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Overview

 Architecture of QPACE  

 The Network Processor and the Torus Network

 Types of routing and applicable routing algorithms 

 Event-based simulation environment OMNeT++ 

 Implementation of a Simulation Model

 Conclusion and Outlook
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The QPACE Parallel Computer

  QPACE: „QCD Parallel Computer 

   based on Cell processors“

 Specially developed for QCD

 numerical simulations

 PowerXCell8i Processor 

■ 102 GFlops double precision

 Cell CPUs are interconnected through  custom torus network

 Number #1 in Green500 (June 2010)

■ High Performance LINPACK - 44.50 TFlops sustained on 512 nodes

■ Energy efficiency - 773 MFflops / Watt

■ #2 in Green 500 - Nebulae 492,64 MFlops/Watt

■ JUGENE 363,9 MFlops / Watt

From [1]
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QPACE Architecture

 

 QPACE rack = 8 backplanes x 32 node cards

 Liquid cooling makes high performance density possible

 2 installations with 4 racks each 
From [2]
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QPACE Network Processor

 Implemented on Field Programmable Gate Array (FPGA)

■ Reprogrammable logic blocks connected by reconfigurable interconnects

■ Ready-to-use circuit modules (Ethernet MAC, PCIe cores, memory) 

■ Flexible development, Non-Recurring-Engineering costs low

 QPACE Network Processor is a southbridge with various tasks 

 Physical links

■ 2x FlexIO links to Cell

■ 6x 10 GbE torus network links 

■ 1 Gigabit Ethernet link for I/O

 Torus Network

■ Nearest neighbour communication, Local Store to Local Store data transfer

+x-x
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-z
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QPACE Network Processor
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Torus Network: Communication Protocol 

Cell NWPNWP Cell

 Custom 2-sided communication protocol

■ Receive operation: tnw_credit()

■ Send operation: tnw_put()

1. Credit
2. Data

3. Data

4. Data5. ACK

SPE 
LS

FIFO

TX

BUF

RX

SPE 
LS

SPE 
LS

SPE 
LS

3 GB/s

~1 GB/s

3 GB/s
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Why Routing in QPACE?

 QPACE allows now only for nearest-neighbour communication

 Routing makes any-to-any communication possible

 Processor and parallel architecture promising for other applications

 For example FFT-based applications

■ Row-column FFT algorithms on large data sets 

■ 2-dimensional data (matrix)

■ Perform one-dimensional FFT on one dimension first, then perform 
FFT on the other

■ Before starting the FFT on the second dimension, transpose the data 
set to allow transforms to operate on local/continuous data

■ Communication pattern in parallel environment similar to transposing 
very large matrices
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Some Routing Terminology and Techniques

 Static vs. Dynamic Routing

■ Routing table created at system start time

■ Routes change dynamically during runtime 

 Common Routing Techniques [4]

■ Store-and-forward routing 

■ Virtual cut-through routing 

■ Wormhole routing 

■ Hot-potato routing 

 Deadlock and Livelock 

■ Packet(s) cannot be forwarded due to resource contention or lack of 
forward routes

■ Packet(s) travel in circular fashion around their destination forever
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Proposed Routing Algorithm for QPACE (1)

 Messages in QPACE are composed of equally sized packets (128 byte)

■  Lean protocol demands certain packet ordering rules 

 Extended packet header

■ Address of each node is represented by its coordinates in the 3D torus

■ Contains the relative offset between source and destination along the 3 
dimensions

■ For example communication between node A (source) 

and node B(destination):

(Ax, Ay, Az)  = (1,2,1), (Bx, By, Bz) = (0,2,2)

Header contains (Δx, Δy, Δz) = (Bx, By, Bz) - (Ax, Ay, Az) = (-1, 0, 1)

■ At each hop the corresponding value in the header is decremented or 
incremented
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Proposed Routing Algorithm for QPACE (2)

 Forward directions

 A packet is routed in one plane first

■ Continues its travel forward or makes a turn according to (Δx, Δy, Δz) 

■ Packets must start into particular direction at the sender node to 
avoid being stuck with no further forward route

From Towards

+X -X, +Y, -Y

-X +X, -Y, +Y

+Y -Y, +Z, -Z

-Y +Y, +Z, -Z

+Z -Z, +X, -X

-Z +Z, +X, -X

-Z

+Z

+Y-Y

-Y

+Y

+X-X

-X

+X

+Z-Z
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Proposed Routing Algorithm for QPACE (3)

 Advantages 

■ Minimal number of connections between transmit (TX) and 

receive (RX) links

■ No additional buffers 

■ Simple routing logic

■ No complex routing tables

■ No significant changes to the hardware architecture of the network 
processor
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Proposed Routing Algorithm for QPACE (4)

 Required changes to the network processor

TX

TX 
FIFO

ARB

RX

RX 
BUF

To PHY From PHY

Receive -XTransmit +X

IWC OWC

From 
Receive +Z

From 
Receive -Z

To Transmit -Y

To Transmit +Y

TX

TX 
FIFO

RX

RX 
BUF

To PHY From PHY

Receive -XTransmit +X

IWC OWC
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Proposed Routing Algorithm for QPACE (5)

 Proposed routing algorithm is not deadlock-free

■ Receive buffer of node A is filled with packets waiting to be 
forwarded → no further packets can travel along this link

■ Also packets with node A as final destination might be blocked

■ If this condition occurs on all nodes simultaneously, the 
communication system deadlocks

 Strategies to prevent deadlocks

■ Give higher priority to packets within the network than packets 
injected into the network

■ Limit message size so no receive buffer gets full

■ Software control of messages
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The OMNeT++ Simulation Environment

 OMNeT++ → Objective Modular Network Testbed in C++ [3]

 Event-based Simulation

■ System is represented as chronological sequence of events

■ Every event marks a change in the state of the system

■ Test new functionality of complex system without physically altering the 
system

■ Diagnose issues in existing system, test performance

 OMNeT++ Simple and Compound Modules

■ Simple custom language for module description (NED)

■ Functionality encapsulated in C++ classes and methods

 OMNeT++ Connections 

■ Allow to define data rates, delays 
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Differences with Respect to the Real Hardware

 Simplification: no Virtual Channels

■ In real hardware 8 virtual channels per link/direction

 Messages and packets

■ No Credits between Receive Buffers and CPU

■ No feedback on the links

 Backpressure

■ Between processor and Slave Interface (sender side)

 Contention information and flow control among neighbouring nodes

■ OMNeT++ signalling
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The QPACE Model in OMNeT++
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Model Verification: Bandwidth Comparison for 
Point-to-Point Communication

 Using a latency limited communication pattern 

one message every 3 μs
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Testing the Routing Algorithm

 Communication pattern from an example application

 Transposing large quadratic matrices

■ Every node i is assigned a set of rows in the matrix

■ Every node i sends parts of its row to every other node j

■ For example for a 2x2x2 torus (nodes 0-7) and 128x128 matrices every 
node gets 16 rows. 

■ Node 0 sends entries 16-31 of all its rows to node 1, entries 32-47 to 
node 2, etc.

■ Node 0 keeps entries 0-15 and receives all entries 0-15 from all 
other nodes

 At the end every node sends messages to any other node, and receives from 
any other node

 Functional test of my model successfully passed using up to 1024 nodes
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Conclusion and Outlook

  Good overlapping of bandwidth measurements in simulation model 
and on real hardware

 Routing algorithm implemented in simulation environment

 Routing algorithm verified by test application

■ Transpose Matrix communication pattern does not fully utilize link 
bandwidth

 Precise and comprehensive measurements to be made

■ End-to-end packet transmission delay 

■ Bandwidth at a reference receiver node as function of torus size and 
packet count for matrix transposition

 Tests with other communication patterns
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The End

Thank you for your attention!

 Questions?
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