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What are Proteins Made of?

Consist of a chain of amino acids
20 different amino acids
Amino acids of a protein are named residues
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How Do They Look Like?
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How Do They Look Like?

Primary Structure: Sequence of residues
Secondary Structure: Structural elements
Tertiary Structure: 3d Struture of chain
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Secondary Structure Elements

α-helices and β-sheets are based on a defined arrangement
of hydrogen bonds caused by folding
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Protein Structure

At room temperature the most relevant degrees of freedom
are some torsion angles
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Protein Folding

Degrees of freedom of a tiny protein in the order of 100
Even a tiny protein chain with a sequence length of 20-30
has an astronomical number of possible structures
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Protein Folding

But in the right environment these molecules can fold
quickly in well defined 3d-structures
Timescale is varying from µs - s

October 20, 2010 Julie Krainau Folie 9



Why is Protein Folding Important ?
Its folded shape is highly related to its function
Misfolding of proteins currently thought to be related to
neurodegenerative diseases

Big economic problem
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How Can Folding Be Simulated?

Key Concept :

Native structure is associated with the free energy minimum
of the system

Formulate an interaction potential
Find the free energy minimum

October 20, 2010 Julie Krainau Folie 11



Creating the Interaction Potential

All interactions between the atoms have to be taken into
account:

Etot = EExV + EEl + EHB + EHP

Excluded volume
Hydrogen bonds
Hydrophobicity
Electrostatic interactions
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Energy Landscape
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Finding the Minimum Using Monte Carlo Method

1 Algorithm starts off with an initial conformation with energy
Eold

2 One degree of freedom is changed randomly and a new
conformation is created with energy Enew

3 ∆E = Eold − Enew

4 New state is accepted with a probability of e−∆E
kT

If the new state is accepted, set Eold = Enew
If the new state is rejected, reverse Enew

5 Continue with step 2
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Pitfall

If the temperature is too low, it is very likely to get trapped
in a local minimum
If the temperature is too high, it is very likely to leap over
the global minimum
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Parallel Tempering

N replica of the target protein
Start independent MC run for each replica at different
temperatures Ti

After a defined number of iterations the temperatures of a
pair of different runs is exchanged with a certain probability
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ProFASi: The Protein Folding and Aggregation
Simulator

Open source C++ package for Monte Carlo simulation of
protein folding and aggregation
Developed by Sandipan Mohanty and Anders Irbäck,
developed further by Simulation Laboratory Biology at JSC
Implicit water
Intermediate resolution : All atom protein model with fixed
bond length and bond angles
Physics based potential
It is able to simulate both: Folding of α-helices and
β-sheets
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ProFASi: The Protein Folding and Aggregation
Simulator

Tricks used to improve performance

Finite range interactions: use cut-off and cell list method to
avoid unnecessary calculations
Monte Carlo: calculate only what has changed
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Similarity Measures

Comparison by root-mean-square deviation (rmsd) of
simulated current state and experimental native state
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1GCN
29 residues, 471 atoms, 135 degrees of freedom
16 temperatures : 270 - 370 Kelvin
16 processors
2 days, 10.000.000 MC sweeps
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1GCN

It has two states→ protein has folded
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1GCN

It did not get stuck
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1GCN

There is a transition from the unfolded into the folded state
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How is the resemblance with the experimental
structure ?

The lowest rmsd sampled is 1.6 Å
Most of the time the rmsd was in the range of 10-12 Å
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2A3D
Designed protein, 73 residues, 1140 atoms, 333 degrees
of freedom
32 temperatures : 270 - 370 Kelvin
1024 processors
1 day, 1.300.000 MC sweeps
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2A3D

Two distinct energy states→ protein has folded
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2A3D

Maximum at low rmsd→ it has folded into the correct
structure
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2A3D

Central helix is less stable than the two other helices
First helix folds at higher temperatures
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2A3D

movie17 movie 118
Movie shows the trajectory of accepted conformations
It is observable that the different helices do not fold
simultaneously
White hydrophobic parts arrange between the helices, in
order to hide from water
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2A3D

Lowest energy structure has rmsd of 3.7 Å
Good result for protein of this size
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1UBQ
76 residues, 1231 atoms, 368 degrees of freedom
1 β-sheet, 1 hairpin
3 helices
32 temperatures in range of 273 - 400 Kelvin
64 processors
1 day, 1.679.000 MC sweeps
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1UBQ

So far, none of the replica folded into the correct structure

What would it take for the molecule to fold ?
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What Went Wrong with 1UBQ ?

Instead of folding an β-sheet it folded an α-helix at the end of
protein
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What Went Wrong with 1UBQ ?

At lower temperatures the red α-helix is more stable than
the hairpin
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What Went Wrong with 1UBQ ?

Once the hairpin and the yellow β-strand have folded, they
get attached→ the end of the protein does not have a
place to arrange between them
In this case it is energetically favourable to form an α-helix
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Simulation with Constraints

Dihedral Constraints

Instead of changing degrees of freedom/dihedral angles
randomly, choosing new angles of a defined distribution
Angles which are more likely to be in the native
conformation are tried more often
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Simulation with Constraints

Why Using Constraints ?

If some features of the molecule are already known, they
can be used as constraints→ in order to make simulation
faster and more efficient
Using constraints on some angles can help to find out
what went wrong in the simulation→ can lead to an
improved force field
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How Guide 1UBQ into Its Native Structure?

Try to find minimum set of constraints which are sufficient
Setting temperature dependent constraints→ decreasing
constraints with increasing temperature
Setting stronger constraints at the transition temperature

Constraints make it harder to escape from a local
minimum, that can be compensated by increasing the
maximum temperature
Constraining the part that works well
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What to Do Next?

Analysis of the constraint runs needs to be done
Try to reduce constraints and find smallest necessary set
of constraints→ clue to the force field
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Conclusion

We got excellent results for the folding of the 73 residue
designed 3-helix bundle protein, 2A3D, making it the
largest protein folded with this model
Natural proteins, like ubiquitin, constitute a greater
challenge. The existing force field was unable to fold the
natural proteins tried during the project
We tested a newly developed method to do simulations
with constraints, which will serve, among other things, as
an additional aid in force field research
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