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Outline

= The problem.

= The existing model.

= Problems with the existing model.
= The new model.

= Non-linear solver technicalities.

= Some results.
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Small-scale CSP fields

= CSP - Concentrating Solar
Power.

= Small area of highly
efficient PV cells.

= Use heat close to source.
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Double interconnection

Thermal series connection: achieve temperature goal.

Electric series connection: achieve high voltage to reduce
wire losses.

Transverse connections!

Annual heat output per collector, [kWhI Annual heat output per collector, [kWh]
T 7~
| ZON More pipe S
| \ <@§§>\ Less shading i
3 | \\ B ONT EY o
| PSEON 4 % —
B “‘ \<\<§<§>(>> //\/ Lower outletitemp.
) | &7 E o
2 [E \%} 4 / P
§ \ — 853 4
£, \ °%e outlet temp
° B, I N 2
oy, T— <
%, 2 -
1 0. %, B 15f .
4 % Less shading
yé-g "o &\a\ o — |
15 2.0 2.5 3.0 15 3.0
Row separation [m] Row separation [m]
September 30, 2010

Yosef Meller Folie 4



g #) J0LICH
Heat/Electricity interplay

Energy that was not converted by the PV cells moves on to
the heat exchanger (active cooler).
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Heat/Electricity interplay

Energy that was not converted by the PV cells moves on to
the heat exchanger (active cooler).
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Conversion efficiency — exchanger temperature.
Exchanger temperature — conversion efficiency.
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The existing model

= For each receiver, a
thermal network can be
solved given inlet
temperature.

= Propagate temperature
along thermal series
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The existing model

= For each receiver, a
thermal network can be
solved given inlet
temperature.

= Propagate temperature
along thermal series
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= Parallel thermal strings must have the same pressure drop

= Pressure-drop « flow-rate feedback link. Use a non-linear

equation solver.
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Electric string issues
Efficiency model

= Existing model employs a linear temperature-dependent
efficiency model,

Nel = Mcons + Tpv"?lin

= i, IS negative, usually small.

= Both coefficients can be presented as function of
concentration.

= this model is receiver local.
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Electric string Issues
How real PV cells behave

0 5 10 15
Voltage Across Panel (V)

Source: PowerFromTheSun.net

= Efficiency depends on load (I/V ratio), insolation,
temperature in a non-linear way.

= |f maximum-power point can be maintained for a cell, the
simple model works.
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Electric string issues
Mismatch and bias

Cell reflected in | axis

_________ Isc of combination

Source: pvedrom.pveducation.org

= A weakly-illuminated cell will be reverse-biased.
= Excess energy unloaded on weak cell!

= Strong cells also less efficient.

= Mitigation: bypass diode.
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New model
Electric constraints

Expand non-linear equation system:

= Existing model solves for flow-rates based on pressure
drop.

= Add solving for cell electric state based on electric-circuit
rules.

- Current equality.
- Target current,

li = Z V/Rinv
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New model

Thermal constraints

= Add solving for cells’ temperature using energy
conservation law.

- Calculate power into coolant in a top-down order:
Qo = Gel — Qlosses
- Calculate power in a left-right order using inlet temperature:
g5 = MG, (1— & WM ) (T, — Tin)
- Correct solution: g, = g

- Thermal constraints depend an all previous receivers in
string.
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Rotating the I-V curve
A PV cell’s |-V curve in an simplified way:

|
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= A constant-current part.
= A constant-voltage part.
= A nearly-constant-voltage part.s

Over which variable to iterate?

Rotate the curve:

b=V — Ryl
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Initial values
The problem

800000

= For mismatched cells, the error
landscape of the electric
constraints exposes a long
ditch.

= On those points, the currents
can’t get much closer without
changing the target current
significantly.
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Initial values
Possible solutions

Continuation methods:

Start with something you can solve.

Use its solution as the initial value for a problem closer to
the area of difficulty.

Move closer and closer.
This method is used in circuit simulators (spice).
Slow but sure.
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Initial values
Possible solutions

Problem analysis:
= Derive an initial solution from problem features.
= In this case, directly solve using the linear |-V curve model.

= Problem-specific.
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Solver considerations

= Algorithm:

- Levenberg-Marquardt (LM) replaces BFGS.
- Result: running time and number of function calls reduced by
over a halfl
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Solver considerations

= Algorithm:

- Levenberg-Marquardt (LM) replaces BFGS.
- Result: running time and number of function calls reduced by
over a halfl

= Constraints:

- An n x n matrix for n constraints, each a function of n
flow-rates . R
- Bordered constraints: ¢; = AP; (m) — AP, (m)
- Banded constraints: ¢; = AP; — AP;_4
- No noticable effect.
- Average constraints: ¢; = AP; — AP

Introduces an extra constraint.
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Results
Validation

Electric power
—  with PV convection
with PV emission
with bottom conveation
—  with thermal power

Cumulative power [W]

® Stn\;ﬂgvoltaa/‘u“[v] »
= Reproduces the well-known |-V curve for an

active/bypassed pair.
= Reproduces the P-V curve for the same case.
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Results
Temperatures
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= Trough-points in temperature correspond to PV module’s
peak-power point.

= Unloading of excess energy on the weak receiver is visible.
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Results
Benchmark

= Benchmark: generate the two-receiver |-V curve.
= 50 points: 0.721

= Projection to 500 annual simulations on 4 cores: 1.75
hours

= Still lots of Python code involved.
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