Statis

Statistical Modeling of Protein Folding Guest Student Programme 2010

October 20, 2010 | Julie Krainau

What are Proteins Made of?

- Consist of a chain of amino acids
- 20 different amino acids
- Amino acids of a protein are named residues

How Do They Look Like?

How Do They Look Like?

How Do They Look Like?

ERVRISITARTKKEAEKFAAILIKVFAELGYNDINVTWDGDTVTEGQL

- Primary Structure: Sequence of residues
- Secondary Structure: Structural elements
- Tertiary Structure: 3d Struture of chain

Secondary Structure Elements

$\alpha\text{-helices}$ and $\beta\text{-sheets}$ are based on a defined arrangement of hydrogen bonds caused by folding

ERVRISITARTKKEAEKFAAILIKVFAELGYNDINVTWDGDTVTEGQL

Protein Structure

At room temperature the most relevant degrees of freedom are some torsion angles

Protein Folding

- Degrees of freedom of a tiny protein in the order of 100
- Even a tiny protein chain with a sequence length of 20-30 has an astronomical number of possible structures

Protein Folding

- But in the right environment these molecules can fold quickly in well defined 3d-structures
- Timescale is varying from µs s

Why is Protein Folding Important ?

- Its folded shape is highly related to its function
- Misfolding of proteins currently thought to be related to neurodegenerative diseases

Why is Protein Folding Important?

- Its folded shape is highly related to its function
- Misfolding of proteins currently thought to be related to neurodegenerative diseases
- Big economic problem

How Can Folding Be Simulated?

Key Concept :

Native structure is associated with the free energy minimum of the system

- Formulate an interaction potential
- Find the free energy minimum

Creating the Interaction Potential

All interactions between the atoms have to be taken into account:

$E_{tot} = E_{ExV} + E_{El} + E_{HB} + E_{HP}$

- Excluded volume
- Hydrogen bonds
- Hydrophobicity
- Electrostatic interactions

Energy Landscape

Finding the Minimum Using Monte Carlo Method

- Algorithm starts off with an initial conformation with energy *E*_{old}
- 2 One degree of freedom is changed randomly and a new conformation is created with energy *E_{new}*

$$\Delta E = E_{old} - E_{new}$$

- 4 New state is accepted with a probability of $e^{-\frac{\Delta E}{kT}}$
 - If the new state is accepted, set $E_{old} = E_{new}$
 - If the new state is rejected, reverse E_{new}
- 5 Continue with step 2

Pitfall

- If the temperature is too low, it is very likely to get trapped in a local minimum
- If the temperature is too high, it is very likely to leap over the global minimum

Parallel Tempering

- N replica of the target protein
- Start independent MC run for each replica at different temperatures T_i
- After a defined number of iterations the temperatures of a pair of different runs is exchanged with a certain probability

ProFASi: The Protein Folding and Aggregation Simulator

- Open source C++ package for Monte Carlo simulation of protein folding and aggregation
- Developed by Sandipan Mohanty and Anders Irbäck, developed further by Simulation Laboratory Biology at JSC
- Implicit water
- Intermediate resolution : All atom protein model with fixed bond length and bond angles
- Physics based potential
- It is able to simulate both: Folding of α-helices and β-sheets

ProFASi: The Protein Folding and Aggregation Simulator

Tricks used to improve performance

- Finite range interactions: use cut-off and cell list method to avoid unnecessary calculations
- Monte Carlo: calculate only what has changed

Similarity Measures

 Comparison by root-mean-square deviation (rmsd) of simulated current state and experimental native state

ERVRISITARTKKEAEKFAAILIKVFAELGYNDINVTWDGDTVTEGQL

- 29 residues, 471 atoms, 135 degrees of freedom
- 16 temperatures : 270 370 Kelvin
- 16 processors
- 2 days, 10.000.000 MC sweeps

• It has two states \rightarrow protein has folded

```
October 20, 2010
```


It did not get stuck

October 20, 2010

There is a transition from the unfolded into the folded state

```
October 20, 2010
```


How is the resemblance with the experimental structure ?

- The lowest rmsd sampled is 1.6 Å
- Most of the time the rmsd was in the range of 10-12 Å

October 20, 2010

- Designed protein, 73 residues, 1140 atoms, 333 degrees of freedom
- 32 temperatures : 270 370 Kelvin
- 1024 processors
- 1 day, 1.300.000 MC sweeps

• Two distinct energy states \rightarrow protein has folded

- Maximum at low rmsd \rightarrow it has folded into the correct structure

- Central helix is less stable than the two other helices
- First helix folds at higher temperatures

October 20, 2010

- movie17 movie 118
- Movie shows the trajectory of accepted conformations
- It is observable that the different helices do not fold simultaneously
- White hydrophobic parts arrange between the helices, in order to hide from water

- Lowest energy structure has rmsd of 3.7 Å
- Good result for protein of this size

October 20, 2010

1UBQ

- 76 residues, 1231 atoms, 368 degrees of freedom
- 1 β-sheet, 1 hairpin
- 3 helices
- 32 temperatures in range of 273 400 Kelvin
- 64 processors
- 1 day, 1.679.000 MC sweeps

1UBQ

So far, none of the replica folded into the correct structure

What would it take for the molecule to fold ?

October 20, 2010

What Went Wrong with 1UBQ?

Instead of folding an $\beta\text{-sheet}$ it folded an $\alpha\text{-helix}$ at the end of protein

What Went Wrong with 1UBQ ?

 At lower temperatures the red α-helix is more stable than the hairpin

What Went Wrong with 1UBQ ?

- Once the hairpin and the yellow β-strand have folded, they get attached → the end of the protein does not have a place to arrange between them
- In this case it is energetically favourable to form an α-helix

October 20, 2010

Simulation with Constraints

Dihedral Constraints

- Instead of changing degrees of freedom/dihedral angles randomly, choosing new angles of a defined distribution
- Angles which are more likely to be in the native conformation are tried more often

Simulation with Constraints

Why Using Constraints ?

- If some features of the molecule are already known, they can be used as constraints → in order to make simulation faster and more efficient
- Using constraints on some angles can help to find out what went wrong in the simulation \rightarrow can lead to an improved force field

How Guide 1UBQ into Its Native Structure?

- Try to find minimum set of constraints which are sufficient
 - Setting temperature dependent constraints \rightarrow decreasing constraints with increasing temperature
 - Setting stronger constraints at the transition temperature
- Constraints make it harder to escape from a local minimum, that can be compensated by increasing the maximum temperature
- Constraining the part that works well

What to Do Next?

- Analysis of the constraint runs needs to be done
- Try to reduce constraints and find smallest necessary set of constraints \rightarrow clue to the force field

Conclusion

- We got excellent results for the folding of the 73 residue designed 3-helix bundle protein, 2A3D, making it the largest protein folded with this model
- Natural proteins, like ubiquitin, constitute a greater challenge. The existing force field was unable to fold the natural proteins tried during the project
- We tested a newly developed method to do simulations with constraints, which will serve, among other things, as an additional aid in force field research

Julie Krainau Humboldt Universität Berlin