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Let there be particles...



Let there be particles...

Particle properties: position, velocity and charge



Basic incredients for Particle Simulation

Given

initial state S0 = [~x1, ..., ~v1, ...] of a set P of particles.

Time evolution is given by Newton’s equations of motion

~vi =
d
dt
~xi

~Fi =
d
dt

mi ~vi

The force acting on particle i

~Fi =
∑

j∈P/{i}

~Fi,j
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About potentials

Forces are given by the gradient of the potential

~Fi = −∇Φi
~Fi,j = −∇Φi,j Φi =

∑
j∈P/{i}

Φi,j

Classification

short range: decays faster than 1
rd : Van der Waals

potential, Lenard-Jones potential
long range: decays slower 1

rd : Coulomb potential,
gravitational potential

September 30, 2010 Alina Istrate adviser: Godehard Sutmann Slide 5



About potentials

Forces are given by the gradient of the potential

~Fi = −∇Φi
~Fi,j = −∇Φi,j Φi =

∑
j∈P/{i}

Φi,j

Classification

short range: decays faster than 1
rd : Van der Waals

potential, Lenard-Jones potential
long range: decays slower 1

rd : Coulomb potential,
gravitational potential

September 30, 2010 Alina Istrate adviser: Godehard Sutmann Slide 5



About potentials

Forces are given by the gradient of the potential

~Fi = −∇Φi
~Fi,j = −∇Φi,j Φi =

∑
j∈P/{i}

Φi,j

Classification

short range: decays faster than 1
rd : Van der Waals

potential, Lenard-Jones potential
long range: decays slower 1

rd : Coulomb potential,
gravitational potential

September 30, 2010 Alina Istrate adviser: Godehard Sutmann Slide 5



Properties of the system

Important definitions

Coulomb potential

Φi,j =
1

4πε0

qj

‖~xi − ~xj‖2

Force
~Fi =

1
4πε0

∑
j∈P/{i}

qiqj
~xi − ~xj

‖~xi − ~xj‖32

Electrostatic energy

E =
1
2

∑
i∈P

qiΦi =
1
2

∑
i∈P

qi

∑
j∈P/i

qj

‖~xi − ~xj‖2
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How to simulate a particle system

Important

In our system the particles are interacting by Coulomb force!

What we need to do

Calculate the forces at the current time
Use a time integration scheme to move to the next time
step

Definition
Integration scheme is a ”magical” tool which needs as input
at least the forces and the velocities at one time step
and they provide the new positions and updated velocities as
output
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How do we get the forces?

Like always, several approaches exist!
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Particle-Mesh Methods



How do we get the forces?

Like always, several approaches exist!

Particle-Particle-Particle Mesh Methods



General view



Relation to Poisson equation

Green’s function of the Poisson equation in R3

U(x) =
1

4π‖~x‖2

Reminder: Coulomb potential

Φi =
N∑

j=1
j 6=i

1
4πε0

qj

‖~xi − ~xj‖2
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Arriving at the starting point...

Coulomb potential is a solution of the Poisson equation

∆Φi(~x) = ρi :=
1
ε0

N∑
j=1
j 6=i

qiδ(‖~xi − ~xj‖2)

This is the potential induced by all particles except for the
i-th particle
Can not straightforwardly be solved numerically
define numerical schemes to calculate the electrostatic
quantities of the system based on the solution of the
Poisson equation on a mesh
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Meshed Continuum Method

Unlike other PP-PM methods the current approach uses a
continuum description: not assigning point charges to the
grid but replace the point charges by charge distribution
Do not introduce additional discretization errors
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Solution

Replace δ distribution on right hand side by

ρg = g(‖x‖2)

with the properties:
g:R+

0 → R+
0

g is sufficiently smooth∫
R3 ρg(x) = 1

solution Φg of −∆Φg(x) = 1
ε0
ρg(x) is known analytically

g must have a limited support, i.e.

g(x) = 0 for x > R
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Point symmetric densities described by B-splines

Definition
A B-spline Bi , i = 0,1, ... of unit width is given by

B0 =

{
1, −1

2 ≤ x ≤ 1
2

0, otherwise

Bi+1(x) = 2B[i/2](2x) ∗ 2Bi/2(2x), for i = 1,2...
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”Simple” example:

4th order B-spline

ρB4(r) =



27·(81·r4−54·r2·R2+11·R4)
32·R7 r ≤ R

3

27·(−9·r2+6·r ·R+R2)(27·r2−42·r ·R+17·R2)
64·π·R7 r ≤ 2R

3

2187·(r−R)4

64·πR7 r ≤ R

Remark
The analytical solution for the potential energy is known
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Back to 3D Poisson equation

∇2Φ = f

∇2 =
∂2

∂x
+
∂2

∂y
+
∂2

∂z

How to implement the Laplacian on the computer?

Answer: Finite differences
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Finite differences in one dimension

Definition
Derivative of a function is defined by the difference quotient

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The discretization of a derivative on a equispaced grid with grid
width h is:

f ′(x)
.

=
f (x + h)− f (x)

h
Using Taylor expansion the error is found to be O(h)
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Finite differences in one dimension

Example

The second order derivative

f ′′ =
f (x − h)− 2f (x) + f (x + h)

h2 +O(h2)

Higher order approximations can be constructed by using more grid
points, e.g. not only x − h, x and x + h, but x − 2h, x + 2h,...
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1D analogue of the Poisson equation

Example

for periodic boundary conditions

u′′(x) = f (x)


1
h2 (un − 2u0 + u1) = f0
1
h2 (ui−1 − 2ui + ui+1) = f (x) for i = 1, ...,n − 1
1
h2 (un − 2u0 + u1) = f0

with ui = u(ih), fi = f (ih)

The system can be solved with multigrid method
September 30, 2010 Alina Istrate adviser: Godehard Sutmann Slide 18
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Very short introduction to Multigrid
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Finite differences for higher dimensions

2D

∆u(~x) =
1
h2 [u(~x − h~e1) + u(~x − h~e2)− 4u(~x)+

u(~x + h~e1) + u(~x + h~e2)] +O(h2)

Stencil notation

1
h2

 1
1 −4 1

1


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Finite differences for higher dimensions

3D

∆u(~x) =
1
h2 [u(~x − h~e1) + u(~x − h~e2) + u(~x − h~e3)− 6u(~x)+

u(~x + h~e1) + u(~x + h~e2) + u(~x + h~e2)] +O(h2)

Stencil notation

1
h2

 1

 1
h2

 1
1 −6 1

1

 1
h2

 1


September 30, 2010 Alina Istrate adviser: Godehard Sutmann Slide 21



Stencil representation
2nd order
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Simplifying the things...

ui,j,k ≡ value of u at grid point ~xi,j,k

fi,j,k ≡ value of f at grid point ~xi,j,k

∂2
x1

ui,j,k being the central finite difference approximation to
the second partial derivative in x-direction

Definition

∂2
x1

ui,j,k =
u(~xi−1,j,k )− 2u(~xi,j,k ) + u(~xi+1,j,k )

h2

∆ui,j,k = ∂2
x1

ui,j,k + ∂2
x2

ui,j,k + ∂2
x3

ui,j,k +O(h2)
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Compact discretization of higher order

Definition
Compact discretization of higher order are discretizations
which are taking into account all nearest neighbours, not only
the direct ones. Advantage:

they achieve higher order, but only nearest neighbours are
needed
reduced amount of communication for parallel solvers
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Higher order compact discretization

4th order compact scheme

[∂2
x1

+ ∂2
x2

+ ∂2
x3

+
h2

6
(∂2

x1
∂2

x2
+ ∂2

x1
∂2

x3
+ ∂2

x2
∂2

x3
)]ui,j,k =

fi,j,k +
h2

12

[
δ2

x1
+ δ2

x2
+ δ2

x3

]
fi,j,k + O(h4)
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Stencil representation
4th order
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Higher order compact discretization

6th order compact scheme

[∂2
x1

+ ∂2
x2

+ ∂2
x3

+
h2

6
(∂2

x1
∂2

x2
+ ∂2

x1
∂2

x3
+ ∂2

x2
∂2

x3
)+

h4

30
∂2

x1
∂2

x2
∂2

x3
]Φi,j,k =

fi,j,k +
h2

12
∇2fi,j,k +

h4

360
∇4fi,j,k +

h4

180
[

∂4f
∂x2

1∂x2
2

+
∂4f

∂x2
2∂x2

3
+

∂4f
∂x2

1∂x2
3

] + O(h6)
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Stencil representation
6th order
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Right hand side of Poisson equation in our case

4th order B-spline

ρB4(r) =



27·(81·r4−54·r2·R2+11·R4)
32·R7 r ≤ R

3

27·(−9·r2+6·r ·R+R2)(27·r2−42·r ·R+17·R2)
64·π·R7 r ≤ 2R

3

2187·(r−R)4

64·πR7 r ≤ R
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Case study

Eigenfunctions of Laplace operator

source term distribution

fi,j,k = 12πsin(2πihx )sin(2πjhy )sin(2πkhz)

with the analytical solution

ui,j,k = sin(2πihx )sin(2πjhy )sin(2πkhz)
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Results
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Conclusions

What I had to do...and what I have done

implement the 6th order compact scheme into the PP3MG
code
the result is not as expected; possible cause: the 4th order
B spline is not enough ”smooth“ when applying the 6th
order operators
measurements of time spent in ”creating“ the left and right
hand sides of Poisson equation were done but they were
not concludent

September 30, 2010 Alina Istrate adviser: Godehard Sutmann Slide 32



Outlook

implementation of higher order B-spline
performance gain by combining different HOC schemes
hierarchly
implementation of different 6th order HOC’s
parallel performance measurements
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Before... in Experimental Physics



Subject-project interaction diagram
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