

Routing on the QPACE parallel computer Guest Student Programme 2010

15. November 2010 | Konstantin Boyanov

Overview

- Architecture of QPACE
- The Network Processor and the Torus Network
- Types of routing and applicable routing algorithms
- Event-based simulation environment OMNeT++
- Implementation of a Simulation Model
- Conclusion and Outlook

The QPACE Parallel Computer

- QPACE: "QCD Parallel Computer based on Cell processors"
- Specially developed for QCD numerical simulations
- PowerXCell8i Processor
 - 102 GFlops double precision

Cell CPUs are	interconnected through	custom torus network	From [1]

- Number #1 in Green500 (June 2010)
 - High Performance LINPACK 44.50 TFlops sustained on 512 nodes
 - Energy efficiency 773 MFflops / Watt
 - #2 in Green 500 Nebulae 492,64 MFlops/Watt
 - JUGENE 363,9 MFlops / Watt

	Test					
ਦੇ 112 2 2 (512KB)	& Debi	SPE	SPE	SPE	SPE	
Rambus XD	ig Logic					Ran
nory C		Elem	ent Interc	onnectiBus		contra
entroli						oller
Power Processor		SPE	SPE	SPE	SPE	
Element						

QPACE Architecture

- QPACE rack = 8 backplanes x 32 node cards
- Liquid cooling makes high performance density possible
- 2 installations with 4 racks each

QPACE Network Processor

Implemented on Field Programmable Gate Array (FPGA)

- Reprogrammable logic blocks connected by reconfigurable interconnects
- Ready-to-use circuit modules (Ethernet MAC, PCIe cores, memory)
- Flexible development, Non-Recurring-Engineering costs low
- QPACE Network Processor is a southbridge with various tasks
- Physical links
 - 2x FlexIO links to Cell
 - 6x 10 GbE torus network links
 - I Gigabit Ethernet link for I/O
- Torus Network

-X

+Z

-Z

▲+y

QPACE Network Processor

Torus Network: Communication Protocol

Custom 2-sided communication protocol

- Receive operation: tnw credit()
- Send operation: tnw_put()

Why Routing in QPACE?

- QPACE allows now only for nearest-neighbour communication
- Routing makes any-to-any communication possible
- Processor and parallel architecture promising for other applications
- For example FFT-based applications
 - Row-column FFT algorithms on large data sets
 - 2-dimensional data (matrix)
 - Perform one-dimensional FFT on one dimension first, then perform FFT on the other
 - Before starting the FFT on the second dimension, transpose the data set to allow transforms to operate on local/continuous data
 - Communication pattern in parallel environment similar to transposing very large matrices

Some Routing Terminology and Techniques

Static vs. Dynamic Routing

- Routing table created at system start time
- Routes change dynamically during runtime
- Common Routing Techniques [4]
 - Store-and-forward routing
 - Virtual cut-through routing
 - Wormhole routing
 - Hot-potato routing
- Deadlock and Livelock

- Packet(s) cannot be forwarded due to resource contention or lack of forward routes
- Packet(s) travel in circular fashion around their destination forever

Proposed Routing Algorithm for QPACE (1)

- Messages in QPACE are composed of equally sized packets (128 byte)
 - Lean protocol demands certain packet ordering rules
- Extended packet header
 - Address of each node is represented by its coordinates in the 3D torus
 - Contains the relative offset between source and destination along the 3 dimensions
 - For example communication between node A (source) and node B(destination):

 $(A_x, A_y, A_z) = (1, 2, 1), (B_x, B_y, B_z) = (0, 2, 2)$

Header contains $(\Delta_x, \Delta_y, \Delta_z) = (B_x, B_y, B_z) - (A_x, A_y, A_z) = (-1, 0, 1)$

 At each hop the corresponding value in the header is decremented or incremented

Proposed Routing Algorithm for QPACE (2)

A packet is routed in one plane first

- Continues its travel forward or makes a turn according to $(\Delta x, \Delta y, \Delta z)$
- Packets must start into particular direction at the sender node to avoid being stuck with no further forward route

Proposed Routing Algorithm for QPACE (3)

Advantages

- Minimal number of connections between transmit (TX) and receive (RX) links
- No additional buffers
- Simple routing logic
- No complex routing tables
- No significant changes to the hardware architecture of the network processor

Proposed Routing Algorithm for QPACE (4)

Required changes to the network processor

Proposed Routing Algorithm for QPACE (5)

Proposed routing algorithm is not deadlock-free

- Receive buffer of node A is filled with packets waiting to be forwarded → no further packets can travel along this link
- Also packets with node A as final destination might be blocked
- If this condition occurs on all nodes simultaneously, the communication system deadlocks
- Strategies to prevent deadlocks
 - Give higher priority to packets within the network than packets injected into the network
 - Limit message size so no receive buffer gets full
 - Software control of messages

The OMNeT++ Simulation Environment

- OMNeT++ \rightarrow Objective Modular Network Testbed in C++ [3]
- Event-based Simulation
 - System is represented as chronological sequence of events
 - Every event marks a change in the state of the system
 - Test new functionality of complex system without physically altering the system
 - Diagnose issues in existing system, test performance
- OMNeT++ Simple and Compound Modules
 - Simple custom language for module description (NED)
 - Functionality encapsulated in C++ classes and methods
- OMNeT++ Connections
 - Allow to define data rates, delays

Differences with Respect to the Real Hardware

- Simplification: no Virtual Channels
 - In real hardware 8 virtual channels per link/direction
- Messages and packets
 - No Credits between Receive Buffers and CPU
 - No feedback on the links
- Backpressure
 - Between processor and Slave Interface (sender side)
- Contention information and flow control among neighbouring nodes
 - OMNeT++ signalling

The QPACE Model in OMNeT++

Model Verification: Bandwidth Comparison for Point-to-Point Communication

Using a latency limited communication pattern

one message every 3 µs

Bandwidth Measurements in Model and Real Hardware

Testing the Routing Algorithm

- Communication pattern from an example application
- Transposing large quadratic matrices
 - Every node *i* is assigned a set of rows in the matrix
 - Every node *i* sends parts of its row to every other node j
 - For example for a 2x2x2 torus (nodes 0-7) and 128x128 matrices every node gets 16 rows.
 - Node 0 sends entries 16-31 of all its rows to node 1, entries 32-47 to node 2, etc.
 - Node 0 keeps entries 0-15 and receives all entries 0-15 from all other nodes
- At the end every node sends messages to any other node, and receives from any other node
- Functional test of my model successfully passed using up to 1024 nodes

15. November 2010

Conclusion and Outlook

- Good overlapping of bandwidth measurements in simulation model and on real hardware
- Routing algorithm implemented in simulation environment
- Routing algorithm verified by test application
 - Transpose Matrix communication pattern does not fully utilize link bandwidth
- Precise and comprehensive measurements to be made
 - End-to-end packet transmission delay
 - Bandwidth at a reference receiver node as function of torus size and packet count for matrix transposition
- Tests with other communication patterns

The End

Thank you for your attention! Questions?

References

- [1] http://www.research.ibm.com/cell/
- [2] http://hpc.desy.de/qpace/
- [3] http://www.omnetpp.org/
- [4] Terry Tao Ye, Luca Benini, Giovanni De Micheli "Packetization and Routing Analysis of On-Chip Multiprocessor Networks"
- [5] M. Blumrich, D. Chen, P. Coteus "Design and Analysis of the BlueGene/L Torus Interconnection Network"
- [6] Erik Demaine, Sampalli Srinivas "Routing Algorithms on static interconnection networks: A classification scheme"

General Information and Disclamer

Konstantin Boyanov

Deutsches Elektronen Synchrotron - DESY (Zeuthen),

DESY Zeuthen, Platanenallee 6, 15738 Zeuthen

Tel.:+49(33762)77178

konstantin.boyanov@desy.de

Some images used in this talk are intellectual property of other authors and may not be distributed or reused without their explicit approval.