

Integration of Higher Order Compact Scheme into Multigrid

Guest Student Program in Scientific Computing

September 30, 2010 | Alina Istrate adviser: Godehard Sutmann

Outline

- Introduction to the physics of the problem
- VERY brief introduction to the mathematics of the problem
- Results
- Conclusion
- Outlook

Let there be particles...

Let there be particles...

Particle properties: position, velocity and charge

Given

initial state $S_0 = [\vec{x_1}, ..., \vec{v_1}, ...]$ of a set \mathcal{P} of particles.

Time evolution is given by Newton's equations of motion

$$\vec{v}_i = \frac{d}{dt}\vec{x}_i$$
 $\vec{F}_i = \frac{d}{dt}m_i\vec{v}_i$

$$\vec{F}_i = \sum_{j \in \mathcal{P}/\{i\}} \vec{F}_{i,j}$$

Given

initial state $S_0 = [\vec{x_1}, ..., \vec{v_1}, ...]$ of a set \mathcal{P} of particles.

Time evolution is given by Newton's equations of motion

$$\vec{v}_i = \frac{d}{dt}\vec{x}_i$$
 $\vec{F}_i = \frac{d}{dt}m_i\vec{v}_i$

$$\vec{F}_i = \sum_{j \in \mathcal{P}/\{i\}} \vec{F}_{i,j}$$

Given

initial state $S_0 = [\vec{x_1}, ..., \vec{v_1}, ...]$ of a set \mathcal{P} of particles.

Time evolution is given by Newton's equations of motion

$$\vec{v}_i = rac{d}{dt} \vec{x}_i$$
 $\vec{F}_i = rac{d}{dt} m_i \vec{v}_i$

$$\vec{F}_i = \sum_{j \in \mathcal{P}/\{i\}} \vec{F}_{i,j}$$

Given

initial state $S_0 = [\vec{x_1}, ..., \vec{v_1}, ...]$ of a set \mathcal{P} of particles.

Time evolution is given by Newton's equations of motion

$$\vec{v}_i = rac{d}{dt} \vec{x}_i \qquad \vec{F}_i = rac{d}{dt} m_i \vec{v}_i$$

$$\vec{F}_i = \sum_{j \in \mathcal{P}/\{i\}} \vec{F}_{i,j}$$

About potentials

Forces are given by the gradient of the potential

$$ec{F}_i = -
abla \Phi_i$$
 $ec{F}_{i,j} = -
abla \Phi_{i,j}$ $\Phi_i = \sum_{j \in \mathcal{P}/\{i\}} \Phi_{i,j}$

Classification

- short range: decays faster than ¹/_{r^d}: Van der Waals potential, Lenard-Jones potential
- long range: decays slower ¹/_{r^d}: Coulomb potential, gravitational potential

About potentials

Forces are given by the gradient of the potential

$$\vec{F}_i = -\nabla \Phi_i$$
 $\vec{F}_{i,j} = -\nabla \Phi_{i,j}$ $\Phi_i = \sum_{j \in \mathcal{P}/\{i\}} \Phi_{i,j}$

Classification

- short range: decays faster than $\frac{1}{r^{d}}$: Van der Waals potential, Lenard-Jones potential
- long range: decays slower ¹/_{r^d}: Coulomb potential, gravitational potential

About potentials

Forces are given by the gradient of the potential

$$\vec{F}_i = -\nabla \Phi_i$$
 $\vec{F}_{i,j} = -\nabla \Phi_{i,j}$ $\Phi_i = \sum_{j \in \mathcal{P}/\{i\}} \Phi_{i,j}$

Classification

- short range: decays faster than ¹/_{r^d}: Van der Waals potential, Lenard-Jones potential
- long range: decays slower ¹/_{r^d}: Coulomb potential, gravitational potential

Properties of the system

Important definitions

Coulomb potential

н.

$$\Phi_{i,j} = \frac{1}{4\pi\epsilon_0} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

Electrostatic energy

$$E = \frac{1}{2} \sum_{i \in \mathcal{P}} q_i \Phi_i = \frac{1}{2} \sum_{i \in \mathcal{P}} q_i \sum_{j \in \mathcal{P}/i} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

Properties of the system

Important definitions

Coulomb potential

$$\Phi_{i,j} = \frac{1}{4\pi\epsilon_0} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

Force
$$\vec{F}_i = \frac{1}{4\pi\epsilon_0}\sum_{j\in\mathcal{P}/\{i\}}q_iq_j\frac{\vec{x}_i-\vec{x}_j}{\|\vec{x}_i-\vec{x}_j\|_2^3}$$

Electrostatic energy

$$E = \frac{1}{2} \sum_{i \in \mathcal{P}} q_i \Phi_i = \frac{1}{2} \sum_{i \in \mathcal{P}} q_i \sum_{j \in \mathcal{P}/i} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

Properties of the system

Important definitions

Coulomb potential

$$\Phi_{i,j} = \frac{1}{4\pi\epsilon_0} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

Force
$$\vec{F}_i = \frac{1}{4\pi\epsilon_0}\sum_{j\in\mathcal{P}/\{i\}}q_iq_j\frac{\vec{x}_i-\vec{x}_j}{\|\vec{x}_i-\vec{x}_j\|_2^3}$$

Electrostatic energy

$$E = \frac{1}{2} \sum_{i \in \mathcal{P}} q_i \Phi_i = \frac{1}{2} \sum_{i \in \mathcal{P}} q_i \sum_{j \in \mathcal{P}/i} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

Important

In our system the particles are interacting by Coulomb force!

What we need to do

- Galculate the forces at the current time
- Use a time integration scheme to move to the next time step

Definition

Important

In our system the particles are interacting by Coulomb force!

What we need to do

- Calculate the forces at the current time
- Use a time integration scheme to move to the next time step

Definition

Important

In our system the particles are interacting by Coulomb force!

What we need to do

Calculate the forces at the current time

 Use a time integration scheme to move to the next time step

Definition

Important

In our system the particles are interacting by Coulomb force!

What we need to do

- Calculate the forces at the current time
- Use a time integration scheme to move to the next time step

Definition

Important

In our system the particles are interacting by Coulomb force!

What we need to do

- Calculate the forces at the current time
- Use a time integration scheme to move to the next time step

Definition

Important

In our system the particles are interacting by Coulomb force!

What we need to do

- Calculate the forces at the current time
- Use a time integration scheme to move to the next time step

Definition

Important

In our system the particles are interacting by Coulomb force!

What we need to do

- Calculate the forces at the current time
- Use a time integration scheme to move to the next time step

Definition

Like always, several approaches exist!

Particle-Particle Methods

Particle-Mesh Methods

Particle-Particle Mesh Methods

General view

Relation to Poisson equation

Green's function of the Poisson equation in \mathbb{R}^3

$$U(x) = \frac{1}{4\pi \|\vec{x}\|_2}$$

Reminder: Coulomb potential

$$\Phi_i = \sum_{\substack{j=1\\j\neq i}}^N \frac{1}{4\pi\epsilon_0} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

September 30, 2010

Relation to Poisson equation

Green's function of the Poisson equation in \mathbb{R}^3

$$U(x) = \frac{1}{4\pi \|\vec{x}\|_2}$$

Reminder: Coulomb potential

$$\Phi_j = \sum_{\substack{j=1\\j\neq i}}^N \frac{1}{4\pi\epsilon_0} \frac{q_j}{\|\vec{x}_j - \vec{x}_j\|_2}$$

Relation to Poisson equation

Green's function of the Poisson equation in \mathbb{R}^3

$$U(x) = \frac{1}{4\pi \|\vec{x}\|_2}$$

Reminder: Coulomb potential

$$\Phi_i = \sum_{\substack{j=1\\j\neq i}}^N \frac{1}{4\pi\epsilon_0} \frac{q_j}{\|\vec{x}_i - \vec{x}_j\|_2}$$

September 30, 2010

$$\Delta \Phi_i(\vec{x}) = \rho_i := \frac{1}{\epsilon_0} \sum_{\substack{j=1\\j\neq i}}^N q_i \delta(\|\vec{x}_i - \vec{x}_j\|_2)$$

- This is the potential induced by all particles except for the i-th particle
- Can not straightforwardly be solved numerically
- define numerical schemes to calculate the electrostatic quantities of the system based on the solution of the Poisson equation on a mesh

$$\Delta \Phi_i(\vec{x}) = \rho_i := \frac{1}{\epsilon_0} \sum_{\substack{j=1\\j\neq i}}^N q_i \delta(\|\vec{x}_i - \vec{x}_j\|_2)$$

- This is the potential induced by all particles except for the i-th particle
- Can not straightforwardly be solved numerically
- define numerical schemes to calculate the electrostatic quantities of the system based on the solution of the Poisson equation on a mesh

$$\Delta \Phi_i(\vec{x}) = \rho_i := \frac{1}{\epsilon_0} \sum_{\substack{j=1\\j\neq i}}^N q_i \delta(\|\vec{x}_i - \vec{x}_j\|_2)$$

- This is the potential induced by all particles except for the i-th particle
- Can not straightforwardly be solved numerically
- define numerical schemes to calculate the electrostatic quantities of the system based on the solution of the Poisson equation on a mesh

$$\Delta \Phi_i(\vec{x}) = \rho_i := \frac{1}{\epsilon_0} \sum_{\substack{j=1\\j\neq i}}^N q_i \delta(\|\vec{x}_i - \vec{x}_j\|_2)$$

- This is the potential induced by all particles except for the i-th particle
- Can not straightforwardly be solved numerically
- define numerical schemes to calculate the electrostatic quantities of the system based on the solution of the Poisson equation on a mesh

$$\Delta \Phi_i(\vec{x}) = \rho_i := \frac{1}{\epsilon_0} \sum_{\substack{j=1\\j\neq i}}^N q_i \delta(\|\vec{x}_i - \vec{x}_j\|_2)$$

- This is the potential induced by all particles except for the i-th particle
- Can not straightforwardly be solved numerically
- define numerical schemes to calculate the electrostatic quantities of the system based on the solution of the Poisson equation on a mesh

$$\Delta \Phi_i(\vec{x}) = \rho_i := \frac{1}{\epsilon_0} \sum_{\substack{j=1\\j\neq i}}^N q_i \delta(\|\vec{x}_i - \vec{x}_j\|_2)$$

- This is the potential induced by all particles except for the i-th particle
- Can not straightforwardly be solved numerically
- define numerical schemes to calculate the electrostatic quantities of the system based on the solution of the Poisson equation on a mesh

Meshed Continuum Method

- Unlike other PP-PM methods the current approach uses a continuum description: not assigning point charges to the grid but replace the point charges by charge distribution
- Do not introduce additional discretization errors

Solution

• Replace δ distribution on right hand side by

$$\rho_g = g(\|x\|_2)$$

with the properties:

- $g:\mathbb{R}^+_0 \to \mathbb{R}^+_0$
- g is sufficiently smooth
- $\int_{\mathbb{R}^3} \rho_g(x) = 1$
- solution Φ_g of $-\Delta \Phi_g(x) = \frac{1}{\epsilon_0} \rho_g(x)$ is known analytically
- g must have a limited support, i.e.

$$g(x) = 0$$
 for $x > R$

Point symmetric densities described by B-splines

Definition

A B-spline B_i , i = 0, 1, ... of unit width is given by

$$B_0 = \begin{cases} 1, & -\frac{1}{2} \le x \le \frac{1}{2} \\ 0, & otherwise \end{cases}$$

 $B_{i+1}(x) = 2B_{[i/2]}(2x) * 2B_{i/2}(2x)$, for i = 1, 2...

"Simple" example:

4th order B-spline

$$\rho_{B_4}(r) = \begin{cases} \frac{27 \cdot (81 \cdot r^4 - 54 \cdot r^2 \cdot R^2 + 11 \cdot R^4)}{32 \cdot R^7} & r \leq \frac{R}{3} \\ \frac{27 \cdot (-9 \cdot r^2 + 6 \cdot r \cdot R + R^2)(27 \cdot r^2 - 42 \cdot r \cdot R + 17 \cdot R^2)}{64 \cdot \pi \cdot R^7} & r \leq \frac{2R}{3} \\ \frac{2187 \cdot (r - R)^4}{64 \cdot \pi R^7} & r \leq R \end{cases}$$

Remark

The analytical solution for the potential energy is known

Back to 3D Poisson equation

$$\nabla^2 \Phi = f$$
$$\nabla^2 = \frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial z}$$

How to implement the Laplacian on the computer?

Answer: Finite differences

Definition

Derivative of a function is defined by the difference quotient

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The discretization of a derivative on a equispaced grid with grid width *h* is:

$$f'(x) \doteq \frac{f(x+h) - f(x)}{h}$$

Using Taylor expansion the error is found to be O(h)

Definition

Derivative of a function is defined by the difference quotient

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The discretization of a derivative on a equispaced grid with grid width h is:

$$f'(x) \doteq \frac{f(x+h) - f(x)}{h}$$

Using Taylor expansion the error is found to be $\mathcal{O}(h)$

Definition

Derivative of a function is defined by the difference quotient

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The discretization of a derivative on a equispaced grid with grid width h is:

$$f'(x) \doteq \frac{f(x+h) - f(x)}{h}$$

Using **Taylor expansion** the error is found to be O(h)

Definition

Derivative of a function is defined by the difference quotient

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The discretization of a derivative on a equispaced grid with grid width h is:

$$f'(x) \doteq \frac{f(x+h) - f(x)}{h}$$

Using Taylor expansion the error is found to be $\mathcal{O}(h)$

Example

The second order derivative

$$f'' = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$

Higher order approximations can be constructed by using more grid points, e.g. not only x - h, x and x + h, but x - 2h, x + 2h,...

1D analogue of the Poisson equation

Example

for periodic boundary conditions

$$u''(x)=f(x)$$

$$\begin{cases} \frac{1}{h^2}(u_n - 2u_0 + u_1) = f_0\\ \frac{1}{h^2}(u_{i-1} - 2u_i + u_{i+1}) = f(x) & \text{for } i = 1, ..., n-1\\ \frac{1}{h^2}(u_n - 2u_0 + u_1) = f_0 \end{cases}$$

with $u_i = u(ih)$, $f_i = f(ih)$

The system can be solved with multigrid method

1D analogue of the Poisson equation

Example

for periodic boundary conditions

$$u''(x)=f(x)$$

$$\begin{cases} \frac{1}{h^2}(u_n - 2u_0 + u_1) = f_0\\ \frac{1}{h^2}(u_{i-1} - 2u_i + u_{i+1}) = f(x) & \text{for } i = 1, ..., n-1\\ \frac{1}{h^2}(u_n - 2u_0 + u_1) = f_0 \end{cases}$$

with $u_i = u(ih)$, $f_i = f(ih)$

The system can be solved with multigrid method

Very short introduction to Multigrid

Finite differences for higher dimensions

2D

$$\Delta u(ec{x}) = rac{1}{h^2} [u(ec{x} - hec{e}_1) + u(ec{x} - hec{e}_2) - 4u(ec{x}) + u(ec{x} + hec{e}_1) + u(ec{x} + hec{e}_2)] + \mathcal{O}(h^2)$$

Stencil notation

$$\frac{1}{h^2} \left[\begin{array}{rrr} 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{array} \right]$$

September 30, 2010

Alina Istrate adviser: Godehard Sutmann

Finite differences for higher dimensions

3D

$$\Delta u(\vec{x}) = \frac{1}{h^2} [u(\vec{x} - h\vec{e}_1) + u(\vec{x} - h\vec{e}_2) + u(\vec{x} - h\vec{e}_3) - 6u(\vec{x}) + u(\vec{x} + h\vec{e}_1) + u(\vec{x} + h\vec{e}_2) + u(\vec{x} + h\vec{e}_2)] + \mathcal{O}(h^2)$$

Stencil notation

$$\frac{1}{h^2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{h^2} \begin{bmatrix} 1 \\ 1 & -6 & 1 \\ 1 \end{bmatrix} = \frac{1}{h^2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Stencil representation

2nd order

Simplifying the things...

- $u_{i,j,k} \equiv$ value of u at grid point $\vec{x}_{i,j,k}$
- $f_{i,j,k} \equiv$ value of f at grid point $\vec{x}_{i,j,k}$
- $\partial_{x_1}^2 u_{i,j,k}$ being the central finite difference approximation to the second partial derivative in *x*-direction

Definition

$$\partial_{x_1}^2 u_{i,j,k} = \frac{u(\vec{x}_{i-1,j,k}) - 2u(\vec{x}_{i,j,k}) + u(\vec{x}_{i+1,j,k})}{h^2}$$

$$\Delta u_{i,j,k} = \partial_{x_1}^2 u_{i,j,k} + \partial_{x_2}^2 u_{i,j,k} + \partial_{x_3}^2 u_{i,j,k} + \mathcal{O}(h^2)$$

Compact discretization of higher order

Definition

Compact discretization of higher order are discretizations which are taking into account all nearest neighbours, not only the direct ones. Advantage:

- they achieve higher order, but only nearest neighbours are needed
- reduced amount of communication for parallel solvers

Compact discretization of higher order

Definition

Compact discretization of higher order are discretizations which are taking into account all nearest neighbours, not only the direct ones. Advantage:

- they achieve higher order, but only nearest neighbours are needed
- reduced amount of communication for parallel solvers

Higher order compact discretization

4th order compact scheme

$$[\partial_{x_1}^2 + \partial_{x_2}^2 + \partial_{x_3}^2 + \frac{h^2}{6} (\partial_{x_1}^2 \partial_{x_2}^2 + \partial_{x_1}^2 \partial_{x_3}^2 + \partial_{x_2}^2 \partial_{x_3}^2)] u_{i,j,k} = f_{i,j,k} + \frac{h^2}{12} \left[\delta_{x_1}^2 + \delta_{x_2}^2 + \delta_{x_3}^2 \right] f_{i,j,k} + \mathcal{O}(h^4)$$

September 30, 2010

Slide 25

Stencil representation

4th order

Higher order compact discretization

6th order compact scheme

$$\begin{split} [\partial_{x_1}^2 + \partial_{x_2}^2 + \partial_{x_3}^2 + \frac{h^2}{6} (\partial_{x_1}^2 \partial_{x_2}^2 + \partial_{x_1}^2 \partial_{x_3}^2 + \partial_{x_2}^2 \partial_{x_3}^2) + \\ & \frac{h^4}{30} \partial_{x_1}^2 \partial_{x_2}^2 \partial_{x_3}^2] \Phi_{i,j,k} = \\ f_{i,j,k} + \frac{h^2}{12} \nabla^2 f_{i,j,k} + \frac{h^4}{360} \nabla^4 f_{i,j,k} + \\ & \frac{h^4}{180} [\frac{\partial^4 f}{\partial x_1^2 \partial x_2^2} + \frac{\partial^4 f}{\partial x_2^2 \partial x_3^2} + \frac{\partial^4 f}{\partial x_1^2 \partial x_3^2}] + \mathcal{O}(h^6) \end{split}$$

Stencil representation

6th order

Right hand side of Poisson equation in our case

4th order B-spline

$$\rho_{B_4}(r) = \begin{cases} \frac{27 \cdot (81 \cdot r^4 - 54 \cdot r^2 \cdot R^2 + 11 \cdot R^4)}{32 \cdot R^7} & r \leq \frac{R}{3} \\ \frac{27 \cdot (-9 \cdot r^2 + 6 \cdot r \cdot R + R^2)(27 \cdot r^2 - 42 \cdot r \cdot R + 17 \cdot R^2)}{64 \cdot \pi \cdot R^7} & r \leq \frac{2R}{3} \\ \frac{2187 \cdot (r - R)^4}{64 \cdot \pi R^7} & r \leq R \end{cases}$$

Case study

Eigenfunctions of Laplace operator

source term distribution

$f_{i,j,k} = 12\pi sin(2\pi ih_x)sin(2\pi jh_y)sin(2\pi kh_z)$

with the analytical solution

$u_{i,i,k} = sin(2\pi i h_x) sin(2\pi j h_y) sin(2\pi k h_z)$

Case study

Eigenfunctions of Laplace operator

source term distribution

 $f_{i,j,k} = 12\pi sin(2\pi ih_x)sin(2\pi jh_y)sin(2\pi kh_z)$

with the analytical solution

 $u_{i,j,k} = sin(2\pi i h_x) sin(2\pi j h_y) sin(2\pi k h_z)$

Case study

Eigenfunctions of Laplace operator

source term distribution

$$f_{i,j,k} = 12\pi sin(2\pi ih_x)sin(2\pi jh_y)sin(2\pi kh_z)$$

with the analytical solution

 $u_{i,j,k} = sin(2\pi ih_x)sin(2\pi jh_y)sin(2\pi kh_z)$

Results

Log -log plot of errors for different solvers

Conclusions

What I had to do...and what I have done

- implement the 6th order compact scheme into the PP3MG code
- the result is not as expected; possible cause: the 4th order B spline is not enough "smooth" when applying the 6th order operators
- measurements of time spent in "creating" the left and right hand sides of Poisson equation were done but they were not concludent

- implementation of higher order B-spline
- performance gain by combining different HOC schemes hierarchly
- implementation of different 6th order HOC's
- parallel performance measurements

- implementation of higher order B-spline
- performance gain by combining different HOC schemes hierarchly
- implementation of different 6th order HOC's
- parallel performance measurements

- implementation of higher order B-spline
- performance gain by combining different HOC schemes hierarchly
- implementation of different 6th order HOC's
- parallel performance measurements

- implementation of higher order B-spline
- performance gain by combining different HOC schemes hierarchly
- implementation of different 6th order HOC's
- parallel performance measurements

- implementation of higher order B-spline
- performance gain by combining different HOC schemes hierarchly
- implementation of different 6th order HOC's
- parallel performance measurements

Before... in Experimental Physics

Subject-project interaction diagram

Alina Istrate University of Wuppertal alina.istrate@uni-wuppertal.de

Some images used in this talk are intellectual property of other authors and may not be distributed or reused without their explicit approval.