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Editorial

One of the main missions of JSC besides providing and operating supercomputer resources, IT tools,
methods and know-how for the Forschungszentrum Jülich and for European users through the John
von Neumann Institute for Computing is the education and encouragement of young, promising sci-
entists in the broad field of scientific computing. For young academics JSC hosted its traditional ten
week guest student programme again during summer 2010. Within this programme students from the
natural sciences, engineering, computer science and mathematics had the opportunity to familiarise
themselves with different aspects of scientific computing. Mainly supported by staff members of JSC,
the participants worked on various topics in computational science including mathematics, physics,
biology, hardware and software development tools.

The guest students and their advisers were:

Valentina Banciu (Bucharest) Oliver Bücker, Ivo Kabadshow
Konstantin Boyanov (Zeuthen) Willi Homberg
Andreas Breslau (Cologne) Paul Gibbon
Axel Hübl (Dresden) Anupam Karmakar
Timo Hülsmann (Wuppertal) Ulrich Kemloh, Mohcine Chraibi
Alina Georgiana Istrate (Wuppertal) Godehard Sutmann
Julie Krainau (Berlin) Sandipan Mohanty, Jan H. Meinke
Martin Licht (Bonn) Natalie Schröder, Bernd Körfgen
Markus Mayr (Vienna) Brian Wylie, Zoltan Szebenyi
Yosef Meller (Tel Aviv) Bernhard Steffen
Marco Müller (Leipzig) Thomas Neuhaus, Michael Bachmann (IFF)
Elin Solberg (Gothenburg) Inge Gutheil

The programme started with a training course in parallel programming and an introduction to the usage
of the supercomputers in Jülich. In a concluding colloquium the guest students presented and discussed
their results, encountered problems and solutions with other students and scientists. This JSC publica-
tion containing their individual scientific reports underlines their ability of self-contained, focused and
cooperative work as young scientists on up-to-date topics.

We would like to thank the guest students for their work and dedication, contributing to challenging
and exciting scientific topics. We would also like to thank the advisers for their cooperation and patient
help, not only regarding the student’s work. Thanks go to Marc-Andrè Hermanns and Christian Rös-
sel, who organised and held the training course and Ria Schmitz for her tireless work on and against
bureaucracy. Our special thanks go to the Verein der Freunde und Förderer des Forschungszentrum
Jülich and IBM for providing reliable financial support.

Further information, reviews, former results and the recent announcement of the next programme in
2011 can be found on http://www.fz-juelich.de/jsc/gsp.

Jülich, December 2010 Robert Speck and Mathias Winkel
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Implementation and Evaluation of Integrators for the Fast
Multipole Method

Valentina Banciu

University of Bucharest
405 Atomistilor Str.

7000 Bucharest, Romania

E-mail: vbanciu@live.com

Abstract:
Among alternative linear scaling and/or low cost methods, the Fast Multipole Method (FMM) has
become the method of choice in applications where one is interested in accurate potentials. In this re-
port, we revisit the method operators and steps, and analyze different particle integrators with respect
to accuracy, stability, effectiveness or memory footprint.

1 Fundamentals of the Fast Multipole
Method

In many problem domains and applications, simulations of physics-based interaction models (e.g. pair-
wise interactions) result in substantial computational overhead. The evaluation of Coulombic and grav-
itational interactions in large-scale ensembles of particles is an integral part of the numerical simulation
of a large number of physical processes. The N -body problem of electrostatics, for example, requires
the evaluation of the Coulomb energy and forces

E =
1
2

N∑
i=1

N∑
j=1

qiqj
rij

(i 6= j) (1)

F(rj) = qj

N∑
i=1

qi
r3
ij

rij (i 6= j) , (2)

where qj are the corresponding charges of particles centered at rj , and rij denotes the Euclidean dis-
tance between two particles. Equation (1) sums up the Coulomb energy for the N particles; the forces
in Equation (2) are evaluated at an equally large number of target locations rj . For a large ensem-
ble, these evaluations may prove problematic from the computational cost point of view, which scales
O(N2). Also, because the Coulomb potential is long-range, cut-offs are not possible.
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IMPLEMENTATION AND EVALUATION OF INTEGRATORS FOR THE FAST MULTIPOLE METHOD

Fast summation schemes can be used in order to overcome the O(N2) scaling, e.g. the FMM, which
systematically organizes multipole representations of local charge distributions so that each particle
interacts with local expansions of the potential due to all distant particles.
The FMM was introduced in 1987 by L. Greengard and V. Rokhlin and has been declared one of the
most significant algorithms of the 20th century. It is applicable to any problem involving an r−n pair-
wise potential, it conforms to an error bound and it shows linear scalingO(N).

1.1 Fundamentals

Consider two charges located at positions r = (r, θ, φ) and a = (a, α, β). It turns out convenient to
work with spherical coordinates essentially because the operators of the FMM, which are discussed in
the next section, are separable in such a frame. The inverse distance between these two charges can
also be written as an expansion of the associated Legendre polynomials Plm under the condition r > a.
We have

1
d

=
1

|r− a|
=
∞∑
l=0

Pl(cos γ)
al

rl+1
(3)

=
∞∑
l=0

l∑
m=−l

(l + |m|)!
(l − |m|)!

al

rl+1
Plm(cosα)Plm(cos θ)e−im(β−φ) , (4)

where γ is the angle subtended between a and r.
We can then define the moments of a multipole expansion and the coefficients of a Taylor-like expan-
sion, which will respectively define Olm and Mlm

ωlm = q ·Olm = qal ˜̃Plm(cosα) · e−imβ (5)

µlm = q ·Mlm = q
P̃lm(cos θ)

rl+1
eimφ , (6)

where

P̃lm =
1

(l + |m|)!
Plm and ˜̃P lm = (l − |m|)!Plm . (7)

We can therefore write the inverse distance as

1
d

=
∞∑
l=0

l∑
m=−l

Olm ·Mlm (8)

and can approximate the sum to any given precision by a finite sum. The initial step of the FMM
is to represent each particle by its charge qi and its coordinates (xi, yi, zi). The coordinates are first
scaled to fit into a box with coordinate range [0 . . . 1; 0 . . . 1; 0 . . . 1]. This simulation box is divided
into a set of 8 equal child boxes, each child box being subsequently subdivided into smaller boxes
so that a tree is built. The depth of the tree, respectively the number of divisions, is chosen to keep
the number of particles in the lowest level box approximately independent from the total number of
particles in the simulation box. Figure 1 shows such an hierarchical division of space for one, two and
three dimensions.
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1 Fundamentals of the Fast Multipole Method

Figure 1: Parent and child boxes in 1D, 2D and 3D representing a binary, quad and oct tree.

1.2 FMM Operators

The FMM needs three operators to perform transformations on the multipole and Taylor-like expan-
sions.
The Multipole2Multipole operator shifts multipole expansions from level L to L − 1 up the tree
by

ωlm(a+ b) =
l∑

j=0

j∑
k=−j

Ol−j,m−k(b)ωjk(a) . (9)

The Multipole2Local operator transforms remote multipole expansions into local Taylor-like expan-
sions on level L by

µlm(R− a) =
∞∑
j=0

j∑
k=−j

Ml+j,m+k(R)ωjk(a) . (10)

Finally, the Local2Local operator shifts Taylor-like expansions from level L − 1 to L down the tree
by

µlm(r − b) =
p∑
j=l

j∑
k=−j

Oj−l,k−m(b)µjk(r) . (11)

1.3 FMM Steps

Pass 1: Form and shift multipole expansions
After sorting all particle coordinates into the lowest level child boxes, we set up a multipole expansion
at the center in each lowest level box. We shift the multipole expansion to the center of the associated
parent box using the Multipole2Multipole operator. The translated moments are summed and stored
in the parent box. The procedure is continued up to level 3, because on the next level no far field
interactions exist. After this step, all children multipole expansions are available in their parent boxes.
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Pass 2: Transform distant multipole expansions
Interaction between particles via multipole expansions is possible only if the considered boxes are "well
separated". All boxes can be enclosed in spheres of radius

√
3d, d being the length of one side of the

box, which have the same center as the box. Obviously, such spheres overlap with neighboring boxes,
rendering the interaction via multipoles impossible. We convert the distant multipole expansions into
Taylor-like expansions about the center of the box B1, and thus create a local expansion representing
all distant boxes; we only transform multipole expansions from boxes at the same level which are well
separated fromB1, but are not well separated fromB1’s parent box. The remaining child boxes interact
via their parent boxes.

Pass 3: Shift Taylor-like expansions
The parent’s Taylor-like expansion are translated to the center of all child boxes. This top-down shift-
ing is repeated until the lowest level is reached. Now all lowest-level boxes contain the Taylor-like
expansion from all "well-separated" boxes.

Pass 4: Calculate far field energy, forces and potentials
All Taylor-like epansions are now present at the lowest level. Each lowest level box contains a Taylor-
like expansion representing all "well-separated" particles, and by summing up the box energies we get
the far field energy.

Pass 5: Calculate near field energy, forces and potentials
All neglected neighboring particles which did not contribute to the current box interact directly. The
total potential can be calculated by summing up the far- and near- field parts.
The parameters which the FMM depends on are the length of the multipole expansion, the "well-
separatedness" criterion and the depth of the FMM tree.

2 Integrators

In molecular dynamics, the atoms and molecules of the simulated system are allowed to interact by
approximations of known physics for a given period of time which is divided into time steps. Given
the initial set of positions and velocities, we can compute the forces between the particles. Based on
the computed values, we calculate the new velocities and the new positions after a time step h. We use
this data to recompute the new forces and so on. Figure 2 schematizes the steps of the loop.

The propagation of such a particle system can be described by the temporal evolution of the phase
space variables (y, y′). For a nonlinear N -body system, the equations of motion cannot be integrated
exactly and one has to rely on numerical integration.
We want to approximate the solution of a differential equation of the type

y′(t) = f(t, y(t)) y(t0) = y0 , (12)

where f is a function that maps [t0,∞)×Rd to Rd, and the initial condition y0 ∈ Rd is a given vector.
The above formulation is called an initial value problem (IVP). Note that a higher-order equation can
easily be converted to a system of first-order equations by introducing extra-variables. For example,
the second-order equation y′′ = a can be rewritten as two first-order equations: y′ = v and v′ = a.
There are different schemes of different orders to advance the coordinates over a step size h, but a good
integrator must successfully meet the following requirements [3]:
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2 Integrators

Figure 2: The molecular dynamics simulation loop: Given the initial set of positions and velocities, we
compute the forces between the particles. Based on the obtained values, we calculate the new velocities
and the new positions after a time step h. We use this data to recompute the new forces and so on.

• Accuracy, i.e. the solution of an analytically solvable test problem should be as close as possible
to the numerical one,

• Stability, i.e. very long simulation runs should produce physically relevant trajectories, indepen-
dent of numerical artifacts,

• Conservativity, there should be no drift or divergence in conserved quantities, like energy or
momentum,

• Reversibility, i.e. it should have the same temporal structure as the underlying equations,

• Effectiveness, i.e. it should allow for large time steps without entering instability and should
require a minimum of force evaluations, which usually the most CPU time per time step,

• Symplecticity, i.e. the geometrical structure of the phase space should be conserved.

In the following, the mentioned points will be discussed for a number of different integrators.

2.1 Euler Integration

The Euler method is a first-order numerical procedure for solving ordinary differential equations
(ODEs) with a given initial value. It is the most basic kind of explicit method.
We want to approximate the solution of the given initial system by using the first two terms of the
Taylor-like expansion of y, which represents the linear approximation around the point (t0, y(t0)).
One step of the Euler method from tn to tn+1 = tn + ∆t is

yn+1 = yn + h · f(tn, yn) . (13)

The Euler method is explicit, i.e. the solution yn+1 is an explicit function of yi for i ≤ n.
The magnitude of the errors arising from the Euler method can be demonstrated by comparison with
a Taylor-like expansion of y. If we assume that f(t) and y(t) are known exactly at a time t0, then the
Euler method gives the approximate solution at time t0 + h as

y(t0 + h) = y(t0) + h · f(t0, y(t0)) = y(t0) + h · y′(t0) . (14)
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In comparison, the Taylor-like expansion about t0 gives

y(t0 + h) = y(t0) + h · y′(t0) +
1
2
h2 · y′′(t0) +O(h3) . (15)

The error introduced by the Euler method is given by the difference between these equations, and
reduces to

1
2
h2y′′(t0) +O(h3) . (16)

For small h, the dominant error per step is proportional to h2. To solve the problem over a given range
of t, the number of steps needed is proportional to 1/h so it is to be expected that the total error at
the end of the fixed time will be proportional to h. For this reason, the Euler method is said to be first
order. This makes the Euler method less accurate for small h than other higher-order techniques such
as Runge-Kutta methods.
The Euler method can also be numerically unstable. This limitation - along with its slow convergence
of error with h - means that the Euler method is not often used, except as a simple example of numerical
integration.

2.2 Verlet Integration

This method was popularized in molecular dynamics by French physicist Loup Verlet in 1967, and is
frequently used to calculate trajectories of particles. The Verlet integrator offers greater stability than
the simpler Euler method, and also provides time-reversibility and symplecticity. The stability of the
technique depends upon either an uniform update rate, or the ability to accurately identify positions at
a small time step into the past.
Where Euler’s method uses the forward difference approximation to obtain the first derivative in dif-
ferential equations, Verlet integration can be seen as using the central difference approximation.
First, we develop the Taylor series around y(t+ h) and y(t− h)

y(t+ h) = y(t) + h · y′(t) +
h2

2
y′′(t) + ... (17)

y(t− h) = y(t)− h · y′(t) +
h2

2
y′′(t)− ... , (18)

and adding the equations we have

y(t+ h) + y(t− h) = 2 · y(t) + h2 · y′′(t) + ... (19)

y(t+ h) = 2 · y(t)− y(t− h) + h2 · y′′(t) + ... (20)

At any timestep, we can compute y′(t) by

y′(t) =
y(t− h) + y(t+ h)

2h
. (21)

Figure 3 schematizes the steps of the algorithm. This method also comes in another flavour, velocity-
Verlet, which is more commonly used.
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2 Integrators

Figure 3: The steps of the Verlet integration: a) as a starting point we need the position of the current
and previous time step; b) we compute the forces of the current time step from the current positions; c)
we determine the new positions from the current and previous positions and the current forces.

2.3 Velocity Verlet Integration

This uses a similar approach but explicitly incorporates velocities, solving the first-timestep problem
with the basic Verlet algorithm

y(t+ h) = y(t) + h · y′(t) +
h2

2m
·F (t) (22)

y′(t+ h) = y′(t) +
h

2m
· [F (t) + F (t+ h)] . (23)

The force at time t is computed using Equation (2). It can be shown that the error on the velocity Verlet
is of the same order as the basic Verlet. The velocity algorithm is not necessarily more memory con-
suming, because it is not necessary to keep track of the velocity at every timestep during the simulation.
The standard implementation scheme of this algorithm is as follows

1. Calculate y′(t+ 1
2h) = y′(t) + 1

2h · y
′′(t)

2. Calculate y(t+ h) = y(t) + h · y′(t+ 1
2h)

3. Derive y′′(t+ h) using y(t+ h)

4. Calculate y′(t+ h) = y′(t+ 1
2h) + 1

2h · y
′′(t+ h)

This algorithm assumes that y′′(t + h) only depends on y(t + h), and does not depend on y′(t + h).
The global error of this method is of order two. Additionally, if the acceleration indeed results from the
forces in a conservative mechanical or Hamiltonian system, the energy of the approximation essentially
oscillates around the constant energy of the exactly solved system, with a global error bound again of
order two. The same holds for all other conserved quantities of the system like linear or angular
momentum. Figure 4 schematizes the steps of the algorithm.

2.4 Leapfrog Integration

Leapfrog integration is a simple integration method, very similar to the velocity Verlet scheme. It is
equivalent to calculating positions and velocities at time points which are interleaved. For example, the
position is known at time step i and the velocity is known at time step i+ 1/2.
The scheme is a second order method and hence usually works better than Euler integration, which is
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IMPLEMENTATION AND EVALUATION OF INTEGRATORS FOR THE FAST MULTIPOLE METHOD

Figure 4: The steps of velocity Verlet integration: a) we know the current positions and velocities; b)
from the current positions we can calculate the forces at the current time step; c) from the forces and
velocities at the current time step, we can determine the rates for the next half time step; d) we calculate
the new positions with the help of the current positions; e) we calculate the forces at the new positions;
f) we determine the rates for full time step.

only first order. Unlike Euler integration, it is stable for oscillatory motion, as long as h < 1
ω .

The equations for leapfrog integration can be written as

yi+1 = yi + y′i+1/2 ·h (24)

y′i+1/2 = y′i−1/2 + y′′i ·h . (25)

Of course, initial conditions are rarely specified at the staggered times required by the leapfrog scheme.
Typically, we must use a so-called “self-starting” scheme (e.g. Euler) to take the first half step and
establish the value of y′i+1/2. On the other hand, the equations can be manipulated into a form which
writes velocity at integer steps as

yi+1 = yi + y′i ·h+ y′′i
h2

2
(26)

y′i+1 = y′i +
y′′i + y′′i+1

2
h . (27)

This second form usually requires solving the second equation implicitly, because y′′ could depend
on y′.
The Leapfrog scheme is time reversible. The Euler scheme does not have this property, and we will
also see in the next section that neither do Runge-Kutta schemes. Time reversibility is important
because it guarantees conservation of energy in many cases. Time-reversible integrators such as the
Leapfrog scheme are essential also in situations where we are interested in long-term small changes in
the properties of a nearly periodic orbit, and where even small systematic errors would mask the true
solution. Figure 5 schematizes the steps of the algorithm.

2.5 Runge-Kutta Integration

The Runge-Kutta methods are an important family of implicit and explicit iterative methods. These
techniques were developed around 1900 by the German mathematicians C. Runge and M.W. Kutta.
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2 Integrators

Figure 5: The steps of Leapfrog integration: a) we know the positions and velocities for the last half-
time step; b) we compute the forces of the current time step from the current positions; c) we determine
the speeds to the next step under the current forces; d) we calculate the new positions for the next half
time step and the current positions.

The n-th order explicit Runge-Kutta scheme to advance a set of differential equations y′(t) = f(t, y(t))
over a step h can be expressed as

y(h) = y0 +
n∑
j=1

wjkj (28)

kj = h · f

(
ti, y0 +

j−1∑
i=1

βjiki

)
(29)

αj =
j−1∑
i=1

βji (30)

n∑
j=1

wj = 1 . (31)

2.6 Low-Storage Runge-Kutta Integration

Classical Runge-Kutta integration schemes take up 4N storage locations, which turns problematic for
sufficiently large particle numbers, while on the other hand low-storage versions of the method only
require 2N storage locations [4, 5]. The principle is to leave useful information on the register which
will receive the contribution f(yj) instead of starting with an empty one. Thus, the algorithm can be
formulated as

qj = ajqj−1 + h · f(tj−1, yj−1) (32)

yj = yj−1 + bjqj , (33)

with a1 = 0. Successive values of qj and yj overwrite the previous ones, so that at any stage the desired
storage is achieved.
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The parameters aj and bj can be expressed in terms of the coefficients in Equations (30), (31) only if
these coefficients bear certain ratios, such as

bj = βj+1,j (j 6= n) (34)

bn = wn (35)

aj =
wj−1 − bj−1

wj
(j 6= 1, wj 6= 0) (36)

aj =
βj+1,j−1 − αj

bj
(j 6= 1, wj = 0) . (37)

The algorithm adds contributions arising from the earlier velocities into the position vector x, but
does not contaminate the velocity registers with contributions from the positions. This feature can be
exploited to reduce the effect of round-off errors arising in the x registers.
The round-off error inevitably introduced after j timesteps is

ej = (xj − xj−1)− bjqj . (38)

This is scaled and added into the q register at the end of each stage so that the algorithm yields

qj = ajqj−1 −
ej−1

wj
+ h · f(tj−1, yj−1) , (39)

which ensures that the positions at the end of the complete step xn are independent of ej , j < n, and
are only affected by the current round-off error en If we note y′(t) = λ · y(t), we obtain the stability
polynomial of the nondegenerate scheme of order p ≤ 4 as

P (hλ) =
p∑
j=0

hjλj

j!
. (40)

It should be noted that all second and third order, and only some fourth order Runge-Kutta algorithms
can be implemented as low storage schemes, because of the imposed constraints on parameters ai
and bi.

3 Conclusion

In this report we have briefly revisited the FMM algorithm, its passes, parameters and operators. The
FMM computes e.g. Coulomb forces and the total energy of the system with complexity that scales
only O(N). However, when the charged particles are moving due to the forces that act upon them and
their initial conditions we need good integrators in order to keep the computational costs and memory
requirements under control. We have implemented and evaluated different integration algorithms. We
have discussed a low storage Runge-Kutta scheme which only requires 2N storage size and has con-
trolable errors. This scheme accepts second, third and fourth order implementations due to constraints
which have been discussed.
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Hardware and Software Routing on the QPACE Parallel
Computer

Konstantin Boyanov

DESY Zeuthen
Platanenallee 6

D-15738 Zeuthen, Germany

E-mail: konstantin.boyanov@desy.de

Abstract:
The torus network of QPACE, the currently most energy efficient parallel computer in the world, al-
lows up to now only for nearest-neighbor communication. This communication pattern is sufficient
for numerical simulations in the field of Quantum Choromodynamics, the initial target application of
QPACE. Nevertheless, expanding the torus network functionality to allow any-to-any communication
is very important for broadening the spectrum of applications, which can take advantage of QPACE’s
high-performance, low-energy parallel architecture. Possible extensions to the custom designed Torus
Network (TNW) are considered and a simple and low-overhead routing algorithm is proposed. Fur-
thermore, the proposed algorithm is implemented and tested in the OMNeT++ event-based simulation
environment. We show that the simulation model implemented is a good representation of the real
hardware, and we also test and verify the algorithm implementation using communication patterns as
they occur during matrix transposition.

1 Introduction

The QPACE (Quantum Chromodynamics Parallel Computing on the Cell) [1] tightly coupled parallel
computer was designed and developed to provide a new generation of a massively parallel and scalable
computer architecture, optimized for the use in the field of numerical simulations, especially for lattice
Quantum Chromodynamics. Quantum Chromodynamics is the theory of strong interactions, i.e. the
force that acts on the quarks and gluons, which form the building blocks of matter – the protons and
neutrons. Studying these interactions requires a very large amount of compute-intensive operations.
Therefore a high utilization of the underlying hardware is very important. This is the main reason why
the QCD community is one of the few research communities that develop and operate custom-build par-
allel machines. Previous machines include the QCDOC [2] and apeNEXT [3].

As the computational power requirements stemming from QCD applications demand almost full uti-
lization of the processor, and further development of custom ASICs becomes more complicated and
costly, a different approach was taken in QPACE - a high-performance commodity processor, the IBM
PowerXCell 8i [4] was used. The processors on each node card are interconnected with each other
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through a high-speed, low-latency custom 3D torus network implemented on an FPGA circuit. It is
autonomous enough to handle communication with no great intervention from the CPU and thus not
hinder computation. Further, QPACE incorporates a novel liquid-cooling system [5], which allows
for high mounting density and high energy efficiency. Together, the high-performance Cell processor,
the custom network and the novel cooling subsystem, contribute to the fact that the QPACE paral-
lel computer is at place one in the Green500 list [6], with an energy efficiency of 773 MFlops per
Watt.

The direct torus network however, allows only for nearest-neighbor communication among nodes in
QPACE. Although this is not a limiting factor for QCD applications, it would be very useful to extend
this functionality, so other applications which require any-to-any communication patterns, could also
profit from the performance and high-energy efficiency of the QPACE architecture. That is why we
examine options to extend the communication functionality of the torus network, to allow routing of
messages between not directly connected nodes. First we describe in Section 2 the architecture of the
QPACE parallel computer in more detail, particularly the Network Processor (NWP) on which the torus
network (TNW) is implemented. Then, in Section 3 we examine general routing techniques common
to communication networks in high performance computing. After considering their advantages and
disadvantages, we propose a routing algorithm with minimal hardware and software overhead, suitable
for the QPACE architecture in Section 4. In order to implement and test the proposed routing algorithm,
we use an event-based simulation environment, which is described together with the QPACE simulation
model in Section 5. There, we present how the simulation model was verified and also introduce some
initial results on bandwidth measurements at single node for a test application. At the end, in Section 6
we give a conclusion and an outlook for further developments.

2 Architecture of the QPACE parallel
computer

State-of-the-art IBM PowerXCell 8i commodity multicore processors with one main and 8 assisting
cores are used as processing units in the QPACE parallel machine. A custom designed network inter-
connect is directly attached to the Cell processor and implements the networking logic.

The QPACE parallel computer consists of backplanes which can hold up to 32 node cards. On each of
the node cards there is a single PowerXCell 8i Processor and a Network Processor realized on Field
Programmable Gate Array (FPGA) for interconnect between the node cards. QPACE backplanes are
mounted in racks, whereas each rack can house up to eight backplanes, giving a total maximum of 256
node cards (2048 SPU cores) per rack.

Figure 1 shows a QPACE node card and its components. The components of interest here are the ones
on the right hand-side of the node card, namely the network processor and the six PHY devices, one
for each direction in the 3D-torus, surrounding the FPGA chip of the Network Processor (NWP). In
QPACE there are several different networks that provide different vital communication facilities for the
operation of the parallel machine. These include the following:

• High-bandwidth, low-latency nearest neighbor torus network, providing the communication be-
tween neighboring nodes in a 3D-torus communication topology.
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Figure 1: QPACE node card housing the PowerXCell 8i processor and memory modules (4GB) on the
left-hand side and the network processor and PHY devices for connectivity in the six spatial dimensions
of the 3D-torus network topology.

• Ethernet network, interconnecting all the nodes and the root cards to the front-end systems, used
for user I/O as well as common login services, administrative tasks like booting, updates etc.

• A fast two-wire global network with a tree topology, which serves for transmitting global signals
and interrupts and also is being utilized for synchronization purposes.

For the topic of routing only the implementation of the torus network is of interest. This is considered
in detail in the next section.

2.1 Torus Network Processor

The Network Processor was implemented for this purpose on an FPGA (Virtex-5 LX110T by Xil-
inx) chip. It acts as an I/O fabric similar to the interconnect chips between processor, peripherals and
network interfaces (also known as south bridges), found on off-the-shelf PC products. The only dif-
ference in the design here is that the I/O fabric is directly coupled to the processor and not through a
PCIe bus. With the help of the NWP a 3D-torus nearest-neighbor communication network is realized,
which allows for direct memory access-like communication between the Synergetic Processing Unit
(SPE) cores on neighboring processor nodes. This implementation facet has the advantage that data
does not have to be transported through the main memory and thus avoids the overhead associated with
accessing the memory interface.

The internal structure of the NWP is schematically represented in Figure 2. The parts of the application
logic are as follows: first a proprietary IBM implementation of the interface from the NWP towards
the PowerXCell 8i can be seen in the top of the picture. This incorporates two 8-bit wide bidirectional
(full-duplex) high-speed links with a bandwidth of up to 4 Gbytes/sec per direction between the Cell
processor and the NWP. Below this logic block the Master and Slave interface logic blocks are located.
They serve to merely interface the IBM proprietary logic implementation and the Torus Network logic
through the Inbound Write Controller (IWC) and the Outbound-Write Controller (OWC). The IWC
deals with (inbound-)data, that comes from the Cell processor, while the OWC deals with (outbound-
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Figure 2: Schematic overview of the Torus Network Processor.

)data, coming from remote nodes. The OWC comprises an arbiter to give multiple incoming links
access to the link to the processor. The logic implementing the actual Torus Links are attached to
the IWC and OWC. Downwards the torus links interface with six full-duplex bidirectional 10-Gigabit
Medium Independent Interfaces (XGMII) Ethernet PHY devices.

For each physical link there exists a Transmit FIFO and a Transmit link (Tx link) logic for data leaving
the node, and a Receive buffer and a Receive link (Rx link) logic for data coming from a neighboring
node. The transmit FIFOs of virtual channels on one physical link share a 16KB buffer space. In order
to allow simultaneous communication between different remote cores along the same physical link,
there are 8 virtual channels per physical link implemented. Each virtual channel has at its disposal a
2KB FIFO for sending packets. On each Tx link packets are immediately transmitted in the order in
which they have arrived in the transmit FIFO.

The Receive buffer (Rx buffer) does not work like a FIFO buffer however. The outbound data pack-
ets (packets that come from an neighboring node and are designated to some other SPEs local stor-
age) are being saved on addresses, which are calculated from three distinct parts, or values. One
part of the address information is incorporated in the incoming data packet (remote offset) another
is the default configuration of a base address in memory, and the last is a credit for particular mem-
ory address for the particular node (local offset) where the packet should land. In order to prevent
data corruption by overwriting the incoming packet has to be kept into the Rx buffer, until an autho-
rization, or credit, for a particular destination address and message size arrives at the Receive Buffer
logic.
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2.2 TNW Communication Protocol

A two-sided communication model is realized between two nodes in the QPACE torus topology. One
reason for this is to minimize overhead caused by handshaking mechanisms between sender and re-
ceiver. If for example node A sends data to node B, than it has to rely on the fact that node B is issuing
a receive operation.

Messages in the QPACE torus network must have a length which is a multiple of 128 bytes. Source
and destination addresses must also be aligned to 128 bytes in order to avoid overhead caused by
segmentation of data in DMA transactions between the SPE and the NWP. On the physical layer
the messages are split into packets with 128 byte payload, 4 byte header and 4 byte CRC check-
sum.

The path of a message consisting of multiple packets from a source SPU to a destination SPU involves
multiple transactions, where the sender pushes data towards the receiver. For every one of this transac-
tions the integrity of the data must be assured. In order to guarantee that, first no data should be lost. If
for example no buffer space is available at the receiver side, then simply all incoming packets are not
being acknowledged until there is enough buffer space available. In this manner data loss is prevented
by simply not allowing more write operations to occur.

3 General Routing techniques

In this section some general terminology regarding routing in direct networks is presented. Four com-
mon routing algorithms are considered for appliance in the QPACE architecture and their advantages
and disadvantages are examined.

3.1 Static vs. Dynamic Routing

One of the first properties that divide routing techniques in two broad groups is how the information
used for making the routing decisions is created and maintained. In this regard we distinguish between
static routing techniques, where the description of routes through the network is created before the
communication system becomes functional and is kept constant during operation. Static routing thus
describes only a set of all possible routes between nodes and packets traveling between two nodes
always take the same way.

This is however not the case with dynamic routing techniques, where the routing information is dy-
namically changed throughout the operation of the communication system. Such changes reflect the
availability of connections or intermediate routing devices, as well as contention information. Thus
messages traveling in a dynamically routed network can take different routes between the same two
nodes.
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3.2 Avoiding Deadlock and Livelock

When routed through a particular network, packets can block each other in circular fashion on inter-
mediate routing nodes by occupying buffer space or other resources (like credits, tags, etc.). Many
approaches exist which help avoid the conditions leading to deadlocks. In the sense of network rout-
ing, these are first making sure that enough resources (buffers, connections, etc) are available at any
point in the operation of the communication network. If such abundant resources are not available,
or their introduction into the architecture of the communication system is not feasible, another ap-
proach is to reduce the message size passing through intermediate nodes on its way to the destination
node. One can also always offload the routing decisions from the hardware and introduce a routing
fully implemented in software, which will have the needed deadlock prevention techniques imple-
mented.

Another issue regarding routing of messages in networks is the so-called livelock. This refers to the
situation where a packet or a set of packets run forever in circular motion around the destination node
and never reaching it. This can be the case in highly loaded dynamically routed networks, where
messages get constantly misrouted due to resource contention on intermediate nodes and unavailability
of connection links towards the destination.

It is thus one of the main design task for routing algorithms to make sure that they are not allowing for
situations where either deadlock or livelock can occur.

3.3 Common Routing Algorithms

In this section we take a look at several routing algorithms, common for direct networks in the high-
performance computing domains.

In the first one, Store-and-Forward Routing [7], each router on the path between two distant nodes re-
ceives the whole message (multiple packets) and examines it. Based on this examination the router
then makes a decision to which port to forward the message. This routing algorithm is not very
well suited for on-chip networks because with increased message size or a larger number of mes-
sages, the router will need more on-chip buffers. Another disadvantage is the increase of point to
point transmission delay, as every packet has to be completely stored on every routing layer (or
hop/node).

Virtual cut-through [9, 15] routing tries to eliminate the disadvantages of store-and-forward routing by
allowing the packet to be examined in chunks. In this way only small portions of the packet need to
be stored and can be forwarded without the whole packet being present in the router’s buffers. Major
disadvantage of this approach is however, that if the next router in the path is not available (due to
contention or failure) the whole packet must still be held in the internal buffers so it can be thoroughly
examined and a new route can be defined.

In wormhole routing [10], each packet is segmented in so-called flits (short for flow control units). The
header flit reserves the routing channel for upcoming flits of the same packet (the body) and the tale
flit frees the reservation. Major advantage of wormhole routing is that it does not require for the whole
packet to be stored in router’s internal buffers while waiting for the header flit to be routed to the next
stage in the route. This solves the problems present in the two previously mentioned techniques while
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reducing buffer space requirements and point-to-point delays. Although a major disadvantage here is
that during one message transmission the whole chain of communication links is reserved for only one
communication. Other messages or packets must wait and even compete for the use of newly freed
communication links. This introduces additional complexity and increases end-to-end transmission
times, especially for larger messages (more packets).

In the last considered routing algorithm, the so-called Hot-Potato Routing, or deflection routing [11], a
completely different approach is taken. Here, there is no buffer space foreseen on intermediate nodes
for to-be-routed packets whatsoever. When a packet arrives at an input port of the routing node, it is
instantly forwarded to one of the output ports of the node. The packets of a message have encoded in
their header which ports along the possible paths towards their destination are most preferred to them,
and the intermediate routing nodes try to forward them according to this information. If the wanted
output port is not available however, or many packets compete for one and the same output port, then
only one gets it while the other is misrouted to the next available direction. If the network is highly
loaded, then it can be the case that packets are misrouted a lot, and even a livelock situation may occur.
Thus the algorithm does not assure that the packets travel along the shortest between the source and
destination nodes.

4 Proposed Routing Algorithm

There are several things that should be taken into account when considering a routing algorithm for
the QPACE architecture. As we saw in the previous section, popular routing techniques are not
so convenient for this architecture for various reasons. These include larger buffer spaces, packets
not always following the shortest paths between two remote nodes, communication channels can be
blocked for the use of only one message transmission and thus hinder the sending of other messages,
etc.

Further, we want to keep the hardware changes required for the routing algorithm to function, as small
as possible, because of limited availability of logic blocks on the FPGA chip.

Another important issue is that packets of two or more messages do not get mixed. In the present
hardware design packet ordering rules are insured only within the boundaries of a single message
traveling along a single physical link and single virtual channel. This ordering cannot be insured by
dynamic routing algorithms for multiple messages using the same link and channel, without adding
a lot of overhead information to the packets and thus decreasing bandwidth and increasing latency.
Thus we consider only static routing algorithms which will decrease routing information overhead by
using only fixed paths among nodes. In the next sections the proposed routing algorithm is presented
in detail.

4.1 Addressing

The addresses of each of the nodes in the 3D torus topology configuration are represented by their
coordinates in a Cartesian 3D space. As already mentioned, messages in QPACE are composed of
equally sized packets of 128 byte size. Each message has a header of 4 bytes attached to it, which
contains information used for calculating the address to which the packet/message should be written
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to in the destination SPE local storage. For the proposed routing algorithm we will extend this packet
header to contain information regarding the offset of the source (sender) and destination (receiver) in
the Cartesian coordinates of the 3D torus topology.

For example communication between node A (source) and node B(destination), which have the fol-
lowing coordinates, or addresses (Ax, Ay, Az) = (1, 2, 1), (Bx, By, Bz) = (0, 2, 2). The information
contained in the header will be then the difference of the destination address and the source address:
(δx, δy, δz) = (Bx, By, Bz) − (Ax, Ay, Az) = (−1, 0, 1). The so-called delta vector then describes
how many hops there should be made in each spatial direction. The absolute value of the vector entries
describes how many hops should be made along the corresponding axis, while the sign of the entries
gives the direction along the axis. In the example above the packet should travel one hop along the -X
axis, and one hop along the +Z axis.

At each hop the corresponding value in the header is decremented or incremented, according to where
the packet is routed to. When arriving at the destination, all the entries of the delta vector must be zero.
The rules behind that are described in the following section.

4.2 Routing Rules

Depending on the direction (Rx buffer) the packet has been received from, and also according to the
values of the delta vector, a decision is made, to which of the transmit FIFOs it must be redirected for
further transmission towards its destination. The rules are described in Table 1 and are schematically
presented in Figure 3.

Figure 3: If a packet arrives at the receive link corresponding to -X direction it can be forwarded
further along the X axis (being sent to the transmit FIFO corresponding to +X direction), or make a
turn on in Y-direction.

The table shows that there are only 3 options available for packets to leave an intermediate node,
depending on which link they arrived. We choose to only allow routing in one plane, because if
we otherwise allow a packet to leave the intermediate node on all 5 available links, then we will
be creating excessive connections between the receive and transmit buffers in the actual hardware
implementation.

Another important issue here is that at the source node the sending direction must be chosen carefully
in order for the message not to get stuck on some intermediate node without further forward routes.
This could be the case if a packet only has to be routed along X and Z axes. If it travels first on the X
axis, at the Rx buffer of some intermediate node it will not have any possibility to continue on the Z
axis according to Table 1.
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+X -X, +Y, -Y
-X +X, +Y, -Y
+Y -Y, +Z, -Z
-Y +Y, +Z, -Z
+Z -Z, +X, -X
-Z +Z, +X, -X

Table 1: The table describing the possible forward directions for a packet (right column), according to
that, from where the packet came from (left column).

Besides a reduced number of additional connections between Tx and Rx buffers/FIFOs, the algorithm
does not require any additional buffers on both send and receive links. We believe that with the simple
logic and the absence of complex routing tables will allow for minimal and more importantly not
complex hardware changes. The changes related to the proposed routing algorithm are presented in
Figure 4.

Figure 4: Changes to the hardware architecture of the torus network processor in regard to routing
support. On the left-hand side is a scheme how a send/receive pair looks like now. On the right hand-
side the proposed changes are depicted.

First, the main difference is the introduction of an arbiter on top of the transmit FIFO, which will
arbitrate writing to its input port. This is necessary, because in the new architecture, there will be three
additional links towards the transmit FIFO of each link coming from the corresponding receive buffers
according to Table 1. Further, in the receive buffer the logic for examining the packet header routing
information should be implemented, as well as the decision where to forward the packet to. Other parts
of the network processor remain unchanged.

4.3 Deadlock Freedom

When considering this important property of the routing algorithm, it comes out that the routing algo-
rithm is not deadlock free. Let us consider the following situation: The receive buffer of some node A
in the QPACE network is filled with packets destined to another node waiting to be further forwarded.
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In this case no further packets can travel along this link, even packets with node A as final destination
might be blocked. If this condition occurs on all nodes simultaneously, the communication system
deadlocks and no further communication can take place, because all send and receive buffers will wait
on each other in a circular fashion.

As discussed in Section 3.2, there are strategies to prevent deadlock situations. In the context of the
proposed routing algorithm, one of them is giving higher priority to packets within the network than
packets injected into the network. This means that packets belonging to messages already traveling
through the network will be preferred at the arbiter in Figure 4 before packets coming from the CPU to
leave the node through this particular transmit link. Although sounding reasonable, this approach will
not bring the communication network out of a deadlock situation if it has already occurred (consider
the example above) – even with higher priority, the packets coming from the receive buffer through
the transmit FIFO cannot proceed because on the remote receive buffer will be blocked. Another
solution is a limited message size thus no receive buffer gets full. This will require that one knows
all the possible paths going through a particular receive/transmit buffer. This number grows very
large with increasing network size, and if we were to decrease the message size accordingly, then
inconveniently small message sizes could occur, which will make the network practically unusable. To
delegate the routing decision to software running on the CPU will be yet another option. Here we have
the advantage that the deadlock freedom of existing hardware is preserved, but increased waiting times
on intermediate nodes for the processor to make the routing decision will affect the performance of the
network negatively.

Although the routing algorithm is not deadlock-free, we will consider it further, because of its simplic-
ity and advantages, and also because we believe it is a very good starting point for further investigations
and insights. The way we model the real hardware, implement the algorithm, test and verify it, is de-
scribed in the next sections.

5 Implementation

We used the OMNeT++ (Objective Modular Network Testbed in C++) [13] event-based simulation en-
vironment for a test bed for the implementation of a model of the QPACE network processor and torus
network, as well as the implementation and testing of the proposed routing algorithm.

In an event-based simulation the system is represented as chronological sequence of events, which
are processed by the simulation environment. Every event marks a change in the state of the sys-
tem. This kind of simulation is very suitable for testing new functionality of complex system without
physically altering it, which is also very important for trying out new features of the QPACE net-
work.

As the exact one-to-one modeling of the real hardware in the simulation environment is impossible and
not necessary, we have omitted some features of the network processor which we consider not relevant
to routing. First, there is the absence of virtual channels allowing messages from different SPE core to
travel along the same physical link between two nodes. In real hardware there are eight virtual channels
per link or direction. We consider this not relevant to routing, as it will not affect sending and forward-
ing packets substantially. Message transmission over a link without further decomposing it in virtual
channels is sufficient for the considered communication patterns
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There is also no feedback between receive and transmit link for acknowledgment of received packets
or informing the transmit link that certain packets were lost or damaged. We also included contention
information and flow control among neighboring nodes, so that transmit links are blocked if the receive
buffer on the other side is currently full or otherwise busy and cannot accept further packets. Never-
theless, we implemented a backpressure mechanism between the Cell processor and the slave interface
(sender side) for not allowing the slave interface to become overloaded.

5.1 Verification of the QPACE Model

For verifying that the simulation model reproduces the functionality of real hardware in a satisfactory
way, a comparison of bandwidth measurements obtained with micro benchmarks on real hardware
was made. In the micro benchmark the bandwidth is measured in a point-to-point communication
over a single physical link. The sender sends one message at a time, that is, the sender posts a send
operation waits for the acknowledgment from the receive side and then posts another send operation.
The bandwidth is obtained as a function of the message size varying from 128 to 2048 bytes. For
each message size thousand consecutive messages are sent. The functionality of the micro benchmark
was reproduced in the simulation environment by choosing the simulation parameters to match the
micro-benchmark behavior on real hardware. The two curves of both measurements are presented in
Figure 5.

Figure 5: Bandwidth comparison for peer-to-peer communication. The rhomboids represent the band-
width measured in the model, the squares – the one measured in real hardware. Along the X-axis are
the different messages sizes used from 128 bytes to 2KBytes (in 128 byte step).

For testing the functionality of the routing algorithm we used a communication pattern from an exam-
ple application, namely transposing large quadratic matrices. This communication pattern is common
when a two dimensional data set should be processed first along one of the dimensions, then along the
other. Examples of such algorithms are row-column Fast Fourier Transform algorithms [14]. The naive
algorithm describing the transposition of the matrices has the following steps:

1. Every node i is assigned a set of rows in the matrix

2. Every node i sends parts of its row to every other node j, i 6= j

3. Every node i receives parts of all other nodes’ rows
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In the end every node sends messages to any other node, and receives from any other node. Tests of
the model were successfully passed using up to 1024 nodes - all nodes received the right amount of
packets (according to matrix rows allocation to nodes), all packets came at the right destination and no
packets were lost or got into a livelock.

6 Conclusion and Outlook

We have considered an important extension to the functionality of the QPACE parallel computer’s
Network Processor to support routing and thus any-to-any communication patterns. Common routing
algorithms were examined and their advantages and disadvantages were taken into account. Based
on the knowledge gained and also on goals set by limited hardware resources and complexity re-
quirements we came up whit a low-overhead routing algorithm, which uses simple routing logic and
requires minimal changes to the existing hardware architecture. To test and verify the algorithm we
implemented a simulation model describing the real hardware in consistent fashion. We verified the
model by comparing bandwidth measures with such on real hardware and gained sufficient results
and good overlapping. Furthermore we implemented the new routing algorithm in the simulation en-
vironment and tested it successfully with the help of a common application and its communication
pattern.

We have observed some interesting results in regard to bandwidth utilization when using the transpose
matrix communication pattern - it does not fully utilize link bandwidth and thus more precise and
comprehensive measurements must be made. In the future further measures interesting to the field
of routing, like end-to-end packet transmission delay and bandwidth measures at a reference receiver
node as function of torus size and packet count, are to be made.
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Abstract:
In Astrophysics it is quite common to use a combination of an N-body code and an SPH code for
the computation of self-gravitating matter. SPH is a Lagrangian method where the particles are used
as the discrete elements within a fluid description. Thermodynamic properties are computed at the
simulation points from averages over neighbouring particles. To do this it is necessary to know the
next neighbours of each particle.
In this article the implementation of a neighbour search algorithm using the tree-code PEPC is de-
scribed. The algorithm is based on the existing routine for the force summation, adapted to return
neighbour lists instead of multipoles. The correctness of the parallel neighbour search is verified us-
ing both visual and quantitative tests. The scaling of the algorithm with particle and process number
is shown to be O(N logN) or better.

1 Introduction

Many problems in Astrophysics require knowledge of the dynamics of huge amounts of self-gravitating
matter. But for the simulation of self-gravitating gas it is not sufficient to just fill the simulation-box
with N particles each with 1/N of the total mass and simulate it as an N-body problem. In this case
only the attracting forces would be taken into account. But for gas also the repulsing forces resulting
from the thermal movements of the molecules are relevant. While the gravitational part can be com-
puted with a tree-code like PEPC [1] the thermodynamic forces have to be computed with a fluid-code.
A natural and well tested technique to combine these is to use Smoothed Particle Hydrodynamics (SPH)
[2] code for the fluid-computation [3, 4]. SPH computes the thermodynamic forces from averages over
the neighbouring particles, which must first be determined via a search algorithm. For this one could
apply a mesh to the simulation-area but for highly clustered matter this would be very inefficient. Since
tree-codes are inherently adaptive, it is natural to try to exploit their built-in data structure to find these

25



DEVELOPMENT OF A PARALLEL, TREE-BASED NEIGHBOUR-SEARCH ALGORITHM

neighbours. This article will describe the implementation of a next-neighbour search algorithm using
the parallel tree-code PEPC.

2 Short introduction to SPH

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method for fluid-computation. It was first
described by Monaghan and Gingold (1977) and Lucy (1977) [5, 6].

It is based on the fact that using the delta-distribution one can write∫
f(x′)δ(x0 − x′)dx′ = f(x0). (1)

Now for a function W with the property

lim
h→0

W (x, h) = δ(x), (2)

one can write

A(~r) = lim
h→0

∫
A(~r ′)W (~r − ~r ′, h)d~r ′. (3)

For a small enough h one can simply write

A(~r) ≈
∫
A(~r ′)W (~r − ~r ′, h)d~r ′, (4)

or with ρ(~r) = dm/d~r

A(~r) =
∫
A(~r ′)
ρ(~r ′)

W (~r − ~r ′, h)dm′. (5)

Discretisation finally leads to

Aa =
∑
b

mb

ρb
AbW (~ra − ~rb, h). (6)

From Eq. (6) one can see that a given property Aa of a particle a can be computed by summing up
the properties Ab of the particles b weighted with their masses mb and densities ρb and the function
W .

For example the total force F on particle a can be computed as

Fa = Fg −ma

∑
b

mb(
Pb
ρ2
b

+
Pa
ρ2
a

)∇W (~ra − ~rb, h), (7)

whereFg is the gravitational force andP the pressure obtained from the ideal gas lawP ∝ ρ T .
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3 About PEPC

PEPC is a so called hashed-oct-tree-based tree-code following the implementation described by War-
ren and Salmon in 1995 [7]. A tree-code is usually used for simulating N-body problems. For
the simulation of N bodies interacting for example through gravity for each body N − 1 forces
have to be computed, which leads to an O(N2) run-time. This limits the manageable total num-
ber of particles on today’s fastest supercomputers to a few 100 000 due to limited computation re-
sources.

To simulate more particles a better-scaling method like a tree-code is needed. This code uses a tree
as a data-structure to store and access information about the particles. To build the tree the whole
simulation-box is identified with the root of the tree and then the box is consecutively subdivided into
eight smaller child boxes, which are linked with the parent box. If one box contains only one particle
the subdivision is stopped and the particle is linked to this box. Then for each box multipole moments
of the potential are computed.

Now for the force computation particle-multipole interactions are taken into account rather than particle-
particle interactions. To decide which multipole to use for the interaction a criterion is constructed
based on the distance between particle and multipole and the size of the box associated with the mul-
tipole. So only for close interactions highly resolved tree-nodes are used, for distant interactions a few
big tree-nodes are used.

This limits the computation effort for the force-summation to anO(N logN) run-time.

4 Implementation of the next neighbour search
algorithm

The implemented algorithm follows the idea described by Warren and Salmon in 1995 [7].

The first step was the implementation of a function to find neighbours within a given radius around the
particle i.

Like in the function creating the interaction lists for the force summation, the neighbour search algo-
rithm walks through the tree starting at the root, descending level by level. At each node it tests for an
overlap between the search-sphere with radius r around the particle i and the box represented by the
tested node. In case of an overlap the node is resolved, otherwise ignored. When reaching the leaf-level
in case of an overlap also the separation between the particle attached to this particular leaf-node and
the particle i is tested for being smaller than r. If so, the particle is added on the next neighbour list of
particle i.

The parallel version of this algorithm has also to check whether the child-nodes of the tested tree-nodes
are locally present, and if not, fetch them from their corresponding owner process.
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s e a r c h _ n e i g h b o u r s _ o f _ p a r t i c l e _ i ( r ) {

walk t h r o u g h t r e e from r o o t t o l e a v e s
1 ) p a r t i c l e s w i t h i n r p u t on n e x t n e i g h b o u r l i s t
2 ) i g n o r e nodes / p a r t i c l e s o u t s i d e r
3 ) f o r nodes wi th o v e r l a p wi th r

i f c h i l d r e n l o c a l l y p r e s e n t , r e s o l v e
e l s e g e t c h i l d r e n from remote p r o c e s s

end
}

Having verified this algorithm, a second version for obtaining exactlyNnn next neighbours of particle i
was implemented. This was done using a modified version of the first one searching neighbour particles
inside a fixed individual search radius ri. After all particles in this sphere are found, it is tested whether
at least the desired number of neighboursNnn is found. If not, the individual search radius is increased
for this particle and the search is started again.

When for all particles a minimum number of neighbours Nnn are found, a bubble-sort loop is used
to successively move the furthest neighbour to the end of the list, which is then shortened by one,
until exactly Nnn neighbours are left. Then, this bubble-sort loop is executed one more time to
again move the furthest neighbour to the end of the list. The separation between this furthest neigh-
bour and particle i is used as the new individual search radius for particle i during the next itera-
tion.

w h i l e t h e r e a r e p a r t i c l e s wi th l e s s t h a n N_nn found n e x t n e i g h b o u r s
s e a r c h _ n e i g h b o u r s _ o f _ p a r t i c l e _ i ( r _ i ) {

walk t h r o u g h t r e e from r o o t t o l e a v e s
1 ) p a r t i c l e s w i t h i n r _ i p u t on n e x t n e i g h b o u r l i s t
2 ) i g n o r e nodes / p a r t i c l e s o u t s i d e r _ i
3 ) f o r nodes wi th o v e r l a p wi th r _ i

i f c h i l d r e n l o c a l l y p r e s e n t , r e s o l v e
e l s e g e t c h i l d r e n from remote p r o c e s s

end
}

i f found n e x t n e i g h b o u r s < N_nn
i n c r e a s e r _ i f o r t h i s p a r t i c l e
p u t p a r t i c l e on l i s t t o s e a r c h n e i g h b o u r s a g a i n

end
end

f o r a l l p a r t i c l e s
w h i l e n_found > N_nn

move f u r t h e s t p a r t i c l e t o t h e end of t h e l i s t
s h o r t e n l i s t by one

end

move f u r t h e s t p a r t i c l e t o t h e end of t h e l i s t
new s e a r c h r a d i u s r _ i i s 1 . 1 ∗ d i s t a n c e t o t h i s p a r t i c l e

end
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5 Validation

The first validation approach was to visualize the list of neighbours with a appropriate tool such as
ParaView for 3D setups or GLE for 2D setups and check the results by hand. But this was only
possible for a random sample and so not sufficient to verify that the algorithm works correct in all
cases. An example plot can be seen in Fig. 1.

Figure 1: Visual validation of the results of the next neighbour search with 100 000 particles distributed
in a two dimensional disc with a r−2 density run with 32 processes. This is a zoom on the inner part.
The different colours represent the process domains. In the big white circle in the center are no particles
because of the singularity of the r−2 density. In the other white circle the next neighbours of the particle
in the center of this circle are over-plotted in white to have a better contrast.

A more rigorous validation tool was implemented in Perl to compute all N − 1 distances between one
particle and all others. After sorting this list the Nnn next neighbours can be obtained from this list as
the first Nnn. Since it was not possible to obtain a list of the labels of the next neighbours for one parti-
cle the validation tool outputs the coordinates of the neighbours, which are compared to the coordinates
of the next neighbours written out by the neighbour search routine.

Because the coordinates are written out with a limited precision it can happen in case of high particle
densities that among the furthest particles there are discrepancies when computed by the Perl-script
and the neighbour search routine. This has to be borne in mind when checking to high densities with
the validation tool.
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6 Scaling

6.1 An analytical estimate

R1

R2

r

Radius of the domain

Radius of the search sphere

Radius of the volume

containing all neighbours

for particles of that domain

R1R2

r

Figure 2: Sketch for the estimation. The inner big circle with the radius R1 represents one process
domain. If there are many particles near the domain border the search spheres with radius r of these
particles overlap and fill the area between the two bigger circles. All particles in this area have to be
fetched from other processes.

Assuming that the density is constant within the whole simulation volume, one can estimate the number
of particles to be fetched by one process. A total number of particles N in the volume V result in a
mean-density of ρ = N/V . If simulated on p processes the average volume of one domain is Vp = V/p.
Assuming that the domain is spherical its radius can be expressed as

Rdomain =
(

3πVp
4

) 1
3

. (8)

With the mean-density the radius of the sphere containing all Nnn next neighbours of a particle can be
written as

rsearch =
(

3Nnn

4πρ

) 1
3

. (9)

As shown in Fig. 2 the search spheres of all particles close to the domain border form a shell around
the domain, in which next neighbours of particles from the domain can be found. All these particles
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have to be fetched during the next neighbour search and stored in the local memory. Their number can
be calculated as

Nfetch =
4
3
πρ
[
(R+ r)3 −R3

]
(10)

=
(

27
NnnN

2

p2
+ 27

N2
nnN

p
+N3

nn

) 1
3

. (11)

It is easy to see that this leads to the asymptotic complexities

O(Nnn), O(N2/3), O(p−2/3). (12)

In case of a fixed number of particles per process Np one finds

Nfetch =
(
27NnnN

2
p + 27N2

nnNp +N3
nn

) 1
3 , (13)

which leads to the complexities

O(Nnn), O(N2/3
p ). (14)

But this is only for the communication effort and the memory space needed locally to store the fetched
particles. Additionally requested memory can lead to problems when simulating with too few particles
per process, because the size of the locally allocated memory is initially calculated depending on the
number of local particles. As shown in Tab. 1 the relative additionally needed memory increases with
decreasing particles per process. This can lead to out of memory problems even though the memory is
almost unused.

Nnn Np Nfetch Nfetch[%]

50 10000 6000 61
50 50000 17000 33
50 200000 40000 20

Table 1: Estimated number of particles to fetch from remote processes depending on the number of
particles per process.

6.2 Benchmarks

For benchmarking the new algorithm several sets of time measurements have been performed each with
one configuration parameter varying. In each case the time needed by the neighbour search algorithm
for the local walk (’nn walk’), the time to fetch data from other processes (’nn fetch’) and the time
needed by the rest of the program (’rest’) was measured.

• For the weak scaling the number of particles per process was fixed to 150 000 and the number
of neighbours required set to 50. The number of processes was varied from 80 to 800, which
results in 1.2 × 107 to 1.2 × 108 particles in total. For the log-log plot of the absolute run-time
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Figure 3: Weak scaling on Juropa using 150 000 particles per process and 50 next neighbours to find.

see Fig. 3. Since the computational effort per process is fixed the weak scaling should be almost
constant. The slight increase in run-time of the ’nn walk’ seen in the figure can be caused by a
fuller hash-table due to the higher total number of particles.

• For the strong scaling the total number of particles was fixed to 1.2 × 107 and the number of
neighbours set to 50. The number of processes was varied from 80 to 400, which results in
30 000 to 150 000 particles per process. For the log-log plot of the absolute run-time see Fig. 4.
Ideal strong scaling means that if the number of processes is multiplied by a factor a the run-
time is divided by a, which results in a p−1 dependence of the run-time, where p is the number
of processes. As can be seen in the figure the local next neighbour search (’nn walk’) scales
almost ideal with a p−0.96 dependence. The ’nn fetch’, which is the time for the next neighbour
communication, scales like p−0.79. This is a close to the estimated p−2/3, see Eq. (12).

• For the N scaling the number of processes was fixed to 240 and the number of neighbours set to
50. The total number of particles was varied from 6×106 to 3.6×107, which results in 25 000 to
150 000 particles per process. For the log-log plot of the absolute run-time see Fig. 5. The fitted
functions show that all three measured program parts scale like N logN , which is in excellent
agreement with the expectations.

• For the Nnn scaling the number of particles per process was fixed to 50 000 and the number
of processes set to 80. The number of next neighbours to find was varied from 25 to 150. For
the log-log plot of the absolute run-time see Fig. 6. The increase in run-time for the rest of the
program is probably again due to a fuller hash-table.
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Figure 4: Strong scaling on Juropa using 12× 106 particles and 50 next neighbours to find.

7 Summary and Outlook

A parallel tree-based neighbour search algorithm was successfully implemented and validated. The
validation tool will be useful to demonstrate the correctness of improved algorithms implemented in
the future.
The scaling is at least as good as the scaling of rest of PEPC, which is dominated by the O(N logN)
scaling of the force summation. Currently the absolute time consumption is relatively high (around
50% of the total iteration time). This is probably due to inefficiencies in the local part of the search
algorithm but it should be possible to improve this. Further it would be interesting to measure the
imbalance between the domains and implement a domain decomposition taking the next neighbour
search work load into account.
If this is still not fast enough one could compute the next neighbour lists less frequently to reduce the
search overhead.
And finally for a better energy conservation in SPH, a modified neighbour search algorithm with a
more complex distance criterion has to be implemented.
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Abstract:
An efficient parallel I/O module for the particle-in-cell code PSC has been developed using the highly
scalable library SIONlib, harnessing a one-file-for-all-tasks strategy. This module enables efficient
production runs on large-scale HPC systems. The performance has been extensively tested and com-
pared with the existing one-file-per-task I/O module. The new implementation largely reduces the
resource requirement for data dumping as well as for post-processing for the code PSC.

1 Introduction

Particle-in-cell (PIC) codes are efficient tools for kinetic plasma simulations, which are widely used to
study laser plasma interaction experiments. During recent years the need for much higher resolutions
and longer simulations made it essential to run these codes on massively parallel systems. Naturally, ef-
ficient handling of the huge amount of data produced by these massively parallel runs is absolutely nec-
essary. One of the well accepted solutions is to use parallel one-file writing mechanisms to reduce the
large data handling overheads. This motivates PIC code developers to implement such methods to cope
with the need for running on several thousands of CPUs in parallel.

PSC [1] is a well-known open source 3D-PIC code, which has a one-file-per-task output strategy.
Presently this code has an optimal production usage up to maximum 1k cores of the machine Juropa [2]
at JSC with approximately 15 million numerical particles. It is obvious, that this limit is significantly
driven by the data output method. Moreover, these high number of data files created per run can hardly
be post-processed, analysed or archived even with the most efficient hardware available in the market.
Additionally, the file system in use slows down because of a serialisation at the metadata servers, e.g.
while creating these files.

A standard realisation of this issue is shown in Figure 1: the time needed to remove a constant amount
of data of a physical system distributed over several tasks increases significantly by the number of
involved tasks. The PSC output modules created one file per time-step per task, which resulted in a
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task-dependent number of files. In the Figure, we compared this with a one-file-for-all-tasks opera-
tion. As a consequence, the built-in post-processor and various IDL [3] scripts were used to visualise
these data, which turns the whole process out to be unmanageable with the out-of-the-box output
of PSC.

Figure 1: Time required to remove a computed series of output steps with each 41 million particles on
Juropa. Having used the one-file-per-task strategy, the total number of created files was 118 times the
number of involved tasks, whereas in the single-file-per-saving-instance the number of files are limited
to the number of saving instances, which stays constant.

In this report, we are discussing a method of implementing a new parallel I/O for the PSC code and its
testing, optimisation, scaling etc. Section 2 introduces the concept of I/O on massively parallel high
performance machines. Our new implementation is discussed in Section 3. Results of some of the test
post-processing and benchmarking runs are presented in Section 4. Finally, in Section 5, we summarise
the current developments and have a look at future prospects.

2 Output in Massive Parallel Environments

Several approaches exist to create output efficiently on massively parallel computers. One strategy
could be to collect the distributed data on a master task and write one file per output step. This obviously
causes complete serialisation and global data-passing as it does not harness the parallel infrastructure
of the underlying file system at all. Hence, considering parallel efficiency, this mechanism may not be
suitable for the present scenario.

One of the more acknowledged solutions is to create one or only a few files for all tasks while writ-
ing in parallel in protected task-local areas of the same physical file. We are discussing the possi-
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2 Output in Massive Parallel Environments

Figure 2: A simplified schematic of the file system block alignment used in SIONlib [6].

bility of realising this method using the MPI standard and the in-house developed library SIONlib
below.

2.1 MPI File I/O

The MPI_File API [4] was first published in 1997. Since MPI 2.0, the I/O is a widely supported, plat-
form independent part of the MPI standard. One of the reasons for the comprehensive support of MPI
I/O is the open implementation ROMIO [5]. The interface itself is very similar to the message-passing
part of MPI, whereupon several output masks and on-the-fly reordering schemes between datasets of
different tasks can be applied. The so-called external32 data representation can be used to create IEEE
standardised platform and vendor independent binaries.

2.2 SIONlib

SIONlib [6] is a parallel I/O library, which maps a large number of task-local output chunks into one or
a few physical files, and has been developed by W. Frings, JSC. The source code is openly available via
the JSC homepage [7]. Currently, it supports the programming languages C, C++ and Fortran with MPI
and OpenMP and scales on the full range of BlueGene/P [8] at JSC.

One main feature of SIONlib is that it takes care of aligning the data to the file system block size. SION-
lib can be implemented easily in an existing single-file-per-task output scheme by creating an abstrac-
tion layer, that hides the internal task-local parts of a file from the file system without penalising the read
and write performance. Moreover, this library adds meta information to each file, which, among others,
allows the user to create endianness independent binary output.

The structure of a SIONlib generated file is demonstrated in Figure 2. Every single task writes in
a protected part of the file, which is filled up with spaces up to the end of the last local file system
block.

2.3 Other Possible Parallel I/O Libraries

It is also possible to use various other parallel I/O libraries, mostly MPI I/O based, that provide an on-
the-fly converting to a popular portable data format, like parallel netCDF [9] and parallel HDF5 [10].
As an approach, we tried to keep the structure of the PSC internal datasets. Therefore we created our
own binary middle-ware format during the parallel run of the simulation. Afterwards a converter is used
to create widespread data formats for visualisation and archiving purposes.
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3 The New I/O Implementation in PSC

Our basic idea of grasping the maximum possible performance during output was to hold the output
datasets as long and as contiguous as possible. Therefore, the particle and field datasets are not sorted
or rearranged during the output at all. Eventually, the created output has been reduced to one file per
output step for fields and for particles.

At the moment we cannot use MPI I/O with the LUSTRE [11] file system on Juropa, because of file
locking problems. Nevertheless, we could work out the MPI output and converting implementation
with the GPFS [12] file system on Jugene. Unfortunately, we are not able to show a meaningful scaling
with MPI I/O here, because of scaling limitations of the kernel of PSC.

The main differences in the binary output created by SIONlib are the strictly task-local parts of each file
and the above mentioned aligning, which is not the same as in MPI I/O. For both methods we added
a binary header with structural and physical information, before writing the raw data to disk. The
increased complexity of the SIONlib file is balanced by the API of SIONlib that provides addressing
information for the task-local parts of the file.

A comparison of the functions of MPI I/O and SIONlib is shown in table 1.

SIONlib MPI I/O

call fsion_paropen_mpi(...) call MPI_FILE_OPEN(...)
call MPI_FILE_SET_VIEW(...)

call fsion_write( particles(1), real8size,
numpart, fh, bwrote)

call MPI_FILE_WRITE_ORDERED( fh,
particles(1), numpart, MPI_REAL8, status,
err)

call fsion_parclose_mpi(...) call MPI_FILE_CLOSE(...)

Table 1: Examples of the used output commands for SIONlib and MPI I/O.

3.1 Total Output Time Comparison

Figure 3 shows the total amount of time needed to output all field and particle attributes 64 times,
compared to the serial output module during a production run. The size on disk of a particle file is about
4.1 GB and a field file is about 0.1 GB for one output step. The overhead for the collective file creation
with SIONlib amortises with this configuration at 200 tasks and more. The parallel infrastructure of
a file system with several Object Storage Targets (OSTs) can now be used efficiently because of the
increased file size per output step.
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Figure 3: The total time needed for output during a strong scaling of a physical system with 41 million
particles on Juropa. The serial I/O module is compared to the SIONlib module for different OSTs (see
text for details.).

4 Post-Processing

Post-processing of the dumped data outputs in large parallel runs is a major issue for most of the PIC
codes. We would like to use both, the old IDL visualisation scripts and a new flexible implementa-
tion for particle data analysis. Therefore, it is necessary not only to stick to the compatibility to the
out-of-the-box IDL scripts, but also to introduce additional compatibilities with plotting software like
Gnuplot [13], Matlab [14], Paraview [15] and VisIt [16].

Keeping in mind the easy maintainability and extendibility of the post-processing environment, a mod-
ular converter, that separates in- and output into independent layers, was used. The conversion of the
particle data, e.g. from binary to a column ordered ASCII, was done via concatenation of the task-local
output. On the other hand, the field attributes in the task-local parts of the output files are distributed
in a domain decomposition scheme for two or three dimensional matrices. It is not wise to reorganise
these data in a way a virtual global task would access it (as shown in Figure 4), because this would
cause excessive random data access as well as buffering of the unused parts of the input file while
converting. In this way the performance during post-processing can be kept up even if the output
files are much bigger than the RAM of the converting machine. To allow this choice, we selected
a visualisation format that understands decomposed grids without harming the performance during
rendering.

A suitable file format for grid-in-grid structures like distributed fields is the XML syntax of the VTI-file
format [17], which is part of VTK [18]. The XML VTI-file structure offers the possibility to create any
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Figure 4: Scheme of a distributed matrix set. (Left) How a global task would see the distributed field.
(Middle) The structure in the RAM of the separate tasks. (Right) The one dimensional reordering
scheme that should be avoided therein.

decomposition of neighbouring parts of an equal spaced global mesh and can be split or joined into a
few number of files, e.g. for a parallel visualisation software.

The benefit of holding the data long and contiguous during the post-processing can be seen in Figure 5,
which shows the post-processing speed in MB/sec. The whole converting is mostly limited by the
CPU clock rate (binary to ASCII translation) and has been speeded up by a factor of four later on by
simply converting different time-steps in parallel. It is remarkable that the post-processing speed of the
SIONlib files, with a constant amount of global data, is independent of the number of tasks that created
these data. The post-processing speed has been increased by a factor of more than two. The chunk
sizes per task seem to have no negative influence on the converting speed, even if they get below the
file system block size of currently 1 MB on Lustre.

5 Conclusion & Future Prospects

We investigated and implemented the two parallel output libraries MPI I/O and SIONlib to create a
single file per output step. Now the output time itself and the post-processing time are independent of
the number of tasks. It is possible to overcome the production run limitations of PSC without the I/O
bottleneck.

We expanded the output formats of PSC for particles on CSV, a column ordered ASCII format called
PSCTXT and VTK, without loosing backwards compatibility to the old IDL scripts. The fields are
now generated in the portable VTI format. The direct binary output itself can be converted platform
independent on different machines and with different compilers.

The new output formats allow the use of parallel visualisation software like Paraview and VisIt, which
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Figure 5: The amount of data in megabytes per second that can be converted during post-processing
on a single CPU of Juropa with a 2.93GHz Intel Nehalem core. The labels show the task local data
size (chunk size) in MB per output step.
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Figure 6: Visualisation example: a laser pulse propagates through a plasma and generates a so called
wake field acceleration. (Left) The plasma electron density and the longitudinal electric field Ez .
(Below) A slice along the vertical axis ofEz . (Right) The electron phase space long time after the laser
pulse propagated.

in turn allow to use specialised rendering clusters like Juvis [19]. For a quantitative analysis, these
software also provide analytical tools and filters. An example of the visualisation created in Paraview,
using the new implementation, is shown in Figure 6.

For future developments, we presume that some easy improvements in the output formats can be made
to handle large amounts of data (eg. terabytes order). The VTI-files can be created with binary data
content and should be split up in sub-files to deploy the underlying file system of the visualisation
cluster efficiently.

The I/O part of PSC supports more domain decomposition schemes, like adaptive grids, and the con-
verters can be used for similar projects. Moreover, it is possible to extend the file format output, e.g.
with HDF5 or netCDF, to interact with other simulation software.

A SIONlib based check pointing module is in progress, which can be used to restore the state of a
complete parallel simulation from previous runs.
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Abstract:
In this report two approaches for run-time optimization of the General Centrifugal Force Model
(GCFM) are analysed. First we give a short introduction in modeling pedestrian dynamics and in-
troduce the GCFM. The first approach consists of ordering pedestrians’ data in the local memory
to preserve data locality. The purpose is to reduce cache misses and is done using space-filling
curves. This is presented in the second part of this report. A small decrease of computation-time was
achieved. In the third part different ODE-solvers are investigated, with fixed and with varying step-
size. The solvers are the Velocity Verlet method and different orders of the Runge-Kutta-Fehlberg
method. Here an increase of the average step-size was achieved.

1 Introduction

In recent years pedestrian dynamics has gained more importance and has become an interesting field of
research due to continuously growing urban population and cities. Simulations are already conducted
to enhance the safety and security of pedestrians in complex buildings and mass events. In this context
and as part of the German Government’s high-tech strategy, the Federal Ministry of Education and
Research (BMBF) has funded the Hermes project [1] for addressing this demand. The aim of Hermes
is the development of an evacuation assistant which will be installed and tested in the ESPRIT arena
in Düsseldorf. One of the challenges is to simulate the evacuation of 50000 persons for the next 15
minutes faster than real-time. First approaches to optimize the run-time have been implemented and
include the Linked-Cell method [2]. In this work different ODE-solvers are investigated with fixed and
varying step-size.
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2 Modeling pedestrian dynamics

The approaches of modeling pedestrians’ motion fall into two main groups: microscopic and macro-
scopic models. In macroscopic models the system is described by its mean values and therefore conser-
vation laws for density, flow, etc. are used. Microscopic models can be further categorized in spatially
discrete (e.g. Cellular Automata) and spatially continuous models (e.g. Social Force Model, Gener-
alized Centrifugal Force Model). A detailed description of these modeling approaches can be found
in [3].

2.1 General Centrifugal Force Model

The GCFM [4] is based on Newton’s Second Law, i.e. ~F = m ·~a. Thus the trajectories (position
in time) of the pedestrians are determined by the forces acting on them. Each pedestrian has a driv-
ing force which is directed to the desired direction. This direction can be an exit or an intermediate
destination point. The driving force has the form

~F driviB = mi

~V 0
i − ~Vi
τ

(1)

where ~V 0
i is the desired velocity of pedestrian i, ~Vi is the current velocity and τ is a relaxation

term.

There are two types of repulsive forces: repulsive forces from walls and repulsive forces from other
pedestrians. These forces ensure a correct interaction with the environment and with other pedestri-
ans.

~F repij = −miKij
(ηV 0

i + Vij)2

distij
~eij (2)

~Rij = ~Rj − ~Ri , ~eij =
~Rij

‖~Rij‖
(3)

Vij =
1
2

((~Vi − ~Vj) ·~eij + |(~Vi − ~Vj) ·~eij |) (4)

Kij =
1
2

~Vi ·~eij + |~Vi ·~eij |
‖~Vi‖

(5)

Equation (2) describes the repulsive force. The formulas are the same for forces from walls and other
pedestrians. The relative velocity Vij defined by Equation (4) ensures that pedestrians with higher ve-
locity in front of pedestrian i do not affect him/her. The coefficientKij which is defined in Equation (5)
becomes zero if pedestrian j is not in the field of vision of pedestrian i, i.e. pedestrian j has no effect on
pedestrian i in this case. Each pedestrian is modelled by an ellipse whose major semi-axis depends on
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the actual velocity of the pedestrian. Therefore distij is the distance between the ellipses of pedestrian
i and j.

Hence summing all forces up

~Fi =
N∑
i 6=j

~F repij +
∑
B

~F repiB + ~F drivi (6)

results in the force acting on pedestrian i. After defining the forces we can set up the differential
equations

d

dt
~Ri = ~Vi , mi

d

dt
~Vi = ~Fi , i = 1, . . . , N (7)

for our model, where N denotes the number of pedestrians.

Some problems exist with the used implementation of the GCFM. Not all pedestrians reach the exit in
the simulation. This is due to unrealistic high velocities which occur during the simulation. Therefore
the pedestrians have a new position which is outside of the used geometry.

3 Preserving data locality with space-filling
curves

In this part an older implementation, which goes back to [2], is used. This implementation uses the
Linked-Cell method to reduce the complexity of the force-calculation to O(N). The simulation area
is divided into quadratic cells with edge length Lc, where Lc equals the cutoff-radius. Pedestrians are
assigned to cells at each simulation step. For force calculation only pedestrians from the own cell and
the eight neighboring cells are considered.

We want to reduce cache-misses in the calculation of the forces. Since only the data of pedestrians
in the neighborhood is needed to calculate the repulsive forces, it would be useful if the data of these
pedestrians is also nearby in memory. The pedestrians’ data consists of the current position, current
velocity, desired velocity, angle of the major semi-axis of the ellipse describing the pedestrian towards
the x-axis, current room, exit and an index.

3.1 Space-filling curves

A space-filling curve is a mapping, f : [0, 1] → [0, 1]2, from the unit interval to the unit square s.t.
it fills the whole space. It is continuous and surjective. For details on space-filling curves we refer
to [5].
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We use the Hilbert curve (Hn) to arrange the pedestrians’ data in memory since it has a good locality-
preserving behavior. Its construction process is recursive and can be seen in figure 1. In the up-
per left corner the figure shows the first approximation H1. The Hilbert curve in the mathemat-
ical sense is the limit for n → ∞. Other space-filling curves are e.g. the Peano curve or the Z-
curve.

Figure 1: Construction process of the Hilbert curve, source:
http://en.wikipedia.org/wiki/File:Hilbert_curve.svg.

3.2 Test-cases

To test the effect of ordering the pedestrians’ data in a specific way the pedestrians were distributed
in four different ways: column-wise, row-wise, along a Hilbert curve and random. For the ordering
along a Hilbert curve a function which evaluates the Hilbert curve at a specific argument was used. The
approach to calculate the coordinates was taken from [6].

Figure 2: Corridor with pedestrians moving to the right

The used geometry was the corridor shown in figure 2. 1152 pedestrians were placed on the left side
of the corridor and sent to the right.
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Figure 3: Results.

3.3 Conclusion and analysis

Figure 3a shows the run-time of the simulation until every pedestrian has left the corridor. These
measurements were done on a single node of JUROPA [7]. We can see that the case of pedestrians’ data
ordered along a Hilbert curve had the fewest complete run-time (Figure 3a). The difference between
ordering along a Hilbert curve and random ordering is 1.58s, i.e. ordering along a Hilbert curve is only
about 1% faster.

The time needed to compute the first step, as shown in figure 3b, shows a different picture. Here
row-wise and column-wise ordering are the fastest. Further investigations showed that most of the
computation-time was spent in parts of the program where the ordering of pedestrians is not important
(e.g. the calculation of the ellipses). Hence in a more optimized implementation the effect of ordering
along a Hilbert curve might become more visible.

4 Implementation and analysis of
ODE-solvers

Integrating the system (7) has high computational effort. Hence increasing the step-sizes of the in-
tegration is desirable. So far the explicit Euler-method was used for integrating the system (7). In
this part of the work we want to analyse if we can increase the step-sizes with the Runge-Kutta-
Fehlberg method and with the Velocity-Verlet method. The influence of the new methods on the
flux in front of a bottleneck is investigated. Here we use the integral of the flux, i.e. the N/t-
diagram. Hence this diagram shows how many pedestrians have entered the bottleneck up to a specific
time t.
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4.1 Transformation of the GCFM into standard form

The system (7) can easily be transformed into a standard system of autonomous ODEs d
dt~x = ~f(~x) by

using

~x = (R1,x, R1,y, V1,x, V1,y, . . . , RN,x, RN,y, VN,x, VN,y)T (8)
~f(~x) = (V1,x, V1,y, F1,x/m1, F1,y/m1, . . . , VN,x, VN,y, FN,x/mN , FN,y/mN )T (9)

where the subscripts i, x and i, y denote the x- resp. y-component of the position, velocity and force
of the pedestrian i. Now we have a system of ODEs in standard form where we can apply standard
numerical integration techniques.

4.2 Runge-Kutta-Fehlberg 2(3)

The Runge-Kutta-Fehlberg method [8] can integrate a system of ODEs d
dt~x = ~f(t, ~x). Since the

GCFM describes an autonomous system, i.e. d
dt~x = ~f(~x), we do not need to calculate values for t to

evaluate the right-hand side ~f . The Runge-Kutta-Fehlberg 2(3) method uses two integration schemes
of order 2 and order 3 respectively. Here ~x0 denotes the current state of the system and ~x1 respectively
~̂x1 denote the state of the system at time t+ h.

~x1 = ~x0 + h
3∑
i=1

bi~ki , ~̂x1 = ~x0 + h
4∑
i=1

b̂i~ki (10)

The increments read as:

~ki = ~f(t+ hcj , ~x0 + h

i−1∑
j=1

aij~kj) , i = 1, . . . , 4. (11)

The coefficients of Runge-Kutta methods are given in so called Butcher tableaus [9]. The Runge-
Kutta-Fehlberg methods use embedded schemes where the coefficients bi and b̂i for the two methods
of different order are given as shown in Table 1a. In Table 1b the Butcher tableau for the RKF 2(3)
method is shown.

The difference ~e = ~x1− ~̂x1 = O(h3) between the result of the order 2 and the order 3 methods is used
as an error estimation. This error estimation is used to calculate a new optimal step size so that the error
lies within given absolute and relative tolerances (atol and rtol):
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c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b1 · · · bss
b̂1 b̂1 · · · b̂s

(a) Butcher tableau with embedded
scheme

0
1/4 1/4
27/40 -189/800 729/800
1 214/891 1/33 650/891

214/891 1/33 650/891
533/2106 0 800/1053 -1/78

(b) Butcher tableau for RKF 2(3) method

Table 1: A general Butcher tableau and the tableau for the RFK 2(3) method.

hopt = hused · 3

√
1

ERR
, ERR =

√√√√ 1
n

n∑
j=1

(
ej

atol + max{|x0,j |, |x1,j |} · rtol

)2

. (12)

The new step size hopt is scaled by a safety factor ρ = 0.9. Also it is ensured that the new step size lies
within defined limits (σ ·hused < hnew < θ ·hused). Here σ = 0.2 and θ = 5 are used. These limits
are used to avoid oscillating step-sizes.

4.3 Runge-Kutta-Fehlberg 4(5)

Another used method is the RKF 4(5) which reads:

~x1 = ~x0 + h
5∑
i=1

bi~ki , ~̂x1 = ~x0 + h
6∑
i=1

b̂i~ki. (13)

~ki = ~f(t+ hcj , ~x0 + h
i−1∑
j=1

aij~kj) , i = 1, . . . , 6. (14)

The only difference between RKF 2(3) and RKF 4(5) is that we now use one method of order 4 and one
method of order 5 to estimate the error. The coefficients are given in Table 2.

4.4 Velocity-Verlet method

The Velocity-Verlet method [10] is widely used for dissipative systems in molecular dynamics. This
method has a fixed step-size.
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0
1/4 1/4
3/8 3/32 9/32
12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104
1/2 -8/27 2 -3544/4104 1859/4104 -11/40
25/216 0 1408/2565 2197/4104 -1/5
16/135 0 6656/12825 28561/56430 -9/5 2/55

Table 2: Butcher tableau for RKF 4(5) method

~Ri(t+ h) = ~Ri(t) + ~Vi(t)h+
1
2
~Fi(t)h2 (15)

~Vi(t+ h) = ~V (t) +
1
2

[
~Fi(t) + ~Fi(t+ h)

]
h (16)

The steps for the integration are as follows:

1. Compute ~Ri(t+ h) using Equation (15).

2. Estimate ~Vi(t+ h) with ~V (t) + 1
2
~Fi(t)h.

3. Compute ~Fi(t+ h).

4. Compute ~Vi(t+ h) using Equation (16).

4.5 Test-cases

As test-cases a bottleneck with 90 cm width (Figure 4) and a bottleneck with 160 cm width (Figure 5)
were chosen. The pedestrians started in the left room, went through the bottleneck and left through
the right. In the first test-case N = 20 was chosen and in the second test-case N = 50. In earlier
tests a step-size of 0.01 was used for the explicit Euler method, but now we use a step-size of 0.001
as "reference" in order to minimize the problems mentioned in Subsection 2.1. The RKF 2(3) and
RKF 4(5) methods were tested with different absolute and relative tolerances. Also different step-sizes
were tested for the Velocity-Verlet method. To compare the accuracy of the methods it was measured
how many pedestrians have entered the bottleneck at any time. For the RKF methods the used step-
sizes were measured.

4.6 Results

Figures 6 and 7 compare the explicit Euler method and the Velocity-Verlet method in the two test-cases.
In Figure 6a we can see that the N/t-diagram for the explicit Euler method and the Velocity-Verlet
method with step-sizes from 0.001 up to 0.004 fit. For step-size 0.005 theN/t-diagram of the Velocity-
Verlet method is below theN/t-diagram of the explicit Euler method with step-size 0.001.
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Figure 4: Bottleneck with 90 cm width

Figure 5: Bottleneck with 160 cm width

Again we compare the explicit Euler method and the Velocity-Verlet method, but now use the second
test-case. The results are shown in figure (7). Here until about 25s the N/t-diagram is quite similar,
but then starts to differ.

Now we come to the results for the RKF 2(3) method. In Figure 8 the Euler method is compared
with the RKF 2(3) method in the case of an bottleneck of 90 cm width and N = 20. We can see in
Figure 8a that the slope of the plot gets higher when the settings for the tolerances get lower. But even
for the highest tolerances the slope of the RKF 2(3) N/t-diagram is much higher than of the explicit
Euler N/t-diagram. When we look at the step-sizes in Figure 8b we can see that they get really big at
the end. This comes due that at the end nearly all pedestrians have already left the geometry. Further
investigations showed that the step-sizes get small when many pedestrians are in front of the bottleneck.
So this is the behavior of an adaptive method one might expect. Fewest steps are needed for tolerances
atol = 10−6 and rtol = 10−7.

The results for the second test-case shown in Figure 9 are similar. Here also the slope of the N/t-
diagram gets higher if the tolerances get lower. In comparison to the latter test-case much more steps are
needed. Also the setting atol = 10−6 and rtol = 10−7 results in fewest steps.

Figure 10 shows the results for the RKF 4(5) method in the case of the 90 cm bottleneck. We can see
a much better fit for the N/t-diagram in Figure 9a. Only at about 35 s there is a bigger difference
between the plots from the RKF 4(5) method and the explicit Euler method. In Figure 9b we see the
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Figure 6: Comparison of explicit Euler method with Velocity-Verlet method, 90 cm bottleneck, N =
20
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Figure 7: Comparison of explicit Euler method with Velocity-Verlet method, 160 cm bottleneck, N =
50
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Figure 8: Comparison of explicit Euler method with RKF 2(3) method, 90 cm bottleneck, N = 20
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Figure 9: Comparison of explicit Euler method with RKF 2(3) method, 160 cm bottleneck, N = 50
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Figure 10: Comparison of explicit Euler method with RKF 4(5) method, 90 cm bottleneck, N = 20
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Figure 11: Comparison of explicit Euler method with RKF 4(5) method, 160 cm bottleneck, N = 50

used step-sizes. For atol = 10−4 and rtol = 10−4 more steps are needed than with the explicit Euler
method. Fewest steps are needed for atol = 10−3 and rtol = 10−3.

The results for the 160 cm bottleneck shown in Figure 11 are similar. We see again a better fit between
the RKF 4(5) and the Euler method in Figure 11a. For atol = 10−3 and rtol = 10−3 again fewest steps
are needed. For atol = 10−4 and rtol = 10−3 and for atol = 10−4 and rtol = 10−4 more steps than for
the Euler method are needed.

5 Conclusion and Outlook

The Velocity-Verlet method allows to use a step-size of 0.004 instead of 0.001 for the explicit Euler
method. RKF 2(3) uses much higher step-sizes but shows a big discrepancy in the N/t-diagram, i.e.
the slope is higher than for the explicit Euler method. Hence the simulation with this method shows
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another characteristic behavior. This might be improved by using higher tolerances and therefore also
using double precision arithmetic. For the RKF 4(5) method we get better results in the N/t-diagram
but the computational effort is much higher than for the RKF 2(3) method, i.e. much more function
evaluations are needed.

Thus the Velocity-Verlet method and the RKF methods allow higher step-sizes. But it has to be inves-
tigated if we can reduce the whole simulation-time. Also other characteristics of pedestrian simulation
(e.g. the density in front of a bottleneck) might be investigated.
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Abstract:
A 6th-order compact finite difference scheme was implemented into a geometric multigrid method,
which is used to solve the 3-dimensional Poisson equation. The method is the basic component of
a particle-particle particle-mesh method which is used to calculate long range Coulomb interactions
between charged point like particles in molecular simulations.

1 Introduction

Coulomb interactions play a crucial role for static and dynamical proprieties in a variety of complex
systems characterized by polar or charged system components, e.g: polar liquids, proteins, DNA or
plasmas, to name a few.

Due to the long range nature of these interactions the calculation of forces is computationally very
demanding. Many methods exist which try to reduce the complexity of the problem from O(N2) to
O(N) or O(N log(N)). One of these methods is the so called particle-particle particle-mesh method
(P3M) which solves the field equation with a fast Fourier method by using a modified Green‘s function
which adjusts the solution closely to the continuum solution [1].

Numerical approximation of three-dimensional partial differential equations (in particular Poisson
equation) are computationally challenging with respect to memory and compute time, since often sys-
tems of equations on large 3-dimensional grids, which guarantee a necessary spatial resolution, are to
be solved.

Traditional numerical schemes often have only 2nd-order accuracy and therefore require fine discretiza-
tions, i.e. demanding for large grids and therefore result in very large systems of equations. One
approach to eliminate this is to use higher order or spectral methods which usually give comparable
accuracy with much coarser discretizations.

The higher-order compact (HOC) schemes used in the following extend the idea of the standard cen-
tral differencing schemes in which the lowest-order terms of the truncation error are locally approx-
imated using the differential equation. The resulting scheme is “compact“ which means that for a
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given node point on the grid, the finite difference operators are evaluated on grid points with carte-
sian components |α| ≤ 1, α = i, j, k, where i, j, k are relative indices with respect to the consid-
ered node. The result is that the nodal accuracy of the scheme is increased at the expense of only
a slight increase in the density of the sparse matrix structure compared to the minimal O(h2) sten-
cil.

2 Theory

2.1 Physical problem

In classical mechanics, starting from a set P of particles in an initial state given by S0 = [ ~x1, ..., ~v1, ...]
a system can be described completely in terms of coordinates and velocities of the particles. The time
evolution of the system is given by Newton’s equations of motion:

~vi =
d

dt
~xi ~Fi =

d

dt
mi~vi

for a particle with index i ∈ [1, N ], where N is the total number of particles in P . The force acting on
particle i is given by the sum of the forces due to all other particles in the system:

~Fi =
∑

j∈P/{i}

~Fi,j

The forces are given by the gradient of the potentials:

~Fi = −∇Φi
~Fi,j = −∇Φi,j Φi =

∑
j∈P/{i}

Φi,j

Therefore, the evolution of a system is a consequence of the effective potential. In the following we
consider just the electrostatic potential.

The Green’s function of the Poisson equation in R3 is given by:

U(x) =
1

4π‖~x‖2

Taking into account the similarity of the given Green’s function and the Coulomb potential

Φi =
N∑
j=1
j 6=i

1
4πε0

qj
‖~xi − ~xj‖2

one can state that the Coulomb potential is a solution of the following Poisson equation:

∆Φi(~x) = ρ(~x | ~xi) =
1
ε0

N∑
j=1
j 6=i

qiδ(‖~xi − ~xj‖2) (1)
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2 Theory

where ρ(~x | ~xi) denotes all spatial coordinates ~x but the evaluation point ~xi, i.e. not considering self-
interactions. The connection with the Poisson equation allows us to define numerical schemes to
calculate the electrostatic quantities of the system that are based on the solution of the Poisson equation
on a mesh.

2.2 Multigrid solution of Poisson equation

The idea of multigrid [2] is to solve the Poisson equation on a hierarchy of fine and coarse grids with
finite difference schemes. On the finest grid the operator works on the field Φ̂h, giving an approxima-
tion Φ̂h

′
. It can be shown [2] that the resulting error ε̂h with respect to the exact solution itself obeys

a Poisson equation Dhε̂h = −r̂h, where Dh is a finite difference approximation to the ∆-operator and
the source term r̂h consists of the residuum left in the relaxation step. By solving the Poisson equation
for the error we obtain a correction to the first approximation. The error correction is done on the next
coarser grid with mesh size H = 2h , where the residuum is restricted from h → H via a restriction
operator, r̂H = IHh r̂h. It is found that the high frequency components of the error are rapidly removed
on a given grid. Coarsening the grid results in the fact that low frequency components from the fine
grid are transformed into high frequency components on the coarse grid, which will be efficiently re-
moved. The hierarchy of grids is refined until only one mesh point is relaxed, which is done exactly.
The calculated error is then transfered back down the hierarchy of grids, via a prolongation operator, as
correction term to the field solution. This procedure, called V-cycle, is repeated until a threshold value
for the remaining residuum is reached.

Figure 1: Steps in multigrid cycle with corresponding operators.

2.3 Discretization of the Laplacian

The Poisson equation is given by:

∇2u(x, y, z) = f(x, y, z) (2)
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where u(x, y, z) is a field defined in 3D domain Ω with appropriate boundary conditions on ∂Ω and
f(x, y, z) is known as source function. One way for finding a numerical solution to the given Poisson
equation is to approximate the solution to high-order by finite differences on a structured grid of size
h .

The discrete form of Eq. (2) is

(uxx)ijk + (uyy)ijk + (uzz)ijk = fijk (3)

where (i, j, k) denote three-dimensional lattice indices and (uαα)ijk is the approximation to the second
partial derivative with respect to the coordinate direction α. The simplest approximation is obtained by
the following formula:

(uαα)ijk =
1
h2
α

δ2
αuijk (4)

where hα is the grid spacing in directionα and δ2
α is the 2nd-order difference operator:

δ2
xui,j,k = ui−1,j,k − 2ui,j,k + ui+1,j,k (5)

2.3.1 Stencil Notation

(a) 7-Point stencil (b) 19-Point stencil

(c) 27-Point stencil

Figure 2: Stencil representation of 2nd-, 4th- and 6th-order compact schemes with corresponding
matrix coefficients

For a simple usage of finite differences we introduce the stencil notation which can be a matrix-like
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or a figure representation. In the matrix-like form, the coefficients belonging to the neighbouring
grid points are written in squared brackets where the coefficient in the center is belonging to the
actual grid itself. The figure is self-explanatory and in Fig. 2 the 7-point, 19-point and 27-point
stencils are represented. For example, in 3D an approximation of O(h2) of the Laplacian is given
by:

D
(2)
h u(~x) =

1
h2

[u(~x− h~e1) + u(~x− h~e2) + u(~x− h~e3)− 6u(~x)+ (6)

u(~x+ h~e1) + u(~x+ h~e2) + u(~x+ h~e2)] +O(h2)

where D(2)
h denotes the finite difference operator of 2nd-order.

This can be written in stencil matrix form as:

1
h2

 1

 1
h2

 1
1 −6 1

1

 1
h2

 1

 (7)

and it can be represented as shown in Fig. 2 (a)

2.3.2 Higher order finite difference operators

Higher-order finite difference operators are derived from the expansion

∂2u

∂α2

∣∣∣∣
α=ihα

=
4
h2
α

[sinh−1(
δα
2

)]2

=
1
h2
α

δ2
α{1−

1
12
δ2
α +

1
90
δ4
α −

1
560

δ6
α ± ...}ui,j,k (8)

For example, the 4th-order accurate scheme can be derived from Eq. (8) if we just take into account
the first two terms in the expansion:

(uαα)ijk =
1
h2
α

δ2
α(1− 1

12
δ2
α) (9)

which can be written explicitly for the x - component as:

(uxx)ijk = − 1
h2

1
12

(ui−2,j,k − 16ui−1,j,k + 30ui,j,k − 16ui+1,j,k + ui+2,j,k) (10)

In the end we just want to present the matrix form notation for the 13-point stencil for the 4th-order
scheme:

65



INTEGRATION OF A HIGH ORDER COMPACT SCHEME INTO MULTIGRID

∆i,0,k = − 1
12h2


0 0 1 0 0
0 0 −16 0 0
1 −16 90 −16 1
0 0 −16 0 0
0 0 1 0 0

 (11)

∆i,±1,k =
1

12h2


0 0 0 0 0
0 0 0 0 0
0 0 16 0 0
0 0 0 0 0
0 0 0 0 0

 ∆i,±1,k =
1

12h2


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 (12)

Increasing the order of the finite difference schemes implies the inclusion of neighbor grid points of
increasing extent. For example, in the case of the previous 4th-order scheme one has to operate on
the next-nearest gridpoint in the solver. This approach can give rise to a problem especially at those
points close to the boundary. In this case it is of considerable interest to construct compact higher-order
schemes, which need less informaton from neighbor grid points in space than those schemes derived
from Eq. (8). In the ideal case compact schemes only need information from the next nearest grid
points. Next, the fourth and 6th-order compact schemes are introduced for which the derivation can be
found in Ref. [4].

2.4 HOC formulation

High order compact (HOC) solvers for the Poisson equation are based in essence on the finite differ-
ence approximation, Eq. (5), to the 2nd-order differential operator. By applying 2nd-order differential
operators to both sides of the Poisson equation, introducing the finite difference operators and rear-
ranging terms in the equation, it is possible to come up with schemes which are local on the left-hand
side of the finite difference Poisson equation, Eq. (3). As mentioned before, compactness means that
the operators only need information from their neighbor grid points. The construction of the HOC
schemes leads on the one hand to schemes of larger locality, on the other hand the number of neces-
sary neighbor grid points is increased, i.e. not only grid points in the cartesian directions are consid-
ered but also in diagonal directions from the central mesh point, thereby increasing the computational
work. However, strong advantages of these schemes are (i) data locality which is essential for optimal
use of cache and (ii) the remaining error in the approximation to the differential operator has larger
isotropy.

In the following the formulation for the 4th- and 6th-order HOC schemes, as proposed in Ref. [4], is
summarized.
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2.4.1 4th order compact scheme

A 4th-order scheme is given by

[∂2
x1

+ ∂2
x2

+ ∂2
x3

+
h2

6
(∂2
x1
∂2
x2

+ ∂2
x1
∂2
x3

+ ∂2
x2
∂2
x3

)]ui,j,k (13)

= fi,j,k +
h2

12
[
δ2
x1

+ δ2
x2

+ δ2
x3

]
fi,j,k +O(h4)

which corresponds to a 19-point stencil encompassing all the nodes of the mesh located on the three
grid planes that intersect node ijk, but not the corner points of the surrounding cube. The stencil and
matrix coefficients are illustrated in Fig. 2(b)

2.4.2 6th-order compact scheme

The O(h6) compact approximation is given by

[∂2
x1

+ ∂2
x2

+ ∂2
x3

+
h2

6
(∂2
x1
∂2
x2

+ ∂2
x1
∂2
x3

+ ∂2
x2
∂2
x3

) +
h4

30
∂2
x1
∂2
x2
∂2
x3

]Φi,j,k = (14)

fi,j,k +
h2

12
∇2fi,j,k +

h4

360
∇4fi,j,k +

h4

90
[
∂4f

∂x2
1∂x

2
2

+
∂4f

∂x2
2∂x

2
3

+
∂4f

∂x2
1∂x

2
3

] +O(h6)

where ∇4 is the biharmonic operator. The resulting stencil involves all 27 grid points including the 8
corner nodes as can be seen in Fig. 2(c). One should note that in the case of the 6th-order compact
scheme the analytical derivatives of the source term are used.

In Ref. [4] the mixed 4th-order derivatives were derived with a prefactor of 1/180 while our calcula-
tions revealed a coefficient of 1/90, cmp. Eq. (15). In this work both factors were investigated for the
case of eigenfunctions of Laplace operator and the result proves that the correct factor is indeed 1/90.
The equation with the factor 1/180 will be referred further as 6th-order case 1, while the one in which
the 1/90 factor was used will be referred as 6th-order case 2.

2.5 Error analysis

The numerical schemes described before generate a class of linear systems which in the exact form are
described by:

AmΦ = bm +
∞∑
p=m

cphp (15)

where m is the order of accuracy of the approximation scheme, Am is the coefficient matrix, Φ is the
vector of nodal unknowns, cp are the truncation error coefficient vectors and bm is the right-hand-side
vector. From the computational point of view we are just able to solve the equation
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AmΦh = bm (16)

which means that the error satisfies:

e = Φ− Φh =
∞∑
p=m

A−1
m cphp (17)

By dropping the higher-order terms one expect the asymptotic behavior of the error at interior node ijk
to be eijk ≈ O(hm). That means that in a log-log plot of the error at a given node versus hwould be ap-
proximately a straight line with slopemwhen h is sufficiently small.

2.6 Meshed Continuum Method

The idea is to replace the point charges by a charge distribution which is sampled on the mesh, mean-
ing that the values of the charge distribution are not interpolated (translated) to grid points. This
avoids introduction of errors due to interpolation but on the other hand there is an effective dis-
cretization error, which is related to the finite resolution of smoothness properties on a grid. This
is related to a sampling problem, where wavelengths smaller than two grid cells cannot be resolved.
As will be seen later, smoothness of charge distributions on the grid is essential for an accurate so-
lution of Poisson’s equation and therefore a minimum number of grid points under the charge dis-
tribution are required. The derivation of the method can be found in the PhD thesis of Mattias
Bolten [3].

2.6.1 Point symmetric densities described by B-splines

A point symmetric density function ρg defined by

ρg = g(‖x‖2) (18)

is considered with the following properties:

• g:R+
0 → R+

0

• g is sufficiently smooth

•
∫

R3 ρg(x) = 1

• solution Φg of −∆Φg(x) = 1
ε0
ρg(x) is known analytically

• g has limited support, i.e.

g(x) = 0 for x > R (19)
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In Ref. [3] a B-spline function was chosen as a symmetric point density. The B-spline function of
0th-order is the box-function, which can be considered as the composition of two Heavyside func-
tions

B0(x) = θ(x− 1/2)− θ(x+ 1/2) =


1 ,−1

2 ≤ x ≤
1
2

0 otherwise
(20)

Higher order B-spline functions can then be constructed via the convolution properties

Bi+1(x) = 2Bbi/2c(2x) ∗ 2Bdi/2e(2x), for i = 1, 2... (21)

The 4th-order B-spline density is given by:

ρB4(r) =



27 · (81 · r4−54 · r2 ·R2+11 ·R4)
32 ·R7 r ≤ R

3

27 · (−9 · r2+6 · r ·R+R2)(27 · r2−42 · r ·R+17 ·R2)
64 ·π ·R7 r ≤ 2R

3

2187 · (r−R)4

64 ·πR7 r ≤ R

(22)

which produces the potential:

ΦB4(r) =



3645r6+5103r4−3465r2R4+1673R6

560R7 r ≤ R
3

(32805r7−102060r6R+107163r5R2−28350r4R3−16065r3R4+9933rR6+10R7)
3360rR7 r ≤ 2R

3

−3645r7−20412r6R+45927r5R2−51030r4R3+25515r3R4−5103rR6+338R7

1120rR7 r ≤ R

(23)

3 Results

The 6th-order compact scheme was implemented into the Fortran version of the existing code PP3MG.
A comparison between the 2nd-, 4th- and 6th-order schemes was performed. The implementation was
tested for the two cases: (i) an eigenfunction of the Laplace operator and (ii) the 4th-order B-spline
point density. The error norm for grid spacings h = {1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512}
was computed for the three given schemes. For the analysis the following error norm was used

E =

√∑
(uijk − u′ijk)2√∑

(u′ijk)
2

(24)

where u′ijk is the known analytical solution of the potential.
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3.1 Eigenfunctions of the Laplace Operator

The first test case was implemented for solving the Poisson equation with the source term distribution
being an eigenfunction of the laplacian with periodic boundary conditions:

fi,j,k = 12π sin(2πihx) sin(2πjhy) sin(2πkhz) (25)

for which the analytical solution is given by:

ui,j,k = sin(2πihx) sin(2πjhy) sin(2πkhz) (26)
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Figure 3: Convergence plot for an eigenfunction of Laplace operator

The result is shown in Fig. 3. As expected, the log-log-plot of the error versus the grid spacing shows
the correct behaviour described by the theory. The slope of the functions are 2.00, 4.01, 3.99 and 6.00
for the 2nd-order, 4th-order, 6th-order case 1 and respectively 6th-order case 2. This result proves that
in Ref. [4] the factor of 1/180 should be replaced by 1/90 and furthermore, that the implementation of
6th-order compact scheme is correct.

3.2 Charges described by 4th-order B-spline
density

For the 6th-order compact scheme the 2nd-order, 4th-order and the mixed 4th-order derivatives of the
source term must be computed analytically; in this work the calculations were done using Mathemat-
ica.

Three cases were tested for the given source term which are different by the number of neighbours taken
into account for the width of the charge distribution. The test cases are presented in Table 1.

Fig. 3.2 shows the behaviour of the relative error of Madelungs’s constant versus grid spacing h for the
three before mentioned compact schemes in all three test cases described in Table 1. The behaviour
of the error in the case of the new implemented 6th-order HOC, which is in all three cases lower than
the 4th-order scheme, suggests that a 4th-order B-spline function is not smooth enough after applying
the 4th-order differential operators. This is understandable from the fact that the B-spline functions are

70



3 Results

Table 1: Test cases

h test 1 test 2 test3
[Neighbours]

1/8 - 2 4
1/16 2 4 8
1/32 4 8 16
1/64 8 16 32
1/128 16 32 64
1/256 32 64 128
1/512 64 128 256
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Figure 4: Convergence plot for the 4th-order B-spline symmetric point density

piecewise polynomial functions of 4th-order, where the pieces are defined in intervals, cmp. Eq. (22).
Since a 4th-derivative is applied, different constant values in each partial interval appear on the right-
hand side of the Poisson equation, thereby introducing step functions, i.e. non-smooth behavior and
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therefore destroys the prescribed order of the solution. This observation leads to the strong request of
using B-splines of order ≥ 6 for the 6th-order compact solver.

4 Conclusions and Outlook

In the present work, the implementation of a 6th-order compact scheme in the PP3MG code was accom-
plished. Test runs were performed for the solution of eigenfunctions of the Laplace operator and for a
4th-order B-spline charge density. The results suggest that the 4th-order B-spline is not a sufficiently
smooth function for the operators of the 6th-order compact scheme. Furthermore the results obtained
on the eigenfunctions for which the analytical solution is known demonstrate that the given task of an
implementation of the 6th-order HOC into the existing code was successfully fulfilled. Further work
should concentrate on the following objectives:

• implementation of higher order B-spline functions for the charge density

• performance gain by combining different HOC schemes hierarchically

• implementation of different 6th-order compact schemes [6]

• parallel performance measurements
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Abstract:
The open source protein folding and aggregation software ProFASi implements a physics based ap-
proach for studying protein folding and thermodynamics using Monte Carlo simulations. In this
report, the main ideas of this approach are outlined, along with a qualitative presentation of vari-
ous terms of ProFASi’s force field, and a newly developed method for simulations with constraints.
Simulation results for a simple helical peptide, a 73 residue 3-helix bundle protein and a 76 residue
α/β protein will be presented and compared.

1 Introduction

Proteins are biological macromolecules. They perform a range of vital functions for the living cell
such as catalysing biochemical reactions, regulating gene expressions or mediating cell signals. Their
covalent structure is based on a chain of amino acids. Each protein is uniquely defined by its amino
acid sequence, but proteins are more complex than random chains of amino acids. They exhibit the in-
teresting property of folding into well-defined 3d-strutures called their native structures. Each instance
of a protein molecule with a certain amino acid sequence folds to the same 3d-structure in the protein’s
natural environment.

While discussing proteins and their structures, the terms "primary structure", "secondary structure",
etc. are often used. The primary structure is just the sequence of amino acids. "Secondary struc-
ture" refers to a set of universal structural motifs which occur as parts of the structure of most pro-
teins. They are defined by specific arrangements of hydrogen bonds, and the appearance of two
important secondary structure elements, the α-helices and β-sheets is illustrated in Fig. 1a and 1b
respectively.

Even if one assumes that an amino acid has only 10 alternative conformations, a small protein chain of
20-30 amino acids would have an astronomical number of possible structures. In 1969, the biologist
Levinthal calculated the time it would take a protein to fold if protein folding were a trial and error
process. It turned out that this kind of folding would take 1087s for a 100 residue protein, whereas,
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(a) α-helix (b) β-strand

Figure 1: Secondary structure elements

the age of the universe is estimated to be about 1017s. This gargantuan mismatch is named Levinthals
paradox and led to the insight that a random conformational search does not occur. In nature proteins
fold in timescales ranging from a few µs to seconds.

There are different reasons why the understanding of protein folding is an important research area.
First of all, it is known that the folded shape of a protein is closely related to its function. Hence, a mis-
folded protein can not fulfill its primary function. Misfolding and aggregation of proteins is currently
thought to be related to a number neurodegenerative diseases such as Alzheimer disease, Parkinson
disease and bovine spongiform encephalopathy. Besides the scientific interest in understanding the
phenomenon of protein folding, there is an economic interest, since treatment of these diseases has
become a major economic burden of our times.

2 Simulation of Protein Folding

One key concept for the computer simulations of protein folding is that for proteins which fold re-
versibly, the folding process can be modelled as a thermodynamic process at the relevant temperatures.
As the most probable state of such a system at a given temperature is the minimum of free energy, the
folded structure is associated with this state at the relevant temperatures.

The first step in the usual strategy for physics based computer simulations of proteins is to formulate a
model for the proteins and their interactions with an appropriate amount of detail for the intended do-
main of applications. For instance, to understand protein folding, the interaction between protein and
its surrounding water environment is important, but the dynamics of quarks and gluons constituting the
protons and neutrons inside the atoms is not. The properties of the system are then studied using Molec-
ular Dynamics or Monte Carlo simulations – a choice which again depends on the question at hand. In
this study, a protein interaction model called the "Lund force field" was used, along with Monte Carlo
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simulations. The Lund force field is known to be well suited for study of large scale conformational
transitions in proteins, such as folding and aggregation.

2.1 Formulation of the Interaction Potential

The interaction potential should provide a good approximation for all physical effects which might be
relevant for the folding process. The Lund force field is formulated as a sum of four main terms: the ex-
cluded volume term, the hydrophobicity term, the hydrogen bond term and electrostatic interactions. In
the following, we present a brief qualitative overview of these terms.

2.1.1 Excluded Volume Term

The excluded volume term ensures that atoms do not overlap spatially. This is usually modelled with
the van der Waals interaction between the atoms. But in the Lund force field, a purely repulsive term is
used. Chain collapse and structure formation are driven by other terms.

2.1.2 Hydrophobicity Term

The hydrophobic effect is a phenomenon familiar from everyday experiences. For instance, when a
drop of oil is placed in water, instead of mixing with water, the oil stays segregated in a form minimis-
ing contact with water. Certain amino acids exhibit this sort of "fear" of water, and prefer arrangements
where they are not exposed to water. The hydrophobicity term of Lund force field models this effect,
and is the main contribution to the collapsing of the protein chain and the minimisation of its surface.

Introducing a non-polar material in water, reduces the number of hydrogen bonds. This leads to a
reduction of available configurations of water molecules. The system is more ordered at the inter-
face. The resulting decrease of entropy means an increase of the free energy. In effect, if the intro-
duced molecule has hydrophobic (non-polar) atoms, it tries to hide its hydrophobic parts from water
molecules, so that it can lower the reduction of configurations and avoid an high increase of free energy.
Therefore, introducing a molecule with non-polar atoms in water results in a more compact shape of
the molecule.
The main feature of the hydrophobicity is reducing the contact area between water and hydrophobic
atoms. There are different ways to model this effect without introducing water molecules: A very
costly way to get the hydrophobicty is to calculate the effective surface in contact with water. This can
be done by rolling a water molecule, approximated as a sphere, over the whole molecule. It is also
assumed that the atoms of the molecule have a spherical shape. Each atom is assigned to a certain
value which indicates its magnitude of hydrophobicity. The effective contact area is proportional to the
hydrophobic energy term. But, this is a very expensive way with rough assumptions and computation-
ally more economic methods are desirable.

Another method for modelling the hydrophobicity term is done by giving each amino acid a certain
value proportional to its hydrophobic strength. These values can be derived by comparison with ex-
perimental data. The hydrophobicity term in the Lund force field is a pairwise additive approximation
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which is computationally very efficient and has been shown to work well for small proteins. The hy-
drophobicity term is negative, respecting that the energy of the protein is lowed when hydrophobic
parts are hidden.

2.1.3 Hydrogen Bond Term

Hydrogen bonds are a result of electrostatic interaction between a hydrogen atom bound to an elec-
tronegative atom and another electronegative atom. In the Lund force field, it is modelled as an inter-
action between two electric dipoles, one of which contains a hydrogen. The dipole with the hydrogen
atom is called the donor and the other dipole is called the acceptor. The current version of the Lund
force field only models hydrogen bonds between NH and CO dipoles.

The distance dependence of the hydrogen bond term is modelled with a 12-10 Lennard-Jones term
in the distance between the hydrogen and the negatively charged atom of the acceptor. The low-
est energy state of a dipole-dipole system corresponds to the conformation where the dipoles are
aligned. For taking the orientation dependence into account, a factor (cosα cosβ)2 is multiplied with
the Lennard-Jones potential. The angles α and β are the N–H–O and the H–O–C angles respec-
tively.

2.2 Metropolis Monte Carlo Method

The interaction potential determines the so called "energy landscape" for a given protein. The di-
mension of this energy landscape is the number of degrees of freedom in the system. The aver-
age properties of the system for the interaction potential can be calculated if one generates a large
number of states such that the probability of occurrence of a state in the sample is related in a sim-
ple way to its correct thermodynamic probability. For this purpose, we have used methods based
on the classic Metropolis Monte Carlo method. The algorithm is composed of the following simple
steps:

1. Algorithm starts off with an initial conformation, associated with energy Eold

2. One degree of freedom is changed randomly and a new conformation is created with energy
Enew

3. Calculate ∆E = Eold − Enew

4. New state is accepted with a probability of min
(

1, e−
∆E
kT

)
• If the new state is accepted, set Eold = Enew

• If the new state is rejected, reverse Enew

5. Continue with step 2

For an infinite number of steps the global minimum will be found.
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2.3 Parallel Tempering

As the acceptance probability contains the temperature as an argument, the temperature is related to
the size of steps which can be made while exploring the energy landscape. This would not cause
problems if the the energy landscape were smooth. However, as the energy landscape of biological
macromolecules like proteins is very rough, the global minimum cannot be found in a acceptably small
number of steps.
The problem is that a low temperature implies a small step size, hence it can happen that system gets
trapped in a local minimum. If a higher temperature is chosen to make big steps within in the energy
landscape, it is very likely that the simulation leaps over interesting minima.
The parallel tempering is one of the popular modern methods to improve sampling on rough energy
landscapes. Its main idea is to have N replica of the target protein and start independent MC runs for
each replica at different temperatures Ti. After a predefined number of iterations the conformation of a
pair of different of adjacent runs is exchanged with the following probability:

p = e∆β∆E (1)

This ensures that the system remains in equilibrium. In effect, each conformation performs a ran-
dom walk in the temperature space and the number of conformations at each temperature remains
fixed.

3 ProFASi

ProFASi [1] stands for Protein Folding and Aggregation Simulator and is an open source C++ package
for Monte Carlo simulations. Originally, it was developed for small peptides of 20-30 residues. But
it has been shown that the latest version of ProFASi’s force field described the folding and thermo-
dynamic properties of 20 proteins of sizes between 10-67 residues with different secondary structure
elements [2].
It uses an intermediate resolution model: all atoms of the protein are explicitly represented, bond
lengths and bond angles are kept fixed. The solvent is represented by an implicit water interaction
potential.
ProFASi uses different kinds of tricks for improving the performance. For instance, the cut-off and cell
list method are used for the calculation of the most expensive of the energy terms. Another distinguish-
ing feature is that at each MC step, only the energy of the changed parts is calculated. This is allowed,
because MC simulation needs only the energy difference between two states.

4 Results

My task during the Guest Student Programmme was to test ProFASi with proteins of different lengths
in order to find out how the existing force field can be improved. The superior aim is to formulate a
force field that is able to simulate folding of more proteins. All simulations ran on JUROPA at JSC. The
proteins that were chosen for testing consist of 29 to 76 residues and have α-helices as well as β-sheets.
For finding them and getting data of their native conformation, the protein data bank www.rcsb.org was
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used.
Analysing protein folding simulations needs a measure of how close a simulated structure and exper-
imentally measured reference structure are. A commonly used measure for comparing two struc-
tures is the minimised root-mean-square-deviation (RMSD) over all translations (T) and all rota-
tions (R)

RMSD = min
{T},{R}


√√√√ 1
N

N∑
i=1

|~ri − ~r refi |
2

 (2)

The parameter ri stands for the coordinates of the ith atom and ~r refi is the position of the ith atom in
the reference structure.

4.1 1GCN

The protein 1GCN consists of 29 residues, 471 atoms and has 135 degrees of freedom. Its simulation
used parallel tempering with 16 temperatures in a range of 270 to 370 Kelvin. The simulation ran on
16 processors for two days and performed 10.000.000 MC sweeps. One MC sweep consists of as many
elementary MC steps as there are degrees of freedom in the system.

As it can be seen in Figure 2a, 1GCN has one α-helix. The plot in Figure 2b shows the population
during the simulation dependent on energy and temperature: There are two distinct peaks observable.
One at a lower energy of 20 kcal/mol and a second one at higher energy of 73 kcal/mol. Therefore, it
can be said that the protein occupies two different states during the simulation. This indicates that the
protein has undergone a transition from a high to a low energy state.
None of the replica got stuck in a low energy state. As example for this, for one replica the energy is
plotted for up to 2.000.000 MC sweeps in Figure 2c. The plot in Figure 2d shows a peak in the heat
capacity which indicates a transition.
It can be seen that most of simulated structures have an RMSD in the range of 9-12 Å (Fig. 2e). At the
lowest temperature, the native population was around 23 %.

4.2 2A3D

The protein 2A3D (Fig. 3a) is a designed 3-helix bundle protein, consisting of 73 residues. It contains
1140 atoms and has 333 degrees of freedom. Its folding has been simulated with 32 different temper-
atures between 273 to 373 Kelvin, using 1024 processors. The simulation ran one day and performed
1.300.00 MC sweeps.
As it is shown in figure 3b, there were broadly two energy states seen in the simulation. By looking
at the plot in figure 3c, one can observe that there is maximum of folded structures at a low RMSD
of 4 Å. Thus, most of the replica have folded into the correct structure. A better understanding of the
folding process can be gained by analysing the helix content plot in figure 3d: It is significant that the
central helix is less stable than the other two helices. Moreover, there is evidence that the C-terminal
helix folds at lower temperatures, compared to the other two.
The lowest energy structure has a RMSD of 3.7 Å, this can be noted as a good result for a protein of
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(a) 1GCN: Native structure (b) 1GCN: The energy as a function of temperature, grey
scale coded with population

(c) 1GCN: Run time history of energy for one replica (d) 1GCN: Specific heat as a function of temperature

(e) 1GCN: Run time history of RMSD

Figure 2: 1GCN
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(a) 2A3D: Overlap of native (grey) and simulated struc-
ture (coloured)

(b) 2A3D: The energy as a function of time, grey scale
coded with population

(c) 2A3D: RMSD as a function of temperature, grey scale
coded with population

(d) 2A3D: Helix content for each residue in per cent coded
by grey scale, dependent on temperature

Figure 3: 2A3D
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this size. Since, the lowest energy structure is very similar to the experimental native state, it is shown
that the force field worked very well for this protein.

4.3 1UBQ

The protein ubiquitin, 1UBQ, is a natural protein of 76 residues. It has 1231 atoms and 368 degrees of
freedom. As secondary structure elements, it has both helices and β-strands. The two N-terminal β-
strands form a hairpin. Replica-exchange Monte Carlo simulations of ubiquitin were performed using
32 temperatures ranging from 273 to 400 Kelvin on 64 processors running for one day. Each generated
trajectory had 1.679.000 MC sweeps.
In figure 4b, it can clearly be seen that the proteins have folded during the simulation. However, look-
ing the RMSD-temperature plot in figure 4b shows that at low temperatures only large RMSD values
were populated. Besides, analysing individual runs revealed that, so far, none of the replica folded into
the correct structure. Comparing the low energy structure 4c with the native structure indicates that the
protein has folded an α-helix at the C-terminus, instead of a β-strand.
A comparison between the helix content plot (Fig. 4d) and the β-strand content plot (Fig. 4e) shows
that the α-helix is more stable then the hairpin at lower temperatures.
It is possible to understand the observed misfolded structures from an energetic point of view. The sim-
ulation suggests that the hairpin and the α-helix being thermodynamically more stable are more likely
to form first, followed by the sequence adjacent β-strand. Due to development of hydrogen bonds,
the β-strands are attached to each other. Therefore, the C-terminus does not have a place to arrange
between them. In this case, it is energetically favourable to fold into an α-helix.

Clearly, in nature ubiquitin avoids such an event. It seems that the order of formation of secondary
structure elements must be different. A possible hypothesis is that the blocking β-strand is hidden
until the C-terminus β-strand has formed and is attached to the hairpin. This could happen if a long
α-helix is formed at the C-terminus including the residues of the third strand. The next step would be
breaking the end part of the α-helix, so that it folds into the missed β-strand. When it gets attached to
the hairpin, the rest of the α-helix can rearrange into the remaining β-strand. Precisely, this sequence
of events was observed in an earlier simulation with the same model [PNAS, 105(23) 8004, 2008]. In
that article the authors proposed temporary caching of β-strands in adjoining helices as a mechanism
involved in the formation of complex β-strand arrangements.

4.4 Simulation with Constraints

In the case that some features of the molecule are already known, this previous knowledge can be used
as constraints. This is useful for making the simulation more efficient and save computing time. An-
other situation where constraints can be used is given if the simulation did not find the native structure.
Then, using constraints on some angles can help find out what went wrong in the simulation. At best,
this may give hints about possible improvements of the force field. There are different ways to use
constraints: Dihedral and distance constraints.
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(a) 1UBQ: Native structure (b) 1UBQ: RMSD as a function of temperature, grey scale
coded with population

(c) 1UBQ: Lowest energy structure obtained by simula-
tion

(d) 1UBQ: Helix content for each residue in per cent
coded by grey scale, dependent on temperature

(e) 1UBQ: Beta strand content for each residue in per cent
coded by grey scale, dependent on temperature

Figure 4: 1UBQ
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4.4.1 Dihedral Constraints

Dihedral constraints restrict one or more dihedral angles to desired ranges. This can be achieved in two
ways in ProFASi: by using an interaction distribution or by choosing angles directly from a modified
potential. The second method is faster and is preferred for such constraints. One possible distribution
is the Von Mises distribution, it is a circular normal distribution:

P (Φ) =
κ cos (Φ− ΦC)

2πI0(κ)
(3)

The Von Mises distribution is the circular analogue to the gaussian distribution. ΦC is analogue to
the mean value µ and 1/(κ) is the analogue to the variance. If κ is zero the distribution is uniform.
If κ is large the distribution becomes very concentrated around the angle ΦC . By choosing the value
for κ the strictness of the applied constraints can be adjusted. The I0(κ) is the Bessel function of
order 0.

Additionally, it is possible to give the degrees of freedom weights, in the sense that the ones with a
higher weight are changed more often.

4.4.2 Distance Constraints

Distance restraints are used to favour predefined separations between a set of atom pairs. In the case that
the secondary structure elements are well formed, but the tertiary structure is incorrect, it can be helpful
to set distance constraints. This can be done by adding an additional term to the interaction potential
that has its minimum at the favoured distance. If this trick helps to find the correct conformation of the
protein, it hints at possible improvements of the interaction potential.

4.4.3 Testing Different Constraints for the Simulation of
1UBQ

To see if our hypothesis might lead to the folding of ubiquitin, despite limitations of our model, we
experimented with simulations with constraints. There are different approaches to guide 1UBQ into
its native structure by using constraints. The part of the protein that works well does not need to be
simulated again. So, it is reasonable to set constraints on this part, so that more computing time is spent
in the difficult part of the protein. For this protein, the hairpin and the long α-helix are restrained. The
constraints on the turns are less strict than the ones on secondary structure elements.
In a second approach, two kinds of temperature dependent constraints are tested for 1UBQ: One option
is to set temperature dependent constraints, so that with increasing temperature the strictness of the
constraints decreases. The other option is to set stronger constraints at the transition temperature. The
aim of these approaches is to find the minimum set of constraints which are sufficient for getting the
protein folded. That could help to test the reliability of our hypothesis as well as giving us a clue to an
improved force field. When using constraints, one has to keep in mind that constraints make it more
difficult for the simulation to escape from a local minimum. This behaviour must be compensated by
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increasing the maximum temperature.

(a) 1UBQ: Variance of energy as a function of temperature (b) 1UBQ: Variance of RMSD as a function of temperature

Figure 5: 1UBQ

All the constraints simulations used the same settings as the unconstrained one and each ran for one
day. The comparison between the different runs has been made by plotting the variance of RMSD as
well as the variance of energy as a function of temperature (Fig. 5b, Fig. 5a). The resulting plots led to
the insight that the different constraints guide the folding process into the same direction. Regarding
the variance in energy it can be seen that the constraints suppress the variance in the transition region.
It appears that in our simulations, constraints inhibit rather than help correct folding of ubiquitin.
Applying constraints on all secondary structure elements makes it difficult for β-strands to arrange
themselves in a native like fashion. It is possible that the conformation change of the residues of a β-
strand to the corresponding region of the Ramachandran plot proceeds concomitantly with formation of
β-sheet hydrogen bonds. Our hitherto inconclusive results speak against the use of dihedral restraints
on β-strands.

5 Conclusion

We got excellent results for the folding of the 73 residue designed 3-helix bundle protein, 2A3D, mak-
ing it the largest protein folded with this model. The protein folds to the correct native state at phys-
iologically relevant temperatures with almost 100 % native population below 300 Kelvin. Whereas,
for the smaller 1GCN peptide, the native population was around 20 per cent at 280 Kelvin. Nat-
ural proteins, like ubiquitin, constitute a much greater challenge. In order to test what it would
take for a molecule like 1UBQ to fold, we tested a newly developed method to do simulations with
temperature dependent constraints. Comparing the different constraints methods revealed no signif-
icant differences among them for ubiquitin. This result speaks against the use of such constraints
in simulations intended for structure prediction, especially if complex β-sheets may be present. It
also supports the idea that perhaps complex β-sheets can not form by assembling pre-formed β-
strands.
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Abstract:
Towards a parallel simulation of water transport in coupled soil-root systems, we analyze several
strategies for soil domain distributions aligned to root geometries. Our results tentatively point out
potential for a well-scaling simulation, when combined with adaptive mesh refinement and mul-
tithreaded root simulation. We recognize technical and conceptual questions that might emerge
along this direction. For our investigations we enhanced the MPI-program parSWMS by a basic
root model.

1 Introduction

Within the eukaryotic domain, plantae are a regnum of great diversity. Although they are ubiquitous
and of tremendous importance for ecosystems and human culture, there are still many fundamental
questions which are left to investigate.

One particular biological process common to most plants and outstandingly vital for their biology is
the interaction of the plant organism with the soil. This takes place at the roots, and the uptake of water
is the most important process there. Understanding it is a matter of ongoing research and also has
numerous industrial applications, e.g. to develop more efficient ways of watering agricultural fields, or
avoid unnecessary contamination by pesticides.

While mathematical models within biology and agricultural sciences have matured during the recent
decades, the extensive employment of computer simulations has been introduced to those areas of re-
search. At the Research Center Jülich, a cooperation between the Jülich Supercomputing Center (JSC)
and the Institute of Chemistry and Dynamics of the Geosphere IV (ICG IV) exists, where researchers
combine experiments, modeling and simulation, to deepen the knowledge of this fundamental aspect
of plant biology.
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2 Numerical models

The process of root water uptake encompasses several coupled dynamics from physics and biol-
ogy. Because plant roots reside within the soil, the water transport there has to be understood suf-
ficiently well. The water transport within the root network is treated separately from the soil sys-
tem.

The following explanation outlines mathematical and numerical models of both the soil system and the
root system, and shows how these are coupled on a numerical level. These models can be extended to
model several further physical processes – e.g., the transport of solute (like nutrites) within the water.
As much as it is important in order to understand the plant biology, its influence on the water dynamics
can be neglected in numerical simulations.1

2.1 Water transport within soil

The water content throughout the soil domain is denoted by θ, and is in bijective relation to the pressure
head, h. The model of Van Genuchten [5] states their relationship as

θ(h) = θa + (θm − θa)(1 + |αh|)−m. (1)

Here, θa, θm, α, andm denote parameters. The water transport within the soil domain is then described
by the Richards equation [8]

∂tθ = ∇(K(h)∇h). (2)

The term K represents the conductivity tensor and is defined via

K(h) = KS(1 + |αh|)−ml(1 + (1− (1 + |αh|)
mn
n−1 )

n−1
n )2, (3)

where KS , n and l denote further material parameters.2 We introduce the uptake by an additional sink
term S. The extended Richards equation reads

∂tθ = ∇(K(h)∇h) + S(h). (4)

The sink term S is basically a reaction term, and is of the form

S(h) = α(h)βR. (5)

Here, R denotes the flux at the root collar. α(h) ∈ [0, 1] denotes a water stress response function [2] -
it describes how much of its uptake capacity a root segment is able to employ, and we will inspect its
form closer below. β ∈ [0, 1] describes to how much a segment can contribute to the over-all uptake,
and, in fact, corresponds to the fraction of the segments lengths to the summed length of the whole
network.

1Our overview follows [17], [2] and [10].
2For porous medium equations in a more general setting, see [9]
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LetP0, P1, P2 andP3 be material parameters. The termα is then described [6] by

α =


h−P3
P2−P3

for h ∈ [P3, P2]

1 for h ∈ [P2, P1]
h−P0
P1−P0

for h ∈ [P1, P0]

0 otherwise.

(6)

2.2 Numerical solutions for soil water transport

The numerical solution method, as implemented both in R-SWMS as in parSWMS (see below), is a
modified Finite Element approach [12]. The soil domain, in case of a rectangular box, is parted into
cuboids – each of these is then, in a second step, parted into tetrahedrons.3 4 We employ a Finite
Element Scheme on this domain, with a spatially discretized version of the relevant functions. A
backward Euler Scheme is used to perform time steps.

If we deviate from the ordinary FEM-approach slightly, we can handle the non-linearity of the Richards
equation and obtain a stable numerical method.

First, the chosen numerical method utilizes a Picard iterative scheme [10]. At each iteration step, the
coefficients of the equation are evaluated with the water content of the previous iteration (for the first it-
eration, this is extrapolated from previous time steps), and then the equation is solved. This iterates until
a good solution is found, and a time step can finally be performed.5

Second, the method implements modification by Celia et al. [10]. This is the reason why the left-hand
side of (1) is expressed in terms of θ.6

2.3 Water transport within roots

Doussan et. al. have developed a model for water transport within root networks [1]. The root segments
are modelled by 1-dimensional line segments, whose widths are material parameters. This makes sense,
as we expect radial homogeneity for the flow dynamics.

Let ψx be the water potential within the roots, and ψs be the soil water potential along the roots.
With z being the vertical coordinate, the time evolution of the water potential within the setting is
reduced to the description of the flux within the roots, Jh, and the radial flux between root and soil,
Jr:

Jh(z) = −Kh∂zψx, (7)

Jr(z) = Lr(ψs − ψr). (8)

3The chosen root water uptake model requires the initial partition into rectangular boxes.
4R-SWMS and parSWMS part the cubes according to slightly different schemes. Furthermore they are able to handle more

general geometries than simulation boxes. For these, an uptake model has yet to be developed and implemented.
5Consult the conclusions for a development perspective to replace the Picard-Iteration by a better scheme.
6For further details, we refer to the SWMS_3D-Manual.
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In (7), Kh is the axial conductance of the in-xylem flow, and Lr forms the radial conductivity in
(8).

2.4 Numerical solutions for root water transport

For the numerical simulation, we employ a discretized version of the root network and the surrounding
soil. Doussan et al. model the network as a combinatorial graph with a tree structure. Each root node
is furthermore hydrodynamically coupled with the soil node that represents the soil portion it is located
in. We describe it here, since our investigations have been directed towards this mid-term goal. Its
parallel implementation has been out of this works scope.

The time evolution is given in terms of a set of difference equations, with Jh, Jr, Kh, Lr and ψx
replaced by functions on this discrete model. The equations read

Jh(z) = −Kh
ψx
4z

, (9)

Jr(z) = Lr(ψs − ψx). (10)

Therewith we can compute the evolution if we solve linear systems of equations, as we now show. Let
Nc be the number of nodes within the tree (s.t. the number of links between the nodes isNc−1). Let the
incidence matrix of the root network be given byN ∈ {−1, 0, 1}Nc(Nc−1),

Nij =


1 if there is a link from i to j

0 if there is no such edge

−1 if there is a link from j to i.

(11)

With ψ ∈ RNc being the water potential vector, we define the difference vector dψ = Nψ ∈ RNc−1.
If D ∈ RNc−1 describes the flux vector (see below), then we obtain (as there is no loss or creation of
water between nodes)

N tD = 0 ∈ RNc . (12)

The vector D itself obeys D = Kdψ, where

Kij =

{
−Kh
∇z for i = j

0 otherwise
. (13)

On the other hand, we see from Jr(z) = Lr(ψs − ψr), with L and Jr being diagonal coefficient
matrices,

Lψx = Jr − Lψs. (14)
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Combining these, we obtain the linear system of equationsCψ = Q, where

C = NKN t + L, (15)

Q = (Jr + Lψz). (16)

For humidity-independent material parameters, it can be solved by any common LSE-solver. For a
performant numerical approximation, it is appropriate to use an algorithm which takes into account
the sparse structure of the matrix. Doussan et al. have employed a preconditioned conjugate gradient
method.

2.5 Coupling of both systems

Whereas the presence of roots in effect causes the sink term S in the Richards equation to be non-zero,
the water content in the soil that surrounds the root segments serves as a numerical source for the
boundary conditions. For simulation experiments, we can employ the full interaction pair, or dismiss
either of them. R-SWMS solves the two system in turn, until a solution with acceptable error is
found [11].

To understand the uptake model, we recall that each node of the root graph is contained within a
geometric cuboid, and interacts numerically with the cuboid’s corner nodes. For this the β-field on the
mesh nodes has to be set appropriately.

For each Cuboid C we are given its volume V ol(C), and we identify it with the set of its corner
nodes. Let R be the set of all root segments, and for each r ∈ R, lr denotes the length of a root
segment, and C(r) the cuboid r is located in. For each mesh node x, let R(x) be set of all root
segments that reside within a cuboid which has x as one of its corners. d(x, r) will denote the geo-
metric distance between mesh node x and root node r. First we define the field β′ on the soil mesh
by

β′x =
∑

r∈R(x)

d(x, r)∑
c∈C(r)

d(c, r)
· lr∑
s∈R(x)

ls
·R. (17)

In order to obtain a β-field whose integral isR again, we finally set β =
β′

S
, where

S =
∑

C Cuboid

V ol(C)
∑
x∈C

β′x. (18)

3 Software developments

We briefly review the software on which the developments have been based, and render the historical
relations between these.

• The SWMS_3D code has been developed by J.Šimůnek, K.Huang and M.Th.van Genuchten in
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1992 [2], written in FORTRAN 77. It simulates water and solute transport within soil geometries.
It provides no root model, but the sink terms may be set to fixed values according to an input file.

• R-SWMS, as written by Prof. Mathieu Javaux et al. at the ICG IV again in 2008, is an enhance-
ment to SWMS_3D, which can simulate complete soil-root systems. It comprises the Doussan
model and implements root growth.

• parSWMS is a development of Dr. Horst Hardelauf e.a. [7] at the ICG IV from 2006. It covers
the same the functionality as SWMS_3D. The programming language changed from FORTRAN
to C++, and it computes in parallel. It has been shown to provide near optimal scaling up to 32
processes.

parSWMS is the program we have mainly worked with. It utilizes two notable libraries. On the one
hand, the parallel numerics are completely shielded by the library PETSc [14]. On the other hand, and
relevant for this project, it uses parMETIS [13], to find an optimal distribution of the elements and
nodes amongst the processes.

4 Extensions of parSWMS

The joint-project at the JSC and ICG IV aims at developing a parallelized simulation of the whole
soil-root network. During the JSC-GSP, the objectives have been to inspect different approaches to-
wards this medium-term goal, and derive conclusions which of these might be suitable. The particular
objectives have been:

1. Implement the datastructures to model the root network in parSWMS.7

2. Implement a root water uptake model.

3. Benchmark the performance of several strategies to influence the soil distribution with respect to
a given root geometry.

4.1 Implementation of the root data structures

Within the Doussan model, the root networks are modeled as directed trees (see Figure 1). Each node
of the tree is assigned several parameters (e.g. position, age, surface) and does reference, if possible,
its parent node (to describe the topology of the root network). As this graph is a tree, we can identify
each node (except the few top nodes) with the edge which points to it, which is the concept underlying
the R-SWMS input files.

R-SWMS distinguishes three kinds of nodes that constitute the root network. These have slightly
different semantics, and are given by different lists in the input files. Since they share many com-
mon properties, they have been implemented in parSWMS by an unified concept. We briefly review
them:

1. seed nodes: The seeds, from which the root segments initially originate. These nodes do not
have parent nodes.

7Each process manages its own complete copy of the root network, because we did not investigate how to parallelize the
root system model.
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2. segment nodes: The mediate segments of the root network. Each has a parent node, and at least
one child node.

3. branching tips nodes: The tips of the root network, where growth takes place. These have no
children.

To obtain the topological description of the root network, it is sufficient to know each node’s parent
node (or whether it is a top node). If we maintain redudant data, we can employ asymptotically better
algorithms, as outlined below. The code has been structured in a way such that it allows easy migration
between these implementations, adapted to the respective models.

Let N ∈ N0 be the number of root nodes.

• Memory-minimalist approach: If each segment refers to its parent segment, the network topology
can be described by the least possible overhead ofN indices. This is easy to implement, but many
operations require complexity quadratic in N , because one typically runs a nested pair of loops.

• index-oriented approach: Each segment refers to its parent. Furthermore, it is an element within
a doubly-linked list which contains the child nodes of its parent. It refers to its predecessor
and successor in that list, and to the first element of its own child list. References may be null,
to indicate absence of the respective root segments. The total overhead is 4N indices. If this
structure is maintained, all common operations can be performed with asymptotically optimal
runtime.

Both these approaches have been implemented. The index-oriented approach is more complex, but a
performance increase has been found in comparison to the memory-minimalist implementation.8

Details on the data structures and routines can be found in the Technical Report, together with a review
of the reasons on which the design decisions were made.

4.2 Implementation of root water uptake

parSWMS can utilize a fixed β-field and calculate the sink terms accordingly. But towards an imple-
mentation of the Doussan model, it is necessary to calculate the β-field in accordance to a given root
geometry.

The algorithm developed is based on the R-SWMS routines and implements the coupled model by
Schröder [3] (see Figure 2). The implementation developed works for regular box-shaped grid ge-
ometries, which suffice for many simulation settings.9 The β-field is assembled and normalized at
each time step.10 Segment parameters other than length have not been relevant for our investiga-
tions.

In case the distance between neighboring soil nodes is markedly shorter than the typical segment length,
as for fine or refined grids, the segments will pass through numerically unaffected intermediate cuboids.

8It seems recommendable to separate the root segment’s material properties from the topological information, and to main-
tain a code structure which allows both these to be changed and developed independently from one-another, maybe even
to be changed dynamically during run-time. This eases migrating from one implementation to the other, if necessary.

9The more general case of arbitrary geometries and triangulations have not been considered. Coupled soil-root models for
these have yet to be developed.

10As long as the root geometry does not change, it is sufficient to perform this operation only once and keep the distribution.
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Figure 1: Matlab-Illustration of a one-plant root network within a simulation box.

This causes the β-field to vanish except for a few isolated grid points. We regard this undesirable. We
have developed a routine that inserts ’auxiliary’ segments into the root network, until its resolution
matches the soil grid’s one.

4.3 Distribution strategies for the soil domain

The main part of our work consisted in (i) implementing the routines that apply different distribution
strategies and (ii) measuring the run-time performance of these strategies. After we reviewed the
strategies that have been considered and recalled their respective motivation, we examine the results of
the benchmarkings.

1. Keep the distribution as it is suggested by parMETIS (henceforth refered to as “normal” or “first”
strategy).

2. Keep the soil elements that numerically interact with root segments on only one process: If
the root system has less degrees of freedom than the soil system, it might be feasible to solve
it on only one process, whereas the communication overhead for the system coupling may be
too high. An OpenMP-based shared-memory parallel framework for the root system has been
implemented for R-SWMS [4] (henceforth “second” strategy).

3. A multiple plant scenario: for each plant, we leave parts of the soil, which is affected by only
one plant’s root system on one single process each. For large fields of plants, this is a reasonable
compromise between the above, as the part of the soil penetrated by multiple roots is relatively
small (heneforth “third” strategy).

The original idea has been to utilize features of the already employed parMETIS library. Having mod-
ified the decisive function calls, the resulting distributions turned not be convincing for our purposes:
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Figure 2: Illustration of the β-field with the sample root network.

Either the weights have not been high enough, to obtain a distribution with desired properties - or, when
the weights had been set higher in order to amplify the effect, the program crashed.

Because of that, another approach has been implemented for the second and third strategy. Being
returned a distribution by parMETIS, we alter the distribution by our own routines. This approach has
been implemented and used during benchmarking, in order to obtain more meaningful results about
the strategies impact (see Figure 3).

The benchmarks have been taken out on JUROPA parallel computer. The tests for each scenario or fea-
ture have been taken with 1 to 4 nodes on JUROPA, which corresponds to 8, 16, 24 and 32 processes.
A one-process run has been evaluated for comparison with serial execution. parSWMS experiences a
performance penalty for more than 32 processes, due to communication overhead.11 The scenario com-
prised an 20cm× 20cm× 40cm box with no boundary conditions, root of age 45d and an homogenous
initial water content of 20%. The simulated period of time has been 365d.

4.4 Comparison of first and second strategy

We expected an effective serialization of the program in case of the second strategy, since for all
number of processes, a non-negligible part of the soil geometry remains managed by only one pro-
cess. We used a 40 × 20 × 40 grid, and the results correspond to the above expectation (see Fig-
ure 4).

We employed a finer grid, with a resolution of 200× 100× 200. We recall that the roots are essentially
one-dimensional, so a finer resolution decreases the volume of the root-affected soil, but increases its
surface (see this as a non-rigorous illustration). This might decrease elements and nodes on the master

11A finer inspection with regards to number of processors has not been done. The evaluation of the measurements would
have been complicated by causes specific to the architecture of JUROPA (see below).
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process, but entail larger communication overhead. Of these two antagonistic possibilities, the first has
been shown to apply in our scenario - despite a performance decrease, the program still scaled well
(see Figure 5).

The time measurements have been disturbed due to a less performant routine at initialization. For
the coarse scenario, more than 80s, and for the fine-resolution scenario, about 1h should be drawn
off.

Figure 3: Depiction of the soil part that is managed by process 0 when using the modified approach
with our sample scenario. Not only can we see that all mesh nodes within the reach of the root are one
process only, but also the remaining parts of the soil, that have been assigned to process 0 in the normal
way, can be seen at the bottom.

N Tn Ta
1 1107 1107
2 437 558
3 332 463
4 242 449
5 204 444

Figure 4: Running-times of normal (Tn, [s]) and aligned (Ta, [s]) strategy of distribution with a coarse
grid scenario, depending on number of JUROPA nodes (N , [-]). Averages of 5 runs each.

4.5 Comparison of first and third strategy

For the case of two plants, we used again a 40× 20× 40 grid. The root system consisted of two offset
copies of the single-root system. We recognized a performance decrease with the third strategy, as
compared to the normal distribution (see Figure 6). The scaling seems to be poor, but we attribute
this to the overhead at initialization. It is visible, as the unnecessary slow-down (see above) has been
removed for these benchmarks.
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N Tn Ta
1 33246 33246
2 21330 22638
3 10636 13123
4 7339 8692
5 5801 7076

Figure 5: Running-times of normal (Tn, [s]) and aligned (Ta, [s]) strategy of distribution with a fine
grid scenario, depending on number of JUROPA nodes (N , [-]). Averages of 5 runs each.

N Tn Ta
1 609 609
2 234 307
3 217 246
4 136 219
5 126 212

Figure 6: Running-times of first (Tn, [s]) and third (Ta, [s]) strategy of distribution on a two-plants
scenario, depending on number of JUROPA nodes (N , [-]). Averages of 5 runs each.

5 Results

We have extended the feature set of parSWMS and obtained results on the performance of different im-
plementations. Though we have to regard these always with respect to parSWMS, they allow for more
general conclusions about possible algorithmic decisions for the modeling of root water uptake. This
condition also holds for our measurements on different distribution strategies.

The root model has been successfully implemented. The code is well-structured and provides rou-
tines for debugging and benchmarking. We suspect, that for larger scale simulations with more root
networks, we have to consider the specific properties of the model and adapt the internal data struc-
tures. The code has been designed to alleviate future changes. The root water uptake according to
root geometries has been implemented successfully and produces results as expected by prior simula-
tions.

Although we must not disregard that our benchmarking results are specific to parSWMS, we can draw
general conclusions on the performance of our distribution strategies, and point out prospective issues
of concern. For the modified distributions, we have observed a measurable slow-down as expected.
The program has been effectively serialized, but for finer geometries the code scaled significantly
better. In case the root affected soil is assigned to one only process, an a-priori refinement around the
root segments might be a promising direction. This approach has already been shown by Schröder to
give accurate results with good performance [3].

Nevertheless, we expect the performance influence of our modified distribution to depend strongly
on the range and concentration of our root network, and this should be inspected further for more
conclusive results. We have found in addition, that the built-in features of parMETIS do not suffice for
our intentions. An effective work-around has been developed, but an elegant and more precise solution
has yet to be found.
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6 Outlook

A promising perspective seems to be using parSWMS with a modified distribution strategy, combined
with a-priori refinement and a multithreaded solver for the root system. The optimal distribution strat-
egy presumably depends on properties of the root network (e.g. range, density) – importance and
impact of these details have yet to be worked out.

The root model of parSWMS is very basic and can be extended easily, e.g. by root growth or solute
uptake. parSWMS’ simulation of soil water transport – its original purpose – can probably be improved
on a basic level by (i) adding a Newton-based solver and use the current routines for preiterating (ii)
add grid redistribution and adaptiveness with respect to work load.

parSWMS does not scale well beyond 32 processors, and its performance strongly depends on the
architecture. It could be worth to inspect these aspects in order to allow for benchmarking results – and
simulations – on larger scales.
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Abstract:
Scalasca is a tool set for performance analysis of parallel applications. To detect errors in Scalasca,
the software is tested as is customary. One of the main steps of the testing procedure is to try to find
errors in Scalasca’s analysis reports. These errors can be of two different kinds. First, the output can
be ill-formed and second, the measurement or analysis data can be wrong. Both kinds of errors can
be detected automatically. We provide tools that analyze Scalasca’s output and report errors. This
report serves as an overview for this set of testing tools and the library these tools are built upon.

1 Introduction

Worldwide efforts at building parallel machines with high performance levels also put a burden on ap-
plication developers that face difficulties in exploiting the full potential of such machines. That is why
the HPC community needs powerful and robust performance-analysis tools that make the optimization
of parallel applications both more effective and more efficient [1].

In order to satisfy their growing demand for computing power, supercomputer applications are re-
quired to harness unprecedented degrees of parallelism. With an exponentially rising number of cores,
the often substantial gap between peak performance and that actually sustained by production codes
is expected to widen even further. However, increased concurrency levels place higher scalability
demands not only on applications but also on parallel programming tools needed for their develop-
ment. Scalasca is a tool set specifically designed for use on large-scale systems. This Section gives an
overview of Scalasca and its analysis reports.

1.1 Scalasca

The current version of Scalasca [1] supports measurement and analysis of the MPI, OpenMP and hybrid
programming constructs most widely used in highly-scalable HPC applications written in C, C++ or
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Fortran on a wide range of HPC platforms. From a high level point of view, Scalasca usage proceeds
through three clearly separated steps.

1. Preparation of an instrumented executable: During this step Scalasca adds code to the executable
to obtain the actual measurement data later on.

2. Measurement collection and analysis: The instrumented executable is run on a computer system
and measurement data is collected. The data is analyzed, either using runtime summarization
or by creating a trace of all relevant events. Independently of the measurement mode, Scalasca
provides one report that contains all the obtained analyses.

3. Analysis report examination: Finally, Scalasca contains a tool to examine the generated analysis
report. It is called CUBE and discussed in Section 1.2.

Our testing tools operate at the same stage as the CUBE report examination tool. Hence, it is crucial
to understand the interface between step 2 and step 3 in order to understand how the testing tools
work. In the subsequent sections 1.2 and 1.3 we explore this interface by considering Scalasca’s report
examination tool CUBE and its file format.

1.2 CUBE

The CUBE GUI [2] is a presentation component suitable for displaying a wide variety of performance
data for parallel programs including MPI and OpenMP applications and allows interactive exploration
of that data. CUBE has been designed around a high-level data model of program behavior called the
CUBE performance space and consists of three dimensions:

• Metric dimension: A set of metrics that describe what was measured, for example execution
time.

• Program dimension: Contains the program’s call tree which includes all call paths onto which
metric values can be mapped.

• System dimension: Contains all system resources allocated and associated program entities exe-
cuting in parallel, i.e. processes and/or threads depending on the programming model.

Measurement data then corresponds to a map

{Metrics} × {Call Tree Nodes} × {System Resources} → R

and is called severity mapping. Each dimension of the performance space can be organized in a hierar-
chy. An example of this hierarchy that is displayed by the CUBE GUI is shown in Figure 1.

The CUBE package not only consists of the report examination GUI but also provides a rich set of
algebra tools [3] that can manipulate reports and also serve as a solid base to build further report
analysis tools on.

1.3 CUBE file format & API

The CUBE data format is an XML instance that is usually stored compressed. The CUBE library
provides an interface to create and read CUBE files. CUBE files basically contain all metadata, i.e. the
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Figure 1: The CUBE GUI displaying all three dimensions of the CUBE measurement space.

information about the metric dimension, the program dimension and the system dimension, as well as
the analysis data.

Each dimension is represented by a number of C++ classes. The relation between the displayed tree in
Figure 1 and the representation within the file and the CUBE library is straight-forward for the metric
and system dimension. Since the testing tool interacts most closely with the program dimension, it will
be discussed in more detail.

The program dimension consists of a data structure that involves two basic entities. First, there is
the Region data structure. A Region corresponds to a single block in the program that has been
instrumented, such as a program routine or parallel loop. A CUBE contains a plain set of Regions
and each of them contains information about the associated instrumented block. Second, there is a call
tree structure, whose nodes are called Cnodes. Each Cnode corresponds to a certain Region in a
specific calling context.

2 Testing tools

Software testing is a common way in software development to detect errors. For Scalasca, we test
whether the whole tool chain behaves as expected, by analyzing the final output, i.e., the analysis
report (in CUBE format). One can distinguish between two kinds of test cases for Scalasca’s analysis
reports.

First, there are a number of tests that can be applied on a single CUBE file in order to look for errors
in the metadata or to perform basic sanity checks on the measurement data. This kind of tests is imple-
mented as part of the cube3_sanity tool that is documented in section 2.3.

Second, a number of tests can be performed on multiple CUBE files in order to compare the measure-
ment data of these files. Almost all test cases that compare two different CUBE files basically act on
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either the set of Regions or the call tree that consists of Cnodes. A command-line tool to specify
Cnode-based tests is provided by the cube3_test tool that is documented in section 2.4.

Furthermore, we provide extensions to the cube3_cut tool that are documented within recent ver-
sions of the CUBE User Guide [2]. We also provide the cube3_info tool which is a command-line
tool to show extracts of multiple CUBE files side by side, which is documented in section 2.2 and the
cube3_canonicalize tool which is a pre-processing tool that helps to compare and potentially
merge CUBE files later on. cube3_canonicalize is documented in section 2.1.

Currently, our testing strategy consists of three steps. First, we run sanity checks on all CUBE files us-
ing cube3_sanity. Then we canonicalize the files and use the cube3_cut tool to remove certain
nodes in a way that it is possible to more readily compare all relevant CUBE files. Finally we use the
cube3_test tool to apply comparative tests on all involved files.

2.1 Canonicalize

Iterates over all regions of a given CUBE file and removes excess information from the region names
and attributes, reducing them to a canonical form, e.g., without parameters or return values, without
trailing underscores, and all in lower case. This tool is usually used as a preprocessing step in order to
apply tools that later on work with multiple CUBE files.

Usage: ./cube3_canonicalize [ flags ] <input>

<input> denotes the name of the CUBE file that is going to be processed. The output CUBE file is
almost the same as the input CUBE file, but the regions within it contain less information. [ flags ]
is any combination of the following flags:

-h, --help Help; Output a brief help message.
-o, --output out.cube Specify the output CUBE file name.
-p, --pdt Remove annotations provided by PDToolkit.
-m, --max-length length Truncate region names to length characters.
-c, --lower-case Convert all function names to lower case.
-f, --remove-file-names Remove all regions’ file names.
-l, --remove-line-numbers Remove all regions’ line numbers.

Let us consider a few examples.

• The function name “int main(int, char **) C” is usually provided by the PDToolkit.
Applying cube3_canonicalize -p produces the function name ‘main”.

• The GNU Fortran compiler stores the name of the entry function as “MAIN__”. By running
the command cube3_canonicalize -c we would end up with “main” which is the same
name that the CCE Fortran compiler provides for the entry function, for example.
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2.2 Info

Prints out specified information extracted from one or more CUBE files. Prints out any number of
metrics or aggregated metrics. It is capable of removing callpaths from the tree according to a given
set of rules in order to show only the most relevant parts of the tree with respect to some aspect. When
callpaths are removed they are replaced with a synthetic callpath which accumulates aggregated metric
values.

An additional visitors metric is derived by counting the number of processes (or threads) that
execute the callpath at least once: callpaths not executed by all processes may indicate conditional
execution or missing/misplaced measurements.

An abbreviated example of the output is below. The width of the columns was reduced and the lines
were cut off after a fixed number of characters (denoted with ellipsis).

user@host% ./cube3_info -m time -r time,0.25 summary.1.cube.gz summary.2.cube.gz
| Time | Time | Diff-Calltree
| 63.2041 | 63.5443 | * main
| 0.5866 | 0.8209 | | * ***** Aggregated 5 siblings (+8 children) within main
| 62.6150 | 62.7221 | | * Jacobi
| 1.2047 | 1.1936 | | | * ***** Aggregated 1 siblings (+0 children) withi...
| 21.9683 | 22.0265 | | | * ExchangeJacobiMpiData
| 0.5090 | 0.5294 | | | | * ***** Aggregated 3 siblings (+0 children) wi...

Usage: ./cube3_info [ options ] <CUBE file>+

<CUBE file>+ denotes an arbitrary number of CUBE files separated by spaces. [ options ] is
any combination of the following options. Each option also has a long name which is listed at the end of
the options description and must be prefixed with two dashes (--) when used.

-h Help; Output a brief help message. (Long name: help)
-w Prints out the visitors metric for each node. (Long name: visitors)
-m metric Prints out the metric described by the string metric next to each call

tree node. (Long name: metric)
-l Prints out a list of all available metrics within the given CUBE files.

(Long name: list)
-b Prints out some basic information about the first CUBE file in the list.

(Long name: basics)
-a metric,thrh Removes all nodes from the call tree whose absolute aggregated values

are below thrh for the metric metric. (Long name: absolute)
-r metric,thrh Removes all nodes from the call tree whose values are below thrh

fraction of the sum of all roots’ values. thrh should be a value between
0 and 1. (Long name: relative)

-x metric,thrh For each node of the call tree we consider all children N of that node.
Let vi be the value for the given metric and the node i ∈ N . Then we
select a maximal subsetM⊆ N with the property∑

i∈M
vi ≤ thrh

∑
i∈N

vi

and remove all nodes fromM. (Long name: cum-sum)
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The metric string contains all the information to map a value to each node of the call tree. For a very
general description of how this string can look like, please refer to Section 3.2. Here, we only cover
the most frequent use-case.

The string metric can have the following form:

uniq_metric_name[:[[INCL | EXCL]:[Process[.Thread]]]]

uniq_metric_name is the name of the metric as reported by the list option. INCL means that
you want to print out the inclusive value and EXCL represents the exclusive value. Finally Process
is the process you want to aggregate this value over. * means that the value is aggregated over all
processors. If Process is a non-* value then Thread may be the Process-local rank of the
thread that the value is printed out for. The square brackets indicate that most parts of the string are
optional.

2.3 Sanity

Runs a set of sanity checks on a single CUBE file. Some of the tests can be switched off and one can
also provide an output file for more detailed error output.

Some of the sanity checks are only run on parts of the call tree other checks were successful on. To rep-
resent these dependencies, the single tests are organized in trees, shown using indentation.

An example of the output is below.

user@host% ./cube3_sanity -nl -o details.log summary.cube.gz
Name not empty or UNKNOWN ... 19 / 19 OK

No ANONYMOUS functions ... 19 / 19 OK
No TRUNCATED functions ... 19 / 19 OK
File name not empty ... 19 / 19 OK
No TRACING outside Init and Finalize ... 19 / 20 OK

One function failed the last test. We can examine the details.log file to find out more.

user@host% cat details.log
...
In call node with id 19 (Name: TRACING)
Call path

TRACING (File: EPIK, Line: -1)
called by BadGuy (File: bad_file.c, Line: -1)
called by Finish (File: main.c, Line: -1)
called by main (File: main.c, Line: -1)
Found TRACING outside MPI_Init and MPI_Finalize.
Parent’s name is BadGuy
...

Usage: ./cube3_sanity [ options ] <CUBE file>

<CUBE file> is the file that sanity checks are applied to and [ options ] is any combination
of the following options. All options also have a long name that is listed at the end of the options
description and must be prefixed with two dashes (--) when used.
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-h Help; Output a brief help message. (Long name: help)
-n Disables the (very time consuming) check for negative

metric values. (Long name: no-negative-values)
-l Disables the check for proper line numbers. (Long name:

no-line-numbers)
-f file.filt Adds an additional test that checks whether a node’s name

is matched by any pattern in the filter file file.filt. (Long
name: filter)

-o output_file Path to the output file. If no output file is given, detailed
output will be suppressed. A summary will always be
printed out to stdout. (Long name: output)

2.4 Test

Compares two or more experiments according to some specified criteria. Prints out a summary of the
outcome of the tests and optionally also prints out more detailed information to a file.

The key idea behind the cube3_test tool is to create new call trees out of the default call tree ALL
that contains the whole call tree, to remove certain nodes from that tree and to apply checks on these
sub-trees.

We provide two examples below. The first example simply checks whether the visitsmetric matches
exactly and if the time metric matches approximately. For a detailed explanation of the comparison
behaviour, see below. The file details.log contains more details about the two cases where the
time metric did not match sufficiently closely. We can find more details in the file details.log
we specified using the -o option.

user@host% ./cube3_test -e visits -s time,REL,0.33 \
-o details.log summary.1.cube.gz summary.2.cube.gz

Equality basic@visits:incl:*.* ... 20 / 20 OK
Similarity basic@time:incl:*.* (relative, 0.33) ... 18 / 20 OK

Let us examine the errors detailed in the details.log file.

user@host% cat details.log
...
In call node with id 1 (Name: Init)

for cnode metric Time (basic@time:incl:*.*)
| Time | Time | Call path
| 0.5193 | 0.7538 | Init (File: main.c, Line: -1)
| 63.2041 | 63.5443 | called by main (File: main.c, Line: -1)
Absolute difference between the file with id 1 and a file with
a lower id is 0.234487 but should be lower than 0.210071.
...

The second example creates the tree time_rel as a copy of the ALL tree and removes all nodes from
that tree where the time metric is below 1 second (aggregated over all processes). Then it runs the
same test as above.
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user@host% ./cube3_test -c time_rel -a time,1,time_rel -s time,REL,0.33 \
summary.1.cube.gz summary.2.cube.gz

Similarity basic@time:incl:*.* (relative, 0.33) ... 4 / 4 OK

We only considered 4 out of the 20 callpaths from the original call tree. In all other functions, we spent
less than 1 second (in each of the experiments). So for all time-consuming call tree nodes the time
metric matches approximately. For this simple case, the creation of an additional working copy was not
necessary and only served the purpose of showing the usage of this option.

Usage: cube3_test [ options ] <CUBE_file> <CUBE_file>+

[ options ] is any combination of the following. The order of the options matters. All options
also have a long name that is listed at the end of the options description and must be prefixed with two
dashes (--) when used.

-h Help; Output a brief help message. (Long name: help)
-c tree1[,tree2] Create a new copy of the tree tree2 that is called tree1.

If tree2 is omitted, tree1 will be a copy of the all
tree. (Long name: create-tree)

-e metric[,tree] Checks whether the metric described by the string
metric is equal for all provided CUBE files and for all
nodes of the tree tree. If tree is omitted, all nodes are
checked. (Long name: equals)

-s metric,type,tol[,tree] Checks whether the metric described by the string
metric is sufficiently similar for all CUBE files, accord-
ing to the qualifiers type and tol. tol specifies the tol-
erance which is given as a real number. The meaning of the
tolerance value depends on the type. type is either ABS
or REL. If type is ABS than the nodes are similar if the
difference between all values for that metric is below tol.
If type is REL than the nodes are similar if the difference
between all values for that metric is below

n∑
i=1

tol
value of metric for cnode of i-th file

n

where n is the number of CUBE files.
If tree is omitted, all nodes are checked. (Long name:
similar)

-a metric,thrh[,tree] Removes all nodes from the tree tree whose values are
below thrh for the metric metric. If tree is omitted,
nodes are removed from the default tree ALL. (Long name:
absolute)

-r metric,thrh[,tree] Removes all nodes from the tree tree whose values are
below thrh percent of the sum of all roots’ values. thrh
is supposed to be a value between 0 and 1. If tree is omit-
ted, nodes are removed from the default tree ALL. (Long
name: relative)
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-x metric,thrh[,tree] For each node of the tree tree we consider all childrenN
of that node. Let vi be the value for the given metric and
the node i ∈ N . Then we select a maximal subsetM⊆ N
with the property ∑

i∈M
vi ≤ thrh

∑
i∈N

vi

and remove all nodes from M. If tree is omitted,
nodes are removed from the default tree ALL. (Long name:
cum-sum)

For information on how the metric string should look like, refer to Sections 2.2 and 3.2.

3 High-level overview of testing library

The testing library uses slightly different classes for reading in CUBE files or managing them. These
classes are shortly discussed in section 3.1. Then it creates one or more working copies of the call tree.
We provide classes that remove certain nodes from these copies and help to select relevant parts of the
call tree with respect to some aspect by using the AbridgeTraversal class which is discussed in
Section 3.3.

Finally, we check whether these parts of the call tree fulfil certain conditions. A short example of such
a constraint is given in section 3.4.

Many tests only check a single value for each call node. Therefore, we provide a number of classes
that map each call tree node onto a real value. These CnodeMetric is shortly discussed in sec-
tion 3.2.

3.1 Reading in one or more CUBE files

The library extends CUBE’s base classes for file input slightly and provides the new classes MdAggrCube
and MultiMdAggrCube that read in one or multiple CUBE files respectively. MdAggrCube is
constructed using its copy constructor, MultiMdAggrCube is constructed by providing a vector of
AggrCube instances. Examples are given in Listing 1 and Listing 2 respectively.

1 i s t r e a m s t r e a m = . . . ; / / An i n p u t s t r e am i n s t a n c e
2 AggrCube∗ cube = new AggrCube ( ) ;
3 s t r e a m >> ∗ cube ; / / Read i n t h e CUBE f i l e
4 MdAggrCube∗ mdcube = new MdAggrCube ( cube ) ;
5 d e l e t e cube ;

Listing 1: Reading in a CUBE file
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1 v e c t o r < i s t r e a m > s t r e a m s = . . . ; / / Some i n p u t s t r e am i n s t a n c e s
2 v e c t o r <AggrCube∗> cubes ;
3 f o r ( v e c t o r < i s t r e a m > : : i t e r a t o r i t = s t r e a m s . b e g i n ( ) ;
4 i t != s t r e a m s . end ( ) ; ++ i t )
5 {
6 AggrCube∗ cube = new AggrCube ( ) ;
7 ∗ i t >> ∗ cube ;
8 cubes . push_back ( cube ) ;
9 }

10 MultiMdAggrCube∗ mdcube = new MultiMdAggrCube ( cubes ) ;

Listing 2: Reading in multiple CUBE files

3.2 Call tree node metrics

When considering the measurement data for a certain Cnode, it is often possible to formulate tests
based on a single number to verify if the measurement data for that certain Cnode is sane with respect
to some aspect. The class CnodeMetric and its sub-classes basically encapsulate all information to
compute a certain number and present a simple interface to the testing library.

CnodeMetric itself is an abstract class that is implemented by the two classes VisitorsMetric
and AggregatedMetric at the moment. Each CnodeMetric must be able to serialize to and de-
serialize from an ordinary string that contains all relevant information.

The serialized string generally has the form prefix@data. The prefix uniquely identifies the class
that implements the metric. The format of data depends on the type. For a documentation of the
format for the prefix basic, please refer to Section 2.2. For the prefix visitors, the string data
is simply expected to be empty.

3.3 Removing parts of the call tree

We usually work on working copies of the call tree, which are called CnodeSubForest. A copy
of the whole call tree can be obtained by applying the get_forest method on a MdAggrCube in-
stance. CnodeSubForest instances can also be created by copying another instance.

Removing nodes from a CnodeSubForest is done using the AbridgeTraversal class. There
are multiple threshold types for removing nodes: in our example in Listing 3 we consider the
type THRTYPE_ABSOLUTEwhich removes nodes based on an absolute value.

1 MdAggrCube∗ cube = . . . ; / / A cube i n s t a n c e
2 CnodeSubForest∗ f o r e s t = cube−> g e t _ f o r e s t ( ) ; / / A CnodeSubFores t i n s t a n c e
3 AbridgeTraversa l ( " bas ic@t ime : i n c l : ∗ . ∗ " , 1 ,
4 THRTYPE_ROOT_ABSOLUTE ) . run ( f o r e s t ) ;

Listing 3: Removing nodes with a time value of less than 1.
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3.4 Constraint implementation example

Constraints are always written by extending the class AbstractConstraint which provides basic
output routines and other features. There are a few classes that extend AbstractConstraint and
provide further methods. In this example, we choose the super-class CMetricCnodeConstraint.

Listing 4 implements a constraint that checks whether the difference for the metric time is below 1e−5
for each pair of corresponding call tree nodes, and Listing 5 shows how to use it.

1 c l a s s S i m p l e C o n s t r a i n t : p u b l i c CMetricCnodeConstraint {
2 p u b l i c :
3 S i m p l e C o n s t r a i n t ( CnodeSubForest∗ f o r e s t )
4 : CMetricCnodeConstraint ( f o r e s t , " bas ic@t ime : e x c l : ∗ . ∗ " )
5 {}
6
7 v i r t u a l s t r i n g get_name ( ) {
8 re turn s t r i n g ( " S i m p l e C o n s t r a i n t " ) ;
9 }

10
11 v i r t u a l s t r i n g g e t _ d e s c r i p t i o n ( ) {
12 re turn s t r i n g ( " Checks whe the r f o r each p a i r o f c o r r e s p o n d i n g "
13 " Cnode i n s t a n c e s t h e a b s o l u t e d i f f e r e n c e f o r t h e m e t r i c " )
14 + g e t _ m e t r i c ()−> t o _ s t r i n g ( ) + " i s below 1e−5. " ) ;
15 }
16
17 v i r t u a l vo id check ( ) {
18 i f ( g e t _ f o r e s t ()−> g e t _ r e f e r e n c e _ c u b e ()−> ge t _n u mb e r_ o f _ cu b es ( ) != 2 )
19 throw new E r r o r ( " I need e x a c t l y two CUBE f i l e s f o r t h i s ! " ) ;
20 CMetricCnodeConstraint : : check ( ) ;
21 }
22
23 v i r t u a l vo id c n o d e _ h a n d l e r ( Cnode∗ node ) {
24 double v1 = g e t _ m e t r i c ()−> compute ( node , ( unsigned i n t ) 0 ) ;
25 double v2 = g e t _ m e t r i c ()−> compute ( node , ( unsigned i n t ) 1 ) ;
26 i f ( f a b s ( v1−v2 ) > 1e−5)
27 f a i l ( " D i f f e r e n c e i s t o o b i g ! " , node ) ;
28 e l s e
29 ok ( ) ;
30 }
31 } ;

Listing 4: Implementation of a simple constraint class

The documentation for this piece of code now reads:

• In line 3–5 we simply construct our SimpleConstraint class by calling the constructor of
CMetricCnodeConstraint.

• In line 7–9 we provide a string that is shown as the name of this test. It is reasonable to include
information about the parameters for this constraint as well.

• In line 11–15 we provide more detailed information about this constraint.

• In line 17–21 we have the possibility to check preconditions this constraint depends on. In this
case, we check that there are exactly two CUBE files available.
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• In line 23–30 we finally implement the code that actually verifies whether the constraint is not
broken for the CUBE files. In line 24–25 we use the CnodeMetric to compute the values for
both CUBEs. Line 27 contains the fail method which is used to indicate that the test failed but
also to provide useful information to the user. In line 29 we call the ok method. For each test
either the fail, the skip or the ok method has to be called exactly once.

1 CnodeSubForest∗ f o r e s t = . . . ; / / A CnodeSubFores t i n s t a n c e
2 S i m p l e C o n s t r a i n t ( f o r e s t ) . check ( ) ;

Listing 5: Checking a constraint

4 Conclusion

During the guest student programme, we developed a set of tools to run a small number of automatic
tests on CUBE files. Furthermore, we developed and improved tools to compare two or more CUBE
files automatically. We developed a common library of functions used by all testing functions, that we
hope will be flexible enough to adapt to new use cases.

At the moment, we have a number of tools available, each exposing only a part of the functionality of
the underlying library. They can be easily put together to automate many steps of the testing procedure,
although some parts still require manual involvement. In particular the cube3_canonicalize tool
misses features to make the information that is removed during canonicalization available later.

Especially for large CUBE files, the set of many one-purpose tools results in loading and saving the
CUBE files many times which results in a large overhead. A single tool that combines all functionality
may address this problem.

At the moment, only relatively few tests are implemented. Further tests have to be written. The format
in which these tests should be specified, however, is open for discussion. The current approach is to
either specify tests within a C++ program or on the command line as a sequence of parameters to a
certain program.
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1 Introduction

In Tel Aviv University (TAU), at the Solar Energy Lab, we are developing a solar collector that is de-
signed to be integrated into commercial and industrial buildings. In this way it is hoped that excess
energy that was not converted to electricity by the collector’s photovoltaic (PV) module can be used in-
place as heat for air-conditioning or other heat-consuming applications, thereby considerably increas-
ing the overall system efficiency. In addition, the collector uses light-concentration technology in order
to reduce the area of expensive PV cells and replace it by relatively cheaper mirrors. The combination
of these technologies is called CPV/T: Concentrating, PhotoVoltaic, Thermal. A first experimental so-
lar field using this collector type (shown in Figure 1) was operational over the last 2 years in Yokne’am,
Israel; the design, construction and operation were conducted in cooperation with the UPP-Sol consor-
tium funded by the European 6th Framework Program.

Side by side with designing the collector itself, designing and optimizing the layout and component se-
lection for a field of such collectors is another task of the project. The target of the optimization may be

Figure 1: Experimental field of concentrating PV/thermal collectors.
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maximization of annual energy or of collector efficiency, or minimization of the capital cost (in terms of
$/W) or the cost of energy (in terms of the levelized energy cost in $/kWh).

The optimization procedure requires the ability to predict the performance – the electric and thermal
energy output and efficiency – of a complete field composed of such collectors and accompanying
equipment. The annual performance is sought, and the calculation thereof is by integration of the
instantaneous performance over the year; this makes the calculation of the instantaneous field perfor-
mance the most basic building block of optimization. The task is complicated by two main field-level
features:

1. In order to achieve high voltage and thereby reduce wire losses, PV cells and collectors are
connected in series. The relationship between current, voltage, insolation and temperature of the
cells is non-linear and involves all those variables at the same time.

2. The utilization of excess heat becomes more efficient and applicable to more consumer types as
the temperature at which that heat can be provided increases. Heat is collected by a cooling fluid
that runs under the PV cells; cooling the cells raises the coolant’s temperature, but only by a few
degrees. For this reason a series connection of the cooling layer is also employed. Thermal and
electrical connections are independent of each-other and may define different networks.

The goal of this project is to create a simulation program capable of accounting for these effects, which
gives a reasonably accurate representation of the physical system, and can be used on a practicing
engineer’s workstation, which given today’s state-of-the-art could be no larger than a “mini-cluster of
four cores”, as the relatively modern family of Intel processors was described by Prof. J. Grotendorst
of the Juelich Supercomputing Centre.

In this report I present the simulation software that was developed for this end. First, the physical
models that are used are presented. This is followed by a presentation of technical issues that arose
during implementation and the solutions given to them. Finally, results of simulations performed using
the software are presented and discussed.

2 Collector-level model

The collectors shown in Figure 1 are known in the field as parabolic dishes. They concentrate light into
a focal area, in which a receiver component converst the incident light energy into usable electricity
and heat. The collectors are kept pointing at the sun at all times of the day, and therefore at times when
the sun is relatively low some of the collectors may shade other collectors that are standing “behind”
them when looking from the sun’s point of view. This effect and other collector-related optical losses
are handled separately, and are outside the scope of this project, but it is important to remember that on
different times, different receivers in the same field may be subject to different incident light, and dif-
ferent areas of the same receiver may also be illuminated differently.

The receiver is composed of two integrated power-conversion systems (Figure 2): The first surface
encountered by incoming light (henceforth “the top”) is a layer of photovoltaic (PV) cells which convert
up to 36% of the energy directly into electricity; the rest of the energy is converted to heat, some of it
is lost due to different loss mechanisms on the outer surfaces, and the rest is collected by the second
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Figure 2: Receiver structure.

energy collection system, a heat-exchange block through which a coolant (water or a water/ethylene-
glycol solution) is pumped.

2.1 Temperatures, power flows and losses

The receiver state can be characterized by the four temperatures noted in Figure 2: the PV cells tem-
perature (Tpv); the temperature at the exchanger’s contact with the fluid (Tex), which is assumed to
be uniform along the flow-path due to the high thermal conductivity of the exchanger block; and the
coolant inlet and outlet temperatures (Tin and Tout respectively). The heat power lost to the environ-
ment can be calculated from these temperatures and the ambient temperature (Tam) using the following
relations:

• Heat lost by convection from the top is

qconv,pv =
Tpv − Tam

Rcpv
,

where Rcpv is the thermal resistance to convection (in K/W) that is calculated using the appro-
priate empirical heat-transfer correlations.

• Heat loss by radiation emission from the top is

qem = εσAT 4
pv,

where ε is the emissivity factor, σ is the Stefan-Boltzmann constant, and A is the top surface’s
area.

• Heat loss by convection from the bottom is

qconv,ex =
Tex − Tam

Rcex
,
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where Rcex is the thermal resistance to convection (in K/W) that is calculated similarly to Rcpv,
and Tex is dependent on the heat not lost by the top layer or converted to electricity:

Tex = Tpv − (qin − qel − qem − qconv,pv)Rint

for an internal thermal resistance Rint between the cells and the exchanger block. qel is the
energy that was converted to electricity, a quantity whose calculation is detailed in the following
Section.

Together these losses are represented by

qloss ≡ qem + qconv,pv + qconv,ex.

The heat entering the heat exchanger can be calculated in two methods. Firstly, it can be calculated by
standard heat-exchanger equations [1]

qo = ṁCp

(
1− e−UA/ṁCp

)
(Tex − Tin) , (1)

where ṁ is the coolant flow rate, Cp the coolant specific heat, and UA is the overall exchanger’s
heat conductivity, which is a function of both Tin and ṁ, whose parameters are fitted from empirical
measurements of the receiver.

Secondly, it can be derived from the energy conservation law, as

q∗o = qin − qloss − qel, (2)

where qin is the light energy incident on the receiver. The need for two different calculation methods
will become clear when the field-level model is explained in Section 3.

The outlet temperature may be calculated from the inlet temperature and coolant-entering heat by

Tout = Tin +
qo

ṁCp
. (3)

2.2 Electric state and power calculation

The electric state of the PV cells is usually represented as a relationship between the current and voltage
in the cell for a given insolation and temperature, using one or two exponential terms (respectively
known as the one-diode and two-diode model [2]). A real current-voltage (I-V) curve for a silicon
solar cell is shown in Figure 3.

The I-V curve changes with the level of insolation, as shown in Figure 3. However, since the cells in a
receiver are connected in series, and several receivers may also be connected in series, they must have
the same current. So, if the string current is higher than the maximum current achievable by any cell
on a given illumination level, that cell instead becomes reverse-biased, with negative voltage and the
string current. In this mode the cell consumes power instead of producing it. To mitigate this effect,
each cell has a bypass diode connected in parallel to it, that allows the current to go as high as needed
with only minimal negative voltage.
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Figure 3: An I-V curve for a silicon solar cell.

Figure 4: Piecewise-linear I-V curve.

The model for the cell and diode can be solved directly by use of the Lambert-W function [3], but
this presents two problems. First, it requires an internal iteration which slows down the computation.
More importantly, the curve contains Sections in which either the current or the voltage are nearly
constant. Non-linear-equation solvers, such as the one that will be needed to solve the state of a full
field, require the problem to be relatively well-conditioned, i.e. they do not allow a small change in
the decision variables to translate into a very large change in the function’s value, which will happen
if a nearly-constant-voltage Section is encountered when stepping over voltage, or a nearly-constant-
current Section is encountered when stepping over current.

To overcome this problem, it was chosen to represent the both the current and voltage of each solar cell
as a piecewise-linear function of an expression composed of both the current and voltage. The electric
state variable is defined as

b = V −ReqI, (4)

where V is the cell voltage, I is the cell current, and Req = 1 Ω is here to make the units agree. A
schematic of the piecewise-linear model is shown in Figure 4.
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Phrased in terms of b, the current function is

I =


Vcut−b
Req

, b < bbypass

RshIsc−b
Req+Rsh

, bbypass < b < bmp

Voc−b
Req+Rs

, b > bmp

, (5)

where Rsh is the shunt resistance of the cell, Rs is the series resistance, Isc is the short-circuit current
and Vcut is the voltage at which the bypass diode is activated; all these properties are obtainable from
cell data-sheets. The open-circuit voltage, Voc, is a function of temperature and other cell properties,
calculated by the method used by Kribus and Mittelmann [4].

2.3 Pressure drop

Another modeled feature of the receiver which is needed for the full-field simulation is the pressure
drop. The pressure-drop in each receiver is represented as a quadratic function of the flow rate, whose
coefficients depend on the inlet temperature linearly:

∆P = (a0 + Tina1) ṁ2 + (b0 + Tinb1) ṁ+ (c0 + Tinc1) .

All constants in this expression are obtained by fitting of empirical measurements.

3 Field-level model

On the field level, the collectors may be connected to each-other thermally or electrically, which im-
poses constraints on the possible states of the field, so that for a short list of input variables that will be
detailed below, it is possible to use the models detailed in the previous Section to solve for all the other
variables.

First, out of the four temperatures defining the receiver’s thermal state, three may be solved by a
knowledge of the fourth. So, since Tin for the first receiver in a thermal string is dictated by the
application, we may use it to solve for the other temperatures, and use Equation (3) to find the oper-
ating temperature of the next receiver in the string. This method is problematic, however, as some of
the temperatures depend on qel, which in turn depends on Tpv, which depends on the other tempera-
tures.

To disentangle this feedback link, Tpv is used as an independent variable; its final value is determined
by a non-linear equations solver such that it meets the constraint that both methods of calculating outlet
power, i.e. Equations (1) and (2) agree,

qo = q∗o.

Similarly, the electric state must be found and meet the constraint of series connection – that is, all
currents in a series must equal each other. Using these constraints, we have for N cells only N − 1
equations. To complete the state, we take into consideration the ratio of total string voltage to string
current, which is externally set by a device called the inverter, whose purpose is to find the optimal I-V
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point, i.e the I-V point that produces the highest qel. Modeling the inverter by this ratio, Rinv, we can
rephrase the electric constraint for PV cell i as

Ii =
N∑
i=1

Vi/Rinv.

As the calculation of Ii, Vi also depends on Tpv, these constraints must be solved together with the
thermal constraints, as part of the same equation system.

Finally, the thermal state of a string depends on the flow rate, but the flow-rate cannot be set for each
thermal string separately. For a field with several thermal strings, a global flow-rate is set, and the
individual string flow rates must satisfy the condition that the pressure-drops in the thermal lines must
equal each-other, and that the flow rates sum up to the global flow rate. The thermal string pressure
drop is a sum of the pressure drop in each of the receivers in the string. Since the pressure-drops depend
on Tin, these constraints must also be solved together with the other constraints in the same equation
system.

4 Selection of solver

The solution of the non-linear equation-system defining the field (as introduced in the previous Section)
is obtained using the Levenberg-Marquardt (LM) algorithm, which is designed to minimize the sum of
squared errors of the constraint equations. An implementation of this algorithm that is available in the
SciPy package [5] was used.

To determine its performance, the SciPy LM solver was compared to a different SciPy solver, based
on the L-BFGS-B algorithm [6]. Both solvers were tasked with performing an annual simulation of a
reduced version of the model in which the electric efficiency model is simplified and only the pressure-
drop constraints must be solved. The LM algorithm solved this problem in 38 minutes, compared to 84
minutes with L-BFGS-B. The long times are a result of the inefficient implementation of the reduced
problem, but the same reduction ratio can be seen in the number of calls to the underlying constraints
calculation, which is independent on the efficiency of implementation.

Due to the clear advantage of the LM solver, it was chosen for solving the full problem.

5 Initial solutions

The LM solver arrives at a final solution by starting from an initial solution and changing the problem’s
state variables (Tpv for each receiver, electric state for each cell and flow-rate for each thermal string)
in a way that reduces the sum of squared errors in each iteration, until no further significant reduction is
possible. This method encounters problems when the initial solution lies close to some local minimum
of the error, because the iteration will find that local minimum and will not be able to find the global
minimum.
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Figure 5: The error landscape for two receivers connected in electric series.

The problem is demonstrated in Figure 5. The sum of square errors of the electric constraints only is
shown for a case of two receivers in electric series connection, over the electric state of each receiver.
In the case shown, one receiver (labeled “strong”) is illuminated with 1 kW, and the other one (labeled
“weak”) is illuminated with 0.8 kW. the inverter parameter is set toRinv = 0.1 Ω, a selection for which
the weak receiver should be in the bypass mode (the left constant-voltage part of the I-V curve, where
the bypass diode is active) and the strong receiver should be in the nearly-constant-current section of
the I-V curve.

The error landscape clearly shows a “ditch” – a narrow band in which the error is very small compared
to the rest of the landscape. If the solver reaches any point in that ditch, it will not move on to a
different position readily. The ditch has one place which is its lowest point, at the correct solution, but
this point will not be reached in reasonable time if the solver encounters the ditch at a farther point
first.

The cause for the appearance of the ditch is the fact that when changing the electric state of a receiver
on the flat-current part of his curve, the local current does not change – but the target current, which
is computed from the sum of series voltages, is changes for all receivers in the same series, increasing
the error for everyone.

To avoid this effect, an initial solution close enough to the true solution must be chosen. In general
electric-circuit solvers such as SPICE [7], and in other similar fields, this is done by use of a continu-
ation method: the solution of a slightly different problem which is known to be solvable is used as an
initial guess for a problem closer to the one we target; its solution is used as initial solution for the next
one, and so on until we have an initial solution good enough for our target problem. In this case we
may solve the constraints for Rinv = 100, 10, 1, 0.5, 0.2, . . . , 0.1.

Clearly, this method multiplies the solution time several-fold; therefore, it cannot be used. Instead,
we must find an initial solution based on the specific problem’s features. In this problem, we use the
fact that while the I-V curve depends on temperature, that dependence is not large. Hence, we can
solve the piecewise-linear electric model for some temperature in the general neighbourhood of the
final solution (a neighbourhood that is tens of degrees-Celsius wide). Using the exactly-solvable linear
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Figure 6: Validation run results: current-voltage (left) and power-voltage (right).

model for this temperature, we get an initial solution for the electric state that is close to the final
solution and is therefore solvable.

Other than the electric variables, there is no similar problem with the temperature and flow-rate vari-
ables, so there is no need to find an initial solution close to the final one; such a solution, however,
would still be advantageous, as the time it takes to reach the final solution gets longer as the initial
solution gets farther from the final one. The method for finding such a solution could be the use of
already-solved problems.

In an experiment based on the simplified problem described in Section 4, the method of using the
previous time-interval’s solution as the current time-interval’s initial solution was tested. The number
of inner-function calls for using a default initial solution in which all flow-rates are equal was compared
to the number of calls using the previous solution: the default initial solution resulted in 1.417 times
the calls of the previous-time-point initial solution. This already shows a lot of improvement, but it
may be tuned even further, by finding solved points whose conditions are closer to the currently-solved
problem by a better heuristic than taking the previous hour; it is speculated that the same hour of the
previous day would be closer, but it was not tested.

6 Results

The simulation software was validated by simulating the case of two electrically series-connected re-
ceivers, one illuminated with 1 kW, and the other being illuminated with 0.8 kW. 50 different values
are used for Rinv, equally distributed on the log scale from 10−3 to 103. The simulation produces
an I-V curve for the electric series (Figure 6, left) which reproduces the form of two steps that is
expected from literature and experiments; the power-voltage curve (Figure 6, right) also shows the
expected form, of a double-peak curve. the smaller peak, on the left, is barely visible due to the
low difference in illumination between the receivers, and gets more pronounced if that difference is
increased. Furthermore, the cumulative power including electric output, thermal output and losses,
always sums up to the input power, which shows that the model maintains the energy-conservation
law.
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Figure 7: Temperatures of electrically series-connected receivers over string voltage.

Using the results of the same case, we may examine also that the temperature is predicted correctly. The
temperature graphs for the weak and strong receivers is shown in Figure 7. Two features are noticeable
in that graph: minimum-temperature points for both receivers; and inequality of the short-circuit (zero
voltage) temperature and the open-circuit (max. voltage) temperature.

The minimum points in the temperature curves correspond each to the peak-electric-power point of the
respective receiver. The strong receiver achieves its peak efficiency at a string voltage of about 18 V;
and at that point the heat that passes on to the thermal block is the lowest, therefore the temperature
increases the least. The weak receiver only reaches his peak electric efficiency at about 50 V string
voltage, and at that point its temperature is lowest.

As the electric efficiency of both receivers is exactly zero at both ends of the curve, disconnected re-
ceivers should have the same temperature on both ends; in Figure 7, however, there is a slight inequal-
ity: the strong receiver is hotter on the open-circuit point than on the short-circuit point, for the weak
receivers the effect is reversed. The reason for this is that close to the short-circuit point of the string,
the weak receiver is in bypass mode, and his bypass diode consumes some of the power produced by the
strong receiver - unloading power from the strong receiver to the weak one.

7 Conclusion

A simulation program was developed for predicting the performance electrically and thermally con-
nected CPV/T collectors. The main challenge in creating such a simulation is the need to account for
the interdependence of a large number of variables, including temperatures, electric state variables, and
flow rates. To account for all the interdependent effect, the system was modeled as a non-linear equa-
tion system; a solver algorithm was selected and various aspects of the solution method were tuned for
the particular problem.

Results of validation runs show that the model reproduces expected results, and also provides insight
into the thermal/electric behaviour of the system and the dependence within it.
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The running time is reasonable, and will allow usage of the program on a regular workstation. There
is still much room for code optimization and various other improvements to the selection of initial
solutions which will allow the model to scale up to larger simulated systems. The goal of the project,
therefore, is achieved.
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Abstract:
Parallel tempering Monte Carlo methods are an important tool for numerical studies of models with
large complexity, since interesting questions, like the origin of phase transitions and structure for-
mation, can only be tackled by means of statistical analysis. This work introduces the method and
discusses ways of improving performance when using many-core architectures.

1 Introduction

Statistical mechanics treats systems with sizes of the order of 1023 constituents. These complex sys-
tems often cannot be solved analytically in principle or in practice. Monte Carlo simulations have been
proven a useful tool for estimating quantities in complex systems. Striving for a better understanding,
high precision results have to be achieved. Among others, three major generalized ensemble methods
were developed: Multicanonical simulations [1], Wang-Landau sampling [2] and Parallel Tempering
[3, 4, 5].
Computer technology releases have changed in the last few years. The speed of central processing units
(CPUs) got stuck at about 3 GHz due to the difficulties involved in producing smaller electronics at
the edge of the physically possible. A shift towards parallel computing can be observed, as nowadays
computers get faster by using multi-core technology. As the parallel tempering Monte Carlo method
is by design easy to parallelize, it seems to be the natural choice for the parallel treatment of complex
systems. This work focuses on the implementation of a parallel tempering simulation that allows for
optimizations to be tested for systems exhibiting free-energy barriers associated with phase transitions.

For the sake of simplicity, the implementation was tested first for the well-known Ising-model [6]. It
describes a set of spins si, i = 1, . . . , N , each being in one of two states, nearest neighbours interacting
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Figure 1: Schematic excerpt from an Ising magnet with N = 3 × 3 = 9 spins being in one of two
states, either bright or dark, on a regular twodimensional grid.

with a constant coupling strength J . The Hamiltonian of a system of N spins reads in Potts-model
notation

H = −J
∑
〈i,j〉

δsisj , si ∈ {0, 1}, (1)

with 〈 · , · 〉 denoting pairs of nearest neighbours and δ being the Kronecker symbol. It is a model for
magnetism exhibiting a temperature-driven second-order phase transition between ferro-and paramag-
netism. On regular grids in two dimensions, the Ising model was exactly solved by Onsager in the
thermodynamic limit N →∞ [7]. For Ising magnets with a finite number of spins located on a regular
2D-grid with periodic boundary conditions, Beale was able to provide an exact solution [8]. Therefore
the model is perfectly suited to test new algorithms.

2 Monte Carlo Methods

2.1 Importance Sampling

For a classical system, the probability of finding a microstate µwith energyE in a heat bath at tempera-
ture T with an associated inverse thermal energy β = 1/kBT is given by

PB (µ) =
1
Z
e−βE(µ). (2)

The Boltzmann constant kB ≈ 1.38 · 1023J/K was set to 1 throughout this work, therefore β is referred
to as an inverse temperature. The quantityZ denotes the canonical partition function

Z =
∑
µ

e−βE(µ) =
∑
E

Ω(E)e−βE , (3)

where Ω(E) is the density (or better number) of states for given energy E. Simulations should gen-
erate microstates with the same probability (2). In principle, the information about the underlying
system is not sufficient to draw microstates directly according to the probability PB . In practice
they are constructed as members of the equilibrium distribution of a Markov process. Let S =
{µ1, µ2, . . . , µn} be the set of possible states of the system. A Markov process is a stochastic pro-
cess that changes the microstate µi of the system to another state µj with a transition probability pij
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that is independent of all preceding states. The transition probabilities have to fulfil the following
properties:

pij ≥ 0 ∀i, j;
∑
j

pij = 1 ∀i;
∑
i

pijPBi = PBj ∀j. (4)

The first condition (4) ensures ergodicity of the Markov process, i.e. every state µj ∈ S, j = 1, . . . , n
can be reached starting from any state µi ∈ S, i = 1 . . . n (not necessarily within a single step). The
other properties are for normalization and balance. Balance means the Boltzmann distribution PB is a
fixed point of the transition probability.

An algorithm for the construction of a Markov chain, satisfying the conditions (4) was first proposed by
Metropolis [9] for systems that allow the calculation of the internal energyEi := E(µi). The transition
probability reads

pmetrij = min
{

1, e−β(Ej−Ei)
}
. (5)

An update of the system is accepted every time the system gets to a configuration with a lower en-
ergy than the current one, but is only accepted with probability pmetrij when the internal energy in-
creases. Algorithm 1 describes the Metropolis method in more detail for applications on spin lat-
tices.

2.2 Parallel tempering

For systems exhibiting a rather complex transition behaviour, such as spin glasses or proteins, the
Metropolis algorithm can become extremely inefficient near or at transition points. In the parallel
tempering Monte Carlo algorithm, Nr non-interacting replicas of the system are simulated at a set of
inverse temperatures {β1, β2, . . . , βNr}. After a number of canonical Monte Carlo updates on each
system, a replica swap is attempted. Applying the Metropolis criterion (5), the transition probability
for swapping systems i and j can be calculated

pptij = min
{

1, e∆
}

for ∆ = (βj − βi) [Ej − Ei] . (6)

Algorithm 2 shows the implementation of the parallel tempering Monte Carlo method in detail. The
partition function of the coupled replicas is now the product of the canonical partition functions

Zpt =
Nr∏
i=1

Z(βi) =
Nr∏
i=1

∑
j

Ω(Ej)e−βiEj , (7)

as the non-interacting systems are statistically independent. The right hand side of equation (7) again
employs the density of states Ω.

By introducing a global swap, a fixed replica can now perform a random walk in temperature space.
Complex energy landscapes can be traversed faster, as replicas are now capable of getting to high
temperatures, where autocorrelation times are much shorter than at low temperatures or near crit-
ical points. To collect as many statistically independent samples at low temperatures as possible,
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one should try to minimize the time for each replica to travel across temperature space. This can
be achieved by choosing the set of inverse temperatures carefully. Several approaches have been pro-
posed, ranging from diffusion based methods [10] to autocorrelation dependent spacing [11]. However,
it is not obvious how to apply these optimizations efficiently for the usage on many-core architec-
tures.

Algorithm 1: Metropolis update
choose a spin
choose a new value for that spin
draw a random number r ∈ (0, 1]
if r < pmetrij then

accept new state
else

reject new state
end

Algorithm 2: Parallel tempering Monte Carlo sweep
for every replica
do

for a number of sweeps do
metropolis_update(replica)

end
choose a replica Si randomly
choose an adjacent replica Sj out of the neighbours of Si
draw a random number r ∈ (0, 1]
if r < pptij then

swap replicas
end

end

3 Results

3.1 Implementation

The parallel tempering Monte Carlo simulation for the more general Edwards-Anderson-Potts spin
glass Hamiltonian,

H = −
∑
〈i,j〉

Jijδsisj , si ∈ {1 · · · q} , (8)

was implemented from scratch in C++, using the Message-Passing-Interface (MPI) for parallelization.
For Jij = J ∀i, j, the Hamiltonian reduces to the Potts model. In this work, only the case of q = 2 was
treated, which corresponds to the Ising model. The inverse temperatures βi are exchanged instead of
swapping replicas to reduce the communication overhead introduced by replica swaps. This approach
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leads to arbitrary permutations of the inverse temperatures on the processes that run in parallel. To
assign measured observables to the correct temperature, a proper bookkeeping is needed. The swapping
attempts can be implemented in one of two ways:

• Every process communicates with a current neighbouring (i.e. neighbour in the inverse temper-
ature space) process. If an exchange is to be performed, all neighbours of the two processes
involved have to be informed about the swap.

• A master process handles the exchange of inverse temperatures between processes, by gathering
information from all processes and sending back to them the new inverse temperatures.

Here, the latter approach was implemented, leading to a simpler bookkeeping. Every process has to
wait for the master process to be finished, so a serial bottleneck is employed. This is called the synchro-
nisation barrier. Collective communication can be used when implementing the master-slave scheme,
which can be faster (at least not slower) than an all-point-to-point communication.

3.2 Verification

The implementation was tested using the exact solution of the finite two dimensional Ising model on
regular periodic lattices near the critical point, in Potts model notation at βc = log(1 +

√
2) ≈ 0.881.

The specific heat is defined as

cV (β) =
1
N

(
∂ 〈E〉
∂T

)
V,N

= β2

〈
E2
〉
− 〈E〉2

N
(9)

with V being the volume of the system (it corresponds to the number of particles for spin lattices). As
the specific heat is the first-order derivation of the internal energy E with respect to temperature, the
quantity is very sensible to phase transitions (Figure 2).

3.3 Inverse temperature distribution

The distribution of the inverse temperatures is important, as the acceptance rate decreases exponentially
with ∆β. For the transition probability (6) to be reasonable large, a sufficient overlap in the energy his-
tograms is needed. Let Hβ(E) := Ω(E)e−βE/Z be the normalized histogram at inverse temperature
β. The overlap between two histograms Hβi and Hβj is defined by the area that is enclosed by both
histograms, for discrete energies reading

qij =
∑
E

min
{
Hβi(E), Hβj (E)

}
. (10)

Since
∑

E Hβ(E) = 1 and Hβ ≥ 0 ∀E, the overlap qij is a quantity in the unit interval. The tempera-
ture distribution for the two-dimensional Ising model can be chosen so that the overlap between all ad-
jacent heat baths is nearly constant. Therefore, an approximation of the density of states was calculated
using histograms that were obtained in previous runs at different temperatures. The density of states is
iteratively reweighted [12, 13] to a new set of inverse temperatures, until the overlap is constant. The
acceptance rate, the ratio of accepted parallel tempering steps to the total number of update attempts,
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Figure 2: Specific heat near the transition point of the 2D-Potts model using parallel tempering Monte
Carlo with the following parameters: q = 2, grid dimensions = 32 × 32, number of energies = 217,
number of jackknife blocks = 29 . The peak at the inverse energy βt ≈ 0.872 is associated with a
transition of the internal energy.
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Figure 3: Overlap qij of different distributions of 32 inverse temperatures (left) and the acceptance
rate aij (right). A pronounced peak of the distribution using constant spacing can be seen near the
transition inverse temperature of the system at βt ≈ 0.872. Also, the acceptance rate shows the same
behaviour as the overlap. Parameters of the simulation: q = 2, grid dimensions = 32 × 32, parallel
tempering sweeps = 220, using 20 local Metropolis sweeps per replica exchange attempt.
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is a quantity that measures how fast a fixed replica can get from one heat bath to another. Overlap and
acceptance rate for the 32× 32 Ising lattice are shown in Figure 3.

3.4 Refinement and replicated temperature partition
simulations

When using many cores in a parallel tempering simulation, it is not so clear how the heat baths should
be chosen. Having a fixed temperature interval, there are at least two possible ways of improving the
simulation by using more replicas:

• Increasing the number of inverse temperatures, thus refining the interval. The number of replicas
Nr coincides with the number of heat baths Nr = Nβ .

• Keeping the number of heat baths fixed and using more than one replica at each temperature.
Every heat bath gets nβ replicas, hence Nr = nβ ·Nβ .

For the latter approach the partition function becomes

Zpt =
Nr∏
i=1

Z(βi) =

Nβ∏
j=1

Z(βj)

nβ

, (11)

because a number of nβ factors of the left hand side are equal.

When a fixed replica got from the lowest temperature βmax to the highest temperature βmin and back
again, it is said that a tunnel event occurred, a term borrowed from first-order barrier models. The
average number of tunnel events of all replicas is denoted by Nt. The tunnel time per replica τ is then
defined by

τ =
1
N2

Nmc

Nt
, (12)

where Nmc is the total number of Monte Carlo updates that are conducted. The coefficient N−2

compensates for the random walk in the energy space. As the energy of spin lattices with N spins is
of order O(N), the time to traverse an interval ∆E is of order O(N2). The tunnel time for both a
refinement scheme and a replicated temperature partition simulation for the 2D-Ising model is shown
in Figure 4.

4 Conclusion and Outlook

An introduction to parallel tempering Monte Carlo methods has been given. An implementation, al-
lowing for optimizations to be tested, was verified using the exact results of the Ising model. Open
questions about how to apply the method to architectures with many cores were discussed and two
approaches, the refinement and replicated temperature partition scheme were given. First results of
both schemes for the Ising model have been shown. However, the Ising model has no complicated free
energy landscape, therefore it is hard to measure the efficiency of either scheme. Parallel tempering
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Figure 4: Tunnel time per replica in the 32 × 32 2D-Ising model over the total number of replicas
Nr ∈ {16, 32, 64, 128, 256}. The simulation was carried out with 20 Monte Carlo sweeps per par-
allel tempering sweep, 218 parallel tempering sweeps, a total number of 20 · 218 · 322 ≈ 1010 Monte
Carlo updates. For the replicated β-partition simulation, a fixed partition of 16 different β-values was
used. The partition was constructed to have a constant overlap in the histograms in the fixed interval
β ∈ [0, 1.73], hence nβ ∈ {1, 2, 4, 8, 16}. The tunnel time per replica is nearly constant when increas-
ing the number of replicated partitions, therefore the total number of tunnel events increases linearly
with the number of replicas (processes). Having only 16 inverse temperatures with constant spacing
creates only a little overlap in the histograms, therefore the tunnel time is big for the β-refinement
curve. However, increasing the number of temperatures also increases the overlap and the tunnel time
decreases. Using many temperatures when attempting parallel tempering updates on adjacent replicas
increases the tunnel time, because the improvement in the overlap between next-nearest neighbours
cannot be used by the algorithm that only allows for one step in the inverse temperature space, thus
leading to a factor O(N2

r ) that accounts for a directed random walk in the β-space.
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methods are designed to be more efficient applied on models exhibiting more complex free energy
landscapes.

In the future, more data has to be collected on complex models to evaluate the important question of
how to use many-core architectures in an optimal way. Also, it would be very interesting to implement
parallel tempering algorithms on shared memory systems like cost-efficient general purpose graphical
processing units.
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Abstract:
Three different solvers of the dense real symmetric eigenproblem are available in the parallel linear
algebra library ScaLAPACK – a fourth one, building on the algorithm MR3, is planned to be included
in a future, not yet announced, version of the library. This report presents the results of benchmarking
the three library solvers as well as a still experimental version of the MR3 solver.
The benchmarking was performed on the IBM BlueGene/P system JUGENE, using up to 8192 cores
to solve problems with a maximum matrix size of 122880 × 122880.
Two main cases were investigated: (1) eigenvalues randomly spread in a given interval and (2) mas-
sively clustered eigenvalues. In the first case the scalability and accuracy of the new MR3 solver did
not quite answer expectations, whereas in the second case, the new solver proved to be a promising
alternative to the existing routines.

1 Introduction

The problem of computing eigenvalues and eigenvectors, together referred to as eigenpairs, of a matrix
appears in various applications of computational sciences. One example of such an application is Den-
sity Functional Theory (DFT), which is in [1] described as an “important, and most successful approach
for studying electronic structure phenomena in materials”. In DFT computations, typically at least
20 – 25% of the eigenpairs of large, dense matrices need to be computed.

To meet the needs of DFT, as well as other applications, making efficient use of the growing computing
power of modern parallel systems, fast and highly scalable routines for solving the eigenproblem are
needed. Several different routines are available, and the purpose of this project has been to compare
the performance and scalability of four parallel solvers of the dense symmetric eigenproblem on the
IBM BlueGene/P system JUGENE.
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The performance of the routines has mainly been tested on matrices varying in size from 1000 × 1000
to 12288 × 12288, using between 64 and 1024 processors. Some first results using up to 8192 proces-
sors for problems of size up to 122880 × 122880 are also presented.

A main question throughout this project has been how the performance is influenced by the matrix
spectrum. Attempting to give a first, far from general, answer to that question, two types of eigenvalue
distributions have been tested:

1. eigenvalues randomly generated in a given interval, and

2. all eigenvalues clustered around ε, except one which has the value 1.

In the first case, the interval in which eigenvalues were generated was varied in size from [0,1] to
[-100,20000], where a smaller interval is likely to cause more and larger clusters of eigenvalues, possi-
bly affecting performance and/or accuracy of the computations. These two eigenvalue distributions are
also considered in [2], p. 58.

With two of the solvers, optionally only a part of the eigenpairs, defined by the user, may be computed.
This option has been tested under the same conditions as described above, specifying ten percent of
the eigenpairs to be computed.

2 The Solvers Examined

In this section first a brief introduction is given to the four examined eigensolvers; PDSYEV, PDSYEVD,
PDSYEVX, and PDSYEVR. After that a special, and for this project important, feature of PDSYEVX
is discussed in some detail. Finally the storage of matrices when using ScaLAPACK [3] routines is out-
lined, and motivations are given for the block sizes chosen for each of the solvers.

Throughout this and subsequent sections the number of processors will be denoted by p and the
matrix size will be denoted by n, meaning that e.g. a 1000 × 1000 matrix has the matrix size
n = 1000.

The four eigensolvers examined in this project all proceed in the following three phases:

1. reduction of the full matrix to a tridiagonal matrix with the same eigenvalues as the original one,

2. solution of the tridiagonal eigenproblem,

3. back-transformation of the eigenvectors of the tridiagonal matrix into the eigenvectors of the full
matrix.

The first and third phases are performed in a similar way by all solvers, and both have a serial complex-
ity of O(n3) and require O(n2) memory, so that with perfect scalability the parallel complexity would
beO(n3/p) andO(n2/p) memory would be needed by each processor [4].

The main difference between the four eigensolvers is what algorithm is used for the second phase, i.e.
for computing the eigenpairs of the tridiagonal matrix. In the routine PDSYEV, the tridiagonal eigen-
problem is solved using a parallel QR algorithm, which has a complexity of O(n3/p) for computing
all eigenpairs of a tridiagonal matrix [2]. The solver PDSYEVD instead uses the divide and conquer
method for the second phase computations, which in the worst case has the same complexity as the QR
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algorithm, but in practice often performs better than that, which can also be observed in the results pre-
sented in this report, see Section 5 [5]. A drawback of PDSYEVD is that it requiresO(n2) extra mem-
ory, so that it cannot be used for as large matrices as the other solvers.

As mentioned in the introduction, there are applications where the possibility to compute only a part
of the eigenpairs would be desirable. Whereas neither PDSYEV nor PDSYEVD have this option, both
PDSYEVX and PDSYEVR do have it. In PDSYEVX, bisection is used to compute k eigenvalues of
the tridiagonal matrix at a cost of O(kn/p) flops and inverse iteration is then used to compute the
corresponding eigenvectors. When eigenvalues are well separated, the complexity of inverse iteration
is also O(kn/p), but in the worst case, when eigenvalues are heavily clustered, the complexity grows
to O(k2n) – i.e. the routine becomes slow, and what is more, it does not scale at all. The reason for
this will be discussed in some more detail in the next section.

The three solvers presented above, PDSYEV, PDSYEVD and PDSYEVX, are all routines from the
library ScaLAPACK. The fourth solver examined in this project is a still experimental version of
PDSYEVR, written by Christof Vömel1, which uses a recently developed algorithm, the parallel mul-
tiple relatively robust representations (MR3) algorithm, to solve the tridiagonal eigenproblem [4, 6].
PDSYEVR is planned to be included in the next version of ScaLAPACK. As mentioned, this solver can
be used to optionally compute only a specified part of the eigenpairs. Computing k eigenpairs, the par-
allel complexity of MR3 isO(kn/p), independent of the matrix spectrum.

2.1 PDSYEVX and the Parameter ORFAC

In theory, eigenvectors of a symmetric matrix, corresponding to distinct eigenvalues, are orthogonal.
However, the approximate eigenvectors computed by the inverse iteration used in PDSYEVX are not
always orthogonal. This is especially the case for eigenvectors corresponding to eigenvalues which
are close to each other. To handle this problem, each computed eigenvector is orthogonalized, using
a modified Gram-Schmidt method, against the already computed eigenvectors corresponding to eigen-
values that are close. Here ’close’ is defined by the user; eigenvectors are orthogonalized if the distance
between their corresponding eigenvalues is less than ORFAC · ‖A‖, whereA is the matrix whose eigen-
pairs are being computed, and ORFAC is a parameter to be set by the user. Orthogonalization of the
eigenvectors of clustered eigenvalues is what reduces the performance of serial inverse iteration from
complexity O(kn) to O(k2n) when computing k eigenpairs.

In order to avoid extensive communication, PDSYEVX is implemented in such a way that orthogonal-
ization is done on one processor per cluster. This is the reason for the – in the worst case – complete loss
of scalability mentioned in the previous section. This also leads to memory imbalance, since all orthog-
onalized eigenvectors have to be stored in the memory of one processor.

As expected, setting ORFAC to 0 leads in general to nonorthogonal computed eigenvectors. The default
value of ORFAC, 10−3, on the other hand produces orthogonal eigenvectors but is generally rather slow
– perhaps slower than necessary in many cases. In this project ORFAC = 10−4 has been used unless
otherwise stated, in some cases leading to better performance than with the default value, without
altering the orthogonality of the eigenvectors.

1School of Engineering, Züricher Hochschule für Angewandte Wissenschaften, Zürich.
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2.2 Matrix Storage Using ScaLAPACK

Whenever ScaLAPACK routines involving dense matrices are used, the matrices are expected to be
distributed over the processes in a certain way: the (two-dimensional) block-cyclic way. This section
first deals with explaining the block-cyclic distribution, and then values of the block size parameter
used in this project are motivated.

Two main objectives need to be considered when distributing matrices over a grid of processes: maxi-
mizing workload balance and minimizing communication between the processes. These two objectives
often contradict each other, and thus a good tradeoff between them is relevant to achieve high perfor-
mance.

Using the block-cyclic distribution, the matrix is divided into blocks of size mb × nb. The blocks are
distributed over the process grid cyclicly in both dimensions, as illustrated by the following example:
Assume we have a 9 × 11 matrix and chose the row block size mb to be 2, and the column block size
nb to be 3, see the left part of Figure 1. Assume also that we have a 2 × 2 process grid, with processes
numbered from left to right starting with the first row, and counting from 0. The blocks will then be
assigned to the processes as shown in the right part of Figure 1. Each process stores its parts of the
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Figure 1: Two-dimensional block-cyclic distribution of a 9× 11 matrix over a 2× 2 grid of processes.

entire matrix as one smaller matrix in memory. In the example above, the grey blocks in the figure are
thus stored as one matrix in the zeroth process.

In order to achieve a good tradeoff between workload balancing and communication minimization, the
block sizes should be chosen with some care. Small blocks lead generally to much communication
since neighboring elements are more often stored in different processes, whereas with large blocks the
workload balancing might be bad. For a more detailed explanation on this topic see [3].

In the context of eigenproblems, the concerned matrices are square, and in all tests performed in this
project the grid of processes was either square or m × 2m, where m is an integer. Considering this
setup, the same block size was used in both dimensions in all test runs, i.e. mb = nb in all tests. Next,
motivations are given for the choice of block size used for the individual eigensolvers. Note especially
the unexpected way in which block sizes are used in PDSYEV.

To decide what block sizes to use with the solvers PDSYEVD, PDSYEVX and PDSYEVR, a few
preliminary test runs were performed on 256 and 1024 processors with nb = 20, 32, 40 and 64. No
major effects were detected when changing the block size, yet the small differences that did occur led
to choosing nb = 64 for PDSYEVX and PDSYEVR with up to 256 processors, and in all other cases
nb = 32.
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With PDSYEV the situation regarding block sizes is more complicated than with most other ScaLA-
PACK routines, which is however not obvious at first glance; using a too large block size may lead to
an apparently inexplicable loss of scalability. The reason is to be found in a subroutine, DSTEQR2,
called by PDSYEV, which solves the tridiagonal eigenproblem, computing on each process entire
eigenvectors, so that entire columns of the eigenvector matrix need to be accessed and updated by
each process. Therefore the matrix is redistributed before the call to DSTEQR2 over a new grid of
processes, consisting of only one row, but keeping the same block size as before. With all processes
aligned in one row, each row of blocks is distributed over the same processes, thus fulfilling the require-
ment that each process should access entire columns. In the previous example, this leads to a matrix
distribution as depicted in Figure 2, which has only a slight load imbalance; the number of columns
assigned to processor three is smaller than the number of columns assigned to the other processors.
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Figure 2: Two-dimensional block-cyclic distribution of a 9× 11 matrix over a 1× 4 grid of processes.

This is of course only a toy example. We now move on to an example closer to “real life” computations,
which shows more clearly the effect of choosing block size without considering the above discussion.
Assume we want to compute the eigenpairs of a matrix of size n = 12288, using PDSYEV with
256 processors, originally structured in a 16 × 16 grid. Considering the choice of block size for the
other solvers it does not seem unreasonable to choose nb = 64. This choice would lead to a total of
n/nb = 192 blocks in each dimension, giving with the original processor grid 192/16 = 12 blocks
per processor in each dimension, or totally 122 = 144 blocks per processor. The load balance on the
original processor grid is thus perfect. Reordering the processors to a 1 × 256 grid however, the first
192 processors will receive 64 columns each, while the last 64 processors will idle during the entire
QR computation. Hence using nb = 64 for a matrix of size n = 12288, DSTEQR2 does not scale at
all to more than 192 processors.

In the tests of PDSYEV performed in this project nb was chosen with the above discussion in mind,
ranging from 2 to 32 and depending on matrix size as well as number of processes.

3 Hardware and Software

All tests in this project were performed on the IBM BlueGene/P system JUGENE [7]. Its base com-
ponent is the compute node of type 4-way SMP processor, with four 32-bit PowerPC 450 cores,
each with 850 MHz. On one nodecard 32 compute nodes are mounted, and 32 nodecards in turn
make up one rack. The complete JUGENE system consists of 72 racks, leading to a total of 73728
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compute nodes, or 294912 cores. The overall peak performance is 1 Petaflop. Each node has a
main memory of 2 Gbytes, which has been a limiting factor when performing tests with large ma-
trices.

For all tests a testing program provided by my advisor Inge Gutheil was used, in which a set of eigen-
values are generated and used as the diagonal of a diagonal matrix, which is then transformed into a full
matrix by Householder transformations with a random Householder vector. This setup allows for subse-
quent accuracy tests of the computed eigenvalues and eigenvectors. The testing program was compiled
and linked using the script mpixlf77_r, which uses bgxlf_r version 11.1 for compiling, and links to the
MPI supplied by IBM for JUGENE. The BLAS included in ESSL version 4.3 were used, together with
public domain versions of BLACS 1.1 and ScaLAPACK 1.8.

4 The Tests Performed

This section provides an overview of the tests performed, before the results are presented in the next
section.

The main part of the tests in this project were performed with 64, 128, 256, 512 and 1024 processors
(cores), using square grids where possible and otherwise 2 × 2m grids, where m is an integer. The
tests were performed on matrices of size 1000 + 500k and 1024 + 512k, where k = 0, 1, ... , 22. The
eigenvalues of the test matrices were generated in two ways:

1. random, drawn from a uniform distribution on a given interval, and

2. all clustered around ε except one, which has the value 12.

In the first of the above two cases, the following five intervals were tested: [0,1], [-10,20], [-100,200],
[-100,2000] and [-100,20000].

The above setup was tested computing all eigenpairs with each of the solvers as well as computing ten
percent of the eigenpairs with PDSYEVX and PDSYEVR, exceptions being made in some cases for
very slow computations, in order not to waste computing resources. Additionally a few preliminary
tests with 1024, 2048, 4096 and 8192 processors were performed on matrices of size n = 40960, 81920
and 122880.

5 Results

In this section, the results of the tests described above are presented. Apart from run times, the
orthogonality of computed eigenvectors will be discussed. To that end let Z be the matrix whose
columns are the computed eigenvectors. Then the eigenvectors are considered numerically orthogonal
if ‖ZTZ − I‖ = O(nε), and we hence would like ‖ZTZ − I‖/(nε) to be of moderate size. In the tests
performed, the values were around or less than one, unless otherwise stated.

2ε = relative machine precision · base of the machine. On JUGENE ε ≈ 2.2 · 10−16.
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The residuals of the eigenpairs were also computed, and in all cases fulfilled ‖(A− λI)z‖ = O(ε‖A‖),
where λ is an eigenvalue, z its corresponding eigenvector and A is the matrix whose eigenpairs are
being computed.

Before the results are presented, a note on the different intervals in which random eigenvalues were
generated: The reason for testing different cases was that in a smaller interval (keeping n fixed),
more and larger clusters are more likely to appear, which might influence performance and/or the
orthogonality of computed eigenvectors. In general however, no such differences were observed
wherefore in the following only the results for eigenvalues generated in the interval [0,1] will be pre-
sented.

5.1 All Eigenpairs, 64 - 1024 Processors

The run times of all four solvers, computing all eigenpairs using between 64 and 1024 processors
can bee seen in Figure 3, in each case plotted against the matrix size. Note that in this and all sub-
sequent plots a log-scale is used for both the x- and the y-axis. Noting the different y-axis scales,
we see that PDSYEV (top left) is, as expected, much slower than the other solvers. PDSYEVD (top
right) and PDSYEVX (bottom left) have approximately the same performance, although the latter
is generally somewhat faster than the former. All three solvers scale well at least with large matri-
ces, and the tendency is that the gaps between the different numbers of processors keep growing as
n grows, so that it may be assumed that even better scalability would be reached with larger matri-
ces.

With PDSYEVR, the performance using 64 - 256 processors is the same as with PDSYEVD and
PDSYEVX. Using more processors however, the times grow for small matrices compared to using
less processors, and even with the largest matrices tested, no scaling is achieved when increasing the
number of processors from 512 to 1024. As we will see in Section 5.3, this problem with scalability
seems to be present also when using more processors for larger matrices. With PDSYEVR the values of
‖ZTZ − I‖/(nε) were generally between 10 and 100, which is acceptable, but shows that the orthogo-
nality of the eigenvectors was not quite as good as with the other solvers.

Whereas altering the size of the interval in which random eigenvalues were generated did not apprecia-
bly alter the results, letting all eigenvalues except one be clustered around ε indeed influenced the per-
formance of PDSYEVX and PDSYEVR dramatically. The results are displayed in Figure 4, where the
results of PDSYEV (top left) and PDSYEVD (top right) are included for the sake of completeness, al-
though the run times are nearly identical to the corresponding ones in Figure 3.

As expected, with clustered eigenvalues the performance of PDSYEVX is greatly reduced (see the
bottom left plot in Figure 4), due to the orthogonalization discussed in Section 2.1. In order not to
waste computing resources, only two tests were performed with PDSYEVX in this case, using 64 and
1024 processors respectively. In both cases the maximal matrix size was n = 3500. In addition to the
very bad performance we also note that the routine does not scale at all. The reason for this is that all
but one of the eigenvalues belong to one and the same cluster, so that all orthogonalization is performed
on only one processor. In spite of the orthogonalization, the value of ‖ZTZ − I‖/(nε) grew to 2000
in the worst case.

Somewhat surprisingly, PDSYEVR (bottom right plot in Figure 4) does not have a problem with
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Figure 3: Run times computing all eigenpairs of matrices with eigenvalues randomly generated in
[0,1], using PDSYEV (top left), PDSYEVD (top right), PDSYEVX (bottom left) and PDSYEVR (bot-
tom right).

scalability when eigenvalues are clustered, as it did when eigenvalues were randomly spread (cf.
Figure 3). Moreover, with clustered eigenvalues, the orthogonality of the computed eigenvectors
is as good as with PDSYEV and PDSYEVD, again unlike with randomly generated eigenvalues.

5.2 Ten Percent of the Eigenpairs, 64 - 1024
Processors

The overall results when computing ten percent of the eigenpairs with PDSYEVX and PDSYEVR are
the same as the corresponding results when computing all eigenpairs, except of course, the run times
are shorter. The discussion of the next results will therefore be kept very brief, in order not to bore the
reader with too much repetition.

The run times of computing ten percent of the eigenpairs, with eigenvalues randomly spread in [0,1]
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Figure 4: Run times computing all eigenpairs of matrices with eigenvalues clustered around ε, using
PDSYEV (top left), PDSYEVD (top right), PDSYEVX (bottom left) and PDSYEVR (bottom right).

are displayed in Figure 5. PDSYEVX (left) has good performance and scaling, whereas PDSYEVR
performs well with small numbers of processors, but does not scale to 512 processors or more. Unlike
when computing all eigenpairs though, the scaling problem appears not for small matrices but only for
larger ones.

Run times for computing ten percent of the eigenpairs when eigenvalues are clustered are shown in
Figure 6. Note the difference in y-axis scale between the two plots, showing that PDSYEVX (left)
is many times slower than PDSYEVR (right). Again PDSYEVX hardly scales at all, whereas for
PDSYEVR with clustered eigenvalues there is no longer a problem with scalability using many pro-
cessors.

5.3 Chosen Tests with 1024 - 8192 Processors

Some first tests with between 1024 and 8192 processors and matrix sizes up to n = 122880 were
performed, and the results are presented in this section.
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Figure 5: Run times computing ten percent of the eigenpairs of matrices with eigenvalues randomly
generated in [0,1], using PDSYEVX (left) and PDSYEVR (right).

Attempts were done to benchmark PDSYEVD on large matrices, but even with 4096 processors (using
only one core per node to access the maximum amount of memory per process), the memory did not
suffice to perform the test with n = 122880. It should be mentioned that the testing program has a
considerable memory overhead, for testing purposes. Still this result demonstrates PDSYEVD’s need
for O(n2) extra memory, mentioned in Section 2, and shows that there is a need for an algorithm
without this extra memory requirement.

With PDSYEVX, only the case with randomly spread eigenvalues was tested with a larger number
of processors; testing the case with clustered eigenvalues would be nonsense considering the corre-
sponding results presented above. To save computing resources only ten percent of the eigenpairs were
computed, which also means less memory was needed than if all eigenpairs had been computed. Still,
for the memory to suffice, the parameter ORFAC, discussed in Section 2.1, had to be reduced to 10−6

for the largest matrix when using 8192 processors, and to 10−5 in all other cases. This did however
not alter the orthogonality of the computed eigenvectors. The run times can be seen in Figure 7, and
it may be concluded that PDSYEVX scales well even with up to 8192 processors, if the matrices are
large enough.

With PDSYEVR both clustered and randomly spread eigenvalues were tested, although the latter case
was tested only with n = 122880. Both tests were performed computing all eigenpairs, so the run
times should not be compared to those of PDSYEVX, but should rather be considered as mere test
of scalability. The results with clustered eigenvalues are plotted in Figure 7, and we see that the
routine scales well with large matrices. This is satisfying, but unfortunately, with n ≥ 81920 the
orthogonality of the computed eigenvectors is completely lost – the value of ‖ZTZ − I‖/(nε) is of
order 1010.

Also with randomly spread eigenvalues, the orthogonality of the eigenvectors computed by PDSYEVR
is completely lost. The run times, shown in Table 1, reveal that also with large processor numbers and
large matrices there seems to be a problem with scalability – the time with 8192 processors is longer
than with any smaller number of processors.
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Figure 6: Run times computing ten percent of the eigenpairs of matrices with eigenvalues clustered
around ε, using PDSYEVX (left) and PDSYEVR (right).

# processors 1024 2048 4096 8192
time (sec) 7018 4607 3553 7862

Table 1: Run times computing all eigenpairs of matrices of size n = 122880, with eigenvalues ran-
domly generated in [0,1], using PDSYEVR.

6 Conclusion and Outlook

In this report, the results of benchmarking four parallel solvers of the dense symmetric eigenproblem
have been reviewed. Of special interest were the new routine PDSYEVR, based on the parallel MR3

algorithm, and the routine PDSYEVX with the ORFAC parameter set to less than the default value
of 10−3.

For matrices with randomly spread eigenvalues PDSYEVX with ORFAC ≤ 10−4 performed well re-
garding run times as well as orthogonality of the computed eigenvalues. With clustered eigenvalues
the performance of PDSYEVX was as expected very poor. PDSYEVR on the other hand performed
well on moderate sized matrices with clustered eigenvalues, whereas with randomly spread eigen-
values there seemed to be a problem with scalability. For the largest matrices tested, the orthog-
onality of eigenvectors computed by PDSYEVR was lost independent of the matrix spectrum, and
again a problem with scalability appeared when eigenvalues were randomly spread. With clustered
eigenvalues however, good scaling was attained also for the largest matrices and numbers of proces-
sors.

It would be interesting to do more benchmarking with a large number of processors. Also, alterna-
tive implementations of the MR3 algorithm are being developed, and should be tested and compared
to the implementation benchmarked in this project. It should be noted though, that the most time
consuming parts of solving the eigenproblem for a dense matrix are the reduction to tridiagonal form
and the back-transformation of eigenvectors. It would thus be of interest to test alternative algorithms
for these two phases as well, although presently no such implementations are available. Addition-
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Figure 7: Run times computing ten percent of the eigenpairs of matrices with eigenvalues randomly
generated in [0,1], using PDSYEVX (left).
Run times computing all eigenpairs of matrices with eigenvalues clustered around ε, using PDSYEVR
(right).

ally, it would be interesting to test other matrix spectra than the two considered in this report, to have
a more general view of the way in which performance is influenced by the distribution of eigenval-
ues.
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