
M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Analysis tools for the
results of Scalasca
Guest Student Programme 2010

October 19, 2010 Markus Mayr (Vienna University of Technology)

What is Scalasca? (1/2)

Scalasca is a ...

Performance analysis tool set
for parallel applications

Who is involved?

Started in January 2006 as follow-up project to KOJAK
Jointly developed by JSC & GRS
Developed in collaboration with ICL/UT

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 2 30

What is Scalasca? (2/2)

Performance analysis tool set?

How much time was spent? And where?
How much communication happened where?
How much time was spent waiting for other processes?

Features

Scalable
Automatic pattern-based performance analysis
Open source & Portable
Various languages & parallel programming paradigms

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 3 30

Motivation

My project is about ...

Providing a testing framework for Scalasca analysis data
Checking data for sanity
Comparing data to reference data

Before my project: high manual effort
After it: Flexible tool set to automatize many steps

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 4 30

Application instrumentation

Automatic / Manual code instrumenter

Processes program sources
Adds instrumentation and measurement
library into application executable

Measurement library

Exploits MPI standard profiling interface
(PMPI)
Provides measurement infrastructure &
instrumentation API

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 5 30

Runtime summarization and Tracing

Runtime summarization

Summarizes by thread & call-path
Lower memory requirements, less overhead

Trace-based analysis

Time-stamped events buffered during measurement for
each thread
Follow-up analysis replays events and produces extended
analysis report
Only relatively few events can be recorded (memory!)

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 6 30

Overall structure of Scalasca

Components

Automatic / Manual code instrumenter
Unified measurement library
Common analysis report examiner

Remarks

Details about generation of trace-based
analysis left out
My work: Same stage as analysis report
examiner, post-processing

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 7 30

Structuring Measurement Data

Basic terms

Metric: What is measured, e.g. Time, Visits, Bytes send
Call tree: Which function called which one
Machine: Where on the machine has the data been
measured, i.e. thread number

=⇒ Measurement data is a map from

{Metrics} × {Call tree nodes} × {Thread numbers} → R.

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 8 30

Call Tree: An Example

Source Code
void bar() {}
void foo(int n) {
if (n >= 1)

foo(--n);

bar();

}
main() {
foo(1);

foo(0);

bar();

foo(0);

}

Call tree

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 9 30

What is Cube?

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 10 30

Organizing Data

Organizing measurement space with trees

Organize metrics, call tree, machines in Trees
Metric, example: Communication parent of Point-to-Point
and Collective
Call tree
Machine: Machine - Nodes - Processors - Threads

Exclusive and Inclusive Values ...

Exclusive value, e.g. how much time was spent in function X?

Inclusive value, e.g. how much time was spent in function X and
all functions X called on this call path?

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 11 30

Other Tools for Report Manipulation

Cube3 ”algebra tools”

Algebraic tools

Compute difference: cube3 diff

Merge files, create mappings
Cut and re-root trees

Statistic tools

Print out metrics, function types
Statistical information

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 12 30

Short Introduction to Cube File Format

Basic characteristics

(Compressed) XML format.
Contains all meta data and all measurement data.
For report viewing and manipulation tools.

Scalasca’s two flavors of Cube files

Trace file, more metrics
Summary file

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 13 30

System Tree and Metrics

System Tree

Complex entity of different data structures: Machine,
Node, Process, Thread
Not too important for my topic

Metric Tree

Metric contains basic information like name, data type.
Tree structure represented in XML file.
Amount of metrics depends on certain factors, e.g. trace
or summary file, MPI and/or OpenMP, etc.

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 14 30

Regions and Cnodes

Region

Represents a function, subroutine, loop, block, etc.
Basic information like position in source
No structural information

Call tree node→ Cnode

Encapsulates information about calling relationships
between Regions.
Generally: Call graph
For Cube: Tree structure and cut-off at certain level

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 15 30

Need for a Testing Framework

Current situation

Scalasca supports high number of architectures, compilers
Testing across all these done manually→ high effort

A brighter future?

Automatic sanity checks for cube files
Automatic comparison between cube files
Meaningful reports about suspicious things for Scalasca
developers.

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 16 30

Basic Requirements I

For Scalasca Developers

Get meaningful reports without manual effort.
Compare slightly different call trees, for example caused
by inlining or other optimizations.
Identify corresponding Regions that got slightly different
information at instrumentation.

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 17 30

Basic Requirements II

For Test Writers

Fuzzy and exact matching
Selection of call tree subsets to apply tests on
Definition of new metrics
Consistent ways to report errors
Flexibility to cover future testing scenarios.

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 18 30

Starting Point cube3 info

Purpose

Command-line tool, prints out metrics for cube files
Compares multiple cube files side-by-side
Gives access to custom metrics
Means to show most relevant parts of tree
Tool to test part of testing library during development

Usage example

cube3 info -r metric,threshold -m metric <file1> <file2>

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 19 30

cube3 info: An example

cube3 info -r time,0.05 -m time summary.cube.gz

| Time | Diff-Call tree

| 63.2041 | * main

| 0.0672 | | * ***** Aggr. 4 children (+3 nodes)

| 0.5103 | | * Init

| 0.0008 | | | * ***** Aggr. 3 children (+0 nodes)

| 0.5144 | | | * MPI Init

| 0.4532 | | | | * TRACING

| 62.6150 | | * Jacobi

| 21.9683 | | | * ExchangeJacobiMpiData

| 0.0648 | | | | * ***** Aggr. 2 c (+0 nodes)

| 0.4442 | | | | * MPI Waitall

| 1.2047 | | | * MPI Allreduce

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 20 30

Canonicalizing Regions

Need for Canonicalization

Region names, file names, line numbers may differ
=⇒ Problems for merging tool

cube3 canonicalize solves this by ...

Removing additional information
Transforming region name

Future improvements

Store deleted information externally

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 21 30

Trees not Matching Exactly

Reasons

Compiler optimizations
Differently operating instrumenting tools

Handling of a concerned node

1 Merge node’s children with parent’s children
2 Add (exclusive) metrics to parent’s metrics
3 Remove node

Implemented as part of cube3 cut.

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 22 30

Cut by example

In this example, we remove “remove”

1 Merge
children

2 Add
metrics

3 Remove
node

=⇒ This is what would have happened if “remove” had not
been instrumented (or inlined).

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 23 30

Testing Tool Chain

Modular tool chain

1 Sanity checks
2 Canonicalize
3 Region-based checks
4 Filter tree, make them match
5 Merge & Call tree node based checks

Problems with this Design

Overhead: Loading/Saving file
Most users will want all steps anyway

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 24 30

Special Metrics: CnodeMetric

Basic concept

Is a map

{Call tree nodes} → R
Information about metrics, system resources, etc.
encapsulated
Easily accessible for testing library
Supports Caching (done by testing library)

Examples

Aggregated metrics
The visitors metric

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 25 30

Selection of Subsets

Required because ...

Hide irrelevant nodes
Fuzzy matching
Restrictions on type, file, etc.

Usage example

MdAggrCube cube << some ostream;

CnodeSubForest* all = cube.get forest();

CnodeSubForest* time relevant = new CnodeSubForest(all);

AbridgeTraversal("time", .1).run(time relevant);

DiffPrintTraversal(

vector<string>(1, "time"), cout).run(time rel);

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 26 30

Specification of Tests I

Simplified Example

class CnodesSimilarTime : public CnodeConstraint {
public:

CnodesSimilarTime(CnodeSubForest* forest)

: CnodeConstraint(forest, vector<string>(1,"time"))

virtual string get name() { return "Time similar"; }
virtual string get description() { return "desc"; }
virtual void cnode handler(CCnode* n, CnodeMetric* m)

{
if (fabs(m->compute(n, (unsigned int) 0)

- m->compute(n, (unsigned int) 1)) > 1e-5)

return fail(n,m,"difference too big.");

ok();

}
};

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 27 30

Specification of Tests II

Basic concepts

Base class: AbstractConstraint
Tests structured in tree
Common output routines
Extended through sub-classing

CnodeConstraint is ...

a sub-class of AbstractConstraint
for test writers’ convenience

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 28 30

Outlook, Future Developments

Reveal inadequatenesses by ...

Testing in practice
Formulating new tests

Some ideas:

More integrated testing tool, simplification of testing
Better ways to define tests, e.g.

annotations within cube files
exposing parts of cube to scripting language

Better ways to determine severity of failures

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 29 30

Thanks for your attention!

Questions?

October 19, 2010 Markus Mayr (Vienna University of Technology) Slide 30 30

