution with simple iteration steps in double precision, alg. 1, and
an inner solver uses one of the mentioned algorithms to calculate the necessary corrections ¢; in sin-
gle precision, where a is a single precision version of A. A second benefit from that is that on systems

Algorithm 1 simple iteration
repeat
compute 7; = b — Ax;
solve at; = r; in sgl. prec. with, e.g., CG
update Ti+1 = T4 + tz
until [|r;[| < €[[b]|

which have SIMD? extensions one can do twice as many floating point operations as before. But there
are drawbacks, too. For all used fields there must be a single precision copy.

The residuals for CG (A = D'D), BiCGStab (A = D) and their mixed versions are shown in fig. 2.
On the test machine’® single and double precision are processed at same speed. To emulate the effect

°It is a gaussian path integral of the shape [ DYDY exp (—¥M¥) = det M, where ¥ and ¥ are grassmannian.
‘A=D'D

"A=D

$0n Intel/AMD platforms the SSE series and AltiVec on PPC platforms.

° An Intel Core2 quad system.
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Figure 2: The residual of a CG, BiCGStab and their "mixed versions" is shown for a thermalized SU(2)
configuration on a 324 lattice and a thermalized SU(3) configuration on a 24* lattice. The mixed versions

are at least 1.7x as fast as their double precision counterparts. In the SU(2) a much higher speed up is
observed.

64bit double and 128bit long double were used instead of 32bit float and 64bit double. The much higher
speed up for the SU(2) case might be a memory bandwidth or cache/prefetch effect. This is not clear

up to now, because the used compilers do some vectorizing optimizations, which are not apparent to the
programmer.

The speed up my “mixed precision” is quiet significant and might be even higher on distributed memory
systems. To evaluate the path integral one needs to average over many inversions on different configura-
tions (gauge fields).

3 Multi-hit Metropolis

The Metropolis algorithm [4] is a simple but effective way to achieve a Gibbs sampling of phase space.
Regions which bring a significant contribution to the pathintegral are sampled more dense, than others.
The Metropolis algorithm constructs a Markov chain of gauge fields. A single Metropolis update is
expensive, because one must calculate the difference of the gauge action involving six plaquettes:

Rtr

swi=8%" [1 - o (U,I(n)U);(n +v)U, (n+ p)U,L(n))] (13)
u<v,n

The inverse temperature (3 is not related to the physical temperature! It is the temperature of the Gibbs

ensemble. The physical temperature is zero if the box length is sufficiently large > 1fm) in each direc-
tion.

Some of the needed matrix products can be reused if one does many update tries at each link. The justifi-
cation for that can be found in [3]. A possible algorithm is shown in alg. 2. The resulting configurations
can be slightly more correlated for many hits, but the speed up is significant. In fig. 3 the thermaliza-
tion phase and the resulting distribution of gauge fields is shown. The resulting distributions after the
thermalization are independent of the number of hits.

The logarithmic scale of the number of effective'® updates implies, that linear graphs in the plot show

10Rescaled to the equivalent number of one hit sweeps.
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CG | mixed | BiCGStab | mixed
CG BiCGStab
SU(2),32%,3=2.41.00 | 4.1(7) | 1.4(6) 6.2(3)
SU(3),24*,3=6.0 | 1.00 | 1.7(9) | 1.4(1) 2.9(7)

Table 1: This table shows the speed up of different algorithms compared to CG for different setups.

1 2 3 4 5
SU(2),B=24 | 1.00 | 1.5(7) | 1.9(3) | 2.1(7) | 2.4(9)
SU(3),8=6.0 | 1.00 | 1.5(3) | 1.9(2) | 2.1(7) | 2.4(0)

Table 2: The table above lists the speed up for an elementary update step against the number of hits.

a polynomial behaviour. For low ensemble temperatures a start from a constant configuration is wise.
The effective number of samples is dependent on the integrated autocorrelation time Nesr = N/(27int),
as described at [2, p. 432]. There might be an optimal number of hits, hence the autocorrelation rises
a bit with the number of hits. To estimate it one must measure the autocorrelation for different lattices,
temperatures, step sizes and gauge groups. A further benefit of the multi-hit Metropolis algorithm is, that
the stepsize can be higher the more hits are done. This lowers the autocorrelation again.

4 SU(N) Random Matrices

The last thing missing to take the expectation values are random gauge group elements. The use of high
quality pseudo random numbers is crucial to Monte-Carlo simulations to keep autocorrelation low. I
have used a Mersenne twister (mt19937) random number generator, because this type of generators has
a huge period and produces highly uncorrelated and evenly distributed random numbers. But that is not
sufficient to guarantee detailed balance in the Metropolis algorithm. Evenly distributed SU(IN') elements
are needed. The SU(V) Lie groups are semi simple. Especially U(1) and SU(2) are simple. It is therefore

Algorithm 2 multi-hit Metropolis, one sweep
1: U = given, const. or random configuration
2: for all links U, (n) do
3 8= UL+ v)Us(n+ 1) + ¥y, Un(n = 1)UL — 1)UL (0~ v + 1)
4 Sold = 6 — %?Rtr [S . UM(TL)]
5:  for number hits do
6: A = uni [SU(N)] close to Ly xn
7
8
9

U,(n) = AUu(n)
Snew = 6 — %?Rtr [S . UL('I’L)]
if uni(0,1) < exp [—B(Snew — Sold)] then

10: Sold = Snew

11: Uu(n) = U, (n)
12: end if

13:  end for

14: end for
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Figure 3: The left side plot shows the average plaquette in the thermalization phase of the SU(5) theory
on a 20* lattice for 3 = 18.0 against the number of effective sweeps. The right side plot states, that the
distribution of average plaquette values is independent of the number of hits.

possible to compose a random SU(N) element from random SU(2) elements in a very efficient way:
1
UeSU(N), S;e€SU(Q2), n= QN(N— 1),

n
U=Q)S: (14)
i=1
Hence the problem is reduced to sampling SU(2) as even as possible. It is a simple linear group, a general
SU(2) group element is therefore written
Si = sglaxo +i310'l +i.5‘20'2 +i.930'3, (15)

where o* are ordinary Pauli matrices. The algebra su(2) is isomorphic to s0(3), the groups are only
homomorphic by some homomorphism

¢: SU(2) — SO(3) ker o = {—1, +1}. (16)

That is why the parameters s; can be mapped to a 3-sphere and vice versa:

sy =cosa s1 =sinasinf cos ¢
sy =sinasinfsing s3 =sinacosf
with
¢ € [0,2m), a,8 € [0,7].

The Jacobian of 3-spherical coordinates reads r3 sin? a:sin #. To sample S° evenly ¢ and cos § are sam-
pled evenly. The distribution in « is not that apparent. The distribution function of « is not invertible as

such:

2 [« . 9 a 1 .
F(a)=— dg sin“f = — + — sin 2a. (17)
T Jo ™2
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Algorithm 3 SU(N) random matrices
1: if N =1 then

return exp [i - uni(0, 27)]

: end if

»

3
4: U= 1NxN

5: fori =0to N — 2do

6: forj=i+1to N —1do

7: a = F~! [uni(0,7/8)]

8 ¢ = uni(0, 2)

9: cos @ = uni(—1,1)

10: sinf = v/1 — cos? 6

11: s0 = uni(—, +)v/1 —sin o

12: 81 = sin @ sin f cos ¢

13: 89 = sin asin @ sin ¢

14: s3 = sina cos 6

15: S = sgloxg +isiot + isgo? + is303
16: U=U

17: fork=0to N —1do

18: Ui = SooUik + So1Ujk
19: Uy, = S10Uik + S11Ujk
20: end for

21: u=U0'

22:  end for

23: end for

24: return U

The inverse distribution function creates the needed distribution in « from a uniform distribution in [0, 1].
There are different ways to invert it on an interval, e.g. an expansion of the inverse.

a=F)= % 6303 + §a+ %6%% + 117656%% +0 (a®) (18)
An expansion of this kind works well!! for a € [0,1/2] which is mapped to o € [0, 7/2]. To cover the
second half of the interval o € [0, ] one chooses a random sign in front of cos « terms. This works,
because cos « is point symmetric to o = 7 /2. Alternatively one might solve F~![-] numerically e.g.
using Newtons rule. Based on that an algorithm alg. 3 can be formulated, based on [1, p. 17]. The step
size in the SU(NN) group can be modified by restricting cos « to values close to one. This results in
small values of sin & and group elements close to the identity. This step size can be used to modify the
acceptance rate of the Metropolis algorithm. This is totally fine if this is done in the thermalization phase
only and only a few times. A reasonable acceptance rate for elementary updates is 0.4...0.5.

S Summary

Mixed precision solver bring significant speed up to lattice QCD simulations. They yield the same preci-
sion as their ordinary variants by using lower precision for time critical parts. This reduces the amount
of data to be sent by a factor of two. Processors with SIMD extension can also do up to twice the number
of FLOPS. The production of configurations in pure gauge theory can be accelerated by reuse of matrix

! A relative error of order 10™* of an expansion of tenth order.
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products in Metropolis update steps. A five hit update results in at least twice the number of elementary
update steps in the same time. The generation of uniformly distributed gauge group elements as desired
for a justified Metropolis algorithm is expensive. The described algorithm generates them with a rate of
O(200mb/s) on the test workstation. The used algorithms enable an ordinary todays workstation to do
pure gauge lattice QCD simulations in reasonable times. Especially the “mixed precision” solvers can
bring great speed up on distributed memory systems.
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Abstract:

This work focuses on integrating SIONIib into ProFASi by introducing a new middle layer
library called Single-File File System. SFFS aim is to extend SIONIib capabilities to make it a
general parallel 1/O replacement for standard C/C++ paradigms. This paper introduces SFFS
concepts and discusses achieved ProFASi performance gains and the integration process.

1 Introduction

1.1 The Problem

There are some applications that are inherently parallel and can achieve good scalability even to systems
with hundreds of thousands processes. It is possible and tempting to extend such application by using
MPI (Message Passing Interface) just for communicating between processes and distributing the work
among them, when the rest of the code base is portable. With such a simple approach certain phenomena
may manifest when the problem is put onto large computing systems. One such problem is to deal with
massive amounts of files created by all the tasks during a run. An application where a task manages all of
its files locally can easily use about 10 — 15 files per process. Such a situation is perfectly fine for a serial
application or small parallel systems. However, on the scale of hundreds of thousands tasks the number
of files automatically grows to millions. Even though file systems on supercomputers are designed to
perform well in parallel environments, a locking on working directory occurs each time a new file (or
directory) is created. This leads to serialization of the tasks as long as they operate on the same directory
which usually is the case. Measurements have shown that the time used to create the file structure can
exceed 15 minutes on 16384 processes, which equals to 2730 CPU hours.

Another problem is that usually such file systems use rather large basic block size, e.g. 1 MB on JuRoPA’s
LUSTRE and 2 MB on JUGENE’s GPFS. This means that every atomic operation on the I/O server
actually involves multiples of 1 or 2 MB (respectively for given examples) regardless of the actual size
of the data. This can lead to performance degradation if one does not take special care about the I/O
operations structure.

1.2 ProFASi

ProFASi stands for Protein Folding and Aggregation Simulator [2]. It is a good example of an application
hit by the aforementioned problems.



It was parallelized using the parallel tempering method. In parallel tempering independent copies (replica)
of the system are simulated at different values of a control parameter, most often, the temperature. After
some time an exchange of two replica at neighbouring temperatures 7; and 77 is attempted. The accep-
tance probability is given by Ppy (%, j) = min(1, exp((8; — 8;)(Ei — E;)), where 3; = ﬁ with kp the
Boltzmann constant and E; is the total energy of replica 7. The exchange move results in a random walk
of the replica in temperature space. By moving to higher temperatures, replicas can escape local minima
more easily.

It is tempting to collect the statistical data including histograms, averages, and conformations in a sepa-
rate directory for each replica. This keeps the logic of the code simple and also provides a clean structure
for post processing. Each process creates about 15 files of different types including human-readable al-
phanumeric data for convenient viewing of computed observable values and binary data types meant to
be snapshots for restarts or to be used as input for visualization software.

Parallel tempering makes ProFASi scalable even to the largest existing parallel computers such as JU-
GENE. Because the parallel version was originally developed for small work-station class PC it used
the standard C/C++ paradigms and methods for I/O operations. This became a concern of the develop-
ers. As they started to use ProFASi on larger and larger number of cores, I/O introduced a considerable
negative impact on the performance. Moreover used computing methods and the application itself are
being constantly improved so the relative influence of the file access on overall performance is rising to
an unacceptable level.

13 SIONIib

SIONIib (Scalable 1/O library for Native parallel access to binary files) [1] combines file output from
each task into one large shared file. This alone solves the file creation problem. It is optimized to fully
utilize the underlying parallel file system and provides an easy to use interface to make the adaptation of
the existing code as easy as possible.

Usually, if one uses standard C posix functions, only fopen() / fclose() need to be changed to their SIONIib
counterparts which are sion_paropen_mpi() / sion_parclose_mpi() respectively. After opening the SION
file the user is given a standard FILE* pointer and can perform write operations using unmodified fwrite()
call. SIONIib assigns every process a chunk of a shared SION file, which is always aligned to base file
system block. There is no need for any locking between writing tasks as each process "owns" and is
allowed to write only to its allocated chunk (thus file system blocks). This allows effective parallelization
of I/O operations almost transparently to the user. The only collective calls needed are for opening and
closing the SION file.

FS Block 1 FS Block 2 |Fs Block 3| |FS Block 4 || FS Block 5||FS Block 6| Fs Block 7| FS Block N
| Block 1 |

M XoO0=Tomn3
N X00=T0mn3

Figure 1: Typical SION file structure. The figure shows how data chunks of each process are organized
inside the collective file. One can see they are aligned and sized to match exactly the underlying base file
system structure [3].

Although the outline of SIONIib advantages seems to make it a perfect solution for ProFASi and sim-
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ilar applications it still introduces some drawbacks. Under certain conditions they can even make the
portability goal impossible to achieve. If one would like to use unmodified fwrite() function special care
needs to be taken not to violate the process’ chunk boundaries. SIONIib provides the necessary functions
and wrappers to ensure the correct behaviour but it implies further changes to the existing code and may
introduce some unused space in the chunks. When the user wants to write data of size greater than the
space left in the chunk, the current solution is to simply allocate next chunk for the process and write in
there. This fragmentation can be dealt with by a utility provided with SIONIib as a post-process step. It is
not possible to write a block of size larger than the specified chunk size, as even allocating a new empty
one would not be sufficient. The user’s application would have to split and buffer the data before writing
it to a SION file, obviously making the whole code adjustment process more complicated.

Another peculiarity of SION/ib, which might make it hard to utilize it, is the fact, that the current imple-
mentation allows a process to have only one binary stream (task local file) per SION file. This might be
easily overcome by using several SION files within a process, one per a filetype that the process uses.
This solution is not always an available and wise approach to take. It can be very troublesome to fully
utilize SIONIib capabilities if local files are too small to fill up a chunk, which often is the case with
statistical alphanumeric data. In general, the user could be left with several SION files and lots of wasted
space, at least during the run.

The last major concern we encountered during our initial evaluation of SIONIib capabilities and ProFASi
needs is that SIONIib does not support random write access, even assuming that the user takes the re-
sponsibility of preserving SION file consistency, especially not violating chunk ownership. This means
that one can treat the "logical" local file given by the FILE* pointer from SIONIib only as a serial output
stream. This issue usually implies a redesign of the I/O model if the application rewrites files during the
run as it is not possible to provide this functionality using SIONIib routines without major performance
hits. All of the tasks would have to collectively close the file and rewrite its data.

It may seem that solving presented problems might be a cumbersome process. It should be clearly stated
that the library is still in an early stage of development and its original goal was to introduce an easy to
use and efficient mechanism to do checkpoints and restarts. For this purposes SIONIib performs excep-
tionally well since stated troublesome use-cases are rare. After consultations with ProFASi and SIONIib
developers it was decided that the library has the potential to be efficiently utilized as a general I/O
replacement to standard calls for massively parallel systems with the introduction of a middle layer.

2 SFFS

2.1 Motivation and General Ideas

SFFS is an acronym for Single-File File System. The main purpose and starting point of the library was
to fully utilize SIONIib functionality without the need to alter existing I/O operations structure. This was
to be done by combining all the task-local files into one binary stream, which would act and be treated
as task-local and then be written using SIONIib.

Because SFFS is a middle layer between user and SIONIib, it was possible to introduce some design
concepts and provide an API that make the new library more general and reusable. The initial idea was to
provide a simple, easy to use extension to SIONI/ib that would cope with as many potential disadvantages
as possible allowing it to be used as a real general purpose I/O replacement for parallel applications.
Ideally the middle layer should negligible overhead.

The introduction of a new user API led to the idea to completely separate the user from the real back-
end I/O calls. This gave me a lot of freedom in designing the user’s interface. Also a generic back-
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end I/O concept was provided, making it easier to implement different back-end systems for handling
the combined user files. In general SFFS’s conceptual credo could be stated as: "Keep it easy to use,
extensible and fast."

2.2 SFFS Design Concepts

The two main concepts are the back-end Input/Output Interface and a design unit called FileSystem
model.

The latter consists of two entangled classes File and FileSystem. They are separate because one FileSys-
tem object handles multiple File instances. Their implementation will depend on each other so much that
they cannot be treated separately. This is due to performance reasons.

! Backend 1/0
i Input/Output

User

Interface

A

FileSystem

<—|—;— File

Buffer

A

(R |

Figure 2: The figure shows a usage diagram in SFFS. The arrows point from the object that is a user
to the object being used. The green "user" represents the end-user of the SFFS library. The rest are the
classes SFFS consists of.

2.2.1 FileSystem

An instance of this class will handle the virtual file system and provides methods for manipulating File
objects. FileSystem is also attached to a back-end Input/Output Interface responsible for communicating
with the data sink/source. The most important methods are:

e Constructor - to create an object
e isOpen () - to check if the object is accessible

e closeFsS - [Output mode] to manually close the FileSystem, after this call system is closed, fully
written to the back-end Output Interface and might be safely destroyed

e attachInterface - [Output mode] to connect the object to a back-end Output Interface after
the creation of the object
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e isInterfaceAttached() - [Output mode] to check if the FileSystem is connected to an
Output Interface

e createFile( ) - [Output mode] to create a File for writing

e openFile() - [Intput mode] to open a File for reading

It should be noted that there might be cases when a FileSystem itself is opened and fully accessible to
the user without an OutputInterface attached. This means that one can create and write to the logical files
before choosing and specifying how the binary stream will be written. This might be realized when a
FileSystem model uses internal buffering. The functionality, even though provided, should be avoided or
used with extreme care. The FileSystem eventually will need to write its data to the sink and the interface
for that should be accessible, otherwise fatal or undefined behaviour is inevitable.

This functionality was implemented in the standard approach to allow creation of the objects in the global
space or when the back-end Input/Output Interface could not be initialized beforehand. It is particularly
useful when one would like to redirect the standard streams to logical files or write some small debug
data before setting up the whole output system. For example SION/ib needs MPT_Init () to be called
before opening a file in the parallel mode, so no writes would be possible before this point without this
feature.

222 File

This concept represents a file object, which the user will use most often. Its purpose is to provide data
manipulation functions that resemble the behaviour of the standard C++ fstream binary mode. The
most important methods exposed to the user are:

e isOpen () - to check if the object is accessible

write () - [Output mode] to write a binary stream of data in Output mode

read () - [Input mode] to read a binary stream of data

seek () - [Input mode] to set the reader position in File at specified byte

tell () - [Input mode] to get the reader position

eof () - [Input mode] to check if the end of the file is reached

e getSize( ) - [Input mode] to get data size stored in the opened File

It should be noted that the user is not meant to explicitly create instances of this object. A logical file
should always exist within a FileSystem context. For any File object manipulation one should call appro-
priate FileSystem method, especially for those which involves creation of new File instances.

2.2.3 Input/Output Interface

The purpose of Inputinterface and Outputinterface is to provide a standard concept and methods of
handling the binary stream that a FileSystem model implementation will need. Implementations of the
interfaces will define how the FileSystem data will be really split and communicated to the back-end I/O
device. The interfaces implement methods that allow FileSystem and File classes to access the data as a
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contiguous binary stream. This is a very convenient approach, that eases the design and the process of
implementing a FileSystem model.

A particular example may be SIONIib, where a process’ data is split amongst chunks. SIONIib at the
time of creation of SFFS did not provide a function to map a logical position in the process’ stream
of data to the chunk number and the position in the chunk in a SION file. Those values are needed
for the sion_seek( ) function, thus for the purpose of random access of the saved data. In case of
SIONIib Inputinterface has to implement the functionality. If the back-end I/O system already provides
the necessary functions an Inputinterface implementation needs just to wrap them. An example of such
simple situation would be the standard C library. Its seek ( ) function behaves exactly as required.

From the user’s point of view the Input/Output Interface cannot be called really generic. It is for a
FileSystem model. Even though this might contradict one of the main goals - a complete separation of
the user from the back-end I/O, one does not need to know any internals. The only thing the user has to
do is to construct the object and sometimes close the interface. Moving the responsibility of the object
creation to the user allowed more freedom in specifying working parameters, such as filename and other
back-end specific settings. It would be very hard to provide a standard constructors and parameters that
would not limit the user. It was decided that it is better to make the user explicitly call one or two more
functions for the sake of versatility.

The most important method is the Constructor. Through it one can specify where and how the binary
stream will be written or read. If the implementation needs it, the Outputinteface can be closed before
the object destruction by calling the close method. This is the case, for example, with SIONlib where
a SION file has to be closed before calling MPI: :Close.

3 General Achievements and Failures

3.1 Accomplished Goals

e custom file creation; File objects can be created at any place in the code by calling appropriate
FileSystem method

e custom write pattern; the user does not need to care about the optimal data output nor split it
manually as this is moved onto FileSystem model

e case of use; File methods closely resemble those used in C++ fstream binary mode; usually
the only change needed is just the type of the object, method names and parameters are designed
to stay compliant

e custom and seamless reading with seek support; each task local file can be treated as a separate
and contiguous binary data stream as a standard £stream object would be

e almost complete user separation from the back-end I/O
e possibility to use any back-end I/O system as long as it properly implements Input/Output Interface

e possibility to implement different FileSystem models if needed

3.2 Unaccomplished Goals

e random write; no method that would resemble seek in Output mode
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e complete user separation from the back-end I/O; the user still needs to create and sometimes close
the object

e support for mixed Input and Output operations; FileSystem and File objects can be used for either
Input or Output mode at a time

4 Implementation of a FileSystem model - Shared-Buffer

4.1 Motivation

The first FileSystem model implemented assumed that the only ProFASi problems were large amount of
small writes and combining files into one binary stream. Files where considered to be large enough to
fill the underlying file system base block. File object had its own buffer of the size of a basic block size.
Though during initial consultations it turned out that in general not even some files but whole process
might have trouble filling up the specified space. This made the model impractical and unacceptable in
some situations.

4.2 Solution Outline

To deal with this problem the Shared-Buffer FileSystem model was designed and implemented. In this
model the buffer is owned by the FileSystem and shared among the File objects. This made all the data
that should be written with one call to the back-end Outputinterface kept at one contiguous memory
block. Each File instance is given a virtual buffer which is in fact a piece of FileSystem’s buffer.

43 Data Layout

A binary stream containing user files consists of a file blocks part, a file descriptors table and a number
of files stored in this particular order. This is because the model has to conform to the SIONIib limitation
that writing is serial. The data written physically to the disk have to be known at the point of the write
call and no further update is possible. The complete file system structure is known when it is closed.
Especially the number of files, thus the number of file descriptors needed. To handle arbitrary number of
files the implementation stores the file descriptors in memory and writes it at the end of the SFF'S stream
followed by the number of files stored.

SFFS DataStream

Figure 3: The figure depicts the structure of a SFFS file system’s binary stream. NoF stands for "Number
of Files". A group of file blocks is sent to a back-end I/O interface whenever they fill the shared buffer.
File descriptors and the number of the files are written upon closing of the FileSystem object.

A File descriptor is a structure holding the name of the file, its ID number and the address of the file’s
last block in the SFFS stream.
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Each File block consists of a header and a data space. The header is placed at the beginning of the chunk
and the data space immediately after. The header contains the File ID, the chunk size, the data size and the
address of the previous block with the same File ID. The File ID allows the data in chunk to be assigned
to the appropriate file when reading the SFFS file. The chunk size is used to easily locate the next chunk
in the SFFS file. The data size indicates how much of the data space in the chunk contains the relevant
user file data. This field is needed as sometimes the data space might not have been used completely.
The rest would contain some random information that was in the buffer at the flush point. This should be
discarded while reading the data. The previous block address helps to navigate fast through the user file.

wera | oara  |GNGSED)

File ID
Previous Block
Chunk Size

DataSize File Block

Figure 4: An illustration of data layout within a file block structure.

44 Working Internals

The model is designed to keep memory operations at minimum while allowing effective use of SIONIib
by performing write calls with data size exactly matching the specified chunk size. File object’s virtual
buffer is the exact data that will be written to the Outputinterface. The shared buffer contains a number
of different File blocks that will be flushed in one write call. Its binary structure exactly represents what
will be sent to the data sink.

The only draw back is a possibility of wasting some data space. If a File does not manage to fill its buffer
space before the flush, then nothing can be done with the unused space in File’s virtual buffer. Though
the amount of space lost due to this effect is usually very low.

Whenever a File object fills its buffer, it asks the owning FileSystem for another piece providing the
size it would prefer to get. The FileSystem may respect this but does not need to. File implementation
should be able to work with any buffer size granted. This way it is possible to implement some sophis-
ticated strategies of assigning buffer chunks to optimize lost space and number of requests made. When
a FileSystem has no more buffer left to assign, it means that the whole shared buffer is full. Then the
FileSystem requests all of the owned File objects to update their header data and flushes the shared buffer
through the assigned Outputinterface.

S Real Usage

5.1 Current Implementation Status

Currently implemented and working features include parallel version of SIONIib as both Input and Output
Interfaces, so the files can be written and then read by parallel applications. The same status applies to
standard Input/Output Interfaces. By standard I mean those that use C/C++/posix routines as back-end
I/O operations. In a such case one physical file per process is created and it contains a binary stream of
the whole SFFS FileSystem.
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The only FileSystem model implemented for now is Shared-Buffer.

There is a number of applications originally intended for testing purposes. They were adapted to be used
as external tools for tasks like splitting the whole file system from a SFFS file, listing files saved in a
SFFS file or extracting just a particular one. These are provided for SFFS files that were written using
standard Ouputlnterfaces.

52 SFFS Integration

With such designed and working library integrating SFFS with parallel version of SIONIib as back-end
into ProFASi was a fairly easy task. The whole process was split in two phases due to ProFASi’s I/O
operations structure. Files that wrote text data used a dedicated class that was responsible for write calls.
Therefore simply by switching functions of creation and writing to the files from standard ones to SFFS
counterparts took care of all text files from whole application.

Second phase was to redirect writing of the binary files. This part was more inconvenient because the
file creations and writings were spread among different source files. Nevertheless it was sufficient just
to find every occurrence of file creation (fopen) and switch it to OFileSystem: :createFile().
Then every fwriteto OFile: :write.It was also necessary to overload functions which took FILE*
pointer as an argument to accept OFile& reference. The whole phase could have been automated using
regular expressions.

6 Performance

6.1 JuRoPA

JuRoOPA is a cluster consisting of 3288 computing nodes, each with 2 Intel Xeon X5570, which gives
in total 26304 computing cores [4]. The filesystem used to support JuRoPA is Sun’s Lustre File System
[S, 6].

Tests run on this machine used 64 up to 2048 processes with a typical ProFASi settings file. The purpose
of the tests was to check if there is a reduction of the total runtime in typical run conditions. The runs
were performed using both the original unmodified version and the one enhanced with SFFS/SIONIib for
I/0 handling. The settings were exactly the same as well as the results. The only difference was the data
output method.

The modified version gave a performance gain up to 10% over the original one. However the performance
gain scales with number of processes although at diminishing rate. One should keep in mind that these
plots do not show if the time was saved by reducing file creation time or during the run due to buffering
and better usage of parallel I/O filesystem. Nevertheless it has been clearly shown that implementing
SFFS/SIONIib improved the over-all runtime in general conditions.
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Figure 5: The figure presents a plot of total runtime of original ProFASi version and enhanced against
number of processes. A run using twice the number of processes produces twice the amount of data.
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Figure 6: The figure presents speed gained by using modified version. "Speed Up" in this plot is the ratio
of the total runtime of the version which utilized SFFS/SIONIib and the original one which used standard
C functions for I/O.

6.2 Nicole

Nicole is a small cluster where tasks up to 256 processes are launched. The filesystem supporting Nicole
is NFS.

A number of tests were run with different I/O operations load to draw more conclusions about perfor-
mance gains. A second settings file was prepared to make ProFASi output unusually large amounts of
data and additional time checks were included to measure the file creation time.
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Performed tests have shown that there is almost no difference in file creation nor run time between
original and modified version on instances under 128 processors. When using 256 processor file creation
time increased from about 1 second up to 3 while modified version consistently kept under 1 second. The
difference in this part of the application started to be visible although it is very small compared to the
total run time of about 5 minutes.

The real difference could be observed with heavy I/O settings used. File creation times stayed at the same
levels. The total time went up to 22 minutes for original version and 17 for modified. This behaviour was
stable and reproducible. This is a difference of about 20% gained almost completely in the runtime. The
results suggest that modified version scales better not only with number of tasks but I/O operations load
as well.

63 JUGENE

JUGENE [7] is an IBM BlueGene/P with 73728 computing nodes. Each computing node has four Pow-
erPC 450 processor. This gives 294912 processors for the whole system. The supporting filesystem is
IBM'’s General Parallel File System [8].

The tests were designed to measure differences in the file creation part as well as total runtime. The
number of processes used ranged from 512 to 8192.

Although not all tests with the original version have been run, performed tests clearly show that file
creation times scales with the number of processes going from 24 seconds to 40 and over 170 for 512,
1024 and 2048 processes respectively. Modified version took 2.2 seconds for 512 processes and went up
to 3.8 seconds with 8192. All total runtime differences were equal to file creation time variances.

The results show a clear advantage of the modified version in the file creation time, although it is a
difference that does not scale with runtime and amount of I/O operations application makes. Further tests
with more application data output should to be performed to check if the behaviour observed on Nicole
also applies to this system.

7 Summary

7.1 Conclusions

The main goal of this project can be regarded as achieved. The combination of SFFS/SIONIib has indeed
shown to be a good replacement to standard file handling functions. SIONIib allows to take advantage of
parallel filesystems with almost no effort. SFFS makes it even more user friendly extending SIONIib’s
original functionality and removing some responsibilities from the user.

The integration process of the proposed solution into ProFASi was fairly easy to perform. Most changes
could be done almost automatically. The performance compared to the original version was also im-
proved. Although gains in most typical conditions were not critical they were considered good enough.
Also the tests performed strongly suggest that the speed gain scales with both problem size and the
amount of output operations. Another clear advantage of this approach coming directly from SIONIib is
only one file is created for the whole run. This removes filesystem load caused by the file creation and
also makes it possible to fit into quota limits. One can easily imagine that on a machine such as JUGENE
the number of the files can go into millions. The file number quota limit for the group my account was
assigned to was 2 million. That means reducing whole output into a single file allows easier management
of runs by abolishing the necessity of file removal in-between. Moreover in certain, really large scale
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cases SFFS/SIONIib makes the simulations possible to be performed.

7.2 Future Work

To evaluate pure SFFS quality synthetic tests which would measure performance of pure SIONIib and
a version wrapped with SFFS. In fact this comparison is very interesting and important as it would
explicitly show how much of overhead does SFFS produce, though unfortunately this was not completed
due to time shortage.

Another thing of interest would be implementing different parallel back-end I/O Interfaces especially
ones which would allow random writes.
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Abstract:

In particle codes for fusion plasma simulations, an upper bound for the integration time-
step is set by the high frequency gyro-motions (~ THz) of electrons. A method for replacing
the exact electron positions by their guiding centers is discussed and tested on single particle
simulations. It is shown, that for typical electromagnetic fields found in fusion experiments as
the TOKAMAK, the time-step can be increased by a factor of up to 100, while still maintaining
deviations of the guiding centers in the order of 10~2 gyro-radii. Moreover, a divergence-free
interpolation method is introduced for cylinder-symmetric magnetic fields defined on triangular
meshes, which results in an almost everywhere smooth field. The interpolation is reduced to
1-dimensional interpolations and can include an arbitrary number of base-points.

1 Introduction

Particle codes simulating the behavior of plasmas all share a common concept: Particle positions and ve-
locities are integrated sequentially by a time-step sufficiently small, using the forces, or electromagnetic
fields for that matter, calculated as acting on the particles [1]. This is in particular true for the PEPC tree
code, used among others, to simulate the behavior of fusion plasmas in TOKAMAK experiments [7, 9].
Charged particle motion in plasmas is classically governed by the so called Lorentz-Force'
i=1E+LixB (1)
m m
with g, m and r being the charge, mass and position of the given particle respectively. Throughout this
article, E and B will signify the electrostatic field and magnetic flux density respectively. As is known
[2], the presence of a magnetic field, forces charged particles on spiral orbits about the magnetic field
lines with local frequency wy = ¢B/m. This motion can be interpreted as a circular motion (gyration)
around a so called gyration center superimposed on a drag approximately along magnetic field lines.

In fusion plasmas, where magnetic field values are of the order ~ 1 T, electron gyro-periods 7, can
reach down to a few ps. This sets an upper limit for the integration time-step ¢ used in conventional
integrators like the Boris Solver [1], which requires time-steps 6t < T, /10 in order to lead to reasonable
particle orbits [5].

Different methods for increasing the possible time-step have been suggested [6], which usually attempt
to deliver the actual particle orbits. The solution presented in this report, is based on the idea of replac-
ing the exact electron position with its gyration center, alias guiding center. By dropping any detailed
information on the exact particle gyro-motion, the following assumptions have to be made:

! Gravitational forces shall be neglected in the following context, as they can be assumed to be included in E.



e Electromagnetic field values vary only weakly within a gyro-period and gyro-radius.
e Particle interactions take place at scales greater than the typical gyro-radius.

e Radiation effects due to electron accelerations are neglectable.

This report begins with some insight into guiding center motions and their driftings in magnetized plas-
mas. The implementation of a guiding center integration scheme into PEPC is outlined and accuracy
test results for the calculated guiding center orbits presented. Furthermore, an interpolation scheme for
cylinder-symmetric, divergence-free magnetic fields on triangular meshes is presented. The necessity for
the latest arose from the need of the magnetic field-gradient for the guiding center integrations.

2 The Guiding Center Motion

2.1 Defining the Guiding Center

Abstractly, the guiding center should resemble some sort of geometrical center of the gyration motion.
Formally, we use

2

. 1 . ExB
R.:R(r,r).—r—w—gbx(r— B2 )

-~

p

as an exact definition as provided by Northrop in [4]. Here, r is the exact particle and R the guiding center
position respectively, w, the local gyration frequency and b := B/B. In the simple case of homogenic
B and E-fields this definition incites with our geometrical expectations.

guiding center motion

gyration motion

Figure 1: On the definition of the guiding center.

Note that the introduction of a gyration center assumes the presence of a B-field sufficiently far from 0.

22 The Guiding Center Equation of Motion

In order to directly calculate the orbit of a guiding center, the need for a differential equation describing
its motion naturally arises. One such differential equation is provided by Northrop [4], expanded with

respect to the parameter
{1731, 1721} -

azng'max B 3 E
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basically expressing the ratio between the initial gyration radius and the characteristic field variation-
scales?. Expanding the electromagnetic fields to first order in ¢ and using V - B = 0, one obtains the
equation of motion in zero order accuracy

Rzi[E_‘_‘VB]+inB+O(E) @
m q m
with )
_ mi]
pe= N )

as the magnetic moment of the particle circulating around its gyration center and ¥, as the exact particle
velocity perpendicular to B. Furthermore, it can be easily shown [4] that R is to zero order given by

. . ExB
R=r||+ B2

~—
VE

+0(e) ©6)

with 1| as the particle velocity parallel to B.

Note: Equation (4), describing the movement of the guiding center in zero order, actually resembles
the EOM of the particle, within a modified electrical field E:=E- A;—‘VB . Omitting higher order
terms, leads to an orbit consisting of the usual, highly-frequent gyrations superimposed on a central
movement approximately along the B-field lines. In fusion plasmas, the initial, perpendicular speed
component E x B/B? is typically orders of magnitudes smaller than the actual particle velocity, leading
to a significantly smaller gyration radius. This allows for an increase of the time-step usable for the
integration of this motion (see section 4.1) [5].

23 Guiding Center Drifts

Crossing EOM (4) with b gives an insight into the guiding center velocity perpendicular to B. One
obtains [4]:

RL:=R—(b,R)-b:Ex2B+ibeB+ﬁbxﬁ+O(e2) . (7)
\._5,_/ B qB qB
R, vE

The first term is the known E x B-drift, caused by a variation of the particle speed during its gyro-motion.

B
N
E \ :

E x B drift
electron motion

guiding center

Figure 2: On the E x B-drift of the guiding center.

2 Assumed to be sufficiently small.
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The second term, known as magnetic- or gradient- B-drift, results from a variation of the particle’s gyro-
radius during its gyro-motion. The last one is the so called acceleration drift [4] Expanding it to

(6) m d /.-
qu xR Y B [dt (R” +vg +O(s))] ®)
m dvg db

Vp Vi

yields the so called polarization drift v, and inertial drift v;, which in turn can be expanded to

Vi = = (Rb) - b x [a—b + (Vb)vE] + 2 (Rb)2-b x [(Vb)b] + O(e) (10)

gB ( ot gB

with the last term being the known curvature drift [3).3

24 Average Kinetic Energy

Equation (4) can not be solved in a closed way, since it requires exact knowledge of the magnetic moment
p = p(t1, B). But this in turn would, so it seems, require knowledge of r, , whose elimination was one
of the purposes for this theory in the first place.

It can be shown, that the average kinetic energy Ey;, over one gyration period is in first order given by

fulfilling the differential equation

d . 0B :
agkin = Q(Ra E) + ou’a + 0(62)1 (12)
where all fields are evaluated at R. The term ¢(R, E) results from the work performed by the electric
field on the guiding center, while the term u% represents the action of the curl of E on the gyrating
particle, resulting from the induction due to a time-depended magnetic field*. Together with eq. (4), this
equation allows for an integration of the EOM of the guiding center, at least to zero order [4].

3 Interpolating Divergence-Free Fields

The need for a meaningful B- and VB-field for integrating the guiding-center motion of particles, nat-
urally leads to the necessity of interpolating or fitting the externally provided B-field data (see section
4.2) over a given set of point-value pairs (x;, B;), while securing the fundamental differential equation
V - B = 0. The following section proposes some interpolation methods developed within the context of
this project.

The method of choice turned out to be the so called component-separated interpolation scheme, mainly
due to its simplicity and low field variation within the convex hull of the interpolation base-points.

3Note that (Vb)b is the vector pointing towards the curvature center of the magnetic field-line with the inverse curvature
radius as norm. _

“Note that the magnetic field its self does not perform any actual work on the particle, which is why the term (VB)R.is not
included.



3.1 2D-Case

Let x1,..,xy € R? be pairwise different base-points and F;,..,Fy € R2 arbitrary base-field-values.
Sought is a field F : C*(R? — R?) such that:

1.V-F=0,
2. F(x;)=F;, i=1,.,N.

3.1.1 Component Separated Interpolation

As can be easily seen, any vector field of the form
_( F}=?
F(x) = ( F2(z1) (13)

is by construction divergence-free. Naturally, one is tempted to interpolate the 1st component F'! using
only the 2nd coordinates and the 2nd component F2 using only the 1st coordinates of the base-points
X1,..,XN. A prerequisite for this, is that all base-points differ in their 1st as well as 2nd coordinate.
Obviously, this is always true in some cartesian coordinate system.

More precisely, given base-points X1, ..., xy € R? and base-values F1,..,Fy € R?, the field F : R2 —
R? defined by
f($2; x%, -.,IB%/; Fll, oy F]{I)
F(x) := (14
f(ah; i, .zl FE, o0 FR)

with f(-; t1,..,tn; fi,.., fn) being some arbitrary interpolation scheme over the point-value pairs
{(, fz)}i\; 1 € R2, actually satisfies both conditions 3.1 (1) and (2). Thus, using eq. (14), one is able to
reduce the problem of 2D divergence-free interpolation to two 1D interpolations (see fig. 3). Note that f
can be really arbitrary and as simple as piecewise-linear.

-= interpolation of F! -

5 2 Fy
'.1 \ x4 X
5 3 .
2
rs x F;
1 1
F; 1
et A e i SO Y
.
L
'
'
: \-_‘_______,_,_——————""
i

Ty Ty Ty

Figure 3: Component-separated interpolation over 3 base-points. 2D
divergence-free interpolation is reduced to two 1D interpolations (here: linear).
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The field-Jacobian is given in the form

0 Oof(-; 22,..,2%; F}, .., F})
VF = | )
of(-;at,...,ak; FE,..F%) 0

Note: In case the interpolation is performed in some other coordinate system, with U being the trans-
formation from original to new coordinates, the field F will generally not be of the form (13), that is,
both components will depend on both coordinates. Nonetheless, as the field in the new coordinates simply
takes the form F(x) = UF(U~1x), with

V - F = trace(VF) = trace(U ™} - (VF) - U) = trace (UU—1 .VF)=V.F (16)
it is clear that this does not affect the divergence-freeness of F'. It should be noted that the resulting

interpolated field actually depends on the coordinate system chosen!

32 Cylinder-Symmetric, Divergence-Free 3D-Field Interpolation

In view of the magnetic fields used for TOKAMAK plasma simulations, we shall only consider the
interpolation of cylinder-symmetric B-fields over base-points defined on the plane {¢ = 0}. That is, for
given base-points (p;, 2;) and base-values (BY, B, Bf), i = 1,..,N, sought is a cylinder-symmetric
vector-field B : R? — R3 so that:

1. B(pz,Zz) =B,tpep+B,fez+B;pe(p, i= 1,..,N,

2.V-B=0.

3.2.1 Reduction to 2D-Case

For cylinder-symmetric vector-fields B : R® — R3, condition V - B = 0 reduces to the differential
equation

0 0 !

—(pB?)+ —(pB?*) =0 . 17

Bp (pB?) + 5 (pB%) 17)
In particular, the B¥-component has no influence on the field’s divergence whatsoever. Thus, by setting

L x:= (p’ z) and x; := (pi,zi)a i=1,.,N,

2. F:=p-(B*,B?) and F; = p; - (Bf, B?),

the interpolation can be reduced to the 2-dimensional case (see section 3.1) for the B, B* components,
while B¥ may be interpolated in any arbitrary (e.g. linear) way. Note that this interpolation method
defines the magnetic field (B, B, B¥) and its (0, 0, 0,,)-derivative in cylindrical coordinates.

Note: Due to substitution 3.2.1(2), the interpolated field can display divergent behavior for p — 0.
Even more, one needs to assume that all base-coordinates p; differ from 0. As particle simulations typi-
cally take place within the TOKAMAK torus and not its center, this should not pose any problem.
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4 Implementation in PEPC

4.1 Guiding Center Integration

As the gyro-periods of the electrons are 3 orders of magnitude smaller than those of the ions, only
electrons are replaced by their respective guiding center’. In particular, ions are integrated using the
original integration scheme.®

Start positions and velocities of the electron guiding centers are set at the beginning of the simulation
according to eq. (2) and (6), using the originally provided start data, after calculating necessary E- and
B-fields at the real electron positions. Similarly, the start magnetic moment and kinetic energy are set
using definition (5) and expression (11) respectively.

The similarity of the particle EOM (1) and guiding center EOM (4) allowed the use of the already
implemented, leapfrog integration scheme for electron guiding-centers. The velocity of the guiding center
is pushed forward using the Boris Solver [1] just as a regular particle, with the only difference lying in
the E-field provided, modified by the additional VB term.

As the magnetic moment . is needed for the integration of the guiding center EOM (4), but not explicitly
available from R and R, it has to be integrated separately along the simulation. Equivalently, the average
kinetic energy &y, could be integrated and used to calculate p (see eq. (11)).

Thus, in view of EOM (4) and (12), the integration step

Boris

(Rn,Rn—%) Solver (Rn-:—l’Rn+%) (18)
+1 1 . n—3 .
S’ = bt + 00 q- (B RY) 460 B = v (19)
with time-step dt was used, whereas
. 1 /. 1 . 1
n.,_ - n—x n+3
R =5 (RVE 4RV (20)

with the E-field evaluated at R using the PEPC tree code and B provided externally. The magnetic
moment un‘% is connected explicitly to the kinetic energy by

_1 1 n—1 m (. 1\2
W= [Ski,f - (B } 1)
As the guiding center drifts (a few cm/s) are typically orders of magnitude smaller that the actual particle
velocities (a few ¢/10), the guiding-center gyro-radii are accordingly smaller than the particle gyro-radii.

Thus, the time-step 4t for the guiding-center integration could be increased noticeably (see test results
4.3) without significantly affecting the accuracy of the calculated orbits [5].

42 Magnetic Fields

In contrast to the electrostatic field calculated internally using the PEPC tree code [7], the magnetic
field used in the simulation is provided externally on a triangular mesh. Due to the assumed cylindrical

*Increasing the time-step even by a factor of x 100, ions would still be integrated using a time-step much smaller than their
gyro-period.

STons and electrons are in this context distinguished based on the charge/mass ratio, which essentially defines their gyration
frequency in a given B-field.
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symmetry of the field, the mesh is defined solely on the {¢ = 0} plane’, with the field value given in
cylindrical coordinates (B?, B*, B¥) on each triangle [8].

Triangular Mesh at ¢p=0 B-Field on ¢=0 Plane

[}

! ! Hiris
/4

0+

Z [m]
Z [m]

'
[}

0 [m] 0 [m]

Figure 4: Triangular mesh and projection of B-field on {¢ = 0}-plane [8].

4.2.1 Mesh Refinement

The need for a meaningful B-gradient for the integration of the guiding center implied that the B-field
values would somehow need to be interpolated or fitted, at least on a local basis. This in turn made the
availability of B-field values on a pointwise basis a necessity. Ideally, these values should be defined on
the vertices forming the triangular mesh.

In view of these requirements, a new mesh with new field-data was constructed from the original mesh
and field-data. Using the geometrical center of each triangle and its three vertices, three new triangles
were defined, as depicted in fig. 5. The B-field value on the center point was set to be the field-value at the
original triangle, while the remaining points were ascribed the arithmetic mean of triangle-field-values
of all triangles including them.

? Actually, merely using p, z coordinates.
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New field value: Averaged field

New field value: Triangle field

Figure 5: On the refinement of the mesh triangles. Each original triangle is
subdivided into three sub-triangles around its geometrical center.

Loading and evaluation of the new data, is up to the interpolation, performed in PEPC in the same way
as originally. In particular, the simulation space® is divided into a rectangular N x M grid, of which
each box points to all triangles containing points in that box. This enables a quicker locating of the
triangle containing a given point. The magnetic field and its Jacobian for that point is then determined,
by interpolating the three vertex field-values of the triangle using component-separated interpolation for
(B?, B?) and simple linear interpolation for B¥.

. p
given B

interpolated B

0.044 O

0042
BT 04

0.038
-1.156

-1.152

Z|m]
04
0.404

0408
114 -
M e[m]

Figure 6: Example interpolation of B? component within a mesh triangle.

43 Results

Though the gyro-radius of he guiding center is typically much smaller that the gyro-radius pg of the
actual electron, their gyro-periods T, are actually the same. Thus one might expect, that the need for an
accurate calculation of the former, would restrict the time-step dt to similar values as before. Luckily, as
was shown by Vu and Brackbill [5], the resulting drifts stay accurate even for time-steps much bigger
that the gyro-periods. As the calculated gyro-radius only grows linearly with dt, it was expected that
electron guiding centers would remain sufficiently close to the real guiding centers of the electron orbits
even for 6t > Tj,.

The following section presents some typical results of guiding center convergence tests performed on

8At {¢ = 0}.
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PEPC. For clarity purposes, electromagnetic fields were defined externally® . As the main subject of these
tests was the accuracy of the calculated drifts for increased time-steps, only single-particle tests were
performed. Exact particle orbits were calculated using the Boris Solver with a time-step §t = T /100.

All units are in SI. In particular, electrostatic field-units are N-C~1, spatial units are m and magnetic field
units are T. Particle orbits always start at the origin, with a start velocity of (0.1,0,0.1) - ¢. Gyro-radii
pg and gyro-periods T, used for axis-scaling always refer to their values at the origin.

Fig. 7 shows a typical electron orbit in a toroidal (i.e. cylinder-symmetric ~ e,) magnetic field, together
with the calculated guiding center orbit.

B=—-(y+01)-e,+x-e, T, E=0
0005 ~ A
exact, of = 0.01 T

A AR ““"“ﬂ“ﬂw B
0 rlu PTGy
B R {} GC. ot =1T,
ZImly oos |- A
001 L AR
T,

A4 x 10710

Pe A~ 2 mm

0.1

)
X [m]

Figure 7: Example simulation of electron orbit and guiding center in toroidal
B-field. Start velocity was v = (0.1,0,0.1) - c. Notice the vertical curvature
drift of the guiding center along the z-axis.

Fig. 8 shows the pointwise distance of calculated guiding centers from the exact electron orbit over
runtime, in a constant B-gradient and homogenic E-field. Ideally, the guiding center distance to the
electron orbit is expected to be constant, namely one gyro-radius pg.10 As can be seen, the guiding center
deviation from this ideal orbit, is in the order of 10~3 pg for a time-step up to 6t = 57, and 1072 pg fora
time-step up to §t = 507!

°As internal electrostatic fields are typically of the order 107! N . C~!, the dominant resulting drifts were indeed
(over)represented in the tests performed.

"Though p, actually changed along the electron path due to perpendicular drifts, its relative variation within the given
runtimes was of the order 10,
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Pointwise Distance between calculated Guiding Center & Exact Orbit
Exact orbit: 8t = 0.01 7},
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Figure 8: Pointwise distance of calculated guiding-center orbits to exact particle
orbit over runtime. Start velocity was vo = (0.1,0,0.1) - c.

Fig. 9 illustrates the spatial supremum-distance'' of calculated guiding center orbits to the exact electron
orbits for various time-steps and various field-configurations. Notice the relative stability of calculated
guiding center orbits for homogenic fields or constant VB even for time-steps §¢ ~ 1007. In contrast,
the toroidal B-field leads to significant instabilities for time-steps dt 2 107}, which gives an indication
for just how much one can increase the guiding center time-step without noticeable deviations.

Spatial Convergence of Calculated Guiding Center Orbits to Exact Orbit
Exact orbit: 6t = 0.01 7, 50000 iterations
5
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Figure 9: Spatial convergence of calculated guiding-center orbits to exact par-
ticle orbit. Start velocity was vo = (0.1,0,0.1) - c.

"Defined as max |R.(t;) — r(t;)|| with ¢1, £z, .. as the time-samples for the guiding center orbit and r(t;) as linear interpo-

lation of the exact electron orbit.
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5 Summary and Conclusions

The convergence tests in the previous section indicate that the time-step for the integration of the electron
guiding centers can be increased to up to 10 gyro-periods while still maintaining an accuracy of 102
gyro-radii. As these tests where performed on single particle configurations in externally provided fields,
tests remain to be performed for real-life configurations, in particular with high particle numbers.

As any conventional particle motion integrator (e.g. Runge-Kutta) can be naturally applied to integrating
the guiding center by merely modifying the applied electrostatic field, stability for even bigger time-steps
could be achieved.

Furthermore, improvements have been achieved in the way the external magnetic field is defined. A
divergence-free, 3-point interpolation method has been introduced for the available triangular mesh,
which in contrast to the previous method used, not only provides a magnetic field continuous at the
mesh-vertices, but more importantly the complete field Jacobian VB. The resulting field is continuously
differentiable almost everywhere!2.

Due to the simplicity and flexibility of the interpolation method, it can easily be improved in the following
ways:

e Local (e.g. triangle-specific) interpolation data such as coordinate-rotation angle or even interpo-
lation matrices could be stored along with the mesh and loaded directly upon startup. While this
would increase the amount of data needed to be stored, it would also significantly reduce the time
needed for the runtime interpolations.

e As the key of this interpolation is its reduction to 1-dimensional interpolations, other 1D-schemes
(e.g. splines) can also be easily used. This would secure the differentiability of the field at least
within the whole triangle. Additionally, more mesh vertices (e.g. from neighboring triangles) may
be used for the interpolations. As an extreme case, the whole mesh could be used for a single
interpolation. The latest would secure the continuity of the field within the whole simulation space.
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Abstract:

Density functional theory (DFT) calculations have become an elemental tool for various nat-
ural sciences over the past decades. In this work calculations on 3d-transition metal complexes
with phthalocyanine ligands have been carried out using the B3-LYP hybrid functional, in or-
der to evaluate the performance of DFT, applied to open-shell complexes that contain many
electronic excited states in the vicinity of the ground state. The results have been compared
with predictions and expectations arising from ligand field theory (LFT). It was found that DFT
apparently has inherent errors as not even expected trends within the 3d-period were obtained.

1 Motivation

Transition metal (TM) complexes of the porphyrin type are of central importance in bioinorganic chem-
istry as they frequently form the catalytic or active center of the prosthetic group of an enzyme, e.g.
Haem [1].

Almost all TM cations form very stable complexes with phthalocyanines (Pc). These porphyrin-like
complexes are easy to synthesize and crystallize, making these compounds well accessible for experi-
ments.

Due to the size of the TM-porphyrin complexes, the number of most advanced quantum chemical meth-
ods that are capable of treating open-shell systems, i.e. many closely spaced low-lying electronic states,
reasonably reliable is quite limited: MRCI is generally capable of treating these systems, but suffers
from size-extensivity errors when a large number of electrons is correlated, and its computational scal-
ing well beyond O(N") makes its usage highly unfavorable. CASSCF deals with non-dynamic electron
correlation only, whereas CASPT?2 is presumably the most practical and accurate approach to these
compounds, but also suffers from high computational costs and the set-up of such calculations is not a
black-box scheme. Conventional single-reference methods, such as Hartree-Fock (HF), Mgller-Plesset
perturbation theory, and coupled cluster theory are not applicable to the present case of near-degenerate,
low lying states. The density functional theory (DFT) along with associated response methods, namely
time-dependent DFT (TDDFT), offer a viable approach to treating this compounds economically and are
widely used in the respective communities. Apart from predictions of molecular structures, the reliability
of these methods with respect to the electronic spectra is yet uncertain.

At least in the currently prevailing implementations, DFT is a single-reference method that is commonly



applied to multi-reference problems. Hence, inaccuracies are to be expected, but so far DFT has been
extensively used for TM complexes and has produced reasonable structural data.

TDDFT is expected to describe the singly excited states relative to the ground state quite reasonable,
while charge-transfer (CT) excitations are typically described poorly. Alternatively, symmetry constraints
can be employed in order to access the excited states, i.e. the ground states within each irreducible
representation.

Therefore, the objectives of this study were to clarify whether DFT is indeed a feasible method to describe
the electronic structure of TM complexes, and to analyze possible systematic defects.

2 Theoretical Background

2.1 Density Functional Theory

DFT is based on a theorem by Hohenberg and Kohn [2], which states that the ground state energy E
and the associated properties of an electronic, non-degenerate many-body system are uniquely defined
by the electron density p(r) of that system, where r denotes a point in real space. Hence, the energy
is a functional of the electron density E[p(r)]. Furthermore in a second theorem, Hohenberg and Kohn
showed the applicability of the variational principle to that problem, i.e. the electron density of the ground
state minimizes the energy.

Nevertheless, DFT methods were made feasible for computational chemistry, not until a formalism was
proposed by Kohn and Sham [3] that can be described by the following Hamiltonian, where a parameter
Asatisfies 0 < A < 1:

Hy =T + Vigr(A) + Ve o

Therein T' describes the kinetic energy of the system and V. the electron-electron repulsion. Vet (A = 1)
equals the real electrostatic potential caused by the interaction between the nuclei and the electrons.
For the case of A = 0 a hypothetical system with non-interacting electrons is depicted. For the values
0 < X < 1 the external potential Ve,:()\) is adjusted in a way, so that the obtained electron densities
for A = 1 and A = 0 match. While wavefunction based methods restrict the functional form of the
wavefunction, in DFT the Hamiltonian is approximated in practice [4].

For the hypothetical system with /N non-interacting electrons (A = 0) it is known that the exact solution
to the Schrédinger equation is given by a Slater determinant A that is built from molecular orbitals ¢;,
and thus the exact kinetic energy TA is given by [5]:

N

Ta = Z<¢z

i=1

1o
_EV

¢i> : 2

As this approximation neglects parts of the total kinetic energy, an additional term E'x is introduced
into the expression describing the DFT energy, whereas J[p] describes the Coulomb energy of the inter-
electronic energy and E,.[p] the energy arising from nuclear-electronic interaction:

Eppr(p] = Talp) + Enelp] + Jp] + Exclp]- A3)

The biggest problem to deal with is that the exact form of the so called exchange-correlation functional
Exc|p| is unknown. However, many approximations and estimations are available. It is common to
divide this functional into two discrete functionals E'y for the exchange and E respectively for the
correlation related part:

Exc(p] = Ex[p] + Ec|p]- )
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From equation (1) and the expression for E x ¢ |p| resulting from equating equation (3) to the exact energy
it can be shown [5] that E'x can be given by:

1
Bx = [ (@) ¥ dx )
0
A linear approximation for the dependency between Vy and A gives:

Bx ~ 5 (o [V (0)] ¥o) + 5 (¥1 [V (1)| 1) ©

According to the considerations above, the first term of equation (6) corresponds to the case, where only
exchange energy and no correlation energy exists. Hence, the exact exchange energy for that part of Ex ¢
can be calculated, in the same way it is done in the HF method. Of course the above oversimplification is
an example to demonstrate the principle, i.e. the actual amount a of exact exchange energy (E$*<") that
needs to be included in so called hybrid functionals, is not known. Consequently, the functional can be
given by: .

EYS = (1- a)ES™ +a(Ex + Ec). 0

The formerly mentioned Kohn-Sham orbitals ¢; do not have the same significance as those known from
the HF theory (Koopmans’ theorem). The only valid interpretation is that the ionization energy is given
by the energetic difference between the N-electron and the (N — 1)-electron system:

! 1
—I=E(N)—- E(N -1) =/0 en(n)dn =~ ey (5) R EN, ®

where €y (n) is the energetic eigenvalue of the N** Kohn-Sham orbital with the according occupation
number 0 < n < 1. For extended systems, €y (n) does not change significantly with the variation of
n from O to 1. Thus the negative eigenvalue of the highest occupied molecular orbital is approximately
equal to the ionization energy I [6], like shown by equation (8). This needs to be kept in mind for
evaluating the results.

2.2 Ligand Field Theory

The ligand field theory (LFT), as published by F.E. Ilse and H. Hartmann [7, 8], is a concept to de-
scribe the spectroscopic data and by that the electronic structure of coordination compounds in a semi-
quantitative manner. It is based on symmetry considerations and greatly simplifies the structure of the
ligands.

The fundamental simplification in LFT is that only the d-orbitals of the central atom, i.e. a metal ion,
interact with a set of negative point charges representing the actual ligands coordinated to the metal [9].

An isolated metal ion has five energetically degenerate d-orbitals. Assume an uniform, spherically sym-
metric charge distribution surrounding the metal ion such that the interaction energy equals those of the
sum of the charges that are brought in by, for now, six ligands. The electrostatic repulsion between the
electrons in the orbitals and the surrounding spherical charge distribution elevates the energy of orbitals
while retaining their degeneracy.

When the six aforementioned ligands are then considered as point charges to represent the positions of
real ligands coordinated octahedrally around the metal ion, different interactions between each distinct
d-orbital and the point charges are conceivable. Generally it is assumed that the point charges lie on the
axes of the coordinate system. The relative orientation of ligands and d-orbitals results in more repulsion
between the ligands and those d-orbitals pointing parallel to the coordinate axes, namely d > and d,2_ 2.
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Concerning the other three orbitals it is the other way round. This breaks their degeneracy by splitting
them into the two groups e, (higher energy) and ¢, (lower energy). This issue is clarified by figure 1.
The notation to describe the splitting of the energy levels results from the group theory: in octahedral
symmetry, i.e. in point group Oj,, the respective orbitals transform according to the so called irreducible
representations e, and ¢5,. Conventionally, the energy difference between those split-up levels is denoted
as 10D,,.

The actual size of 10D,
is influenced by a cou-
ple of factors. First, in-
creasing the metal oxi-
dation state attracts the
negatively charged lig-
ands more strongly, re-
sulting in a stronger
interaction. Hence, the
value of 10D, would
be increased. Another
source of influence is
the geometric arrange-
ment of the complex,
including the ionic ra-
dius of the metal, the
distance between lig-
and and metal, and the free ion spherical octahedral  tetragonal or square planar

structure of the ligand.
With a decreasing ionic Figure 1: Energetic splitting of the d-orbitals in the different ligand environ-

radius the influence of ments. Actual splitting energies will differ. The order of the levels in the square
the point charges on the planar case depends on the ligand field strength. Only the single electron case
orbitals would also be is shown, excluding d-d-electron interaction.

€g

expected to decrease.
This would result in a smaller energetic splitting. The last and presumably largest factor is the electronic
nature of the ligand itself.

In this work TM complexes of square planar geometries were studied. Those belong to the point group
Dy, what applies to tetragonal complexes as well. The latter ones can be described as distorted octa-
hedral geometries with an elongated metal-ligand distance on the z-axis, for example. Consequently, the
influence of those ligands to the orbitals with a z-component decreases. Along with that their energetic
levels decrease (in Dy, symmetry these orbitals correspond to e, and by,), what means that their ini-
tial degeneracy is lifted. This consideration also applies to the square planar geometry because the its
structure can be interpreted as a tetragonal structure, where the ligands on the z-axis are infinitely far
away.

The d-orbitals are filled with electrons according to the Aufbau principle. Depending on the size of the
actual energetic splittings, distinct, nearly degenerate energy levels arise from various d-orbital occupa-
tions. Since two electrons with alike spin cannot occupy the same spatial region, they experience less
electron-repulsion than a pair of electrons with opposite spin (spin-pairing energy). Thus it is possible
that more energy would be consumed by pairing two electrons in the lower lying orbital, in comparison
to the case where one of these electrons occupies the lower and the other one the next higher lying orbital.
Thereby it appears that so called high-spin complexes with maximum number of unpaired electrons are
energetically favored as compared to their low-spin complements.
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Beyond these considerations, huge sets of empirical data exist that describe the splitting parameters.
Therefore even predictions for unexamined compounds are possible, as long as they match the previously

recorded parameters.

A different approach to describe the electronic structure of molecules is given by the molecular orbital
(MO) theory. MOs are represented as linear combinations of the metal and ligand orbitals. Similar to
the Hy case, the interaction of two such orbitals results in two linear combinations (MOs) thereof, one
lying energetically lower than the separated ones (“bonding”) and one lying higher (“antibonding”). The
latter ones are usually marked by a * (c.f. figure 2). The energy difference of the resulting orbitals is
proportional to the overlap between the participating orbitals, i.e. only orbitals belonging to the same
irreducible representation will interact. Orbitals that cannot interact give so called “non-bonding” MOs

retaining their energetic level.

When applied to TM complexes, MO the-
ory generally comes to the same results as
LFT. But in contrast, no simplifications are
made because it treats the ligand orbitals
in the same, and by that complete, manner
like it does for the metal orbitals. The in
figure 2 depicted MO scheme shows that
LFT and MO theory agree about the rel-
evant orbitals for the prevailing case of a
Dyp-symmetry complex. The order and the
gaps shown both visualizations highly de-
pend on the actual system.

Within the underlying theory, interactions
between ligand m-orbitals and metal d-
orbitals must be treated. Hence, it is
also possible to explain and computation-
ally cover effects like m-donation and 7-
backdonation. I.e. depending on the occu-
pation, it is possible that empty 7* MOs of
the ligand interact with appropriate metal
d-orbitals and form bonding orbitals. But
concerning the prevailing Pc ligand, these
phenomena are not to be expected. Thus,
these effects cannot explain possible differ-
ences between DFT and LFT predictions
here.

Strictly speaking, DFT is not an actual MO
theory method, even though the computa-
tional implementation is based on the con-
struction of MOs. Though it treats both
atom and ligand on the same footing and
should be expected to describe these inter-
actions whereas LFT has to cope with the
crude representation of the ligands.

Figure 2: Molecular orbital diagram that qualitatively
shows the interaction between the atomic orbitals of the
metal (3d, 4s, 4p) and the appropriate molecular orbitals of
the ligand. In relation to the ligand-metal bond, m;, de-
notes those 7-orbitals lying in the xy-plane and 7 | ,,, those
perpendicular to it. The actual order and the energetic gaps
of the levels vary with the system. The lowest four MOs
(a1g, €u, b1g) are occupied with electrons of the ligand.
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3 Methodology

As shown above, LFT, which was intensively used in the sixties, enables a semi-quantitative treatment
of TM complexes. By this, a comparison between the traditional expectations from LFT and the results
of DFT calculations is possible and represents a practicable method for examining the accuracy of DFT
calculations in the implementation used here (c.f. section 4).

The TMs considered in this study were restricted to the 3d-block. When considering e.g. 5d-metals
one would have to take special care of the effects arising from the larger and more diffuse 5d-orbitals.
Furthermore, even with the use of appropriate pseudopotentials, relativistic effects are hard to deal with in
DFT calculations, but should have little impact on the 3d-block. In order to be able to observe the course
of the electronic structure with increasing number of electrons, i.e. d! to d10 configurations, all TMs were
assumed to be in oxidation state 42, even if the probability for the state to be formed is known to be very
low. A fact to support the usefulness of this restriction is that the charge of the TM highly influences the
energetic splitting of the orbitals, a phenomenon that was to be examined. Restricting the charge to +2
makes the according evaluation much less error prone.

Another origin for influences on the ligand field is the geometry and the type of the ligand. Hence, this
was also kept the same, except for minor reoptimizations of the structure. These were necessary because
the structure must lie in a minimum of the potential energy hypersurface, so that the calculations give
physically meaningful results.

4 Computational Details

All DFT calculations were carried out using the TURBOMOLE V6.0 software suite [10] on the “Jiilich
Multiprocessor” IBM Power6 supercomputer JUMP. TURBOMOLE became the software of choice be-
cause it has the ability to make use of all finite point groups. In contrast, most of its competitors only
allow the usage of the respective Abelian groups. This was of highest importance as the Dy point
group, which describes the symmetry of the TMPc complexes, is not Abelian. Otherwise the excited
states could not have been accessed under the above described symmetry constraints.

The structure of the Pc-ligand (see figure 3) was initially gen-

erated by manually building the respective Z-Matrix with help
of the MOLDEN utility. This more or less arbitrarily oriented
structure was translated to fit its center of mass with the coor-
dinate origin. Suitable rotations made the innermost, and thus
presumably TM bond building, nitrogen atoms reside on either
the X- or Y-axis, in order to conform to the discussed conven-
tions in LFT (c f. section 2.2).

The structure of the ligand was optimized at a level of the-
ory that consisted of unrestricted (Kohn-Sham-) DFT using the
B3-LYP hybrid functional [11, 12, 13] and the def-TZVP ba-
sis set [14], assuming Dy symmetry. For the integration of
the exchange-correlation functional a grid size defined by the

TURBOMOLE parameter m4 was chosen.

) . . Figure 3: Schematic structure of the
The calculations of the TM complexes were carried outin the ...1 p...

same manner, as described for the ligand, after removing the
two innermost hydrogen atoms and placing the respective TM
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ion at the coordinate origin. On the TMs the pseudopotential
ecp-10-mdf [15] was applied, in order to reduce calculation time and take care of potential relativistic
effects, by replacing the ten innermost electrons by an effective potential.

The structures were reoptimized for every distinct TM complex. Those optimized structural parameters
were held constant for the calculation of different electronic configurations within the same complex.
Whenever a calculation with reduced symmetry was performed, the structure was reoptimized for the
complex under the assumption of Dyp, symmetry.

Mulliken [16] population analyses were carried out by the MOLOCH program from the TURBOMOLE
suite. Because unrestricted DFT calculations were performed, the analyses were done for the MO sets of
a and [ spin separately.

For every complex, the configuration that was found to represent the ground state was also structurally
reoptimized with a reduced symmetry of Dsp. Thus on the one hand, it was possible to check for consis-
tency within different point groups. On the other hand, that step was necessary for complexes to which
the Jahn-Teller theorem applies and a structural distortion is expected hence. Whenever the results from
the Dy, calculation were in accordance with those assuming Dy symmetry, the results are not printed
explicitly to avoid redundancy.

For completeness, calculations displaying substantial spin-contamination, i.e. more than 10% deviation
from the expectation value, are also listed as results (struck through in the tables), but were excluded
from the evaluation.

5 Results

5.1 Occupation of Molecular Orbitals

To clarify the occupation of the MOs the results of the TMPc structure optimizations were used as
input for electronic calculations with an enabled $fermi option. This permitted smearing of occupation
numbers and thus TURBOMOLE reoptimized the occupations and spins. These calculations were repeated
until the occupation numbers were not changing any more.

For ScPc the occupation numbers gave a single unpaired electron as expected. In further calculations,
it was put into every shell that transforms according to the irreducible representation that describes the
MO built from the d-orbital of the TM and the appropriate orbital from the innermost ligand-atom. In
accordance to the considerations from LFT and MO theory (c.f. section 2.2) these refer to the irreducible
representations ey, a1g, bog and b, 4. The procedure was repeated until enough configurations were cal-
culated to identify ground and low-lying excited states.

Within the framework of LFT, the energy of the electronic states of the TM cation interacting with the
surrounding point charges is considered. To check for consistency with the DFT predictions, the order
and the nature of the electronic states is compared to the LFT predictions. Since bonding effects between
ligand and TM cation are absent at LFT level of theory, the o-bonding effect will additionally raise the
energy of the b ,* MO. The empty ligand 7-orbitals may lower the energy of the by, and e, MOs, while
the a1y MO is less affected relative to the LFT model. On the other hand especially open-shell systems
are rather sensitive to the form of the exchange-correlation functional. It is of interest to answer the
question whether DFT is capable of producing consistent results.

The automated DFT calculations gave the actual ground states only in very few cases. This was noticed,
as many electronic calculations with manually specified occupation numbers to access excited states
gave lower energies in comparisons to the automatically proposed ground state. Even if the automatic
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findings of DFT depend highly on the start vectors for the MOs (here, taken from extended Hiickel theory
calculations), this shows that DFT calculations are not always a black-box scheme. So special attention
and manual intervention are necessary if one is interested in molecular properties besides structure.

The Mulliken population analyses showed for all calculated complexes that for a d" configuration always
n + m electrons were assigned to the metal, where m satisfies 0.1 < m < 0.7. This indicates that
electron density is shifted from the ligand towards the metal cation consistent with the empirical finding
that ligands of this kind are weak m-acceptor ligands.

52 Comparison of DFT Results with Expectations from LFT

In the following the results of the calculations for different electronic states using DFT will be presented
and discussed. Furthermore, the results have been compared to so-called Tanabe-Sugano diagrams [17,
18], which display the energy of the d" electron states as a function of the octahedral ligand field splitting
parameter A = 10D,, including configuration interaction among the multitude of possible d" states
that can be obtained by distributing n electrons among the d-orbitals. As discussed in section 2.2, the
square planar geometry is the limiting case of the tetragonal elongation of the octahedral geometry, so
that Tanabe-Sugano diagrams for the tetragonal case [19] were used. Here, the energy of a d" state is
expressed relative to the octahedral case by introducing two additional parameters D and D, that are
related to in-plane and out-of-plane interaction with the surrounding point charges. The diagrams give
the energy in terms of the parameters D, for a fixed ratio %;_1. In the limiting square planar case the ratio
of these two parameters is given by

D, 2 (r?) 2 1
—_—= — R - >
D, Ryr (r) Rpry 20, ©)

where Rz, denotes the metal-ligand distance and (r™) the n'® moment of the metal cation. The ratio is
approximately % for the metal cations at the HF limit and Ry, is about 2 A, so that %:- is expected to
result in about 4. For the d* case the actual energies are given by

E(Byy) =—4Dy +2Ds — Dy~—4Dy+ TD; (10)

E(E,) =—4D, — D+ 4D, ~—4D, (11)
E(Byy) = 6D, +2Ds;— Dy~ 6D,+ 7D, (12)
E(Aiy) = 6Dy —2Dg — 6Dy~ 6Dy — 14D;. (13)

The octahedral %5, orbitals will split by 7D;, while the octahedral e, orbitals will split by 21D;. Ad-
ditionally, the square planar by, orbital will be separated by 10D, — 21D; from the a4 orbital in this
simplified one-electron picture of the d* case [20].

By inserting the computed energies, the linear equations can only be solved in a least squares sense.
Actually the resulting parameters D, D; are widely different.

To estimate the strength of the ligand field, the splitting parameters D, D, and D; were calculated
by evaluating the set of equations (10)—(13), filled with the appropriate energy differences from the
Scandium calculations because that system directly gives the necessary energies, as no pairing energies
or similar exist in this case (c.f. section 5.2.1). This lead to D, = 2917.72 cm™!, Dy = 6351.05 cm™!
and D; = 2038.46 cm™!. The latter result was confirmed by calculating it two times mixing different
equations and by that different states. These values show that the above made estimation for the ratio 7*
seems reasonable, as it fits the order of magnitude. While a value of 10D, ~ 29000 cm~! &~ 340nm is
not unreasonable the size of the splitting parameter appears to be rather large.
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In the following subsections the results for the calculations will be discussed and for completeness tabu-
lated. The occupations for the orbitals that transform according to an irreducible representation of unger-
ade symmetry are omitted in those tables because for Dy symmetry they are invariably given by (alu)§I
(azU)QI (blu)ﬂ (sz)gI (eu)ggl. Besides that, the energetic order and the occupations of the MOs arising
from the metal d-orbitals are illustrated for the found ground state of each considered complex. It needs
to be remarked that the illustrations do not present any energetic scale and serve visualization purposes
only.

52.1 Scandium d*

Depending on the strength of the ligand field and by that how much the e, and 5, lev-
els from the octahedral symmetry will split up, the LFT considerations would expect — by
the energetic order of the levels in square planar geometry to either be e < a1y <

— b
byg < by for the larger splitting or e, < byy < a1y < by, for the smaller splitting %9
case. —ayg
Table 1 shows that DFT predicts the ground state for ScPc to be 2Eg. The calculation —1— —¢€yg

of excited states by the use of symmetry restrictions by shifting the unpaired electron

from e, — X, where X = by, a4, by, shows that the energetic order of the orbitals

indeed matches the expectations for the case with smaller D, and larger D; splitting. Since strong ligand
fields cause large level splittings, this observation can be taken as a hint for a strong prevailing ligand
field.

ScPc | d': Dy, symmetry

state | AE/eV (S%)  occupation

2B, | 00000 0752936 (aq)ys) (a2g)11] (brg)1a) (b2g)13) (€0) 10!
2414 | 03027 0750906 (a1g)1e (azg)11] (brg)1a] (b2g)1a) (eg) 10
2By | 10986 0750761 (a14)i5l (azg)131 (Brg)i) (b2g)1s) (€g)10)
2Big | 47162 0751958 (a1g)15) (az)11] (brg)ie) (b2g)1a) (€0)10)

Table 1: Results for ScPc Ey = —1712.868803 Ha.

The above calculated ground state is degenerate. As mentioned in section 2.1, precisely DFT does not
apply to these cases. The results actually represent an arbitrary linear combination of the degenerate
states. Furthermore the Jahn-Teller theorem states that the symmetry will be reduced and the degeneracy
of the E, state will be lifted. The reoptimization of the structure is in accordance with that and the results
are shown in table 2.

The expected structural distortion was observed. Assuming Dy symmetry, the shortest Sc-N distances
and N-N distances were given by 2.0977 and 2.9666 . Under D5}, symmetry restriction the N-N distance
was reduced to 2.9059 and the Sc-N distances split up to 2.0603 and 2.0493 . Even if the distortion was
small, this is noteworthy for the inflexible Pc-ligand.
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ScPc | d': Dy, symmetry
state | AE/eV (S?)  occupation

33 24 5 6 29 29
2Bsg | 00000 0757935 (ay)3y) (big)ay (bag)zl (Bsg)S] (au)y] (bru)s, (bau)sg) (b3u)3g,
2By, | 02394 0757138 (a, bou) 5, (b3u)ag|

2A, | 08175 0.750912
’Big | 16819 0.750758

29 29
b2u) 2} (b3u)3s]

29 29
qu)QQI (bSu)QQI

)al(
)aa] (b1g)as] (b2g)2] (b3g)3] (aw) ] (Bru)g) (
o)val (brg)ael (bag)2l (b3g)2] (au) 3] (Bru)s)(
o)aa) (b1g)ag) (bg)3] (bsg)3l (au) ] (bru)a) (

(a
(a

Table 2: Results for ScPc under Dy, symmetry. Ey = —1712.896597 Ha.

5.2.2 Titanium d?2

According to LFT, one expects the ground state of TiPc to be 3 Ay, arising from an

(eg)2 configuration, regardless of the ligand field strength. This is nicely reproduced — by
by the according DFT calculation as shown in table 3. Furthermore, the table shows
that the first excited state was found to be > E,; with a (a14)" (e4)* occupation, followed
by one with (byg)!(eg4)! occupation. —ayg

by,

Following the corresponding Tanabe-Sugano diagram, in the range of small splitting —1— -1— €g
energies (i.e. D, < 500 cm™!) it might be possible that the first excited 3Eg state

(arising from (alg)l(eg)l occupation) is energetically favored in comparison to the

one arising from (bzg)l (eg)l occupation, like it is proposed by the DFT results. But as other considera-
tions above have shown that a strong ligand field is much more likely and the calculation of D, showed an
a lot greater splitting parameter I, these results raise first doubts that DFT is able to treat the electronic
structure of the complexes in the right manner for states that lie closely together.

In quite some energetic separation the >E,, state describing the (b14)'(e4)! occupation is found, about
what DFT and LFT regardless of ligand field strength agree about.

Furthermore this is in agreement with the order of the energy levels found for the ScPc compound, what
is important to notice as no rigorous changes to the parameters that determine the ligand field strength
(cf. section 2.2) were made.

TiPc | d?: Dy, symmetry

state | AE/eV (S?)  occupation
3Ag, | 00000 2.024056 (alg)ﬁ](azg)}ﬂ(blg)}gl(bgg)g[( )}gg

SEy | 04697 2014221 (a1g)i3)] (azg)i] (b1g)i3] (b20)13)] (e0)1o]
R 18 11 15 14 11
3B, | 07311 2017528 (ayg)1s)(azg)11] (big)in) (b2g)1s) (€g)10]
SE, | 43540 2016453 (a1)15 (a20)11 (brg)iel (bog)1s) (€0) 1ot

Table 3: Results for TiPc Ey = —1724.353365 Ha.
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5.2.3 Vanadium d3

For a prevailing strong ligand field, i.e. D, > 570 cm ™!, LFT predicts a ground state
of *By4 for VPc. The DFT results listed in table 4 agree with that prediction.

Concerning the next exited state, DFT predicts this to be a 4A2g state. The course of
the appropriate Tanabe-Sugano diagram on the opposite unambiguously shows that
the mentioned state lies higher in energy than an 4Eg state, for every ligand field

stronger than the above mentioned boundary for D,. DFT found both those states, but

in inverted order. The results from DFT for the states 2329 and 2Eg on the contrary
are in accordance with the LFT predictions.

_T_

—_ by,
—ayg
b
e

By comparing the DFT results for the 4Blg and 4A29 state it is observed that the a;, and the by, levels
have swapped their energetic order relative to the order that was determined by the examination of the
exited states of the former TM complexes (c.f. tables 1 and 3). The only reasonable way to explain the
observed phenomenon is the variation of the ionic radius, as it is the only parameter to influence the
ligand field strength that changes in the course of the 3d-metals. Due to the decreasing ionic radius also
the influence of the ligand to the metal orbitals decreases. By that there is a smaller energetic splitting of
the MOs, what explains the observation.

However, for the doublet states, the ordering of states is wrong: instead of a 2E, ground state we find
232g and a poorly described 2Eg state suffering from spin-contamination.

VPc | d*: Dy, symmetry

state | AE/eV (S?)  occupation

By | 00000 3773118 (a14)5l (a2g)13] (brg)is) (bog)1s) (€g) 10
‘g, | 04545 3781388 (a1g)yel (azg)iy| (brg)ie] (b2g)1a) (ea) i)
‘B, | 06166 3.805412 (aig)je (azg)11| (big)in (b2g)is) (€g)10)
2Byg | 13483 0756045 (a14)1g)(aze)11] (b1g)ial (bog)1s, (€0)10)
2—E§ 45988 1303159 (alg)igl(@g)iﬂ(bly)igl(b%)gl(eg)iﬂ
2A1 | 18515 0752674 (arg)1s) (aze)11] (big)1a) (bag)1a) (€g)10]
2By | 25323 0762440 (a1)1g) (a2g)11] (big)isl (bog)is) (€0)1o]
“Byg | 33047 3766706 (a1)y5) (a2)11] (brg)ie) (b2g)1a) (€a) 1)

Table 4: Results for VPc Ey = —1737.610993 Ha.

52.4 Chromium d*

For the CrPc complex the Tanabe-Sugano diagram predicts a ground state of °B;, up
to a splitting parameter of D, = 2700 cm .. If one assumes that the initial calcula-
tions for D, holds, the decreasing ionic radius must be responsible for a possible drop
in ligand field strength. Thus, the ground state predicted by DFT can be brought into
accordance with the LFT. A point needed to be stressed here is that all the ®E, states

suffer from not marginal spin contamination, what can be seen in table 5.

Ignoring the 3Eg state, LFT predicts 3A2g to be the second excited state as long as the
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ligand field strength is described by D, > 1900 cm™!. This is in compliance with any previous findings
for that parameter. For a next excited state of 1Ay, the two theories could still be in accordance. But
for the following state 5Alg is predicted by LFT, when Ej states are also ignored there. Table 5 shows
various states in between. Thus, agreements between the two theories appear to be more coincidental
than regular, even if the first excited states seem to match.

In this complex, it appears energetically favored to occupy even two higher lying orbitals than to pair
even one into the e, orbitals. This can be taken as an indicator for states that really lie closely together.

CrPc | d*: Dy, symmetry
state | AE/eV (S?)  occupation
5Big | 00000 6027355 (a1)ie (azg)11](big)ia) (bog)isl (g)1el
SB; | 22992 2439196 (a1e)1s) (azg)y1) (big)is) (bog)1s, (€0)1a)
18 11 15 14 12
SAsg | 24221 2016674 (aig)s)(aze)11] (big)io) (b2g)1a) (o) iol
19 11 15 13 12
S_E.t? 28083  2:883126 (alg)lsf(az!g)ul(blg)151(b2g)131(eg)111
1A, | 30377 0.000006 (alg)}g](azg)}ﬂ(blg)}“(bzg)}j}(eg)}g[
19 11 15 13 12
SAgg | 32553 2031221 (aig)ig)(ae)yy) (brg)ia) (b2g)1a) (€a) 1oy
'A1g | 33510 0000000 (a,)is](aze)i1] (brg)ia) (bog)is) (€g)1a]
SAig | 36220 6013236 (aig)g) (azg)iy) (Brg)ie) (bog)ts) (€g)1o

Table 5: Results for CrPc Ey = —1752.834411 Ha.

5.2.5 Manganese d°

— b
Again it was observed that the 2E, states suffer from spin contamination !
and their calculations, hence, were excluded from considerations. Though, it '7_(119
does attract attention that these problems occur mostly on E, states. This _1_ _T_ €q
might be caused by the discussed non-applicability of DFT to degenerate b
states. "f_i_ 29

But nonetheless DFT delivers some interesting results here. Regardless of the Tanabe-Sugano diagrams
one would expect the ground state to either be of a configuration, where every electron singly occupies
an orbital or where the double occupation is placed in the lowest lying orbitals, i.e. ;. Funnily enough
neither of these cases is given by DFT for the ground state. But for the first excited state the mentioned
high spin state is found, like shown in table 6. Anyhow, the illustration has the doubly occupied orbital
drawn as the lowest lying one.

Another noteworthy observation is the swapped back energetic order of the bogy and the a4 orbitals and
the drop of the by, level even below the ey orbital. This contradicts any previously made explanation
concerning the decreasing ionic radius as cause for the initial swap. Therefore it is not surprising that
the comparison with LFT gives a likewise disastrous result for DFT. The Tanabe-Sugano diagram is in
accordance with the theoretical considerations above and proposes either 6 A 14 for low values of D, or
2E, for stronger ligand fields.



MnPc¢ | d°: Dy, symmetry

state | AE/eV (S?)  occupation

445, | 00000 3.775470 (alg)}g’f (agg)iﬂ(blg)igl(b%)}ﬁ(eg)}gf
SAig | 01307 8760284 (a1)ig) (az)ny] (bio)ie] (b2g)1s( (e0)1)
By, | 02673 3782345 (ag)ig)(aze)i1] (big)is) (b2g)is) (eo)1a
2Byy | 15982 0757790 (asg)1g) (azg)1y] (big)re) (bog)ys| (€0)13)
B, | 25086 0817771 (a1g)ig)(a2g)i](b1g)13] (b2g)1s) (€a)10]
2_E§ 27047 0891918 (alg)igl(@y)iﬂ(blg)igl(b2g)iﬂ(ey)iﬂ
Ay | 27223 2761327 (019)131(029)31(”19)121(b2y)igI(ey)i%
By | 33530 3791979 (a1g)ig)(a2)i1](bio)1s) (b2e)13) (€o) 1)
“By, | 40505 3760476 (a14)15) (azg)11] (big)is) (b2g)1s, (€0 1o
2By, | 45880 0.756538 (a,);5)(azg)1y] (big)ie) (b2g)is) (€0)1a)
A | 58157 3773826 (a1g)ig) (aze)1y (Bro)ig (b2e)13) (e0)id)
“Biy, | 68794 3761856 (arg)ys|(aze)1y] (big)ie) (Bag)isl (€g)ic)

Table 6: Results for MnPc Ey = —1770.062054 Ha.

52.6 Irond’

The d® complex shows the same unexpected behavior that was already observed at
MnPc concerning the unexplainable deviation from the Aufbau principle. In this case
it is inevitable that one electron in the d-orbitals must be paired with another. Even
for the high spin case one absolutely expects the pairing to take place in the lowest
lying orbitals. DFT proposes instead that two electrons are paired in the energetically
higher lying a14 and by, orbitals, while the two degenerate e -orbitals only hold a
single unpaired electron each. Also the orbital energies are swapped back the same

by,

=
ooy
Hoa

way as observed at MnPc. As this fault occurs more than once it may be deduced that this must be an
inherent error of DFT or the functional used. Again, the illustration was drawn to appear reasonable,

even if the described occupation shifting method states a different order.

By means of the Tanabe-Sugano diagrams, LFT again complies to the expectations by predicting the high
spin state °E, for ligand field splittings of D, above 750 cm™! and the low spin state ' A, for strong

ligand fields above 1750 cm™!.

52.7 Cobalt d’

The energetic order of the orbitals remains unclear here because in this case one cannot
compare the shifting of one electron from the lower orbitals to the highest one because
of spin pairing or unpairing.

Under the assumption that the problem of back swapping does not occur in the cal-
culation of this complex, the problems concerning the Aufbau principle encountered
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FePc | dS: Dy, symmetry

state | AE/eV (S?)  occupation

Az | 00000 2018911 (ayg)ig)(azg)iy! (Brg)is) (bag)ia (€g)1o
"Aig | 09699 6018013  (aie)ig](aze)ii] (big)ie) (bao)i! (eg)ia!
5Bay | 13628 6013521 (a1g)ys; (azg)11) (brg)is) (b2g)is) (o) 1a)
LAy | 14194 0000000 (a14)5! (azg)1! (brg)id] (Bog)yal (€g)1a!
'Aig | 43843 0000000 (a1)75](az0)11] (brg)i3] (b2g)i3] (e9)13]
SAg, | 64884 2031745 (a1g)7g)(azg)1y] (brg)ia) (b2g)1a| (eg) 1l

Table 7: Results for FePc Ey = —1789.535064 Ha.

above have vanished here. A possible explanation for this observation might be that
not as much unoccupied, near-degenerate states, which also compete with spin pairing energies, exist
here anymore.

For strong ligands fields, meaning D, > 1600 cm ™!, the Tanabe-Sugano diagram predicts a 24, ¢ ground
state. This matches the prediction by DFT. But, the results for the exited states cannot be brought into
accordance, since the order of the 4329 and the 2ng state (c.f. table 8) is only correct for an assumed
ligand field with a splitting parameter in the range from 1600 to 2000 cm~'. The above findings estimated
that parameter higher.

CoPc | d": Dy, symmetry

state | AE/eV (S?)  occupation

2A1g | 00000 0759668 (a1g)is, (azg)1y! (Brg)is) (bag)ya) (€g)1a!
“Byy | 03486 3758280 (aig)ig|(a20)11] (b1g)ie) (b2g)1a)(€0)in
ZEE 4337 0877428 (alg)igl(@g)iﬂ(blg)ig}(b2y)}ﬁ(€g)iﬂ
2Byg | 16636 0761701 (aig)ig)(azg)1y] (Brg)is) (bag)1s) (€g)1a]

G1g)19) ‘7‘29)111

Table 8: Results for CoPc Ey = —1811.336399 Ha.

When the automatically by DFT proposed ground state 4329 was reoptimized under Dy, symmetry for
consistency checks, it was observed that the total energy Ey of the Dy, complex was even lower than
Ey of the actual, i.e. manually found, ground state 2Alg in Dyj, (c.f. tables 8 and 9). The e, orbitals
split up by only 0.0057 ev, but even that is not expected because the ground state is not degenerate. A
possible explanation is that the resulting energetic advantage from Do, over Dy; symmetry is derived
from structural distortions in the ligand that have no direct effect on the d-orbitals. But nonetheless
another error in DFT or the functional has been discovered, since these distortions are not reasonable.
For completeness it is noted that the Dy, calculations suffer from spin contamination that might affect
the results, even though it is below the above mentioned threshold of 10%.
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CoPc | d": Dy, symmetry
state | AE/eV (S%)  occupation
34 25 6 6 4 8 29 29
2By, | 0.0000 0813786 (ag)3] (big)a) (b2g)g (b3g)s) (au)s] (Bru)s (b2u)g (b3u) 3o,
34 25 6 6 4 8 29 29
*Bay | 00057 0801988 (ag)sy] (bg)s) (b2o)s] (bsg)s| ()] (bra)g] (bau)is] (bou)is)
Table 9: Results for CoPc Ey = —1811.351709 Ha.
52.8 Nickel d®
The calculations on this complex allowed the clarification of the energetic order of the
orbitals again and gave the results that are in accordance with the considerations made — by

above, so except for some outliers the initially observed and expected trend seems to
hold.

The isolated DFT results (c.f. table 10) appear reasonable because no previous ground
state included an unpaired electron in the by, orbital. The energetic gap to this orbital
appears relatively high. LFT on the other hand predicts a triplet ground state 3Blg for
all D, > 600 cm™! since the splitting of the b14 and by, orbitals is less than the spin-

pairing energy. MO theory would — in agreement with the DFT results — predict a higher energetic gap
to big (cf. Fig. 2). Whether this is sufficient to have a singlet ground state cannot be judged from this

comparison.

NiPc | d®: Dy, symmetry

state | AE/eV (S?)  occupation

'A;g | 0.0000 0.000000 (alg)igl(a2y)iﬂ(blg)igl(b2g)iﬁ(ey)gl
SBig | 0.8209 2004724 (a1g)ye (azg)11| (brg)ls) (b2g)14) (€0)1a)
3Agg | 17696 2009919 (aig)igl(azg)11| (big)is) (b2g)1s) (€g)1a)
SE, | 18942 2044732 (a1,)7gl (aze)y; (big)is) (bog)1s) (€0)iil
3Asg | 3.8179 2008883 (aig)igl(azg)11| (brg)ia) (b20)1s) () la)
LAig | 58517 0.000000 (a1g)ig](aze)11] (big)ie, (B2g)1s) (€g)1a]
LAy | 65411 0000000 (a1)15) (a2e)11] (big)ig, (b2g)1a. (€0)1a)

Table 10: Results for NiPc Ey = —1836.189916 Ha.

52.9 Copper d°’

In this d° complex the by, level has energetically dropped even below the e, orbitals, as
can be seen from table 11. This is expected for a further growing ligand field strength.
But on the opposite, that the latter one is decreasing with increasing atomic number, as
justified above. This raises doubts to the accurateness of the applied method, namely
DFT with a hybrid functional.
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Though it must be said, even with no Tanabe-Sugano diagram available, the ground
state is highly probable correct. But the excited states can be assumed to be incorrect due to the same
reasoning used for the considerations of the energetic orbital order.

CuPc | d°: Dy, symmetry

state | AE/eV (S?)  occupation
2Big | 00000 0.753348 (a14)7g! (a20)y; ] (brg)1g) (bog)1s, (€0)
“Bag | 29098 0752804 (a1)7g)](a2)11] (Brg)ig) (bag)1y) (e)13]
2B, | 3.1985 0762890 (a1)1g)(azg)ii] (bio)ig) (bog)1a) (€0)11)
( ( ( )14, (€g)

19
019)191 ‘129)111
D 18 11 16 14 12
241, | 32742 0.751806 alg)wTl aQQ)MI blg)m}(bzg 141 12}

141
14]

121

€g9)12]

€g

€g

Table 11: Results for CuPc Ey = —1862.581962 Ha.

52.10 Zincd'®

As the d'° Zinc-complex has a completely filled d-shell, there are no possible con- H big
figurations or distortions to be examined. Therefore the results of the calculation are .7_i_ ayg
given by the ground state energy Ey = —1892.281690 Ha and the expectation value

for the spin operator (S?) = 0.000000. The associated state is the totally symmetric H '1_1_ ©
one of ! Ay, arising from a configuration of (alg)}gI (azg)iﬂ (blg)}gz (bgg)}ﬂ (eg)}ZI . H bag

6 Conclusion

In this study, it was shown that DFT apparently has some major problems treating open-shell TM com-
plexes. This is especially true for the excited states that were calculated under symmetry restrictions and
becomes most evident when there are many states that lie very closely together. Only in the fewest cases
DFT was able to automatically find the ground state within its scope. So manual consideration of the
states is inevitable if one is interested in more than just complex geometries or rough energy estimates.

The greatest problem that was revealed here, certainly is that not even expected trends inside the 3d-
period were detectable. The comparison to another theory (LFT) describing the same quantities shows
different predictions throughout the whole period. But also LFT has some drawbacks. E.g. m-bonds are
not taken into account and in the prevailing complexes a delocalized 7-system exists, what might have
an impact on its predictions. Comparison with the MO diagram (fig. 2) indicates, that the description
of the ey, bag, a14 and to lesser extent by, metal ion orbitals as well as the relative energetic location to
the ligand o and 7 ,,, orbitals is crucial for the description of the electronic states. While the uniform
treatment of ligand and metal ion is superior over LFT, the lack of systematic trends among the calculated
states at DFT level suggests that DFT based on hybrid functionals is not yet accurate enough to resolve
the electronic structure to this level of detail. This applies in particular to d° to d” transition metal ions.
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Abstract:

In this report we will analyse the quality and performance of the library Hypre, a library wich
provides highly parallel preconditioners and solvers for large sparse systems of linear equations.
First we will give a short introduction into a certain class of iterative methods and precondition-
ers. Afterwards we will present results from different experiments analysing different parts of
Hypre.

1 Introduction

Solving large sparse linear systems is a task which often occurs in practical applications, for exam-
ple when discretizing partial differential equations or in the finite element method. So the ability to solve
these systems efficiently would be desirable. Some well known iterative methods like the Conjugate Gra-
dient Method [1] or the Generalized Minimal Residual Method [1] can be used. But to work efficiently
these methods need to be preconditioned in an appropriate way. The library Hypre, which is developed
at the Lawrence Livermore National Laboratory, provides a set of parallel preconditioners and solvers. It
enables us tomake practical use of these methods on large parallel computers. We will now analyse the
quality and scalability of the methods provided by Hypre.

2 General Theory

In this section we will give a brief introduction into projection methods which are a very general class
of iterative methods for solving systems of linear equations. After that we will describe the two known
Krylov subspace methods; the Conjugate Gradient Algorithm (CG) and the Generalized Minimal Resid-
val Method (GMRES), which are special projection methods.

Let A € R™*" a square matrix, b € R" a vector and € R" the solution of
Az =b. ¢))

Our task is to find an approximation Z of the solution = from (1). We are especially interested in the case,
where A is a large sparse matrix.



Ad

Tnew To

g

0

Figure 1: Interpretation of the orthogonality condition.

2.1 Projection methods

Projection methods provide the basic theory for most of the iterative methods known today. In this section
we will give a short introduction into the topic.

The main idea of this method is to search for an approximative solution Z in a m dimensional subspace,
say K C R™, which we will call the search subspace. To uniquely determine Z we need to supply at least
m constraints for the choice of . We do this by requesting m different orthogonality conditions. We can
formulate this, as the approximation Z will be chosen, so that (b — AZ) L £, where £ C R™ is an other
m dimensional subspace.

If we want to supply an initial guess z( to our method, we will need to search Z in the subspace zy + K.
So we will
choose Z € zy + K, sothat (b— AZ) L L. ()

Definition 1. If £ € R" is an approximation of the solution z of the equation (1), we call
r=b— AZ
the residual of the approximation Z. The relative residual is defined by
. T
7= m
Using the fact, that we can write Z as
Z=1x9+6, where § € K
and by defining r( as the residual of x, the orthogonality condition leads to
b— A(zg+6) = (ro — Ad) L L.

This is shown in figure 1. For a more detailed view on projection methods see [1].

22 Kirylov Subspace Methods

The previous section raises the question, what good choices for the subspaces X and £ are. It turns out
that Krylov subspaces are quite a good one.
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Definition 2. A subspace K,,,(4,v) C R"
Kin(A,v) := span {v, Av, A%v,--- , A" v}

is called a Krylov subspace. For brevity of notation, we will also write K, in unambiguous situations.

We will call a projection method a Krylov subspace method, if K = K, (A, o). Many of theses methods,
as the ones we will show later, start with a Krylov subspace of dimension one and increase the dimension
with every step. So we obtain a sequence of approximations

TOy T1y T2y «..Tp/y

since we add an additional constraint in every step. We note that there exists an n’ < n, so that z,, is the
exact solution of the linear system (1) [1, Proposition 5.6 and proposition 6.1].

23 Conjugate Gradient Method
The Conjugate Gradient Method is a Krylov subspace method, which works for a symmetric and positive
definit matrix A. We obtain the method by choosing
L=K=Kn(A,rg).
CG is optimal in the sense, that it minimizes the error in the A-norm

Iz = 2mlla = __min_ o= s

See [1, Proposition 5.2].

24 Generalized Minimal Residual Method

The other Krylov subspace method we want to present is the Generalised Minimal Residual Method
(GMRES). In contrast to the CG method, GMRES can be used with any arbitrary square matrix A. This
method chooses the space of constraints as follows.

L = AK = AK,,(A, 1)
GMRES is also optimal. It minimizes the residual in the 2-norm

b— A 0 = i b— AZ|s.
| T2 semin | P

See [1, Proposition 5.3].

2.5 Preconditioners

The main idea behind preconditioning is to manipulate the linear system in such a way, that the con-
vergence of the iterative method is speed up. So instead of solving the system (1), we solve the linear
system

M~Az = M~ 'b. 3)

Ideally M could be chosen as M = A, so that M ~*A = I, which would result in a linear system which
solved in one iteration step. But obviously we do not want to compute the inverse of A for precondition-
ing. So we are searching for a matrix M which is as close to A as possible, but where it is still easy to
solve linear systems with M.
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3 Hypre

The library Hypre, as mentioned above, is a library providing different parallel preconditioners and
solvers. The preconditioners we are interested in are

e Euclid [7],
e ParaSails [6],
e Algebraic Multi Grid (AMG) [5]

and we will use the iterative solvers

e CG 1],
e GMRES [1],
e AMG.

Hypre also supports specialized preconditioners and solvers, but we will focus on the general ones.

Parallelization in Hypre is realized by the Message Passing Interface (MPI). The sparse matricies are
stored in the Compressed Row Storage format (CRS).

4 Numerical Experiments

In this section we will show different results of several experiments we have carried out. First we will
describe our test setup.

4.1 Setup

The following experiments were run on the IBM Power6 575 Cluster JUMP at the Jiilich Forschungszen-
trum. A system with 14 SMP nodes where each node consists of 32 SMT processors (total 448). More
details are given in table 1.

Processortype: IBM Power6, 4.7 GHz
Overall peak performance: 8.4 Teraflops
Linpack: 5.4 Teraflops
Main memory: 14 x 128 Gbytes (aggregate 1.8 TB)
Networks: InfiniBand (MPI communication)
10 Gigabit Ethernet (I/O)

1 Gigabit Ethernet (cluster management)
Operating system: AIX 5.3

Table 1: Hardware specification of the Cluster JUMP.

We have several preconditioners in combination with different solvers and matricies. Therefore we cal-
culated
b:=A-e, wheree:(l,l,l,...,l)T

and solved the linear system
Az =b. 4
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4.2 Matricies

To test the library we used different matricies from real applications.

Kurbel This matrix results from a finite element analysis of a Crankshaft.

Dimentsion : 192858 x 192858
Nnz 112226189

Max. nnz per row : 408

Avg.nnz perrow :63.4

Max. diagonal value: 2.64684e + 07

BoneS10 This matrix also results from a finite element analysis. It is the analysis of a trabecular bone.

Dimentsion 1 914898 x 914898
Nnz 1 55468 422

Max. nnz perrow : 81

Avg.nnz perrow :60.6

Max. diagonal value: 18803.4

This matrix was obtained from the University of Florida Sparse Matrix Collection [2].

Reso_50x50x50 Calculating the eigenmodes of a box-shaped resonator cavity leads to this matrix.

Dimentsion : 375000 x 375000
Nnz : 6133288

Max. nnz per row : 20

Avg.nnz perrow :16.4

Max. diagonal value: 82.0511

43 Convergence

First of all, we want to analyse the convergence of the different algorithms. So we used different precon-
ditioners and solvers to solve the linear system (4). The iteration should stop, when the relative residual
7 fulfills

# <1077

or after 1000 iterations.

Figure 2 shows the relative residual norm in each iteration of GMRES. Different preconditioners where
used respectively.

If we were only looking at the total number of iterations then the Euclid preconditioner would be the best
one followed by AMG and ParaSails. But when looking at the total runtime, we get a different picture.
Table 2 and figure 3 show, that the preconditioner Euclid is very slow. Even though it yields good results
in terms of quality, it is way to slow to be of any practical use.

As we can see in figure 4 the ParaSails preconditioner is the best choice in terms of runtime in this
example. AMG as preconditioner is even a little bit slower than solving without preconditioning. So we
want to look at a slightly more complicated example and see how AMG and ParaSails perform.

In figure 5 we observe that the convergence of GMRES with ParaSails as preconditioner is considerably
slower than with AMG. So to get more accurate results it might be required to use AMG in certain
situations. On the other hand it can also be the case, that ParaSails converges faster, than AMG, as one
can see in figure 6.
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Time/s

Prec. Solv. | Iter.  Abs. Err. Rel. Err. Time
AMG CG | 35 2.79625e-07 1.4499%-12 16.4836
AMG GMRES | 10 7.72657e-08 4.00635e-13 8.57119
Euclid CG | 6 6.56035¢-08 3.40165e-13 649.483
Euclid GMRES | 4 2.65662¢-08 1.3775e-13  650.575
None AMG | 690 NaNQ NaNQ 131.35
None CG | 1000 13218.8 0.0685417 26.6161
None GMRES | 499 1.00843e-05 5.22887e-11 13.8277

ParaSails CG | 1000 652622 0.338395 29.2915
ParaSails GMRES | 45 2.87627e-07 1.49139e-12 2.5333

Runtime

Table 2: “Kurbel”: Runtime.
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Figure 4: “Kurbel”: Runtime, GMRES with different Preconditioners.
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44 Scalability

One of the most important information for judging the practical usage of a parallel library, beside the fact
that it works, is how well it scales. So in this section we will draw our attention to this aspect of Hypre.

In figure 7 we can see, that ParaSails scales nearly optimal up to 256 processors in terms of runtime. The
memory usage scales quite well up to 32 processors, as we can see in figure 8. The memory usage gets
higher when using more than 32 CPUs.

AMG does not scale so well as ParaSails does. There is no further benefit from using more than 128
processors, as one can see in figure 9. Also the total memory usage is quite high and memory scaling is
not that efficient, as we can see in figure 10. We can conclude, that memory is more or less the critical
point with this implementation of AMG. So with AMG as preconditioner we can only solve problems
which fit well into memory.

One thing we should note about AMG is, that there exist certain parameters which decrease the memory
usage of AMG. But these parameters also decrease the quality of preconditioning, so we did not used
them. But if we are running out of memory, we maybe can still use AMG with some fine tuning of some
parameters.

5 Conclusion

In conclusion we can say, that although Hypre does a good job, it does not provide the perfect precon-
ditioner for all tasks. ParaSails scales very well, but it might not be able to solve the problem. So if our
problem is “easy” enough, ParaSails is probably a better choice as far as scalability is concerned. On the
other hand AMG scales not so well, but might be able to solve problems where ParaSails fails.
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Simulation of NMR signal formation
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Abstract: Constrictions of heart arteries called stenosis can be detected by analyzing the con-
figuration of capillaries in myocardium using nuclear magnetic resonance (NMR). In this work
a simulation model for the NMR signal formation was developed to check the influence of
capillary configurations on the transversal relaxation processes. It has been found that faster
diffusion strongly reinforces geometric influence.

1 Motivation

In today’s medicine image formation allows very diversified diagnostics of diseases. Unfortunately de-
tecting stenosis, a common reason for heart failure, with NMR-image formation is not that easy. A pos-
sible workaround would be to obtain information about the properties of capillaries in the myocardium,
the hearts muscle tissue.

If some major arteries are blocked by stenosis, the capillaries in the tissue try to take over blood sup-
ply. This causes changes in areal distribution and radii of these capillaries. Because of the paramagnetic
desoxyhemoglobin within a large fraction of this capillaries, inhomogeneities are induced to an external
homogeneous magnetic field. This influence is called blood oxygen level dependency (BOLD). Those
inhomogeneities furthermore have strong influence on transverse relaxation of NMR signals.

The goal of this work is to check whether and to what extend NMR signals allow conclusions about the
tissue’s capillary configuration. For that purpose the algorithm already developed in [1] was extended to
simulate the signal formation for different tissue models.

2 Theory

2.1 Quantum mechanical background

Atomic nuclei with an odd number of nucleons posses a nuclear spin I which differs from zero. For
the hydrogen nucleus, the one commonly used in medical NMR imaging, the spin’s magnetic quantum
number can only take the values —1/2 and 1/2 and its two corresponding energy levels are degenerated.
In addition the spin is associated with a magnetic dipole moment

i =~vhI with y="Fand g = o - (1)

here +y is the gyromagnetic ration, g is the dimensionless so called g-factor, uy is the nuclear magneton
and my, is the proton mass.

By applying a magnetic field By = (0,0, By), the coupling of ji with the field splits up the degenerate
levels. This is called nuclear Zeeman effect and can be described with the following Hamiltonian



H = —[iBy = —ymBy 2)

where m is the value of the magnetic quantum number. The energy eigenvalues and the energy difference
between m = —1/2 and m = 1/2 for the Hamiltonian are then

E = —hymB, and AE = kyBy = wih 3)

This energy difference causes a discrepancy in the thermal occupation probability of the two eigenstates
and, hence, induces an overpopulation AN of the energetically lower state. One can show that, at room
temperature, this overpopulation is of the order of ppm. and grows approximately linear with By [6].

2.2 Classical simplification

Even if quantum mechanics is the proper way to describe the physical problem of a single two-level sys-
tem, one can move to a much simpler quasi-classical description of the magnetization. The huge amount
of hydrogen nuclei in even a microscopic fraction of the smallest resolvable volume element (voxel) of
a NMR scanner renders it possible to concatenate all of the magnetic moments contained in this fraction
to a mesoscopic magnetization M . This mesoscopic magnetization has lost the quantum mechanic dis-
cretized properties. The discretized alignment of magnetic dipole moments can now be interpreted as a
continuous magnetization vector which precesses around the magnetic field with frequency wy, (fig. 1a).
It is possible to manipulate this precession due to the application of a second oscillating field Bl () =
(By sinwt, B coswt, 0). If the oscillation frequency matches wy, one can move from a static coordinate
system to a rotating one in which both, M and B; stand still. In this coordinate system now the same
effect like in the static one without By takes place: M starts precessing around EO + B, = (B1,0, By).
In the static coordinate system M rotates towards the transversal plane (fig. 1b). This is then called a
90°-pulse.

(@ (®)

Figure 1: (a) Precession of the magnetization around the magnetic field. (b) 90°-pulse tilting the rotation
into the transversal plane[2].

By longer pulse durations one can also achieve 180°-pulses, which results in a reversal of the precession

direction. The amplitude of the projection of M (%) to the transversal plane is a signal this work is all
about.
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23 Signal decay and spin-echo

If the magnetic field would be totally homogeneous in the whole voxel the signal would not decay at all.
But because of inhomogeneities each concatenated subset of particles has its own frequency wy, and the
precession of the mesoscopic M starts to dephase. If there is no further excitation of the system this is
called Free induction decay (FID).

In a static case, applying another 180°-pulse at time ¢ = Tr/2 now flips the rotation directions and
the signal will be totally rephased at £ = Tg. In the other case, when there is diffusion every spin
experiences a particular history of different rotation speeds on its way which is not reversible, hence they
cannot completely rephase. The maximum of the regained signal is called echo. It is obvious that this
process can be repeated several times in a row what leads to a multiple spin-echo sequence (MSE).

3 Simulation approach

Because of the parallel alignment of capillaries in the hearts tissue the first approximation is to reduce the
simulation to two dimensions. Assuming further capillaries of infinite length (or [ > r) the frequency
inhomogeneity of a single capillary according to [7] is

dw (r, ) = awoﬂgcoif"’ with dwp = %Ba sin? © @

B,

Figure 2: Coordinate system. The capillary and the surrounding tissue are tilted towards By.[7].

The next step is to replace the diffusion by a random walk. Referring to [1] and [8] this can be done by
choosing step lengths to be Gaussian distributed:

P(7 — 7+ AF)

22
AT ] 5)

= 4xDAt P [4DAt

where At is the size of a single time step. To avoid errors at the boundary conditions it is important to
choose the time steps so small, that the mean step size o = v/2DAt of the random walk is at least about
one magnitude below the capillary diameter.

3.1 Signal formation

Once the random walk has generated a trajectory in the simulation environment, the history of experi-
enced fields w(t) is known. Now the overall phase ®(t) = fot w(t)dt can be accumulated. For a large
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amount of sampled of trajectories N building the mean value (cos (®(¢))) (¢) for every time step pro-
duces a signal according to the macroscopic magnetization M (¢) which is rotating in the transversal
plane.

M(t) = <cos ( /0 tw(t')dt')> ©)

For simulating spin echo sequences it is now sufficient to just adapt the phase accumulation routine
to the desired sequence. For a periodic MSE sequence for example one needs to switch the sign of
w(t) with each 180l o-pulse, or just split the integral fo (t)dt’ to a sum of several sub-integrals like

fol/zTE tl dtl fd//zzjj:EE tl dtl + f?é?E tl)dtl

3.2 Field discretisation

To avoid long runtimes of the simulation on the one hand, and to allow a large simulation environment
with lots of capillaries on the other, for complex capillary distributions the inhomogeneous field was
calculated in advance. Therefore the random walk environment gets divided into a square grid and be-
tween the grid the values are obtained by linear interpolation. Important for this method is to chose the
resolution for the grid large enough. Otherwise the singularities of the field in the inner of capillaries will
even introduce larger interpolation errors in the diffusion area.

This also allows more realistic simulations with cyclic boundary conditions: one can build a lattice of
capillaries with the environments configuration as elementary cell, then calculate the field induced by
this lattice only for a small central area and run the random walk in there with cyclic boundaries.Finally
this approach even resolves the problem of discontinuities at boundary crossings discussed in [1].

3.3 Error checks

The functionality of the implemented algorithm has been extensively checked:

e Does the field discretisation affect FID-signals? How large does the resolution have to be?
No deviations larger than statistical errors were found for discrete fields with a distance of inter-
polation points one order of magnitude below the smallest capillary diameter.

e Do numerical errors affect the calculations in a reasonable amount?
Even for large N7 (number of sampled trajectories) statistical errors shrunk with /N like ex-
pected. This leads to the conclusion that in the scope of the performed simulations numerical errors
can be neglected.

4 Results

Fig. 3a - 3c shows the three most intensely analyzed geometries. For all of them the volume fractions

ACapi llary
= oy 7
n AEnvimnmenl ( )
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0.05, 0.10 and 0.15 where simulated. The different 7 were achieved by constant environment size, so the
radii of capillaries were R, = 10,/n for all geometries. For the simulations of Kroghs Model reflective
boundaries were used, the square shaped environments had cyclic boundary conditions. The difference
between fig. 3b and fig. 3c is not only the orientation of the capillary, in fig. 3¢ also a periodic lattice con-
sisting of approx. 120 000 single surrounding capillaries was used to calculate the field. The commonly
used diffusion constants were in the range of 0 to 3, dw( was set to 1 for all simulations. The size of time
steps and hence the mean step size of the random walk always were far beyond limits mentioned before.
The statistical errors for all signals are of order of 0.003.

=-10F, s s s 10k " d
-10 5 0 5 0 -0 -5 0 s 10 -0 -5 0 s 0

(a) Kroghs Model

(c) Square environment, tilted capil-
lary, periodic capillary lattice

(b) Square environment

Figure 3: Most used simulation environments.

4.1 Free induction decay

Fig. 4a and fig. 4b show the results for the most simple realized simulations. It can easily be seen that
for smaller 7 the dephasing process is much slower. This directly results from the lower average inho-
mogeneities (eqn. (4)).
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Figure 4: Signal of free induction decay for different  and D. (Ny = 50000, At = 0.008)

The algorithm was tested with the simulations for Kroghs Model, because for D = 0 analytical solutions
exist [8]. It turned out, that the statistical errors shrunk with /N7 up to Nz > 2000 000 like expected,
whereas for simulations with different At and constant N7 no influence on the deviation to theoretical
solutions were found. This leads to the conclusion that the statistical error widely exceeds influence of
the time steps’ size.
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42 Spin-Echo: Timeshift

With increasing D, a shift of the echoes positions 6t = Tr —t,neqsured towards lower times than expected
has been found (fig. 5a). This can also be explained theoretically, by considering a further dephasing
caused by the diffusion even after the 180° rephasing pulse. For D = 0 of course no shift will occur.

M

30 40

% 10

10 12

20 4 6 8
time [1/ewq] diffusion coefficient D

(a) Time shift of echoes for increasing diffusion (b) Dependency of shift 28t of diffusion, normed to T
constants(D = 0.1 to D = 15) from light to dark.
(n = 0.15)

Figure 5: Single spin-echo simulation of Kroghs Model. (T = 10)

For Kroghs Model this effect has been reviewed in single spin echo simulations for n; = 0.05, 7, = 0.10
and 73 = 0.15, At = 0.004 and different diffusion constants (D, = 0.1, D, = 0.2, D3 = 0.5, D4, = 1.0,
Ds = 2.0, D¢ = 5.0, D7 = 10.0,Dg = 15.0) to get a qualitative overview of this process (fig. 5a). As
one easily can see, for all curves the signal at the expected echo position £ = 10 is no local maximum.
From fig. 5b, one can also see that for lower 7 the diffusion has a larger effect on the dephasing because
here the shift of the echoes grows faster with D. Comparing this with numerical calculations for low
diffusion rates form [5] (eqn. (35)) at least qualitative accordance is shown: &t decreases with rising 7
but also shows some D'/3 dependency which tolerably fits to fig. Sb for small D. For D — oo of course
0t nears 1 asymptotically.
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26 )Tk,

S
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00
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6 8
T [1/wo)
Figure 6: Dependency of 6t on T, the error bars show the standard deviation of the mean values.

For a higher resolved MSE simulation it was also possible to get detailed information about the depen-
dency of dt on echo times T . Therefore the 6t of the MSE signal for each echo number n was measured

88



and the mean value (§t(n)) over all echoes was calculated (fig. 6). For Ty — o0, dt in fact also should
near 1 asymptotically, this doesn’t match to [5] (eqn. (35)) at all.

4.3 Multiple spin-echo sequences

For MSE sequences also the three different geometries were simulated. For each simulation 50 000 tra-
jectories were sampled. The total simulation duration (¢,,,, = 320) got sampled with 20 000 time steps
which leads to At = 0.016. The echo period T was increased from 0 to 17.6 in 1100 equally spaced
steps.

Fig. 7a and 7b show some of the obtained signals.
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b)D =3
Figure 7: MSE signals for the three different geometries. n = 0.15, T = 16.256 (N7 = 50000)

One can simply see, that for D = 0.3, the decay of the signals echoes is very similar for all geometries,
whereas for D = 3 the decay of the capillary lattice simulation shows large deviations to the other
ones. Basically, fig. 7a and fig. 7b show the generic behavior of MSE signals. This behavior suggests a

more intense analysis of the strongest characteristic of such signals: the decay of the echoes amplitudes.
Therefore some different post processing methods come to mind:

e analysis of the decay of really “measured” amplitudes (further referred as “real amplitudes™)

e analysis of the decay of signal at the expected echo position (further referred as “expected ampli-
tudes”)

e analysis of the decay of echoes amplitudes by echo number

e analysis of the decay of echoes amplitudes by time

For all methods a simple exponential decay of the specific signal S

S(t) = Exp[yt] and S(n) = Ezp [y'n] 8)

was assumed and the negative decay coefficient -y for the different echo periods T was determined
with Mathematica’s FindFit function. Fig. 8a and fig. 8b show v/(Tz) and (7). For large echo times
both decay coefficients show a similar linear decreasing behavior, whereas for small T, v’ has a more

complex characteristic. It can also be seen that for the chosen diffusion rate D = 0.3 and = 0.05 only
very small deviations between the real and the expected amplitudes occur.
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To perform also a more quantitative check of fitness of decay according eqn. 8, the root mean square
for the deviations of the signal S to the fitted curve was calculated. As it can be seen in fig. 4.3 for real
amplitudes decaying with echo number n best fit is obtained.
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Figure 9: Root mean square of deviation between simulated signal S and its exp. fit. Orange: S(n) Black:
S(t). For “expected amplitudes” naturally S(n) and S(t) have same deviations.

Evenif fig. 4.3 reflects only a slight difference between the different fit methods, because of the influence
of diffusion, volume fraction and Tz on the ¢, in the following always the decay of “real amplitudes”
according to the echo number is analyzed.

Fig. 10a and 10b shows the characteristics of +/(T) for the three focused geometries and different
parameter combinations.

From fig. 10a and 10b it is obvious that a faster diffusion highly increases the influence of the environ-
ments geometry. But also some time dependent effect for the capillary lattice simulation can be seen:
whereas for Kroghs Model and the simple square environment behavior is pretty similar up to high echo
times, the deviation to the lattice simulation grows fast. This can be understood by recognizing that for
larger T, diffusion in the lattice model allows a particle also to be affected by more distant capillaries.
The general conclusion of the MSE simulations performed for these more simple geometries is, that at
least for large echo times significant differences in the echo decays can be observed, further increasing
diffusion and volume fraction also makes the echoes decay rates more distinguishable.
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Figure 10: Decay coefficients (7’) dependency to echo period T for different D and 7. (N7 = 50000,
At = 0.016)

44 Realistic capillary distributions

Beside the analysis of more or less generic geometries discussed until now, also more interesting capillary
distributions were simulated. For that purpose capillary distributions according to a two dimensional
one component plasma, proposed by [4] and sampled by [3], were simulated. For those distributions
I" is a characteristic parameter, that changes regarding real cardiovascular tissues “health status”. To
check the influence of parameter I" on the signal formation of FID and MSE signals, simulations for the
distributions showed in fig. 11a and 11b were performed. I" was chosen taking into account the results
from [4].
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Figure 11: More complex simulated capillary distributions consisting of 200 capillaries. The alignment
of the capillaries is realized like proposed in [4] and was generated by calculations form [3]. The size of
area is 3202.

Those distributions were regarded as elementary cells for a periodic square lattice. For the field calcu-
lation all capillaries in the range of 300 elementary cells were taken into account to calculate the field
within the central cell. The resolution chosen was 4. For different capillary radii, one can now just scale
the field values with R%.
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Simple FID simulations were performed for uniform capillary radii Rc; = 1, Rgp = 2and Rg3 = 3
and different diffusion constants in the range of 0 to 3. This different capillary radii lead to overall vol-
ume fractions 7; = 200Ré,i7r /3202. Unfortunately for none of the combinations of 1 and D significant
deviations between the signals for both distributions were found.

For MSE simulations only simulations with Rz = 3 and D = 1 were done. These signals showed
deviations of the decay coefficient 4 only for larger echo periods (fig. 12). But even there they are small.
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Figure 12: Decay coefficient ' for capillary distributions shown in 11a and 11b.D = 1, Rz = 3,
n = 0.0552, At = 0.015, N7 = 100000

5 Conclusion and outlook

Overall the timeshifts of the echo signals have been examined in a very detailed way and it turned
out that simply assuming the echo signal at time 7r might introduce errors. In addition it has been
shown that the geometrical properties of capillaries can have large impact to the MSE decay coefficients.
Therefore, the original idea of detecting stenosis via the change it affects to cardiovascular tissue surely
is justified. Although the simulations for the two complex distributions didn’t show any applicable result,
this will probably change with a better adaption of the geometry to real tissue. Particularly considering
the different capillary densities and deviations of radii for different kinds of cardiomyopathy found in [4]
promise some more significant results.

In addition during performing the simulations a large and easy to extend and adapt parallel simulation
framework has been developed. This would e.g. allow to do further simulations with arbitrary shaped 2D
blood vessels or additional diffusion conditions.
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Abstract: A new parallel algorithm for classical Molecular Dynamics is presented. The algo-
rithm is an extension to a common domain decomposition algorithm and is suitable for simula-
tion systems with short range forces and an inhomogenous distribution of the particles and for
low density systems. The implementation is presented in the context of the combined Molecular
Dynamics/ Multiparticle Collision Dynamics program MP2C.

1 Motivation

Computer simulation methods play an evermore important role in the physical sciences and two impor-
tant fields are Molecular Dynamics (MD) and Computational Fluid Dynamics (CFD)[1]. Whereas MD
describes molecular systems on the atomic level CFD is intended to describe hydrodynamic effects in lig-
uids on a mesoscopic scale. A combination of methods from both fields has recently been implemented
for a parallel environment in the program MP2C|[2]. This program allows to simulate molecules dissolved
in a liquid and explicitly take into account the hydrodynamic effects at relatively low computational cost.
However it became apparent that the program shows non-optimal scaling properties especially for sys-
tems with inhomogenous distribution of solute particles. The reason for this behaviour could be traced
to inefficient load-balancing in the MD part of the program. Therefore the goal set for this project was to
implement a parallelization scheme with a better load-balance in the MD part of the MP2C-code.

2 Introduction

2.1 Molecular Dynamics

Classical Molecular Dynamics treats each of the N particles in a simulation system as a point mass
and numerically integrates Newton’s equations of motion to compute a trajectory for the system. These
equations are given by



dv;
mzd—tz =;Fz(rz,r1)+;;Fd(r,,rj,rk)-l,- (1)

dr;
Ty, 0

where m; is the mass of particle ¢, r; and v; are its position and velocity vectors. F'; is a force function
describing the pairwise interactions between the particles while the further terms on the left side of equa-
tion 1 describe additional many-body interactions. The force terms are derivatives of potential energy
functions which altogether describe the complete physics of the simulation model. In practice the left
side of equation 1 is confined to only a few terms and the corresponding potential energy functions are
constructed so as to include many-body and quantum effects. A given potential can be classified to be ei-
ther long-range or short-range in nature. An important characteristic is the fact that short-range potentials
are limited in range, which means that each particle interacts only with other particles that are geometri-
cally nearby. Therefore the computational effort in calculating the forces for short-range potentials scales
as IV, the number of particles[3, 4]. Since particles can undergo large displacements, both in total as well
as relative to other particles, this O(N) scaling can only be implemented in connection with an efficient
scheme to continually track the neighbors of each particle. In the MP2C program all interactions are of
short-range nature.

The evaluation of particle interaction, i.e. force evaluation, is in general the most time comsuming part
in a MD simulation[3]. A useful construct to illustrate the computational work in force evaluation is the
N x N force matrix F, where the F;; element gives the force on particle ¢ due to particle j. In case
of short-range forces many entries in F are near to zero. This quality can be used advantageously to
significantly reduce the computational cost by introducing a cut-off distance 7. beyond which mutual
interactions between particles are neglected. Furthermore F is skew-symmetric due to Newton’s third
law Fij = —Fji.

(1 a2 ... an )
o )

T — 0 Fio, ... Fin
Io — F2| 0
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Figure 1: Concept of the force matrix F'. Its entries F';; represent the force vector acting on particle ¢ due
to particle j. x; to v are the position vectors of particles 7 to N. The overall force acting on particle ¢
is the sum of all entries in the ith row. Per se its calculation requires knnowledge of z; to zy .

Two different techniques have been reported to speed up force evaluation in MD simulations. The first
technique implements Verlet-neighbor lists, where at a given timestep for each particle a list of nearby
particles is maintained. When a list is formed, all neighboring atoms within a distance rs = 7. + d are
stored. When calculating the overall force on a given atom, only the entries in the corresponding neighbor
list are tested for possible interactions. A second technique commonly used is known as the linked-cell
method. At every timestep all particles in the system are binned into cubic cells. The sidelength L. of a
cell is chosen such that L, > r,. This limits the search for possible interaction partners of a given particle
to the bin it is in and the 26 surrounding ones. When appying Newton’s third law force evalution can be
further enhanced by searching only in half the surrounding bins.
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Figure 2: Principle of the linked cell method to speed up force evaluation in MD simulations. Particles
belonging to the same cell are linked together in linked list data structure. In three dimension mutual

interactions between particles are calculated only once when the search for possible interaction partners
of a particle is confined to half of the 26 surrounding bins.
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2.2 Multi Particle Collision

The hydrodynamic effects to be modelled arise from momentum exchange between the particles of a
liquid. In the MPC method the particles of a liquid are represented by coarse-grained pseudo-particles
which carry the hydrodynamic information. Only few parameters like particle density, a scattering an-
gle and the mean free path of a particle are used to describe the physical properties of the liquid. The
momentum exchange occurs after collisions of the particles on the condition of conversation of energy
and conversation of momentum. Since the microscopic details of the collisions are of no interest they are
modeled by a stochastic momentum exchange. In every timestep, which is called a collision step in MPC,
the particles are sorted in so called collision cells. For every collision cell a random rotation axis and the
center-of-mass velocity of all particles in a collision cell are calculated. Then for every particle its relative
velocity to the center-of-mass velocity is calculated and the part of the relative velocity that is orthogonal
to the rotation axis is rotated by the characteristic scattering angle. The new relative velocity is added
to the center-of-mass velocity to get the new particle velocity after a collision. The principle concept of
the random rotation is depicted in figure 3. To conserve Galilean invariance the grid of collision cells is
shifted randomly relative to the coordinate system of the particles in every collision step.

One advantage of the MPC method is that a coupling to atomistic simulations is established in a simple
way|[2]. A program that implements such coupling is MP2C.



Figure 3: Principle of a stochastic rotation in Multiparticle Collision Dynamics

23 MP2C

MP2C combines multiparticle collision dynamics for fluid systems with MD simulations for molecular
systems. This allows to simulate molecules dissolved in a liquid and explicitly take into account the
hydrodynamic effects. The coupling between the two simulation schemes is done in the following way:

The usual MD moves are performed according to the given force field. Every n.,; timesteps a collision
step is done, that also includes the solute particles. Both the solvent particles and the solute particles
are sorted into collision cells. Then the center-of-mass velocity of the collision cell is calculated and a
rotation around the same random axis is performed for both solvent and solute particles. These operations
are performed according to equation 3 and 4. This procedure leads to a stochastic momentum exchange
of the solutes while conserving the overall momentum and kinetic energy.

Ve,em = sl Slt ( MeVe + mbvb) 3
ME" + Mg aeC beC
Vi =Vi—Veem , i € {slv,slt} “4)

24 Parallelization

The parallelization strategy in MP2C is based on the domain decomposition (DD) scheme, which is used
for the MD part as well as for the MPC part. Since the work that is reported in this paper was confined
to the MD part the DD scheme will be described in the context of MD. In the DD scheme the physical
simulation domain is subdivided into equal sized subdomains and each PE is assigned one of them. The
information on a particle is stored on the PE governing the spatial domain the particle is currently in
When moving from one subdomain to another the information on that particle is transferred from one
PE to another. To calculate the forces on the particles in its domain a PE needs to know the coordinates
of nearby particles in neighboring domains. These are particles that are closer to a domain border than
the cut-off radius and they are commonly referred to as ghosts. To exchange the coordinate information
on the ghosts only local point-to-point communication is required. In a simple approach a PE would
need 34™ — 1 communication steps to obtain the ghosts from its neighboring PE. With the use of an
elaborate communication scheme the number of send/receive operations can be reduced to 2 X dim steps.
In three dimensions the application of this communication scheme allows a PE to obtain all the required
information from the 26 surrounding PE with just six communication steps.
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Figure 4: Communication scheme for efficient particle and ghost exchange. In the first step each PE
exchanges with both adjacent PE in the first dimension. In the second step the same exchange takes
place in a second dimension. Now the previously received data is included. In three dimensions a third
exchange step is performed.

2.5 Problem Statement

Due to the homogenous distribution of the coarse-grained solvens particle the hydrodynamic part of the
MP2C-code shows good scaling properties. However, the MD part shows less optimal scaling perfor-
mance especially when the solute particles are inhomogenously distributed or their density is low. The
reason for this behaviour is that with the domain decomposition a good load-balancing cannot be sus-
tained when scaling to large numbers of PE. What happens is that the effective domain assigned to a
PE is evermore shrinking when scaling up the number of PE. Therefore it is increasingly likely that a
PE is assigned a domain with relatively little or no solute particles at all. The consequence is that these
PE go idle during the force evaluation and the overall performance depends on the PE with the highest
workload. As a solution to this problem an improved parallelization scheme has been implemented and
given the name domain-force-decomposition.

3 Domain-Force-Decomposition

The Domain-Force-Decomposition scheme (DFD) is an extension to the DD scheme in the sense that
it combines the DD-scheme with elements from other decomposition schemes to yield better load-
balancing in the computation of the forces. The ground-lying decomposition scheme is the DD, which
means that still each PE updates the positions and velocities of all the particles that are within its spatial
domain. The difference is in the computation of the forces. In the DFD scheme eight neigboring PE make
up a larger domain which will be referenced in the following as a coarse-grid domain (CG-domain). For
ease of distinction the basic domain which describes the simulation space that is governed by one PE
will be referred to in the following as DD-domain. The tie-up of the eight DD-domains in a CG-domain
is done so that the CG-domain forms a cluster that comprises two DD-domains in each direction. Now
the workload for computation of the forces on all local particles in a given CG-domain is partitioned as
equally as possible among the PEs involved. This gives good load-balancing for each CG-domain.
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3.1 Communication Scheme

Balancing the workload for force evaluation requires PEs that govern only a little number of particles
take on the force evalution for particles that reside on PEs with a larger number of particles. However, the
force evaluation for a particle requires a PE to know the coordinates of all the other particles that interact
with that particle, i.e. all the other particles that lie within its cut-off radius. These particles could in turn
reside on a third PE. Thus it appears that an approach where particles are locally exchanged to balance
the workload for force evaluation would a significant amount of additional communication operations.
In the DFD scheme a different approach is taken in which in a first step the overall work is collected and
then redistributed. Collection of work means here that all coordinates that are required to evaluate forces
on all the particles in a CG-domain are stored in one place. Therefore the DFD scheme introduces two
new data structures that are maintained on all PEs:

e A memory buffer is maintained to store coordinates and a global index of all particles in its CG-
domain. Additionally it stores coordinates and indices of nearby particles in neighboring CG-
domains. This buffer will be referred to as COORD_BUFFER in the following.

e A second memory buffer, which will be referred to as FORCE_BUFFER, stores the force contri-
butions during evaluation of the forces on the particles of a given CG-domain. Finally the con-
tributions to the force on each particle are summed up and written to the local data structure that
stores the complete information on each particle.

New collective communication is used to fill these buffers with the local data on each processor and
to distribute the final results to each PE. The collective communication takes place on a newly created
communicator that includes only the PEs in a given CG-domain. Every CG-domain creates its own
communicator which is referenced as COMM_DFD in the following. Now, compared to the DD scheme
point-to-point communication to exchange ghosts takes only place across CG-domain borders.

All these changes to the MP2C-code are easily implemented. The old routine calls to exchange ghosts
and to evaluate forces are substituted by a call to the newly introduced routine force(). Algorithm 4
shows the pseudocode for the routine force().

Algorithm 4 subroutine force()

fill COORD_BUFFER

if local particles > O then
sort particles in linked-cells
divide linked cells to PEs involved
computes force contributions and stores in FORCE_BUFFER
sum up force contributions with MPI_ALLREDUCE
copy forces to local particle structure

end if

In the first step a call to fill_force_coords() fills COORD_BUFFER with the coordinates of all local par-
ticles in a given CG-domain and all ghosts in neighboring CG-domains. Furthermore COORD_BUFFER
stores a global index for each particle. This index is used during force evaluation to determine the correct
potential parameters for each particle. The data in COORD_BUFFER is distributed in two collective
communication steps to all PEs involved. The population of COORD_BUFFER is performed according
to the rank of the contributing PE in the specific communicator COMM_DFD. The principle of pop-
ulating COORD_BUFFER is presented in figure 5. The received ghost’s coordinates and indices are
appended to COORD_BUFFER after the local particles data.
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Figure 5: Memory layout for COORD_BUFFER and FORCE_BUFFER.

The detailed steps in the routine fill_force_coords() are given in Algorithm 5. This routine starts with
all PEs involved communicating their local number of particles on COMM_DFD. Communication is
realized with MPI_ALLGATHER. Now that each PE knows the exact numbers of particles residing on
the other PEs within that communicator it can calculate the offset to store coordinates and indices of
its particles in COORD_BUFFER. The particles are copied in the order of the ranks in COMM_DEFD.
After each PE has copied its data to COORD_BUFFER this data is synchronized on all PEs involved
with MPI_ALLGATHERV. Then a ghost exchange step takes places in the same manner as previously
described for the DD scheme. A crucial difference is that now the exchange happens only across CG-
domain borders. In this 8-PE cluster set-up each PE does ghost exchange with three surrounding PEs,
one in each direction, whereas in the DD scheme it was with all six surrounding PEs. The orientation
of the ghost exchange in each direction is fixed for a given PE during initialization of a simulation run.
After each PE has received ghosts for its section of the CG-domain border all PEs communicate the
number of received ghosts in the same way as beforehand for the local particles. Now the offset for
copying the ghosts to COORD_BUFFER is now calculate relative to the position of the last particle data
in COORD_BUFFER.

Algorithm 5 subroutine fill_force_coords()
communicate number of local particles across CG-Domain with MPI_ALLGATHER
calculate offset in COORD_/FORCE_BUFFER
copy particles coordinates to COORD_BUFFER
communicate particle coordinates in COORD_BUFFER with MPI_ALLGATHERV
exchange ghosts with neighboring CG-Domains
communicate number of ghosts with MPI_ALLGATHER
calculate local offset in COORD_BUFFER
copy ghost coordinates to the end of COORD_BUFFER
communicate ghost coordinates in COORD_BUFFER with MPI_ALLGATHERV
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After the return of fill_force_coords() each PE of the CG-domain contains the same data in its instance
of COORD_BUFFER.

In the next step each PE sorts all particles in COORD_BUFFER in linked cells. The corresponding rou-
tine is named fill_linked_cells(). The actual load-balancing is done in the following step when contigous
blocks of linked cells are distributed to the PEs involved. Only those linked cells that lie inside the CG-
domain are distributed. Linked cells that comprise the border region in the neighboring CG-domains are
not explicitly distributed. Each PE divides the total number of particles in the specific CG-domain by
the number of PEs in that CG-domain to get N, , the average number of particles on a PE belonging
to the specific CG-domain. Next the distribution of linked cells to the PEs is performed in the order of
their ranks in COMM_DFD. A rank gets linked cells until the number of particles on that rank equals or
exceeds N,,. Each PE runs this algorithm up to the point where it has evaluated its share in the linked
cells. The PE with the highest rank in COMM_DFD gets the remaining linked cells.

The following step is the force evaluation. Each PE works through the assigned linked cells und evaluates
the force contributions for the particles contained within. During the run through the surrounding linked
cells of a particle Newton’s third law is applied and only half of them are checked for possible interac-
tions. This means that in many cases contributions to the total force on particle are evaluated on various
PE in the CG-doain. An exception are the linked cells that belong to the border region of a neighboring
CG-domain. They are always included in the screening for possible interactions. The force contributions
are summed up in FORCE_BUFFER. The offset of a particle in COORD_BUFFER is also used as offset
for that particles in FORCE_BUFFER and hence identical for a given particle on all PEs in the specific
CG-domain (see figure 5). To sum up the contributions to the total force on each particle a collective
reduction operation is performed on FORCE_BUFFER. The reduction communication is realized by
MPI_ALLREDUCE with MPI_SUM specifying the reduction operation.

4 Speedup Analysis

Up to the day that this report has been written the implementation of the DFD scheme in MP2C was still
in the process of debugging. Certain parts of the implementation have been checked to work correctly
while other are still not working in the desired way. Those parts that still do not work correctly are
the process of exchanging ghosts and the application of Newton’s third law when scanning surrounding
linked cells. In order to assess at least qualitatively the effect of the DFD-scheme compared to the DD-
scheme a reduced implementation of MP2C was build. On that implementation benchmark runs were
performed that went just long enough to get an rough idea of the speedup that can be expected from a
fully, correctly working implementation. This reduced implementation does not take full advantage of
Newton’s third law in evaluating forces since it is applied only to interactions between particles inside
the same linked cell. This means that the total force on a given particle is always evaluated on a single
PE and interactions between particles in different linked cells are calculated twice. The second important
restriction is the fact that during a simulation run no ghost exchange at all takes place. This restricts the
possible length of a benchmark run significantly. Therefore the benchmark runs were performed on a
specifically configured system of 20000 solute particles on 8 PEs with the starting configuration chosen
such that all solute particles were inside a single DD-domain. In this configuration no ghost exchange is
needed as long as all solute particles remain in that DD-domain. Therefore the lenght of the benchmark
run was chosen to 100 timesteps. Benchmark times for the force evaluation part both for the DD-scheme
and the DFD-scheme are given in figure 6. With this configuration of the system in the DD-scheme
the evalution of all forces is done by just one PE and no communication at all takes places during the
benchmark run. In the DFD-scheme the workload for the evalution of the forces is shared between all
8 PE at the cost of global communication to communicate coordinates and to sum up and communicate
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forces. The results show that the communication overhead introduced in the DFD-scheme is fairly small
compared to the speedup that is achieved. For the DFD-scheme it can be assumed that the total time does
not change significantly with a different relative distribution of particles across the 8 PE (one CG-domain
in a larger system). The benchmark time for the communication part in the DFD-scheme might change
significantly but since communication makes up only a minor part of the total time this effect can be
neglected. In the DD-scheme the total time is always the total time of the PE with the highest workload.
With a different relative distribution of particles in a first approximation the total time can be assumed to
scale linearly with the workload. Therefore the results promise a speedup with the DFD-scheme for more
common (but still inhomogenous) particle distributions. Clearly there will be little to no speedup in cases
where the system on whole is inhomogenouslv distributed but the regions of high narticle density extend
homogenous mentation
seems to yiel

105 w100 steps, 1 PE
i 100 steps, 8 PE
BN communication part

\\\\\\N

Figure 6: Comparison between the situation where force evaluation is done by just one PE in a CG-
domain and the situation where force evaluation is partioned according to the DFD scheme. The latter
case includes the all-to-all communication and the cpu time for communication is shown seperately. The
benchmark times are taken for 100 timesteps. The system consisted of 20000 solute particles and was
decomposed to one CG-domain with 8 DD-domains.

5 Outview

Apart from the above reported bugs that need to be fixed in the first place the here presented implemen-
tation of the DFD-scheme could be improved on different issues:

e Different shapes for a CG-domain could be examined, that match the inhomogeneity of the simu-
lation system better.

e A more elaborate exchange scheme involving a combination of ghost and force exchange could
be implemented. In the current implementation the force contributions involving ghosts are eval-
uated on both PEs involved. This means also that the ghosts involved are being exchanged mutu-
ally. Instead of ghost exchange taking place in both opposite directions in each dimension in the
fill_force_coords() routine they could be sent to only one direction in each dimension and at the
end of the force evaluation the forces for this ghosts could be sent back the inverse way. This way
the force contributions on ghost particles would be evaluated once.
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