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Editorial

As one of the leading HPC centres in Europe, the Jülich Supercomputing Centre hosts regular sup-
port activities and educational programmes in the field of Scientific Computing. One of the main
priorities of these events is to introduce young academics to HPC and its applications in scientific
research. Therefore, since the year 2000, each summer between eight and twelve international stu-
dents have had the opportunity to tackle exciting and challenging scientific projects in the field of
HPC under the supervision of scientists from JSC, the NIC research group, and other institutes at
Forschungszentrum Jülich during the traditional ten week Guest Student Programme on Scientific
Computing.

In 2011, the 12th JSC Guest Student Programme took place from 01 August – 07 October and was orga-
nized with support from the Centre Européen de Calcul Atomique et Moléculaire (CECAM) and in co-
operation with the German Research School for Simulation Sciences (GRS).

Again, the number of excellent international applicants for the programme vastly exceeded the pro-
grammes capacity. Finally, twelve students from Germany, Italy, Croatia, Israel, and India joined
scientists from JSC, NIC, and GRS for ten weeks. While their original scientific areas ranged from
Physics, Mathematics, Chemistry, and Computer Science, their projects covered simulation, visualisa-
tion, and algorithm development as well as hardware porting studies.

The guest students and their advisers were:

Sandra Ahnen (Karlsruhe) Dirk Brömmel (JSC)
Alexander Alperovich (Tel Aviv) Bernhard Steffen (JSC)
Sebastian Banert (Chemnitz) Godehard Sutmann (JSC), René Halver (JSC)
Kaustubh Bhat (Aachen) Erik Koch (GRS)
Janine George (Aachen) Thomas Müller (JSC)
Christian Heinrich (Cologne) Bernd Mohr (JSC), Brian Wylie (JSC)
Momchil Ivanov (Leipzig) Thomas Neuhaus (JSC)
Andreas Lücke (Paderborn) Martin Müser (NIC)
Hans Peschke (Dresden) Lukas Arnold (JSC)
Francesco Piccolo (Napoli) Herwig Zilken (JSC)
Fabio Pozzati (Bologna) Dirk Pleiter (JSC), Willi Homberg (JSC)
Petar Sirkovic (Zagreb) Oliver Bücker (JSC), Timo Dickscheid (INM-1)

Besides the intensive use of JSC’s reliable workhorses JUGENE and JUROPA, the newly installed GPU
cluster JUDGE also played an important role this time: several projects were dedicated to GPU-based
algorithms. Therefore, the traditional courses on distributed and shared memory parallel programming
and performance optimization were complemented by a workshop on exploiting the capabilities of
graphics processing units. During a concluding colloquium, the guest students presented and discussed
their results encountered problems and solutions with other students and scientists. This JSC publica-
tion contains their individual scientific reports and underlines their ability of self-contained, focused
and cooperative work as young scientists on up-to-date topics.

Of course, success of the programme is not only due to single persons but the result of the hard work of
many contributors. We would like to thank the guest students for their work and dedication, contribut-



ing to challenging and exciting scientific topics as well as the advisers for their cooperation and patient
help, not only regarding the student’s work. Thanks go to the lecturers Florian Janetzko, Alexander
Schnurpfeil, Jan Meinke, Willi Homberg, Bernd Mohr, and Michael Hennecke who organised and held
the training courses.

Additionally, we would especially like to thank Natalie Schröder who has been doing a great job as
supporting organizer and Ria Schmitz for her tireless work on and against bureaucracy. Our special
thanks go to the Verein der Freunde und Förderer des Forschungszentrums Jülich and to IBM Germany
for their support.

Further information, reviews, former results, and the recent announcement of the next programme in
2012 are available online at http://www.fz-juelich.de/ias/jsc/gsp.

Jülich, December 2011 Mathias Winkel
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Dynamic load balancing in JuSPIC using MPI/SMPSs

Sandra Ahnen

Karlsruhe Institute of Technology
Faculty for Chemistry and Biosciences

Kaiserstraße 12
76131 Karlsruhe

E-mail: sandra.ahnen@student.kit.edu

Abstract:
Up to now, load balancing in the plasma simulation code JuSPIC has been achieved on two lev-
els: resulting from a domain decomposition of the complete simulation volume, which is necessary
for the MPI parallelisation and via distribution of SMPSs tasks onto threads using the new hybrid
MPI/SMPSs programming model. During this project, so called dynamic load balancing as a third
level has been added. In a first small example, this lead to a considerable speed-up of the program.

1 Introduction

The EU project TEXT (Towards EXascale applicaTions) tests and develops with several applications
the new hybrid MPI/SMPSs programming model and the dynamic load balancing that is possible with
it. The aim is to exploit the full potential of future computers using hundreds of thousands of multicore
chips. As part of the project, Jülich Supercomputing Centre ports the Plasma Simulation Code (PSC),
already using MPI parallelism, to SMPSs. The goal is to identify necessary improvements of the
programming model and to investigate the potential of SMPSs.

2 SMPSs

SMP Superscalar (SMPSs) is a programming model for shared memory parallelism currently devel-
oped at the Barcelona Supercomputing Center. The programming environment consists of a source to
source compiler and a runtime library and is available for Fortran and C.

The general idea is to execute tasks in threads running on the different cores of a processor, similar
to OpenMP. In contrast to OpenMP, using SMPSs the user does not need to assign explicitly which
instructions shall be executed in parallel. Instead this is taken care of by the runtime environment
based on the data dependencies of the tasks to be run. The user only needs to provide enough tasks of
sufficient coarseness that may run in parallel (their execution should take approximately 50-100 µs).
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DYNAMIC LOAD BALANCING IN JUSPIC USING MPI/SMPSS

In Fortran, tasks are subroutines with a !$CSS TASK annotation in front of the subroutine definition.
In addition an interface block is required in the (sub-)program calling the task, specifying the direction
of the variables via intent(in/inout/out) statements. Starting and stopping the runtime and
thus parallel tasks are achieved by adding !$CSS START and !$CSS FINISH annotations, which
must appear only once in the program. For example:

program main
...
interface
!$CSS TASK
subroutine mytask(a,b,c)
implicit none
integer, intent(in) :: a(1),b(1)
integer, intent(inout) :: c(1)

end subroutine
end interface
...
!$CSS START
...
call mytask(a,b,c)
...
!$CSS FINISH
...

end program main

!$CSS TASK
subroutine mytask(a,b,c)

...
end subroutine mytask

When compiling the source code, first a source to source compiler is invoked which turns the !$CSS
annotations into additional source code. At runtime, a task dependency graph is created according to the
intent(...) statements in the interfaces and the memory regions used.

SMPSs works with different kinds of threads: The main thread populates the task dependency graph
and distributes the tasks to the worker threads, which execute them. When there is no work left to
distribute, the main thread behaves like a worker thread itself. The user does not need to assign these
two kinds of threads. However it is possible to explicitly address a communication thread by !$CSS
TASK TARGET(COMM_THREAD). In this way, it is possible to execute communication tasks over-
lapping with the other tasks.
On Juropa, this can be done using simultaneous multithreading (SMT): Every core of a Juropa compute
node possesses two hardware threads, i.e. it can execute two instructions. As these instructions have to
physically share the core, SMT is only useful if these instructions are different, e.g. one does calcula-
tions and the other one accesses the memory. The communication (reading from or writing to memory)
can thus be executed on the second hardware thread of a core.
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3 JuSPIC

3 JuSPIC

JuSPIC (Jülich Superscaling Particle-In-Cell code) is based on the Plasma Simulation Code (PSC)
originally by H. Ruhl and now developed further at Jülich Supercomputing Centre.
It is used to simulate laser plasma interactions via classical particle simulations. For every simulated
time step, the electric and magnetic fields and the motion of the particles of the plasma need to be
computed. For this purpose a domain decomposition is applied to distribute the complete simulated
volume onto the MPI processes. The electric and magnetic fields are located on gridpoints, the particles
of the plasma have continuous coordinates inside the local domains. Communication between the local
domains is necessary to be able to continuously calculate the fields and to account for particles leaving
one domain and moving on to the neighbouring one.
Within the TEXT project, most of the simulation steps for the local domains have been put into SMPSs
tasks.

4 Dynamic load balancing

Up to now, load balancing in JuSPIC had been achieved on two levels: resulting from a domain de-
composition of the complete simulation volume, which is necessary for the MPI parallelisation and via
distribution of SMPSs tasks onto threads. During this project, dynamic load balancing as a third level
has been added.

On the first level of load balancing, the total work load is distributed onto MPI processes. For this
domain decomposition a mesh with varying width of the sections is used (Fig. 1). Local domains con-
taining plasma are chosen to be smaller than those without. This accounts for the additional amount of
work to simulate the particles of the plasma. In the used mesh, the width is set for each line and column,
variation of the width within one line/column is not possible. Therefore, the mesh is not flexible enough
to distribute the work equally in all cases: In Fig. 1 domain 3 contains no plasma and only needs to
compute the electric and magnetic fields in a large volume. The volume of domain 2 is smaller but there
is additionally plasma to be simulated. While the total work load of these two domains might be equal,
domain 1 in contrast is small and contains no plasma. The corresponding MPI process will therefore
have less work. Since in each simulation step communication between the domains is necessary, it will
have to wait for the others to finish and be idle during this time.

1

2

3

Figure 1: Example mesh for domain decomposition for a plasma lying diagonally in a 2D simulation box. The
three light coloured boxes indicate three domains with different work.
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DYNAMIC LOAD BALANCING IN JUSPIC USING MPI/SMPSS

Inside of one local domain, the second level of load balancing takes place: the work in form of
coarse grained tasks is distributed automatically among the SMPSs threads. If one thread finished
its tasks, it may steal work from another thread, so that no thread (i.e. no core of the compute node) is
idle.

Hybrid MPI/SMPSs makes it possible to use dynamic load balancing as a third level. The idea is that
MPI processes in a blocking communication or waiting at a barrier give the cores occupied by their
SMPSs threads to another MPI process on the same compute node. The other MPI process can then
extend its SMPSs tasks to more threads and might therefore finish earlier. This shuffling of cores is re-
alised by an extra runtime library. The library intercepts all calls to MPI functions and decides if the call
blocks the thread and thus if dynamic load balancing can take place.

Back in Fig. 1, the MPI process corresponding to domain 1 could then give its cores to the MPI process
of domain 2 or 3, as long as they are located on the same compute node. The idle time might thus be
reduced resulting in an overall speed-up of the program.

In the Paraver trace of a dummy example (Fig. 2), the dynamic load balancing (DLB) can be observed:
The first two windows show the tasks (dark and white boxes) executed by the different threads on the
same timescale. In this case, the upper half of the threads belong to the first MPI process, the lower half
to the second. The third window shows which MPI process is working or in a blocking MPI commu-
nication. Without DLB, every MPI process works on two threads (first window). Using DLB (second
window), the overall execution time is shorter and the MPI processes sometimes work on four threads
instead of two. Comparing with the third window, one can see, that this is exactly the case, when one
MPI process is in a blocking communication and the other one is working. The working process gets
the cores of the blocked one and can therefore distribute its SMPSs tasks onto four threads instead of
two.

Figure 2: Paraver screenshot: The same application run without (upper window) and with dynamic load balanc-
ing (middle window) with the same timescale. The third window shows when an MPI process is working or
in a blocking MPI communication. The box indicates an area, where DLB is taking place.
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5 Improvements on JuSPIC

5 Improvements on JuSPIC

The communication inside JuSPIC has been moved into SMPSs tasks. This increases the SMPSs
parallelism of the code, because more tasks are available to be distributed onto the threads. With
correct data dependencies, the communication will be executed overlapping with the other tasks, using
the communication thread mentioned before.

The so far non-blocking MPI communication has been changed to blocking communication. This
might not be an advantage by itself, but the blocking MPI_SENDRECV call indicates the runtime to
use dynamic load balancing.

In a small example, simulating only ten time steps and running on very few nodes, this lead to a con-
siderable speed-up (see Table 1). The speed-up depends of course on the specific example, i.e. on the
work imbalance to start with. In the Paraver trace (Fig. 3), the dynamic load balancing (DLB) can
be observed: The first window shows which MPI processes are working and which are in a block-
ing MPI communication. The second window shows the number of threads used by each process. In
this case, two SMPSs threads per MPI process, and two MPI processes per node have been assigned.
Only the two processes on the same node can interchange the cores occupied by their SMPSs threads.
Accordingly, the use of 4 threads by one MPI process indicates dynamic load balancing. The ap-
pearance of dynamic load balancing always corresponds to one process working and one being idle
(compare first and second window). The third window displays the tasks executed on the SMPSs
threads. The performance could still be improved allowing more or different MPI tasks to interchange
their cores.

Figure 3: Paraver screenshot of JuSPIC: The first window shows which MPI processes are working and which are
in a blocking MPI communication. The second window shows the number of threads used by each process.
In this case, two SMPSs threads per MPI process, and two MPI processes per node have been assigned.
Accordingly, the use of 4 threads indicates dynamic load balancing. The third window displays the tasks
executed on the SMPSs threads.
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DYNAMIC LOAD BALANCING IN JUSPIC USING MPI/SMPSS

total Walltime in s speed-up

4 nodes with each w/o DLB 149.07928
2 MPI x 2 SMPSs w DLB 139.05904 7 %

2 nodes with each w/o DLB 282.75693
4 MPI x 1 SMPSs w DLB 237.75237 16 %

Table 1: Performance measurements of JuSPIC on Juropa with and without dynamic load balancing (DLB).

6 Outlook

Up to now, JuSPIC does not clearly define all data dependencies and hence the order of the tasks to be
run. To ensure the correct execution of the program, barriers are inserted. Unfortunately, these inhibit
the runtime environment to generate the task dependencies and therefore to schedule the tasks to the
best of its abilities. This disadvantage could be removed by inserting sentinels. Sentinels are dummy
variables committed to the tasks in such a way, that via their intent(...) statements, the order is
non-ambiguously defined.

In order to profit more from the dynamic load balancing, it could be tried to distribute the MPI pro-
cesses in such a way, that processes with different work load end up on the same compute node. The
work could then be balanced dynamically more evenly on the cores and the idle time could be re-
duced.

Furthermore, the dynamic load balancing revealed some problems: Consider two MPI processes with
each 4 SMPSs threads executed on one compute node (Fig. 4a). If MPI process 1 gives its cores to
MPI process 0 (Fig. 4b), the threads on these cores are already a bit slower than those on the socket,
where MPI 0 is located itself. The reason for this is that the two sockets have separate memory, so
the threads on the lent cores need to access the memory on the other socket, since they belong to MPI
process 0. If then MPI process 1 gets four cores back, these are not necessarily the same cores it gave
away. It simply gets those back, that finished their work first. In the worst case, the threads of MPI
process 1 might end up completely on the socket of MPI 0 (Fig. 4c). This way, the performance after
interchanging the cores would be much poorer than before any dynamic load balancing happened.
The work-around up to now is to use only one socket of each node in order to access the same memory
no matter how the cores are interchanged. This way, half of the node is unused, which is of course
undesirable. A better way might be to restrict the dynamic load balancing to the MPI processes located
on the same socket.

(a) (b) (c)

Figure 4: Problems with DLB: Schematic picture of a Juropa compute node, occupied by 1 MPI process per
socket each using 4 SMPSs threads, before (a), during (b) and after DLB (c).
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Support for performance measurements of MPI File I/O for the
Scalasca toolset

Christian Heinrich

Universität zu Köln
Mathematisches Institut

Weyertal 86-90
50931 Köln

E-mail: heinrich@informatik.uni-koeln.de

Abstract:
Scalasca is a portable and scalable performance measurement tool that provides sophisticated support
for MPI. Unfortunately, support for the performance measurements of MPI File I/O was limited,
for example it did not provide any facility to get information about the amount of bytes transferred
(read/written) in a specific MPI File I/O call.
In this report, the steps that have been taken to implement this will be described. Additionally, an
introduction into the Scalasca wrapper generator will be given.

1 Introduction

Parallel programming becomes more and more important as computational sciences require a growing
amount of resources since their computations quickly become more and more complex. However,
this performance gain cannot be achieved by simply increasing the CPU core speed, as the latter is
limited due to exponential growth in needed energy and produced heat. Instead, the amount of cores
is increased and new programming paradigms have been developed so that programs run on multiple
cores and processors at the same time.

Unfortunately, parallel programming is hard - it is very easy to introduce deadlocks and performance
bottlenecks which might be absolutely non-obvious and cause dramatic performance loss.

Some examples for this could be:

1. Heavy communication between nodes that is not necessary or could at least be reduced. Com-
munication over physical networks is especially expensive due to the comparatively slow speed.

2. Work loads may easily be incorrectly partitioned. This means that several processes are given
considerably more work while others are idle.
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SUPPORT FOR PERFORMANCE MEASUREMENTS OF MPI FILE I/O FOR THE SCALASCA TOOLSET

3. Computational dependencies might be set up inefficently. This means that several processes have
to wait for another process to finish its computation as they need the results to continue their own
work.

The goal of the field of ”performance measurement and analysis“ is to find these bottlenecks or at least
to provide information so that the user can find them on his own.

There are several tools available that support the user to do so. Examples are Vampir1, TAU2 as well
as Scalasca3. Only Scalasca will be used in this report.

2 Scalasca

Scalasca[1] is an automatic performance evaluation system for MPI, OpenMP, and hybrid applica-
tions written in C/C++ or Fortran. Scalasca generates event traces from running applications and
automatically searches them off-line for execution patterns indicating inefficient performance behav-
ior. Scalasca is jointly developed by Forschungszentrum Jülich, Germany, and the German Research
School for Simulation Sciences in Aachen.

The neccessary instrumentation of user code is supported in different ways depending on the avail-
ability of certain compilers and third-party tools: automatically using a compiler-supplied monitoring
interface or using TAU, or manually by placing POMP directives after the entry point and before all exit
points of arbitrary user-defined regions. The POMP directives are later processed by OPARI, which is
also responsible for the automatic instrumentation of OpenMP constructs. MPI point-to-point, collec-
tive, and one-sided communication and synchronization functions are instrumented fully automatically
by interposing a wrapper library. During execution, the instrumented code generates several trace files,
one for each MPI process.

After the measurement has been completed, the traces are subjected to an off-line analysis performed
by Scalasca’s trace analyzer, which attempts to identify specific performance properties. Internally,
it represents performance properties in the form of execution patterns that model inefficient behavior.
These patterns are used during the analysis process to recognize, classify, and quantify inefficient
behavior in the application. The performance properties addressed by Scalasca include inefficient use
of the parallel programming models MPI and OpenMP. The analysis process automatically transforms
the traces into a compact call-path profile that includes the execution time penalties caused by the
different patterns broken down by call path and process or thread.

2.1 Instrumentation

In this context, the term “instrumentation” can be comprehended as “inserting function calls into an
existing programs to collect specific data”. Examples for such data might be timestamps for enter /
finish times of a function, parameter values, communication data or maybe just data that helps with
debugging.

1http://www.vampir.eu
2http://tau.uoregon.edu
3http://www.scalasca.org
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3 MPI File I/O

Scalasca’s measurement system instruments functions that the user wants to track by either using com-
piler instrumentation (thus, automatic) or manual instrumention by the user. Automatic instrumentation
is most of the time only appropriate for standard measurements like time measurement.

However, for libraries such as MPI where more information ought to be tracked, automatic instrumen-
tation is impossible as it must be determined how the data needed can be collected. To do this, so-called
wrappers are used.

As the name suggests, these wrapper functions wrap other functions and thus add functionality. This is
shown exemplarily in the following listing:

MPI_Send ( . . . ) {
beg in_measuremen t ( ) ;
r e t u r n V a l = PMPI_Send ( . . . ) ;
f i n i s h _ m e a s u r e m e n t ( ) ;
r e t u r n r e t u r n V a l ;

}

Listing 2.1: Principle structure of an MPI wrapper

This illustrates the way Scalasca wraps MPI functions: MPI already ships with an interface for this
purpose called PMPI - every MPI function exists as MPI_Function() as well as PMPI_Function(). This
allows to implement wrappers which behave like the original MPI call but introduce extra instrumen-
tation code. This means that the user, who should always call MPI_Function() does not know whether
a wrapper is being called or not but since the wrapper does not change behaviour, there is no reason
the user should know.

The listing above demonstrates an easy use-case for this: The common function MPI_Send is wrapped
and two function calls are issued. One initiates measurement before the original PMPI_Send is exe-
cuted and the other finishes it afterwards. This is mainly the way that Scalasca tracks time spent in any
MPI function. Another feature of the “wrapper” technique is that the instrumentation has access to all
parameters passed in and out of the function. To use wrapper libraries, the user has to link first with
the wrapper library, then with the original MPI library. Wrapper functions will be the central part of
this work.

3 MPI File I/O

Although POSIX (the “Portable Operating System Interface”) defines a widely portable file system,
efficient parallel I/O is hard to achieve since POSIX lacks support for sophisticated parallel file accesses
such as parallel reads.

This motivates the introduction and usage of a standardized and performant, but still optimizable par-
allel file I/O library. Standardization is important for portability whereas optimizability will allow
developers to tweak their programs.

MPI in fact provides such facilities. However, although MPI is quite easy to use, about 90% of pro-
grams that use MPI still use standard I/O instead of MPI File I/O.

11



SUPPORT FOR PERFORMANCE MEASUREMENTS OF MPI FILE I/O FOR THE SCALASCA TOOLSET

3.1 Structure of MPI File I/O

Figure 1: Functions for read / write accesses in MPI 2.2. Picture taken from [6] chapter 13.4.1

As can be seen in figure 1, there are many MPI File I/O functions available. These are distinguished as
follows:

1. The positioning states where the function will write or read. The position can either be explicit
for every rank (“explicit positioning”), it can be performed by individual file pointers (every rank
maintains its own file pointer; if this file pointer is changed, other ranks are not affected) or by
shared file pointers (every change to this file pointer affects all other ranks participating in this
operation as well).

2. Furthermore, synchronism of these functions may differ. There are in general three categories:

a) Blocking

b) Non-Blocking

c) Split Collective

Blocking means that the function call returns only after the operation completed (or an error
occurred).

Non-Blocking is complementary and means "function can return immediately". Non-Blocking
operations are only complete when indicated by a subsequent MPI_Test or MPI_Wait. This can
obviously speed up a program since data can be read (or written) in the background while other
computations are still being executed.

12



4 My Task

These two categories are the same as those known from MPI Point-to-Point (P2P) functions.

Additionally, for each blocking collective I/O function, a restricted "non-blocking collective"
function is available in form of a so called “split collective” function.

3. Thirdly, there are differences in coordination: There are collective and non-collective functions.
These terms are used to state whether this function has to be called by every rank which partici-
pated in the “file open”-call associated with the filehandle used (collective) or executes indepen-
dently (non-collective).

4 My Task

4.1 Motivation

When optimizing a parallel program that uses MPI File I/O, programmers might be interested in the
following questions:

• How many files are opened in total?

• How much time is consumed by I/O operations?

• How many bytes does my program read / write in total?

• How many bytes does a specific rank k read?

• Is the amount of bytes read / written equally partitioned or are some ranks doing more work than
others?

It is quite obvious that Scalasca is predestined to answer these questions. Unfortunately, Scalasca 1.3.3
only keeps track of the amount of file operations as well as the time they consume - there is no metric
that could keep track of the other desired information. Thus, it would be good to have support for this
in an upcoming version of Scalasca.

4.2 Task description

Implement everything necessary for Scalasca to track bytes read / written in MPI File I/O opera-
tions.

Proceed as follows:

1. Make any necessary changes to the Scalasca core system; this includes adding new functions to
the measurement system and a new metric

2. Familiarize yourself with Scalasca’s function wrapper generator.

3. Write thorough documentation that can be used by future developers to understand and use the
wrapper generator.

4. Set up additional templates and extend prototype definitions where needed.

5. Test your results by writing several test cases.

13
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5 The wrapper generator

5.1 Motivation

Although the wrapper generator is only of interest for Scalasca developers and not for endusers, it is a
vital part of Scalasca since there are currently more than 300 functions for each of C and Fortran in MPI
that need to be instrumented to track at least the time spent within them. As manual instrumentation
would imply a lot of redundant code, this code gets automatically generated. How this works will be
explained in the following paragraphs.

Further reasons why using a wrapper generator might be worthwhile:

1. Fortran code must be instrumented as well, so wrapper for the C and Fortran API of MPI need
to be generated; this adds a significant amount of work.

2. Generating avoids error-prone code-copy and reduces the amount of redundant code.

3. It is much faster than writing by hand.

4. Although mainly used for MPI, other libraries could be wrapped as well if the generator is
designed properly.

5.2 What does it provide?

The wrapper provides:

1. A storage file (in XML format) for function definitions, called “prototype“ storage, storing func-
tion names, parameters and types, return values, etc.

2. High-level templates that are used to decide which functions to wrap (selection) and in which
order. (This is implemented by #pragma’s)

3. Low-level templates contain the desired structure of the resulting wrapped function. To keep it
general, variables can be used.

4. Abovementioned #pragma statements use these low-level templates and replace the variables
with definitions provided by the “prototype“ storage.

5.2.1 Prototype storage

The storage must contain a definition for every function to be wrapped. This includes basic information
like function name, return type, parameter lists as well as library specific information like the version
that introduced this function. Other tags provide the possibility to declare own variables and initial-
ize them, execute own code, provide rules to compute specific parameters of this function or just to
associate the function with a group.

The following excerpt of the storage file shows the definition of “MPI_Isend”.

< p r o t o t y p e name=" MPI_Isend " r t y p e =" i n t " group =" p2p " gua rd =" p2p " >
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5 The wrapper generator

<param a c c e s s =" i " t y p e =" vo id ∗ " name=" buf " / >
<param a c c e s s =" i " t y p e =" i n t " name=" c o u n t " / >
<param a c c e s s =" i " t y p e =" MPI_Datatype " name=" d a t a t y p e " / >
<param a c c e s s =" i " t y p e =" i n t " name=" d e s t " / >
<param a c c e s s =" i " t y p e =" i n t " name=" t a g " / >
<param a c c e s s =" i " t y p e ="MPI_Comm" name="comm" / >
<param a c c e s s =" o " t y p e =" MPI_Request∗ " name=" r e q u e s t " / >
< v e r s i o n i d =" 1 . 0 " / >

< / p r o t o t y p e >

Listing 2.2: Definition of MPI_Isend as used in Scalasca

5.2.2 Templates

As aforementioned, the wrapper generator ships with two different kinds of templates: On the one
hand, we have the high-level templates which are mainly, but not always, used to decide which func-
tions should be wrapped and in which order. They provide several mechanisms how to select the desired
functions or even contain hardcoded functions, if the code is too function specific.

On the other hand, we have the so-called low-level templates: They define the structure of the generated
code for the functions that were selected by the high-level templates. As a result, function specific
code is generated because low-level templates allow the use of variables (which simply access the data
associated with the currently processed function that was stored in the prototype storage). However, it
is not the case that the result itself is always code for a function.

A trivial example of a high-level template is shown below, followed by two more listings showing the
associated low-level template (listing 2.4) as well as resulting output (listing 2.5). Both templates are
probably one of the easiest cases that could be thought of.

/∗ ∗ High l e v e l t e m p l a t e ∗ ∗ /
#pragma wrapgen m u l t i p l e r e s t r i c t ( ) s k e l / epk_mpireg_h .w

Listing 2.3: This high level template selects all functions contained in the prototype storage and generates code
for them with the low-level template skel/epk_mpireg.h.w

/∗ ∗ EPIK r e g i o n ID f o r $ { name } ∗ /
# d e f i n e EPK__${name | u p p e r c a s e } ${ i d }

Listing 2.4: Content of skel/epk_mpireg_h.w. Here, a constant is defined by using the uppercase helper. This
helper transforms the function name stored in $name into uppercase letters.

5.3 Documentation

During the summer program at JSC, documentation for users of this wrapper generator was written.
The documentation itself is several pages long and explains the generator in detail. However, this is
not possible in this report.
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/∗ ∗ EPIK r e g i o n ID f o r MPI_Abort ∗ /
# d e f i n e EPK__MPI_ABORT 0
/∗ ∗ EPIK r e g i o n ID f o r MPI_Accumulate ∗ /
# d e f i n e EPK__MPI_ACCUMULATE 1
/∗ ∗ EPIK r e g i o n ID f o r MPI_Add_error_c las s ∗ /
# d e f i n e EPK__MPI_ADD_ERROR_CLASS 2
/∗ ∗ EPIK r e g i o n ID f o r MPI_Add_error_code ∗ /
# d e f i n e EPK__MPI_ADD_ERROR_CODE 3

Listing 2.5: Generated code from the two preceding listings. Similar lines are generated for all other MPI
functions as well.

Exemplarily, it covers the prototype storage in detail as well as both high- and low-level templates. Ad-
ditionally, background information is given (how does the fortran wrapper work?) and recurring tasks
like adding a new variable or the standard workflow are described.

6 Changes

6.1 Changes to Scalasca’s core system

At first, the Scalasca core system had to be prepared in order to record and display the bytes transferred.
This includes adding new metrics to its EPISODE measurement system. There are a lot of places that
had to be adjusted with a few lines of code. These changes were developed in cooperation with the
Scalasca team.

6.2 Changes within the wrapper generator

The wrapper generator needed a little bit more work:

1. Create a new template that allows to execute code after the PMPI function was called. This was
solved by introducing a new variable “postcall”.

2. Extend prototype definitions: Declare and initialize variables that are needed within the “post-
call” section. Prototype definitions that had to be extended include all blocking and non-blocking
functions (see figure 1). For non-blocking functions, MPI_Wait had to be extended in addition to
the respective function prototypes. A typical postcall section for some function prototype might
look like listing 2.6.

3. Adjust the “make” process.

7 After the changes

Since the changes were made quickly, tests could be performed.
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7 After the changes

< p o s t c a l l >
< ! [CDATA[
PMPI_Type_size ( d a t a t y p e , &s i z e ) ;
PMPI_Get_count ( s t a t u s , d a t a t y p e , &r e c e i v e d E n t r i e s ) ;
e s d _ m p i _ f i l e _ r e a d ( s i z e ∗ r e c e i v e d E n t r i e s ) ;
] ] >

< / p o s t c a l l >

Listing 2.6: Example for a postcall section within the prototype storage

Figure 2: Scalasca analysis report presentation with a new metric for transferred bytes in I/O operations.

In figure 2, a measurement of a testprogram with MPI File I/O is illustrated. In the left column, all
metrics are displayed and you can easily spot the new MPI File I/O metrics at the bottom. Since this
figure only shows a portion of the Scalasca GUI, the “collective” metrics cannot be seen but are also
available.

In the situation shown, the metric “MPI Individual File Bytes Written” is selected and thus, the middle
column shows the total amount of bytes written for each function call: For example, only three func-
tions use MPI to write files (“TestCases::serialWrites”, “TestCases::rankZeroOnly” as well as “Test-
Cases::multipleFilesOpen” whereas the last one is divided into further function calls where you can
see that only “MPI_File_write” actually writes).

With “MPI_File_write” selected in the middle column, the right column shows the bytes written by
each rank by this function call. In this testcase, every rank writes the same amount which is reported
correctly.
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7.1 Testcases

Multiple testcases have been written and are mostly very basic; in fact, they are only issuing several
calls of the form “open - read / write - close” so that it can be checked whether Scalasca tracks every-
thing without error.

Further test cases include:

• Test non-blocking (including split-collective) functions separately from blocking functions

• Check if everything is recorded correctly if only one rank reads / writes

• Open multiple files at the same time - split communicator for this

These tests will be expanded in future as some functionality like specifying the number of bytes to be
read / written on startup is still missing.

8 Problems

After testcases for non-blocking functions had been written and tested, it became clear that support for
non-blocking functions would require serious changes within Scalasca’s core due to design decisions:
Each function was erroneously considered to belong to at most one group - however, MPI_Wait is a
counter example as it could be used to complete a P2P or I/O operation. Scalasca, however, associates
MPI_Wait only with P2P which implies that P2P operations appear within the GUI even though there
were no such operations involved. This can be seen in figure 3.

Figure 3: Scalasca shows P2P activity, however, there was none.

9 Conclusion

Scalasca’s measurement and analysis modules were extended to include data about MPI parallel file
I/O. Scalasca now allows parallel programmers to analyze and tune the parallel I/O of their code. Still,
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there is quite some work to do: Split collective functions can currently not be tracked and Scalasca is
unable to distinguish completion of non-blocking and P2P and File I/O operations.
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Abstract:
The highly scalable parallel tree-code PEPC is the first Barnes-Hut tree-code implementation which
runs efficiently on the entire 288k cores of JUGENE. This is possible as almost all parts of the code
scale perfectly up to this amount of cores. The currently problematic code segment handles the global
exchange of branch-nodes which is going to dominate the overall run-time for an increasing number
of cores. Branch-nodes are essential for the tree-traversal, since they act as entry points to remote
trees. The aim of this paper is to describe the scalability issues and to design and implement an
algorithm for the hierarchical tree construction in order to optimise the global exchange of data.

1 Introduction

The parallel tree-code PEPC (Pretty Efficient Parallel Coulomb Solver) is an efficient FORTRAN imple-
mentation of the Barnes-Hut tree-code [2] based on the Hashed Oct-Tree (HOT) scheme from Warren
and Salmon [6] for simulating N -body systems with N � 3. Although the method of Barnes and
Hut reduces the complexity to O(N logN), compared to the direct summation with a complexity of
O(N2), it is also essential to reach very high scalability in order to utilise the full capabilities of current
and future supercomputers.

With the emergence of the current petascale supercomputer generation with thousands of cores, PEPC

was optimised to achieve very good strong-scaling results [3, section 3] with up to 8192 MPI-tasks. The
latest improvements, namely Virtual Local Domains [4] as well as a hybrid parallelized tree-traversal
with a fully asynchronous communication scheme [7], pushed up the limit even further so that PEPC

now scales on the full IBM Blue Gene/P system JUGENE at Jülich Supercomputing Centre with its
294,912 cores.

These very good results are solely possible due to almost all parts of the code being scaled perfectly.
This even applies to the algorithmically most challenging tree-traversal and force-summation, which
generally is most time consuming. As we will see in section 2, every parallel Barnes-Hut tree-code
has to exchange data between all processes in every time-step. This part of the algorithm is indeed
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not expected to scale at all, but its impact has to be reduced to an absolute minimum to be prepared
for future supercomputer generations. The objective of this paper is to describe the scalability issues
in the current implementation of the parallel Barnes-Hut tree-code PEPC and to design and imple-
ment an algorithm for the hierarchical tree construction in order to optimise the global exchange of
data.

For the purpose of understanding the current scalability problem in PEPC, which is analysed in sec-
tion 3, it is necessary to give a short introduction to the basic algorithm of the parallel Barnes-Hut
tree-code, as implemented in PEPC. This is dealt with in the following section, mainly focusing on the
global exchange of data.

Section 4 presents a new hierarchical tree construction algorithm as a solution for the scalability issue
described in section 3. The last two sections show scalability results as well as an outlook to further
improvements.

2 The parallel Barnes-Hut tree-code algorithm in PEPC

This section gives an overview of the whole algorithm. Selected parts are described in detail in order
to understand the scalability problem as well as the new algorithm presented in section 4. For deeper in-
sight into the algorithm and the implementation, [3] and [5] are good starting points.

Algorithm 1 main steps of the parallel Barnes-Hut algorithm

for all time steps do
step 1: domain decomposition
step 2: building up of the local tree
step 3: global exchange of the branch-nodes
step 4: building up of the global tree
step 5: tree-traversal and force-summation for each particle

end for

At the beginning of every iteration, the particles are randomly distributed over all processes. In the first
step, they therefore have to be redistributed in a manner that does not leave the domains too fragmented
for the purpose of gaining good efficiency. In PEPC, this is achieved by parallel linear sorting of the par-
ticle keys on a space-filling curve. The keys are unique octal numbers representing a node in the hashed
oct-tree and can be calculated using the coordinates of the particles.

In the next step, every process builds up the local hashed oct-tree from its local set of particles and
their corresponding keys. This is performed from the root-node down to the leafs. Every leaf-node
contains exactly one particle and only the nodes between leaf-nodes and the local root-node are stored.
After the construction of the local tree has been finished, every process determines a set of nodes which
covers the whole local domain, but does not overlap with the domains of other processes. The elements
of this set are called branch-nodes or branches. For efficiency reasons this set needs to be as small as
possible. At the end of the local tree-build, every process calculates the multipole-properties of every
node in the local tree from the leaf nodes up to the root node.
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3 The current scalability issues in PEPC

Figure 1: Multipole Acceptance Criterion: Interact with a node if s/d < θ for a predefined θ ∈ (0, 1], otherwise
resolve the node and interact with its children. [1]

The branch-nodes are necessary in step 5 of algorithm 1 as they interact with particles or multipoles in
remote domains. They store the location (MPI-rank1 number) of their own child-nodes and act as entry
points to remote trees. In order for this to work properly, the branch-nodes of all domains have to be
exchanged, meaning that after step 3 in algorithm 1 every local hashed oct-tree of a process contains
all branch-nodes of all remote hashed oct-trees in addition to its local branch-nodes. In PEPC, this is
performed utilising the MPI-library. While, for each process, MPI_AllGather communicates the
number of nodes, that have to be exchanged, to every process, MPI_AllGatherV exchanges the
branch-nodes including their multipole-properties.

Subsequently, every rank calculates the multipole-information of every node above the branches in-
cluding the root-node in step 4. The last step comprises the tree-traversal and the force-summation.
For every local particle, an interaction list of particles and multipoles is determined by the correspond-
ing process according to the Multipole-Acceptance-Criterion (MAC), shown in figure 1. If the children
of a node n are not available in the local hash-table, which is the case for all non-local branch-nodes,
the node n stores their locality, or more precisely their MPI-rank number, so as to be able to request
them during the tree-traversal.

According to [3, section 2.6], “the tree-traversal is the most important and algorithmically challenging
part of a parallel tree-code”. The current implementation uses Pthreads as well as an asynchronous
communication scheme to overlap communication and computation. Since the details are not relevant
for the rest of this paper, [7] is recommended for further reading.

3 The current scalability issues in PEPC

In order to achieve perfect strong-scaling results with thousands of MPI-ranks, it is imperative that all
parts of the algorithm scale well. With an increasing number of processes, non-scaling code segments
will dominate the run-time at some point. To be prepared for future supercomputer generations with
millions of cores, these non-scaling parts ought to be avoided. The IBM Blue Gene/P system JUGENE

at Jülich Supercomputing Centre with its 294,912 cores enables to get an insight into the scalability
problems on such massively parallel systems.

1The terms MPI-rank, rank, MPI-process and process are used synonymously.
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Figure 2: Comparison of the scalability of the global exchange of branch-nodes and the tree-traversal including
the force-summation. Each test series simulates homogeneously distributed particles with differing numbers
of particles N . [7, section 3.3]

Figure 2 shows, that up to a certain amount of cores, the tree-traversal dominates the overall run-time,
although scaling perfectly even with very few particles per core. The problematic part of the current
implementation is the global exchange of branch-nodes, because it scales linearly at best and thus does
not scale at all.

As already mentioned in section 2, every MPI-rank determines a local non-empty set of branch-nodes
from its local hashed oct-tree. These branch-nodes are exchanged with all other ranks in step 3 of the
parallel Barnes-Hut algorithm. Given that every process contributes at least one branch, the number of
branch-nodes and therefore also the amount of transferred data in the MPI_AllGatherV operation,
depend linearly on the number of processes.

Furthermore, the set of remote branch-nodes has to be stored in the local hashed oct-tree which requires
a considerable amount of local memory in the event of a huge number of ranks. The rightmost data
point in figure 2 represents a run of PEPC on the full JUGENE that was executed with one MPI-rank on
each of the 73,728 compute-nodes along with four threads for the tree-traversal. Under the assump-
tion, that each rank contributes an average of 15 branch-nodes, the set of global branch-nodes takes
approximately 197 Mb of memory, which are 9.6% of the total amount of memory on each compute-
node.

However, the global exchange of data in a parallel Barnes-Hut tree-code is inevitable, because the
multipole-properties of remote nodes are essential for the complete force-summation of the local parti-
cles. Figure 3 specifies three different kinds of nodes in a selected local tree after step 5 of algorithm 1.
It moreover visualises the amount of nodes for each kind per tree-level as well as the overall amount
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Figure 3: For selected kinds of nodes, the graph shows the amount of nodes per tree-level in a local hashed
oct-tree. The most interesting aspect is the gap between the global branch-nodes and those on the interaction
list in the levels 4 to 7, which implies that many branch-nodes are redundant in the local hash-table. from [1].

of nodes. The nodes, which interacted with at least one local particle, are illustrated by the line la-
belled “on interaction list”. If another local tree had been chosen, the data points representing the
branch-nodes would be the same.

Obviously, the amount of branch-nodes substantially exceeds the number of nodes on the interaction
list on some levels. This implies, that a considerable amount of branch-nodes remains unused on certain
levels and therefore does not really have any value for both tree-traversal and force-summation of the
local particles. They have only been used to calculate the multipole-properties of the nodes between
the branches and the root-node.

The above mentioned suggests, that there is the opportunity to save not only memory for the local
hash-tables, but also a big chunk of data transfer during the global exchange of the branch-nodes. Fur-
thermore, the structure of the tree above the branches, as well as the multipole-properties of the nodes
in these tree-levels, are exactly the same on all ranks. They are nonetheless computed redundantly by
every process during the construction of the global tree.

The problem is, that it is impossible to characterise which remote branches are dispensable before they
are exchanged, because this solely depends on the structure of the remote trees, which, at this stage,
is yet unknown. Unfortunately, the branch-nodes serve as entry points to the structural information
during the traversal of the remote parts of the tree. Therefore, in order to reduce the amount of globally
exchanged data, the coupling of the local trees has to be detached from the branch-nodes. A concept
on how to accomplish this is illustrated in the next section.
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4 Optimisation of the global data exchange in PEPC

Upon construction of the global tree, every rank needs the multipole-properties of the children of the
root-node in order to start the tree-traversal for the local particles. In case the local availability of the
multipole-properties is not ensured, their locality is required. The same consideration applies to all
nodes between the root-node and the branch-nodes. To compute the multipole-property of a node, all
multipole-properties of its children have to be locally available. A problem arises if these children are
spread over more than one process. In this case, they have to be collected entirely by at least one rank
prior to computation.

Starting with these considerations, at the very least the root-node has to be exchanged between all
processes, assuming that one process already collected all essential data. The advantage is, that the
amount of data received in this very last step is reduced to the absolute minimum of only one node per
rank. It is important to note, that the amount of received data is independent of the number of ranks.
On the downside, all remote branch-nodes have to be collected in advance by at least one MPI-process.
Furthermore, the load-balancing is very bad, because all other processes are idle while the root node is
computed. This constitutes a huge waste of valuable resources.

One way to keep the amount of received data per process in the global data exchange operation indepen-
dent of the number of processes, is to fix the number of globally exchanged nodes. This thought, along
with the desire to distribute the computational effort among more processes, leads to the idea of a single
level in the oct-tree from which the nodes are globally exchanged2.

Obviously this approach requires a certain amount of communication at a deeper tree-level, as the
children of a blev-node are generally spread over more than one rank. The global tree is built in several
phases, hence the strategy is termed hierarchical tree construction.

Intent on connecting the local trees to one global tree by globally exchanging the nodes in exactly one
level of the tree, the following section describes the respective algorithm as well as implementational
hints on how to achieve good performance with MPI. Additionally some scaling results on JUROPA are
presented.

4.1 An algorithm for Hierarchical Tree Construction in PEPC

In general, more than one rank contributes to one node in the level blev. As already mentioned be-
fore, all ranks which contribute to a certain blev-node have to exchange data in order to calculate
its multipole-properties. Since the branch-nodes are the nodes in the highest local tree-level, whose
multipole-properties are already completely computed, they are predestined to be exchanged. The
challenge is to ensure that only the ranks, which contribute to a blev-node, exchange the corresponding
branch-nodes.

Thence, the first step in the hierarchical tree construction algorithm is to determine the unique set of
contributing ranks for each blev-node. Such sets are called groups and the respective algorithmical step
is called grouping. Every rank is member of a maximum of two groups, one for its first and one for its
last blev-node, which is a consequence of sorting the particles during the domain decomposition. The

2As of now the single tree-level of global exchange is called blev and the corresponding nodes in the global tree are called
blev-nodes.
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Figure 4: Example with blev = 1 (red bar) and 5 MPI-ranks (blue boxes). For reasons of simplicity the depicted
tree is a quad-tree instead of an oct-tree and the branch-nodes are all located in level two. (a) The processes
p0 and p1 contribute to the blev-node with the key 10 and therefore coalesce in a group. Process p1 is member
of a second group, since it also contributes to node 11, along with p2 and p3. Ultimately, groups for the nodes
12 and 13 are not necessary, since their multipole-properties can be calculated by the processes p3 and p4
alone. The current implementation with MPI_Comm_Split however, creates a group with one member for
blev-nodes 12 and 13. (b) The group-members exchange the branches of the corresponding blev-node.

only exceptions to that are the ranks with the highest and lowest rank number, which are member of
one group at most.

There are many conceivable ways to implement grouping with peer-to-peer or one-sided communica-
tion. The current version of PEPC uses two calls of the standard MPI procedure MPI_Comm_Split,
where the least significant four bytes of the eight byte key of the corresponding local node in the
level blev serve as input argument for characterising the membership of the rank to the resulting MPI-
communicators.

The order of the calls is not arbitrary, because all members of a group have to meet in the same call.
This can be achieved by counting the local number of keys between the first and the last blev-node and
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(c) before the exchange of blev-nodes
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(d) after the exchange of blev-nodes

Figure 4: continued example: (c) Each process builds up the tree from the available branches of all local groups
up to the level blev. (d) Globally exchange the blev-nodes and build up the tree up to the root-node. Process
p0 contributes blev-node 10 and p1 contributes blev-node 11 to the global exchange. Process p2 does not
contribute any blev-node, since blev-node 11 is already contributed by p1. The blev-nodes with the keys 12
and 13 are contributed by processes p3 and p4 respectively.
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grouping determine the groups according to
each rank’s contribution to the nodes in the
level blev

group-exchange exchange the branches in
each group and calculate the multipole-
information up to the level blev

rooting globally exchange the nodes in the
level blev and calculate the multipole-
information up to the root node

Algorithm 2 main steps of the parallel Barnes-Hut
algorithm with hierarchical tree construction

for all time steps do
step 1: domain decomposition
step 2: building up of the local tree
step 3: hierarchical construction

of the global tree
step 3.1: grouping
step 3.2: group-exchange
step 3.3: rooting
step 4: tree-traversal and force-summation

end for

performing a prefix sum on this value with the collective MPI_Scan procedure. Hence all ranks with
an odd (key− prefix_sum) meet in the first call and those with an even (key− prefix_sum) in the
second call.

The second step encompasses the exchange of each group’s branch-nodes between all group members,
shown in figure 4 (b), as well as the calculation of the multipole-properties from the local branches
and group-branches up to the level blev. In case the groups are constructed in the aforementioned way,
the first part can be implemented by a call of MPI_AllGather and a call of MPI_AllGatherV.
For each rank in the group, the number of nodes, that have to be exchanged, is communicated by
MPI_AllGather to every group member. MPI_AllGatherV then exchanges the branch-nodes
between all group members. The MPI communicator for both calls is the one from the corresponding
MPI_Comm_Split.

The global exchange of the blev-nodes is the final step of the hierarchical tree construction. Afterwards
every rank has all the information necessary to calculate the multipole-properties of the root-node re-
quired to start with the last step of the parallel Barnes-Hut algorithm: the tree-traversal and force-
summation for each particle. The exchange is implemented utilising the usual MPI_AllGather and
MPI_AllGatherV procedures. Every rank contributes all, at this stage locally available, blev-nodes
with the exception that the blev-nodes belonging to a group are exclusively shipped by the process with
the MPI-rank number zero, which belongs to the corresponding MPI communicator of this group. The
main aspects of the algorithm are illustrated by the diagrams in figure 4.

The hierarchical tree construction supersedes the steps three and four (global exchange of the branches
and building up of the global tree) of the original parallel Barnes-Hut algorithm, replacing them with the
steps grouping, group-exchange and rooting as shown in algorithm 2.

Compared to the original algorithm, the advantage is, that every rank, in the worst case, receives all
blev-nodes during the global data exchange. In the rooting step, the amount of received data per rank is
thus independent of the number of MPI processes. Despite that, the average number of group members
will increase with an increasing number of processes, because the number of groups is bounded above
by the number of blev-nodes. This implies that the amount of received data per rank during the group-
exchange still depends on the number of MPI processes.
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(a) blev = 1 and 6,000,000 particles (b) blev = 2 and 24,000,000 particles

Figure 5: Timings of the main steps of the hierarchical tree construction.

However, the amount of exchanged branch-nodes per rank during the group-exchange is much less
than the amount of exchanged branch-nodes per rank in the former algorithm. Since only the branches
of the local groups are exchanged, the overall amount of transferred data should be reduced signifi-
cantly. Beyond that, the group-exchanges for different groups can run concurrently due to the fact that
they are performed on individual MPI communicators.

The question is, whether or not the additional collective MPI operations during grouping and group-
exchange in the current implementation generate even more overhead and whether the group-exchang-
es for different groups are really performed concurrently. Furthermore, the hierarchical tree construc-
tion should have an impact on the run-time of the tree-traversal. In comparison to the original algo-
rithm, where all branch-nodes are already available to all processes, the structure of the remote trees
is only known down to the level blev prior to the tree-traversal. Processes contributing to the same
blev-node constitute an obvious exception to that.

4.2 Results

The intention of this section is to discuss the scalability of the implementation of the hierarchical
tree construction algoritm, presented in section 4.1, as well as to uncover other potential problems
in the current implementation. Possible approaches for further improvements are mentioned in sec-
tion 5.

The strong-scaling benchmarks were performed on JUROPA using 8 up to a maximum of 2,048 MPI-
ranks and 4 ranks per compute-node. The test series with blev = 1 simulates 6,000,000 homogeneously
distributed particles, which implies that the amount of particles per rank (ppr) lies between 750,000 and
2,929. The test series with blev = 2 simulates 24,000,000 homogeneously distributed particles with
down to 11,718 ppr. Higher particle numbers and other values for blev have been tested as well, but
are not discussed here, as they do not provide further insight.

Figure 5 shows the maximal timings over all ranks for the three main steps of the hierarchical tree
construction implementation for blev ∈ {1, 2}. Both diagrams display similar behaviour and, on
first view, good results for the steps group-exchange and rooting. The big increase in the group-
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(a) blev = 1 and 6,000,000 particles (b) blev = 2 and 24,000,000 particles

Figure 6: Timings of the sub-steps of the hierarchical tree construction.

ing step is discussed with the aid of the diagrams in figure 6, which show the sub-steps to the main
steps.

It seems, that the call of the collective MPI_Scan procedure is the dominant part in the grouping step
and that the two calls of MPI_Comm_Split are of minor relevance. However, figure 7 suggests that
this must be questioned. It turns out, that the problem is not the poor scaling behaviour of MPI_Scan,
but bad load balancing in the steps before the hierarchical tree construction, namely the domain de-
composition and the building up of the local trees. This was confirmed by additional benchmarks with
1024 MPI-ranks and a call of MPI_Barrier before the call of MPI_Scan. With this configuration,
the sub-step grouping-scan takes about 0.00125 seconds with both blev = 1 and blev = 2. Therefore
the grouping step only has a minor impact on the run-time.

The steps group-exchange and rooting are dominated by the sub-step calcmerge and not by the ac-
tual exchange, at least up to 2048 MPI-ranks. Mainly, calcmerge calculates the multipole-properties
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Figure 7: The scaling behaviour of selected collective MPI procedures on JUROPA is depicted above. The
membership value for the call of MPI_Comm_Split (split) is randomly generated for each rank, in such a
way that 8 MPI communicators are created, which corresponds to a run of PEPC with blev = 1. The so created
MPI communicators are used in the calls of MPI_AllGather (allgather) and MPI_Comm_Free (free).
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(a) blev = 1 and 6,000,000 particles (b) blev = 2 and 24,000,000 particles

Figure 8: Timings of the main steps of algorithm 2 in PEPC.

of the nodes starting one level above the exchanged nodes up to the level blev and the root-node, re-
spectively. As a result of that, various structural information has to be updated for every node in the
hash-table. This update is redundant, as it has to be performed in both group-exchange and rooting. A
future objective is to eliminate the redundancy with a new approach.

Obviously, the exchange sub-steps of group-exchange and rooting show similar scaling behaviour,
with at least linear dependency on the number of MPI-ranks, which is inevitable in either case, since
the number of communication partners is increasing, both per group and in total. In fact, that depen-
dency is linear for the rooting-exchange, because the amount of exchanged data per rank is con-
stant.

In order to achieve good scaling results for the exchange sub-step of the group-exchange as well, the
only conceivable possibility is to increase the level blev. On the one hand, it increases the number of
groups and thereby improves concurrency and on the other hand it decreases the average group size
and thus the amount of exchanged data per group.

Figure 8 illustrates the timings of the main steps of the parallel Barnes-Hut tree-code PEPC with hi-
erarchical tree construction. Up to 128 or alternatively 256 MPI-ranks, all steps scale rather well and
the tree-traversal scales perfectly. Beyond 256 ranks, the tree-traversal no longer scales. It was not
yet possible to uncover the reasons as to why this happens, though. It is, however, unlikely caused by
the hierarchical tree construction, since tests of the original implementation on JUROPA show the same
behaviour.

Incidentally, the setup of the compute-nodes was not optimal for the tree-traversal, as there was only
one worker thread per MPI-rank for the hybrid tree-traversal, even though a higher number of threads
would have been feasible. Therefore, the timings of this step could be reduced significantly. With three
worker threads for example, the timing of the tree-traversal is reduced to approximately 18 seconds for
1,024 MPI-ranks and blev = 2 compared to 150 seconds with the suboptimal configuration. Naturally,
this has no substantial impact on the scaling results.
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5 Summary and Outlook

The aim of this paper was to describe the scalability issues in the current implementation of the parallel
Barnes-Hut tree-code PEPC and to optimise the global exchange of data. This has been achieved by
limiting the global data exchange to a single tree-level, which demands the design and implementation
of an algorithm for the hierarchical construction of the global tree.

For the purpose of prospectively gaining deeper insight into the scalability of the new algorithm, more
scaling tests are necessary. These have to be performed with an even further increasing number of
ranks and gradually less particles per rank. To that end, tests on JUGENE are aspired to, as well. Prior
to that, however, the source of the strange scaling behaviour of the tree-traversal has to be uncovered
and eliminated.

Additional potential for improvement lies in the optimisation of the memory usage in the hash-table.
Pending some deliberation, the amount of reserved entries for global branches can be reduced, thus
making more space for particles available.

The single level of global data exchange in the current implementation is a predefined value and con-
stant over all time-steps and ranks. It is almost freely selectable in the range of [1, 10]. The upper
bound originates from the data type of the color-argument of the MPI procedure MPI_Comm_Split,
which is only a 4 byte integer. This limitation is not really noteworthy, since such a high level of
global data exchange is not practical at all, as the amount of nodes, that would have to be exchanged,
is ridiculously high.

An error regularly occurs in case an inhomogeneous particle distribution is simulated with blev > 2,
because several branch-nodes are usually located in the tree-levels above the level blev. This problem
can easily be avoided. Instead of the branch-nodes, one exchanges the corresponding nodes in the
level blev and a higher level respectively, if no blev-node exists. Automatically determining an “opti-
mal” value for blev at the beginning of each time step might also be expedient in terms of improving
simplicity and user friendliness.
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Abstract:
This report gives implementation details and results from a computer program that has been created
for simulating the Ising model with local Metropolis updates on a present-day NVIDIA GPU archi-
tecture for scientific computing. The results are comparable with implementations of a similar model
on the same hardware architecture from [1]. Correctness of the code is illustrated by providing re-
sults of physical observables from conducted simulations using the program. Speedup results with
regard to a CPU implementation of the algorithm are provided for different system sizes and ECC
enabled/disabled GPU memory. Short discussion on the implementations of the random number gen-
erators for the GPU that have been used (Mersenne Twister and XORWOW) is provided together with
performance comparison, since the time cost is on the order of the Metropolis updates.

1 Introduction

Graphics Processing Units (GPUs) have been used for solving computationally intensive tasks for the
past few years. Nowadays these devices labelled “general purpose” find application in the field of high
performance super computing. This work presents an implementation of a Monte Carlo simulation
of the Ising model using a local Metropolis update for one such device family, namely the NVIDIA
Tesla M2050/M2070, based on an implementation from [1]. Different techniques for optimising the
performance of the algorithm are discussed and the obtained results are compared with those from [1]
for a similar system. Measurement times for the generation of random numbers and the measurement
of observables are also given, since this is part of the whole simulation process. However, they are not
optimised as that is not in the scope of this report. Some problems that occurred when working with
CUDA are given at the end of the report.
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2 Theoretical background

2.1 The Ising model

The Ising model is a simple model of a magnet. The model consists of discrete objects called spins
which can take one of two different states: σi ∈ {−1, 1}. The spins are placed on a lattice or graph
and each spin interacts only with its nearest neighbours. The energy E of the system is defined
as:

E = −
∑

<ij>

σiJijσj −
∑

i

hiσi (1)

where the sum is over all pairs of nearest neighbours < ij >. The coupling constants must fulfil
Jij = Jji and one recognises 2 distinguished cases:

• Jij = const, the isotropic case known as the Ising model

• Jij ∈ {−1, 1}, with hi = 0 known as the Edwards-Anderson spin glass model.

The following work considers mainly the Ising model without external magnetic field, i.e. Jij = J

and hi = 0. The implementation uses a 3-dimensional simple cubic lattice with periodic boundary
conditions illustrated on fig. 1.

Figure 1: Toroidal periodic boundary conditions (usually referred to as periodic boundary conditions) on a
2-dimensional lattice.

2.2 Observables

The partition function Z of the system and the expected value of an observable (thermodynamic quan-
tity of interest) < O > are defined as:

Z =
∑

σ

e−βE(σ) (2)

< O > =
1

Z

∑

σ

O(σ)e−βE(σ) (3)
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3 Going parallel: vectorisation

where the sum is over all spin configurations σ; β = 1
kBT

is the inverse temperature, with kB
the Boltzmann constant and T the temperature. The units of β in this work are chosen such that
kB = 1 and J = 1. The basic observables used to check the correctness of the implementation
of the simulation program are the internal energy E and the magnetisation of the system M =∑

i σi.

2.3 Solution

Exact solutions of the Ising model exist for 1 dimension [2] and 2 dimensions [3] without external
magnetic field, i.e. hi = 0. The 3-dimensional Ising model has not been solved yet. There are 2L

3

states in 3D, which makes exact enumeration of large systems impossible, therefore the well known
Monte Carlo simulation method is being used to sample the state space and estimate the expected
values of observables.

2.4 The Metropolis Update Algorithm

The Monte Carlo simulation is implemented using the Metropolis update algorithm. In it’s original
form one needs 2 random numbers per spin update which is highly inefficient. One can use 1 random
number per spin update which results in a more efficient and common implementation, see alg. 1. The
latter has been used in this work.

Algorithm 1 Metropolis update algorithm, efficient form.

1: for i := 1 to N do
2: calculate ∆E for flipping the spin σi
3: flip the spin with probability min{1, e−β∆E}
4: end for

N is the number of spins in the system, which is equal to the volume, hence in 3 dimensionsN = V =

L3. The energy difference ∆E is defined as:

∆E = 2σi

neighbours∑

n

σjn . (4)

3 Going parallel: vectorisation

3.1 Modern tools: GPU

The main goal of using vectorisation is the speedup from updating multiple spins at the same time. This
has been done long time ago on vector machines [4]. The goal of this work is to create an efficient im-
plementation for the present-day GPU hardware architecture of NVIDIA. The main advantages of these
cards are: large number of computing units, small physical dimensions and less power consumption
per computing unit than a CPU core.
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For example the NVIDIA GPU Tesla M2070 @ 1, 15 GHz consumes ∼ 0, 5 W/ core [5], compared
to Intel(R) Xeon(R) CPU X5650 @ 2, 67 GHz ∼ 15, 8 W/ core [6]. Considering the clock frequency
the difference is about a factor of 10, which makes GPU clusters cheaper to operate than CPU clusters
delivering the same performance. The Jülich Supercomputing Centre operates currently one computer
cluster (judge) based on NVIDIA Tesla M2050 cards with ECC switched on and a smaller test cluster
(mini-judge) equipped with NVIDIA Tesla M2070 with ECC switched off. Both GPUs have the same
computational power and offer 448 computing units (CUDA cores) as one can see from the technical
specifications in table 1. The only difference between both models is the size of the main memory
(Global memory). The present work is based on these cards, hence the data structures and algorithms
being used are chosen such as to make efficient use of the hardware. The code exploits the presence of
L1 and L2 memory for caching access to Global memory, hence no manual caching using Shared mem-
ory is needed. Moreover, this makes program code more readable.

Compute capability 2.0
Multiprocessors 14
Warp size 32
CUDA Cores 448
Global memory 3/6 GB

L2 cache size 786432 B

GPU Clock Speed 1, 15 GHz

Registers per block 32768
Threads per block 1024

Table 1: Technical specifications of NVIDIA Tesla M2050/M2070.

3.2 Checker board decomposition

The first step of vectorisation is the lattice decomposition in 2 sets (red, blue) of non interacting spins
illustrated on fig. 2. This restricts the lattice length to a multiple of 2, i.e. L = 2k, k ∈ N. The
maximum speedup that one can achieve using this technique is N2 . For theL = 16 lattice, the maximum
speedup would be 2048.

(a) z coordinate has even value (b) z coordinate has odd value

Figure 2: Checker board decomposition: xy planes for even and odd values of the z coordinate.
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3.3 Lattice representation in memory

The most straight forward way to represent a 3-dimensional lattice is as a 1-dimensional array with the
mapping (x, y, z)→ i : i = x+yL+zL2. In computer memory this leads to a structure (fig. 3) which
does not produce a good memory access pattern on the GPU when calculating ∆E. When updating the
set of red spins every thread on the GPU first will load the term σi which results in access to spins 0,
2, 5, 7, ... and in this case the access needs to be serialised. In order to achieve maximum performance
on NVIDIA devices one needs to have coalesced memory access, which means that the red spins need
to lay sequentially in the memory. The same applies in the case when one is trying to update the set of
blue spins. This can be achieved by storing both sets in different 1-dimensional vectors, illustrated on
fig. 4.

0 1 2 3

54 76

8 9 10 11

1312 1514

(a) xy plane of a 3-dimensional
array, z = 0

1 3 40 2 ...

(b) 1-dimensional array

Figure 3: Representation of a 3-dimensional lattice in an 1-dimensional array, where each number indicates the
position of that lattice point in the 1-dimensional array.

0 0 1 1

22 33

4 4 5 5

66 77

(a) xy plane of a 3-dimensional
array, z = 0

0 1 2 3 4 ...

0 1 2 3 4 ...

(b) two 1-dimensional arrays

Figure 4: Representation of a 3-dimensional lattice in two 1-dimensional arrays, where each number indicates
the position of that lattice point in the corresponding 1-dimensional array.

Another way of achieving better performance could be to coalesce the access to the neighbouring spins
σjn but is not discussed in this work, since it would be a considerable effort. Moreover, it is not clear
if it will provide performance increase.
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3.4 Coordinate mapping and calculation of neighbours

The representation of the 3-dimensional lattice in a 1-dimensional array requires a different way for
computing indices of neighbouring spins. As one sees from fig. 4 the indices of the neighbours on the
y and z axes do not depend on the colour of the spin. The indices of these neighbours can be computed
in the following way:

z+ = (i+
L2

2
) mod

L3

2
(5)

z− = (i− L2

2
+
L3

2
) mod

L3

2
(6)

y+ = (i− i mod
L2

2
) + (i+

L

2
) mod

L2

2
(7)

y− = (i− i mod
L2

2
) + (i− L

2
+
L2

2
) mod

L2

2
(8)

where z+ is the neighbour in the positive z direction, z− is the neighbour in the negative z direction, y+

and y− respectively. On the x axis one needs to take care of the values of the y and z coordinates and the
colour of the spin. The neighbours can be computed in the following way:

z = i÷ L2

2
(9)

y = (i− zL
2

2
)÷ L

2
(10)

d = (z ∧ 1)⊕ (y ∧ 1). (11)

For a red spin:

x+ = (i− i mod
L

2
) + (i+ 1− d⊕ 1) mod

L

2
(12)

x− = (i− i mod
L

2
) + (i− 1 + d+

L

2
) mod

L

2
. (13)

For a blue spin:

x+ = (i− i mod
L

2
) + (i+ 1− d) mod

L

2
(14)

x− = (i− i mod
L

2
) + (i− 1 + d⊕ 1 +

L

2
) mod

L

2
. (15)

Here ⊕ is bit wise XOR, ∧ is bit wise AND and ÷ is integer division div. In order to achieve best
performance the computer code uses bitwise shift operations with the following identities for b =

2k, k ∈ N: a ÷ b = a >> log2 b and a mod b = a ∧ (b − 1). This restricts L to being a power
of 2, hence L = 2k, k ∈ N. I acknowledge the use of ideas and computer code for the neighbour
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computation from the computer code accompanying [1], moreover I have optimised their formulas for
computing neighbours on the x axis.

3.5 Algorithm

The algorithm used is composed of different phases: generation of random numbers, Metropolis
update of all spins and a measurement phase. The order of the phases is given in alg. 2. The
random numbers are generated for the whole lattice, before the Metropolis routines are executed,
in order to avoid branching of the GPU code. The latter is supposed to deliver maximum perfor-
mance.

Algorithm 2 Simulation algorithm.
1: for all simulation steps do
2: generate random numbers
3: update all red
4: update all blue
5: measure every n loops
6: end for

4 Results

4.1 Physical results

In order to check the correctness of the simulation program, results for the values of the internal energy
and magnetisation have been obtained at different temperatures. The behaviour of both curves seems
to be correct as one can see on fig. 5. A phase transition is expected at a value of β = 0.22165703,
compare [7].

(a) Internal energy e per spin (e = E
N

) (b) Magnetisation m per spin (m = M
N

)

Figure 5: Observables in dependence of the temperature T for systems of size L = 16, 32, 64, 128.
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4.2 Update times

Simulations with 1000 sweeps have been done in order to estimate the Metropolis update time per
sweep for the whole lattice. Dividing that by the lattice volume, one gets the Metropolis update time
per spin given in table 2. Estimates of the time needed for the different phases are given in table 3.
Measurements of observables have been done partly on the CPU and there is an extra time cost for
copying the data from the GPU memory to the CPU memory. This is highly inefficient and could be
optimised with direct computation on the GPU, but is not in the scope of this work. The update times
have been compared to results for a similar system with L = 128 from [1]. They quote Metropolis
update time per spin 0.66 ns on NVIDIA GTX 480 card, compared with 0.62 ns I get with 160 threads
per block on the NVIDIA Tesla M2070 card. The update times do not depend much on the number
of threads per block used, as one can see on fig. 6, nevertheless the fastests results have been obtained
with 160 threads per block.

L t in ns tECC in ns

16 7,03 15,47
32 1,26 2,50
64 0,71 0,85

128 0,62 0,63

Table 2: Time for one Metropolis update for dif-
ferent lattice sizes with ECC memory function
switched off (t) and on (tECC).

Phase t in µs

Metropolis 1296
RNG 252
copy data to host 5290
measure E 3825
measure M 472

Table 3: Time decomposition in different phases
for one iteration on a lattice with L = 128:
Metropolis update, generation of random num-
bers, memory copy GPU → CPU, measure-
ments of E and M .

(a) in dependence of the system size, 160 threads per
block

(b) in dependence of the number of threads per block

Figure 6: Scaling of the metropolis update time (in ns).

Note that in order to do scientific research, one needs reproducible results, which means that the use of
ECC memory is a must. For test runs one might resort to the use of non ECC memory in order to get
results faster.
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4.3 Speedup

In order the estimate the speedup from using the GPU instead of the CPU, a test run has been done
with a CPU program using the same algorithm on 1 core of Intel(R) Xeon(R) CPU X5650 @ 2, 67 GHz

processor. The program has been compiled with Intel compiler 11.1.072 (optimisation level -O3). As
one sees from the results given in table 4, there is no speedup when using the GPU with ECC memory
for small systems. This is due to the system size, which is not able to utilise the full computing power
of the device because of the latency of the memory access. For larger systems the speedup is almost
independent of the ECC memory, but these systems need a lot more simulation steps in order to get
decent results.

L tCPU tGPU tGPU,ECC tCPU/tGPU tCPU/tGPU,ECC
16 12 7,03 15,47 1,7 0,7
32 11 1,26 2,50 8,7 1,2
64 11 0,71 0,85 15,4 12,9

128 10 0,62 0,63 16,1 15,8

Table 4: Metropolis update time per spin in ns for a CPU and a GPU program using the same algorithm.

4.4 CUDA kernel profiling data

The profiling data has been obtained with the computeprof profiler from NVIDIA for simulations of
1000 sweeps on lattices of different sizes, listed in table 5. The data shows that the computing kernels
achieve almost maximum performance (IPC) on the largest system, which indicates that the memory la-
tency is minimal and most memory access is done via the L1 and L2 caches.

L = 16 L = 128

Limiting factor:
Achieved Occupancy (theoretical 0,83) 0,2 0,8
IPC (maximum 2) 1,0 1,9
Memory Throughput Analysis:
Kernel requested global memory read throughput(GB/s) 11,81 60,00
L1 cache global hit ratio (%) 49,09 35,94
Occupancy Analysis:
Grid size [13 1 1] [6554 1 1]
Block size: [160 1 1]
Register Ratio (16 registers per thread): 0,75 (24576 / 32768)

Table 5: Profiling data from computeprof from runs with 1000 sweeps on systems with L = 16, 128.

4.5 Random number generators

Different RNGs have been tested for the simulations in order to check physical results and benchmark
the algorithms. The Mersenne Twister implementation from [1] is rather slow with about 300 µs per
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sweep on a L = 16 lattice, which is probably due to the large state vector. Moreover, there were some
problems with the results, which might be due to a bug in my code. The XORWOW [8] implementation
from the library curandlib [9] has been tested using the host API. It produces consistent results and is
quite fast with about 40 µs per sweep. There are some serious disadvantages, though: no source code
available for the host API, the documentation does not explain how the sequences are seeded, there
is no way of direct seeding, the available device code gives some hints how seeding might be done
and NVIDIA does not want to publish the source code (private communication). These facts render
the host API useless for serious scientific research and can only be used for test purposes, due to the
implementation being rather fast.

4.6 Portability of the computer code to other models

The program written for the Ising model has also been extended with small modifications to the
Edwards-Anderson spin glass model. Results from that model are not in the scope of this report and
hence not provided. The computer code can also easily be ported to all other 3-dimensional lattice
models using a cubic lattice with nearest neighbours interactions.

4.7 Problems with CUDA

Since GPU hardware is still changing, there is still not a fixed set of features that every GPU should
support. Considering NVIDIA GPUs, there is no guarantee that fast code for the present architecture
will be still fast on the next one. Therefore the algorithms and data structures used have to be tuned for
the specific hardware, hence the GPU code is not “portable” across different architecture generations.
This means that these devices are not that “general purpose”, though they might be programmable in
a dialect of the C programming language. Moreover the documentation of CUDA [10] mixes C and
C++ and does not make it clear how to use pure C and which versions are supported. Note that the “-x”
flag for the nvcc compiler is not even documented in [11]. Another example of the immaturity of the
CUDA documentation is that it is spread all over the website of NVIDIA and one finds different bits
and pieces in different documents.

5 Conclusion

A computer program has been successfully created for simulations of the Ising model with a local
Metropolis update on a GPU from NVIDIA. Examples illustrating the correctness of the implementa-
tion have been discussed together with performance details on the algorithms used. The program code
written has been well optimised for the chosen architecture. The latter is proven by the profiling data
and the comparison of the update times with results from others simulating a similar model. The choice
of a random number generator shows a significant impact on the performance due to the big memory
latency and the small cache size of present GPUs. The speedup that one gets in comparison with a CPU
version of the programm is significant only for large systems, which are not always feasible for simu-
lations. Because the GPU hardware is still changing significantly, the software is still changing too and
therefore its documentation is still immature. This forces one to choose specific algorithms and data
structures depending on the device gneration one wants to use. These facts render present GPU devices
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not that “general purpose” as advertised. Nevertheless they deliver significat performance speedup for
highly vectorisable problems with small memory footprint.
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Abstract:
In solid state physics applications, there is a frequent need to visualise volumetric data and calculate
integrals over these volumes to be able to interpret and understand the physical aspects of the model
under consideration. Keeping this in mind, we develop an algorithm for finding iso-surfaces using
discrete scalar data on three dimensional meshes. Once the iso-surfaces are formed, we calculate the
integrals of the scalar function over the volume enclosed by the iso-surface. These volume integrals
can be used to calculate information such as the electronic charge, spin etc. over the volume. The
method that forms the basis of this technique is the scheme of marching tetrahedra. The method is
then implemented in code so that it is possible to interactively visualise the resulting iso-surfaces.
Another aspect of the code is the ability to iteratively find the iso-value, given the integral over the
volume enclosed by the iso-surface.

1 Introduction

In physics, one often faces the need to visualise data to shed more light on the physical aspects of a
particular model. This need is even bigger when the data is obtained from simulations and no direct
observations are available. For example, simulations calculate he amplitude of the Wannier functions
of crystal data on a rectilinear grid. Going further, it may be necessary to find, say, the electronic charge
in the said crystal. This quantity is merely an integral of the modulus squared of the wave function over
the crystal volume. But, as is mostly the case, wave function data is not analytically obtainable and
one has to rely on approximate techniques to evaluate such quantities. Usually, the data thus obtained
is discrete, and we need to come up with non-analytic methods to find these integrals. These ideas
form the basic motivation in coming up with a technique to both visualise such discrete data, and
simultaneously evaluate properties that are dependent on this data.
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2 Method of Marching Cubes

2.1 Voxel

We begin the discussion of the method of marching cubes by introducing the concept of voxels. In
physics, one has to deal with crystals which possess translational symmetry. Thus, it becomes very
easy to super-impose three dimensional rectilinear meshes onto a unit cell or onto a super-cell. Such
a structured mesh can be looked at as a collection of volume elements, or "voxels", which are paral-
lelepiped entities. Most often, we have to represent some sort of scalar information on this crystal.
Since we usually have only discrete data, we need a method to somehow estimate the function over the
entire volume and then extract meaningful conclusions from the data.

2.2 Methodology

Iso-surface plots are one of the many ways of representing scalar information on a three dimensional
mesh. The method of marching cubes is one of the most popular methods of locating an iso-surface
using discrete data. The method approximates the scalar data as a linear function along the edges of
the voxel. The name marching "cubes" may be misleading, as the method can be extended to any
parallelepiped shaped voxel. Depending on the iso-value, we assign a ’+’ (fijk ≥ isoV alue) or a
’-’ (fijk < isoV alue) to each vertex.

For some edge where we have different signs at the two vertices, we say that we have a sign change
along the edge. Now we introduce the approximation that the scalar function is linear along the edge
of the voxel. It is easy to deduce that in this approximation, there must be a point somewhere on the
edge where the iso-value is exactly equal to the function value at that point. Let us label the vertices to
be 1(+) and 2(-) respectively and let the iso-value be f , then the location of this point is simply given
by

r = r1 +
(f − f1)

(f1 − f2)
· (r1 − r2) (1)

This point lies on the iso-surface. Using this strategy, we can locate all the iso-points on the 12 edges
of a voxel. The actual iso-surface is approximated by drawing planes that pass through all the iso-
points. Repeating this process on all voxels, we can join all the resultant surface patches to produce
the complete iso-surface. An illustration of this process is shown in the Figure 1. If more than three
edges contain iso-points, then the surface is approximated by triangular patches, determined by some
suitable ordering of points.

This method is quite simple to implement. But there are various situations in which the resultant surface
is ambiguous. Imagine a case as shown in Figure 2 where two vertices of a voxel have a different sign
from the rest. In this case, we have six edges containing an iso-point. Thus, we can have different
ways of creating the iso-surface patches as shown. Thus, we need an additional step to resolve this
ambiguity. This can be done by choosing the patches that do not intersect the shortest body diagonal,
as the probability of the occurrence of a double sign-change along this diagonal is minimum. Many
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Figure 1: Iso-surface patches
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Figure 2: Marching Cubes - Ambiguity

other methods such as the midpoint decider or the asymptotic decider can also be used to resolve this
ambiguity. Considering all the possible combinations of ’+’ and ’-’ vertices, since the voxel has eight
vertices, we have a total of 28 = 256 different cases that need to be handled. This obviously adds to
the complexity of the solution.

fxyz = f000 (1− x) (1− y) (1− z) + f100x (1− y) (1− z) + f010 (1− x) y (1− z)
+ f001 (1− x) (1− y) z + f110xy (1− z) + f101x (1− y) z + f011 (1− x) yz

+ f111xyz; 0 ≤ x, y, z ≤ 1 (2)

Another conspicuous drawback stems from the trilinear interpolation of scalar values inside the voxel.
The trilinear interpolation process is described by the equation 2. The interpolation, which is difficult
to visualise in three dimensions, can be contracted to just two dimensions and plotted as shown in
Figure 3. The figure shows that the interpolation produces a curved surface. In comparison, when
we draw an iso-surface patch in the voxel, we approximate the surface using a planar patch. This is
obviously not quite consistent.

Figure 3: Marching cubes - Trilinear Interpolation vs. Planar iso-surface patch

Keeping these aspects in view, we see the need for a better method to find the iso-surface using the
given data. We shall investigate such a method in the next section.
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3 Method of Marching Tetrahedra

The method of marching tetrahedra can be looked at as a slight modification of the marching cubes
method, where, instead of a voxel, each element is a tetrahedron. In this section we will discuss the
mathematical background of the marching tetrahedra scheme followed by a discussion on how we can
transition to a tetrahedral mesh, starting from the voxel mesh used for the marching cubes.

3.1 Tetrahedron

A tetrahedron is the simplest three-dimensional polyhedron, consisting of four vertices and six edges.
The tetrahedra we use are convex and thus have an Euler characteristic of 2. One can immedi-
ately see that owing to the lesser number of vertices, we will have lesser cases to handle as com-
pared to the marching cubes method. The biggest benefit we derive from using tetrahedra as our
elementary volumes is that is the possibility of defining a unique linear interpolation on the sim-
plex.

3.2 Dividing a voxel into tetrahedra

As discussed above, we already have a rectilinear mesh of voxels. It would be very beneficial to use
the existing data to form the new tetrahedral mesh that we require. To this end, we would like to
divide each voxel into tetrahedra. There are various approaches to achieving this end. The essential
distinguishing criterion is the number of external faces shared by the tetrahedra formed by adjacent
voxels. Two tetrahedra sharing a face differ in exactly one vertex. Each voxel has 6 outside faces and
8 vertices.

3.2.1 Five Tetrahedra with central tetrahedron

Here we first create a central tetrahedron that does not have any external faces and has only internal
faces. Then we construct four more tetrahedra from the remaining vertices such that each one has
three external faces (Figure 4). The main drawback of this approach is that the tetrahedra do not have
equal volumes. Also, adjoining tetrahedra from adjacent voxels do not share a common face i.e. are
misaligned.

3.2.2 Six Tetrahedra with non uniform shape

In this method we form tetrahedra of equal volume, such that three of them have three internal faces
and the other three have three external faces (Figure 5). Here, although the six tetrahedra have equal
volumes, the problem of misalignment of cells belonging to adjacent tetrahedra persists as the neigh-
bouring tetrahedra do not share a common face.
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Figure 4: Five tetrahedra with a
central tetrahedron

Figure 5: Non-uniform tetrahe-
dra of equal volume

Figure 6: Uniform tetrahedra of
equal volume

3.2.3 Six Tetrahedra with uniform shape

In this method, the cube is split into six identical tetrahedra which share a voxel body diagonal as a
common edge (Figure 6). Each tetrahedron has two external and two internal faces. The orientation of
each of these tetrahedra is different. The most interesting feature here is that the adjoining tetrahedra
belonging to adjacent grid cells share a common face. This makes the approach specially suited for the
marching tetrahedra.

1 2

3 4

5 6

7 8

Index Vertices
1 1-2-3-6
2 4-2-3-6
3 4-8-3-6
4 7-8-3-6
5 7-5-3-6
6 1-5-3-6

Figure 7: Splitting a general voxel into tetrahedra

Of course, this approach is not only restricted to cubic voxels, but can be applied to any general voxel on
a uniform mesh (Figure 7). In case of a general parallelepiped voxel, we have to carry out the split about
the shortest body diagonal. This will avoid excessively elongated tetrahedra. The following list enu-
merates the 6 tetrahedra according to their vertices. Notice that all the tetrahedra share the body diago-
nal as a common edge and consecutive tetrahedra have a common face.

3.3 Locating a point within a tetrahedron

In the case of a tetrahedron, we define a three dimensional basis, relative to one of the four ver-
tices of the tetrahedron (Figure 9). Let ri denote the position vector of the vertex i. Let r de-
note some point inside the tetrahedron. Now we can define three dimensional basis vectors as fol-
lows
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0

2

3

1

Figure 8: Locating a point inside a tetrahedron

e1 = r1 − r0, e2 = r2 − r0, e3 = r3 − r0 (3)

Then we can write r as

r = r0 + αe1 + βe2 + γe3

= (1− α− β − γ) r0 + αr1 + βr2 + γr3

= (1− α− β − γ, α, β, γ) (4)

The coefficients (1− α− β − γ, α, β, γ) are called the Barycentric co-ordinates of the point r. It
follows from Equation 4 that if (λ0, λ1, λ2, λ3) are the barycentric co-ordinates of a point r, then
λ0 + λ1 + λ2 + λ3 = 1. The barycentric co-ordinates of a general point r are then calculated by
inverting the equation 5.

(
e1 e2 e2

)
·




α

β

γ


 =

(
r − r0

)
(5)

Now, we need to address the uniqueness of this co-ordinate system. This can be done by showing
that the above expansion (Equation 4) is obtained starting from any basis formed by the vertices
of the tetrahedron. We add and subtract (1− α− β − γ) r1 from both sides and rearranging, we
get

r = (1− α− β − γ) (r0 − r1) + β (r2 − r1) + γ (r3 − r1) + r1 (6)

which is precisely the representation of r in the basis about r1. Thus the Barycentric Co-ordinate
representation is unique.

At this point, it will be useful to note the relationship between the barycentric co-ordinates and the vol-
ume of the tetrahedron. For some point P(λ0, λ1, λ2, λ3), inside tetrahedron 0123, the barycentric co-
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ordinate associated with vertex i i.e. λi is the ratio of the volume of the tetrahedron formed by P and the
other three vertices to the volume of tetrahedron 0123. Specifically,

λ0 =
VP123

V0123
; λ1 =

V0P23

V0123
; λ2 =

V01P3

V0123
; λ3 =

V012P

V0123
(7)

3.4 Calculating the volume of a tetrahedron

Consider the tetrahedron shown in Figure 9. The scalar triple product of three vectors gives the volume
of the parallelepiped defined by them. Our division strategy directs for the creation of tetrahedra of
equal volume from each voxel. Then, the volume is simply a fraction of the scalar triple product of the
basis vectors

V =
1

6
|e1 · (e2 × e3)| = 1

6

∣∣∣∣∣∣

x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣
(8)

3.5 Linear Interpolation inside a tetrahedron

The barycentric co-ordinates can be used to define a interpolation inside the tetrahedron

f (r) = λ0f (r0) + λ1f (r1) + λ2f (r2) + λ3f (r3) (9)

Since λ3 = 1−λ1−λ2−λ3, f(r) = const is a linear equation in {λ0, λ1, λ2} and hence represents a
plane in barycentric space. From equation 5 we can deduce that the barycentric space is obtained from
a linear transform of real space. Thus we can conclude that given an iso-value f (r), the iso-surface
associated with it is planar.

3.5.1 Uniqueness of the linear interpolation

We have already shown that the barycentric co-ordinates of a point inside a tetrahedron are unique
with respect to the vertices of that tetrahedron in Section 3.3. This directly implies that the linear
interpolation described in equation 9 is unique with respect to the vertices of the tetrahedron. But we
cannot comment on the uniqueness of this interpolation with respect to the choice of tetrahedron in
which the interpolation is calculated.

Consider a tetrahedron ABCD as shown in Figure 9. Consider a general point P(r) inside ABCD.
Now we move point A to inside the tetrahedron to point A′ such that r is still inside A′BCD. Us-
ing barycentric co-ordinates, we obtain an expression for the scalar interpolation f (r) in terms of
A′BCD
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A

B

C

D

A'

Figure 9: Uniqueness of linear interpolation

f (r) = λA′f (rA′) + λBf (rB) + λCf (rC) + λDf (rD) (10)

Now, since A′ is inside ABCD, we can write an interpolation for f (rA′) with respect to ABCD

f (rA′) = ηAf (rA) + ηBf (rB) + ηCf (rC) + ηDf (rD) (11)

Substituting Equation 11 in Equation 10, we get

f (r) = λA′ηAf (rA) + (λB + λA′ηB) f (rB) + (λC + λA′ηC) f (rC) + (λD + λA′ηD) f (rD)

(12)

Using the areal interpretation of the barycentric co-ordinates (Equation 7), we can write

λA′ =
VPBCD
VA′BCD

; ηA =
VA′BCD
VABCD

(13)

Substituting in Equation 12, we get the coefficient of f (rA)

λA′ηA =
VPBCD
VABCD

= ΛA (14)

which is the barycentric co-ordinate for P with respect to vertex A in tetrahedron ABCD.

Now we can imagine a scenario in which we pull in the vertices A, B, C, D to the vertices A′, B′,
C′, D′ respectively, one by one. During each pull, we can see that we maintain the uniqueness of
the interpolation owing to the analysis above. We end up with the interpolation for f (r) in terms of
{ΛA,ΛB,ΛC ,ΛD}. This means that the linear interpolation scheme that we have defined is unique,
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i.e. the scalar function has the same value no matter with respect to which tetrahedron it is calcu-
lated.

This result now gives us the liberty to calculate the volume integral of the interpolated function in a
piecewise fashion. Thus, if V = V1 + V2 then we can write

∫

V
f(r)dV =

∫

V1

f(r)dV +

∫

V2

f(r)dV (15)

This result will be used in the following sections.

3.6 Integration over a tetrahedral volume

Once we have established the theory behind the barycentric co-ordinates, it is easy to find the integral
of the scalar function over the tetrahedral volume. We need to calculate

∫
f(λ0, λ1, λ2)dλ2dλ1dλ0 by

putting the suitable limits on each integral. Now each of the λ’s varies from 0 to 1, which means that
they cover only a scaled volume of the tetrahedron. Thus, we need to explicitly multiply the integral by
the tetrahedral volume to obtain the total integral. Even so the values of

I = Vtet

∫ 1

0

∫ 1−λ0

0

∫ 1−λ0−λ1

0
f(λ0, λ1, λ2)dλ2dλ1dλ0

= Vtet

∫ 1

0

∫ 1−λ0

0

∫ 1−λ0−λ1

0
(λ0f (r0) + λ1f (r1) + λ2f (r2) + λ3f (r3)) dλ2dλ1dλ0 (16)

always keeping in mind that λ3 = 1 − λ0 − λ1 − λ2. Now this integral is analytically soluble and
simplifies to

I =
Vtet
4

3∑

i=0

f (ri) (17)

where i denotes the vertices of the tetrahedron.

4 Types of iso-surface patches and integrals

The Marching Tetrahedra is a modification of the Marching Cubes algorithm for finding the iso-surface.
Each voxel is divided into tetrahedra using the method described above. Then, we look for sign changes
in the scalar values along the edges of the tetrahedra thus formed. Let fiso be the iso-value and the
function at a vertex i be denoted by f(ri) = fi. For a particular tetrahedron, the following cases will
exist:
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1. In the most trivial cases, the value of the function at all four vertices will be either greater than or
less than the iso-value (Figure 10). Thus, the iso-surface does not pass through the tetrahedron.
Then we have to only determine whether the tetrahedron lies below the iso-surface or not. If
the vertices of the tetrahedron all lie below the iso-value, then, we want to integrate over this
tetrahedral volume. This accounts for two of the sixteen possible cases. The integral is given by

I =

{
V0123 ·

(
f0+f1+f2+f3

4

)
; f0, f1, f2, f3 ≤ fiso

0; f0, f1, f2, f3 > fiso

2. If just one vertex lies below the iso-value, then we get a scenario as shown in Figure 11. The
iso-surface patch is a triangle. We can choose the right part of the split tetrahedron simply by
finding out which vertex is inside the iso-surface. This case is equivalent to the case where three
vertices lie below the iso-value. The integral here is calculated by the difference in the integrals
over the bigger and smaller tetrahedra using 15. This accounts for a total of eight cases. The
integral here is given by

I =





V0ABC ·
(
f0+3∗fiso

4

)
; f0 ≤ fiso

VABCD ·
(
f0+f1+f2+f3

4

)
− V0ABC ·

(
f0+3∗fiso

4

)
; f0 > fiso
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1

Figure 10: No iso-surface patch
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Figure 11: One cutting iso-surface patch
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Figure 12: Two cutting iso-surface patches

1

0

0
1

A
A

AB

C

C
C

D

Figure 13: Dividing hexahedron into tetrahedra
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3. In the third case, there will be two vertices whose value is below the iso-value. In this case we get
two irregular hexahedra (Figure 12). Again, the volume defined by the vertices lower than the
iso-value and the iso-surface will be considered in the volume integral. A potential problem
here is that although we can still use the sum as shown in equation, we have two irregular
hexahedra whose analytical volume integral we don’t know. This is solved by dividing the
relevant hexahedron into tetrahedra as shown in Figure 13. There are six distinct ways of doing
this, although all of them are equivalent mathematically. Now we use the sum of the integrals
over each small tetrahedron, as all the vertex scalar values are known. This takes care of the
remaining six cases. The integrals are given as

I =





V1ABC ·
(
f0+3∗fiso

4

)
+ V01AC ·

(
f0+f1+2∗fiso

4

)
+ V0ACD ·

(
f0+3∗fiso

4

)
; f0, f1 ≤ fiso

V2ADC ·
(
f2+3∗fiso

4

)
+ V23AC ·

(
f2+f3+2∗fiso

4

)
+ V3ABC ·

(
f3+3∗fiso

4

)
; f0, f1 > fiso

Thus, the sixteen different possibilities have now boiled down to three general cases. Using the rules
enumerated above, it is very easy to find the iso-surface and calculate the volume integrals.

5 Hybrid Marching Cubes and Tetrahedra

We have just discussed two methods of finding the iso-surface using discrete data. We have discussed
the marching tetrahedra method as an improvement over the marching cubes method for the reasons
mentioned before. Of course, for finding the iso-surface, the marching tetrahedra method is definitely
easier to implement. But we can further simplify the calculation of volume integrals by revisiting
the marching cubes scheme. Suppose a voxel is completely under the iso-surface i.e. all its vertices
are below the iso-value. So the constituent tetrahedra are all going to be below the iso-surface. This
means that we will need six calculations to find the total integral. A method do directly calculate the
integral over the voxel will bring down the number of calculations to just one, provided the order of
error in the tetrahedron integral and the voxel integral are comparable. We first start by choosing an
interpolation method that is unique over the voxel. We see that the trilinear interpolation in equa-
tion 2 is a unique interpolation inside the voxel. Finding the integral over this volume is a simple
matter.

Ivoxel =

∫ 1

0

∫ 1

0

∫ 1

0
f(x, y, z)dzdydx =

Vvoxel
8

8∑

i=1

f(ri) (18)

From our voxel→ tetrahedra division strategy, we know that Vvoxel = 6Vtet. So

Ivoxel =
3Vtet

4
(f1 + f2 + · · ·+ f8) (19)
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Now if we calculate the integral by summing the integrals over the six constituent tetrahedra, we see
that the scalars at all six vertices do not have equal weight, with the vertices of the body diagonal
having different weights from the rest.

Itet =
Vtet
2

(f1 + f2 + f4 + f5 + f7 + f8) +
3Vtet

2
(f3 + f6) (20)

In both the equations, we see that the sum of the coefficients of each vertex scalar is 6Vtet, meaning
that the two equations are comparable and compatible with each other, thus making the hybrid scheme
possible.

6 Notes about the code

The code was written in C++. The method used was the hybrid cubes + tetrahedra method. The code
uses GAUSSIAN CUBE format files for reading in the mesh and the scalar data.

The algorithm has two distinct levels. First it runs through all the voxels and does two things

1. When all the vertices of a voxel are below the iso-surface, it calculates the integral over these
voxels and adds it to the the total integral.

2. If there is a sign change along any one edge of the voxel, then this voxel contains the required
iso-surface. We split this voxel into tetrahedra and store the data for each. Then the tetrahedron
routine calculates al the iso-surface patches and their contributions to the integral.

3. If all the vertices of the voxel are above the iso-value then the voxel is ignored.

The direct mode takes in the iso-value from the user and plots the iso-surface and calculates the volume
integral. In the inverse mode, the user gives the required volume integral and the program finds the cor-
responding iso-value and plots the surface that encloses this integral. Once all the calculations are done,
the code also implements a small routine using OpenGL that displays an interactive window (screenshot
in Figure 14), where the iso-surface can be viewed and modified.

7 Sample Results

The first part of the task is to visualise the iso-surfaces for given input functions. As a test case, we
choose a simple hydrogenic wave function defined by f(r) = 2e−r. For this function we choose vari-
ous grid sizes for a simple cubic mesh and plot the iso-surfaces for some chosen iso value. The results
can be seen in Figure 15. The approximated iso-surface is plotted with the actual analytically calcu-
lated iso-surface (in this case a sphere). It is clear that the accuracy of the result decreases drastically
with grid size as can be seen from the figure.
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Figure 14: Iso-surface

8 Outlook

In summary, we now have a technique to visualise a certain class of discrete data and additionally
calculate relevant properties from this data. Of course, there are many further ideas that immediately
come to mind. In this work, we mainly relied on uniform meshes which then simplified the march-
ing tetrahedron algorithm. However, there may be a possibility to also use unstructured data with
this algorithm. Secondly, we see that the algorithm is more or less repetitive, i.e. the same process
is executed on large chunks of data. This immediately makes it a candidate for parallelisation, so
that one can handle even finer meshes and also shorten the execution times required for the program.
The visualisation is already implemented in OpenGL. Since graphics is such an important part of the
program, there is also the possibility to use general purpose graphics processing units to handle the
parallelisation. All these point remain to be investigated and form the basis for future work in this
context.
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Figure 15: Iso-surface vs. Grid size
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Abstract:
This work focuses on the quantum chemical calculation of the ground state energy surface of ozone
and, especially, on the minimum energy path within the dissociation threshold for the reaction
O3(1A1) −→ O(3P) + O2(3Σ−

g ). In order to improve these quantum chemical calculations, mainly
internally contracted Multi-reference Averaged Quadratic Coupled-Cluster (ic-MR-AQCC) and inter-
nally contracted Multi-reference Configuration Interaction with all Single and Double excitations with
Davidson or Pople correction (ic-MR-CISD+QD/+QP) energies were compared with MR-AQCC and
MR-CISD+QD/+QP energies. The barrier of the minimum energy path cut disappears by the appli-
cation of the uncontracted methods instead of the internally contracted methods. This is explainable
with the consideration of a higher amount of electron correlation energy. Uncontracted MR-AQCC
and MR-CISD+QD/+QP overestimate the experimental dissociation energy of 1.143 eV even at the
finite cc-pV5Z basis set by 0.030 eV. While the basis set superposition error (BSSE) can be ruled out
as a source for this discrepancy, size-consistency corrections may be considered as a possible error
source.

1 Introduction

Ozone was proposed in 1840 by Schönbein. [1] Ozone has been identified as an important molecule
in atmospheric physics and in climate applications. Several properties and reactions of ozone are still
unclarified, for instance the isotope enrichment effect. In the upper atmosphere, an equal enrichment
of 17O and 18O over 16O within the formation of ozone from the recombination of oxygen atoms and
molecules was found in contrast to the standard, mass-dependent value. [2] In order to get a better
understanding of ozone, its properties and, primarily, this isotope enrichment effect, theoretical calcu-
lations of the kinetics of the dissociation O3(1A1) −→ O(3P) + O2(3Σ−g ) and, therefore, the potential
energy surface (PES) are highly relevant.
The PES so far calculated by ab initio methods leads to a theoretical isotopic exchange rate coefficient
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which is too small compared with the experimental value. [3] The question arises whether there is a
barrier on the dissociation minimum energy path, since this barrier influences the reaction dynamics
and leads to a smaller rate coefficient of the dissociation. All ab initio calculations on the minimum
energy path show an activation barrier at the entrance of the dissociation channel at the O-O bond
lengths r1 ≈ 2.28 a.u. and r2 ≈ 3.8 a.u. and the O-O-O angle α ≈ 115 − 117◦ until now. Further-
more, these calculations predict a van der Waals minimum along the dissociation reaction coordinate
at r2 = 4.5 − 5.0 a.u. and the previous given values of r1 and α. [3] Besides, also an analytical PES
exists, which was constructed from high-resolution infrared spectra. However, this PES must be val-
idated and improved by ab initio calculations, since experimental data is not yet available, especially,
close to the transition states. [4, 5, 3]
Holka et al. [3] recalculated the minimum energy path cut with ic-MR-AQCC, ic-MR-CISD+QD/+QP

and showed that the core electron effect is negligible. Moreover, Holka et al. [3] assumed the approx-
imation within the internally contracted methods could lead to the existing barrier and van der Waals
minimum. Thus, a main part of this work is comparing internally contracted MR-AQCC-method and
uncontracted MR-AQCC-method along the dissociation minimum energy path.

2 Theory

2.1 General Introduction to Quantum Chemistry

The theoretical calculations are based on the solution of the non-relativistic, time independent Schrödinger
equation: [6, 7]

ĤΨ = EΨ. (1)

The Hamiltonian Ĥ corresponds to the total energy of a system and is an analogue to the classi-
cal Hamiltonian. The wave function Ψ is the description of the quantum state of a molecule. E

is the total energy of the system. The Hamiltonian includes the kinetic and potential energy opera-
tors:

Ĥ =
∑

i

1

2
· ∇2

i +
∑

A

1

2
· ∇2

A −
∑

iA

ZA
riA

+
∑

i 6=j

1

ri − rj
+
∑

A 6=B

ZAZB
rA − rB

. (2)

∑
i

1
2 · ∇2

i describes the electronic kinetic energy and
∑
A

1
2 · ∇2

A the nuclear kinetic energy.
∑
i 6=j

1
ri−rj

is the electronic,
∑
A 6=B

ZAZB
rA−rB the nuclear Coulomb-interaction and

∑
iA

ZA
riA

the Coulomb-interaction of

electrons and nuclei.
In the Born-Oppenheimer approximation [7], the total wave function Ψ(R) is written as a product of
the electronic wave function Ψ(r) and nuclear wave function Ψ(R):

Ψ(R, r) = Ψ(r) ·Ψ(R). (3)

The coupling of electrons and nuclei is neglected, since−simplified− the electrons can react really fast
on the movement of the nucleus due to the high difference in mass. The eigen value of the resulting
electronic Schrödinger-equation Eel as a function of the nuclear coordinates describes the potential en-
ergy surface (PES) [7]. A point of the PES corresponds to a molecular configuration during a reaction.
In practice, the PES is calculated pointwise and it is often adequate to calculate only minima and saddle
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points (= transition states). The Schrödinger equation is only exactly solvable for molecules like H+
2 .

For systems with more electrons or nuclei, numeric approximations are needed. Relativistic effects are
relevant for core-electrons which are moving at a substantial fraction of the speed of light.
The Pauli-principle [8, 7] demands the antisymmetry of the wave function. The antisymmetry princi-
ple demands that a wave function changes its sign upon permutation of the coordinates of any pair of
electrons. Consequently, the total n-electron wave function Ψ(τ1, τ2, ..., τN ) is expanded as an antisym-
metrized product of one electron functions (χ(τ)) (Slater-determinants):

Ψ(τ1, τ2, ..., τN ) =
1√
N !

∣∣∣∣∣∣∣∣

χ1(τ1) χ2(τ1) ... χN (τ1)

χ1(τ2) χ2(τ2) ... χN (τ2)

... ... ... ...

χ1(τN ) χ2(τN ) ... χN (τN )

∣∣∣∣∣∣∣∣
. (4)

These one electron functions χ(τ) consist of a spin function σ(ω) (which represents either spin-up or
spin-down states) and a spatial single electron function ψ(r), whereas τ describes position x and spin
variables ω of a single electron:

χ(τ) = ψ(x)σ(ω). (5)

2.2 Variational Principle

The methods described in this report are all variational [7]. The expectation E = <Ψ|Ĥ|Ψ>
<Ψ|Ψ> which

is calculated with a trial wave function Ψ is always greater than or equal to the exact total energy
E0. The lower the expectation value of the energy, the more accurate is the (ground-state) wave func-
tion.

2.3 Hartree-Fock-Approximation

In the Hartree-Fock-Approximation [7] the wave function is described with just a single Slater determi-
nant. Using the LCAO-MO-ansatz (see Eq. 7) with Gaussian functions Φµ and LCAO-MO-coefficients
cµi for the description of the spatial orbitals and minimizing the total energy with respect to all vari-
ational parameters (see Eq. 8) under orthonormalization constraints (cf. Eq. 9) the Roothaan-Hall
equations [9, 10] are received:

FC = SCε. (6)

F is the Fock matrix, C the matrix of the LCAO-MO-coefficients, S the overlap matrix of the basis
functions and ε the diagonal matrix of MO energies.

ψi =
K∑

µ

cµiΦµ (7)

∂E

∂cµi
= 0 (8)
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< Ψi|Ψj >= δij =

{
1 if i = j

0 if i 6= j
(9)

A basis set is determined by the choice of Gaussian functions. The number of the applied Gaussian
functions K (see Eq. 7) increases the computing time and the accuracy. The limit which can be reached
in the Hartree Fock approximation with an infinite basis set is called Hartree Fock limit. The difference
of the exact non-relativistic energy and this Hartree Fock limit defines the electron correlation energy.
Going beyond the HF approximation, we need to account for the contributions of the other possible
configurations.
The electron correlation [11, 12] is commonly separated into its static and dynamic component. The
static electron correlation considers near-degeneracy effects while dynamic correlation accounts for
the remainder. Thus, to account for static electron correlation is important for the description of bond
breaking.

2.4 Configuration Interaction

The Hartree Fock approximation can be improved by choosing a more flexible wave function as in the
CI [7] (= Configuration Interaction) method. The CI-method expands wave function in terms of deter-
minants grouped by their excitation level Ψi,Ψij , etc. (single, double, etc. excitations) with respect to
the ground state (Ψ0). In the case of the Single Reference-CI this ground state is described with the
Hartree Fock determinant. The wave function is constructed as follows:

Ψ = c̃0Ψ0 +
∑

ia

′c̃iaΨa
i +

∑

ijab

′c̃ijabΨ
ab
ij ...+ ... . (10)

The CI-coefficients c̃i are determined by variationally minimizing the energy eigenvalue.
If the sum is not truncated all possible determinants are included and this method is denoted Full
Configuration Interaction (FCI). FCI is the exact result with a given one electron basis set and the
other methods are an approximation of the FCI limit. Due to the high computational cost, Equation 10
is usually truncated to just single (S) or single and double (SD) excitations. The main problem of
these truncated CI methods is that they are not size consistent and extensive. Size consistency [11]
requires that the total energy of two non-interacting molecules/atoms A and B does not depend on
whether it is computed independently EA and EB or jointly as supermolecule EA+B . Size extensivity
[11] is a more general mathematical concept implying the correct energy scaling with the number of
electrons.

2.4.1 Multi-configuration Self-consistent Field and Multi-reference Configuration
Interaction

In the Multi-configuration Self-consistent Field (MCSCF) [11] method not only the CI coefficients
but also MO-coefficients are variationally optimized. The optimization procedure is iterative as in the
Hartree Fock method. The adequate selection of the configurations is the major problem of the MCSCF
methods. The Complete Active Space Self-consistent Field (CASSCF) partitions the MOs into virtual
(unoccupied), active (arbitrary occupation) and inactive (doubly occupied) orbital subspaces and is the
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Table 1: Test of the size-consistency of the internal contracted, used methods

basis set ic-MR-AQCC ( cm−1) ic-MR-CISD ( cm−1) ic-MR-CISD+QD ( cm−1) ic-MR-CISD+QP ( cm−1)

cc-pVTZ 91.52 4514.54 926.72 -217.77
cc-pVQZ 117.17 5031.21 1147.46 -158.77
cc-pV5Z 124.48 5184.49 1226.61 -125.54
cc-pV6Z 126.45 5233.05 1252.77 -112.27

most popular approach in this field.
As in MCSCF, the Multi-reference Configuration Interaction Method [13] commonly defines a refer-
ence configuration space through orbital occupation restrictions which accounts for near-degeneracy
effects. Including all singly and doubly excited configurations (MR-CISD) with respect to the refer-
ence configuration space allows for dynamic electron correlation effects. Higher excited configurations
are usually omitted. The coefficients of the wave function expansion are optimized variationally. This
general method is applicable to all types of problems including bond-breaking.
MR-CISD as all truncated CI expansions are not size consistent and extensive [11]. Several ap-
proaches [14] have been developed to approximately reinstate size-extensivity. The approaches can
be divided into a posteriori corrections (Davidson−type or Pople-type corrections to MR-CISD (MR-
CISD-QD/QP)) and methods that modify the CI functional (MR-AQCC (Multi-reference averaged
quadratic coupled-cluster method)).
An approximation to the conventional MR-CISD methods are the internally contracted (ic) variants
thereof. The latter treat the (MCSCF) reference wavefunction as an entity to which the excitations are
applied, thereby reducing the number of independently variationally optimized parameters drastically
to the same order of magnitude as for SR-CI.
In order to test the size consistency of the ic-MR-CISD-methods and to explain the preference for ic-
MR-AQCC and ic-MR-CISD+QD and its uncontracted (uc) counterparts uc-MR-AQCC and uc-MR-
CISD+QP for the calculation of the PES, the size consistency error ESize−consistency was calculated
with the following equation:

∆ESize−consistency = E((O2 + O)(1A1))− E(O2(3Σ−g ))− E(O(3P)). (11)

E(O2 + O) is the energy calculated with an infinite distance of the two fragmental monomers, E(O2)

andE(O) are the energies of the monomers with the same geomety and CS symmetry. The infinite dis-
tance was approximated with r2 = 15 a.u., the other values were r1 = 2.275 a.u. and α = 117◦. The
results are displayed in Table 1. The size-consistency-errors of ic-MR-AQCC and ic-MR-CISD+QP

are 126.45 cm−1 and−112.27 cm−1 and, therefore, the smallest as expected.

2.5 Basis Sets

In this work, the correlation consistent basis sets [15, 16, 17], developed by Dunning and coworkers,
were applied. These basis sets recover the correlation energy of valence electrons. Basis functions,
which contribute a similar amount of correlation energy, are introduced simultaneously. That results
in the composition displayed in Table 2. Due to the fact that there is a basis set convergence error [18]
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in any finite basis set, an extrapolation to the complete basis set limit was applied. The extrapolation
scheme by Halkier et al. was used [19]:

ECORR(X) = ECBSCORR +
const

X3
. (12)

X is the cardinal number of the basis as in cc-pVXZ, ECORR(X) is the electron correlation energy
in basis set X, ECBSCORR the electron correlation energy at the a complete basis set limit and const a
constant. Within multireference methods the definition of the electron correlation energy is somewhat
vague. In this work, the correlation energy is rated

ECORR(X) ≈ EMR−AQCC(X)− EMCSCF (X), (13)

although this definition neglects the static electron correlation already contained in the EMCSCF (X).
Apart from the basis set convergence error, there is also the basis set superposition error (BSSE) [18].

Table 2: Correlation Consistent Basis Sets

Basis set Primitive functions Contracted functions

cc-pVDZ 9s,4p,1d 3s,2p,1d
cc-pVTZ 10s,5p,2d,1f 4s,3p,2d,1f
cc-pVQZ 12s,6p,3d,2f,1g 5s,4p,3d,2f,1g
cc-pV5Z 14s,9p,4d,3f,2g,1h 6s,5p,4d,3f,2g,1h
cc-pV6Z 16s,10p,5d,4f,3g,2h,1i 7s,6p,5d,4f,3g,2h,1i

This error arises when e.g. two fragments A and B approach to form a supermolecule. Therby, the
description of fragment B is improved by the use of basis functions of fragment A and vice versa.
The basis set of two isolated fragments is, on the contrary, not extended. Thus, this BSSE leads to an
error of calculated energy difference, especially if bond breaking is treated as in the calculation of the
dissociation energy.

2.6 Technical Details

In order to perform ic-MR-AQCC [20] or ic-MR-CISD [21, 22], MOLPRO [23] was used. For the
calculations of ozone, a two-stage MCSCF-calculation [24, 25] was done. At some geometrical con-
figurations also some of the valence orbitals are doubly occupied resulting in an uncontrolled mixing
of core and valence orbitals and thus to non continuous PES, so first the 1s orbitals were determined
in a smaller MCSCF calculation step with all six nearly doubly occupied orbitals in the inactive space
andd 12 electrons in the active space. The second step used a full valence CAS and a frozen core
approximation. The core part of the wave function changes only slightly during the dissociation and
is not responsible for the outstanding discrepancies between theory and experiment, which follows,
for example, from calculations of Holka et al. [3]. For all MR-CI-calculations a full valence CAS
as a reference space and also a frozen core approximation was applied. A-posteriori size-extensivity
corrections of Davidson-type [26, 27] and Pople-type [28] have been computed. Scalar relativistic cor-
rections for mass-velocity and Darwin-terms have been evaluated from first order perturbation theory.
Fully compatible MR-AQCC and MR-CISD calculations have been computed with the COLUMBUS
[29, 30, 31, 32] program package.
Molpro-calculations have been carried out in reduced point group symmetry Cs, while Columbus cal-
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culations used the highest possible abelian point group symmetry throughout (Cs, C2v). For molecular
or atomar oxygen the number of electrons in CAS classes was adapted to the total number of elec-
trons.

3 Results

3.1 ic-MR-AQCC-method

In order to investigate the convergence of the applied ic-MR-AQCC-method with an extended basis set
and recieve an accurate and convergent MEP-Cut, several 1D-Cuts within the PES beside the MEP-Cut
were calculated (see Table 3 for parameters). These 1D-Cuts were fitted in a least square fit to a polyno-

Table 3: Structural data of ozone for the computed 1 D cuts

1D Cut r1 (a.u.) r2 (a.u.) α (◦) number
(bond length O-O) (second bond length O-O) (angle O-O-O) of points

Minimum Energy Path Cut (MEP-CUT) 2.275 3.400−15.000 117.0 13
Barrier Bending Cut 2.275 3.800 102.5−130.0 6
Barrier Stretch Cut 2.200−2.400 3.800 117.0 8

Van-der-Waals Minimum Bending Cut 2.275 5.000 102.5−130 6
O3 Stretch Cut 2.400 2.000−4.000 117.0 12

Dissociation Valence Cut 2.225−2.350 10 117.0 6
Dissociation Angle 2.275 10.000 102.5−130.0 3
C2v Symmetric Cut 2.200−3.000 2.20−3.00 117.0 9
C2vBending Points 2.400 2.400 95.0−145.0 22

mial of n’th order to judge the smoothness of the computed PES [3]:

E(X) = E0 + FXX(X −X0)2 + FXXX(X −X0)3 + FXXXX(X −X0)4 + ... . (14)

X represents the O-O bond length or O-O-O bond angle in a.u.; X0 is the minimum along the chosen
coordinate; E0, FXX , etc. are parameters obtained from the least square fit and Fxx etc. are identified
with the force constants. E(X) are energies relative to the minimum energy point in the input data.
The dissociation angle path was omitted with the ic-MR-AQCC-method, since only three points of
the dissociation angle path were calculated. The fitting results of ic-MR-AQCC-RMVD (relativistically
corrected) are given in Table 4. The obtained parameters converge with an extended basis set and
hence, the energies of each calculated point converge. The following presented accuracy is the maxi-
mal difference of the parameters calculated with cc-pV6Z and cc-pV5Z basis sets. The force constants
FXX , FXXX , FXXXX converge to an accuracy of 410 cm−1a.u.−2 respectively 0.03 cm−1deg−2,
620 cm−1a.u.−3 respectively 0.001 cm−1deg−3 and 720 cm−1a.u.−4 respectively 0.0001 cm−1deg−4

and x0 to an accuracy of 0.002 a.u. respectively 0.1 ◦.
Moreover, the with a cc-pV5Z/cc-pV6Z basis set calculated Minimum Energy Path includes an activa-
tion barrier at r2 = 3.9 a.u. and a van der Waals minimum at r2 = 5.00 a.u., as already calculated with
augmented cc-pVXZ basis sets by F. Holka et al. [3].
The calculated dissociation energy should be compared with the experimental values and, moreover,
the barrier, the energy of the maximum relative to that of the dissociation limit and the energy of the
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van der Waals minimum relative to that of the dissociation limit should be compared to the tendencies
following from the experimental kinetics of the dissociation.
The dissociation energy was calculated as the energy difference of the MEP cut structure at r2 = 15 a.u.
and the equilibrium geometry r1 = r2 = 2.4 a.u. and α = 117◦. Table 5 compiles the dissociation
energies with different basis sets and the CBS limits computed at ic-MR-AQCC level of theory. Even
with the cc-pV6Z basis set the computed dissociation energy (1.099 eV) is 0.044 eV below the ex-
perimental value [3] of 1.143 eV. Basis set extrapolation reduces the discrepancy to 0.014 eV while
relativistic corrections reduce the dissociation energy slightly by 0.003 eV.
The barrier along the MEP-Cut decreases with increasing basis set size. The barrier height is defined as
the energy difference of the energy maximum and the Van der Waals minimum as displayed in Table 6.
The barrier even does not vanish at the CBS limit. For basis sets larger than the cc-pVQZ basis the
barrier maximum drops below the dissociation limit. This tendency is also shown in the work of F.
Holka et al. [3].
Additionally, the van der Waals minimum deepens relative to the dissociation limit with increasing ba-
sis set size (see Table 6), since diffuse basis functions are needed to describe a van der Waals minimum
better. The relativistic correction has only a slight impact on the dissociation energy (−0.003 eV) and
on the barrier (≈ 10 cm−1).
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Figure 1: Minimum Energy Path Cut was calculated with the ic-MR-AQCC method and different basis sets. The
energy in each MEP Cut is relative to the ozone energy at r1 = 2.275 a.u., r2 = 3.4 a.u. and α = 117◦.

3.2 ic-MR-AQCC vs. MR-AQCC-method

The internal contraction reduces the number of variational parameters by a factor of ≈ 100 relative
to the uncontracted method and ties the CI wave function somewhat to the quality of the MCSCF
wave function. It is expected that especially around the barrier this may lead to qualitative and semi-
quantitative errors. Thus, the contraction error is assessed by comparing ic-MR-AQCC with uc-MR-
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Table 4: Comparison of the parameters of the fitted 1D-Cuts calculated with different basis sets and with the
ic-MR-AQCC+RMVD-method

1 D -Cut E0 ( cm−1) FXX FXXX FXXXX x0 (a.u.|deg) Npoints Nparameters rms ( cm−1)

Barrier Bending Cut

cc-pVTZ -8.23 2.76912 -0.03494 0.00022 115.248 6 5 0.13
cc-pVQZ -8.18 2.82027 -0.03415 0.00017 115.272 6 5 0.11
cc-pV5Z -8.49 2.82490 -0.03384 0.00018 115.240 6 5 0.13
cc-pV6Z -8.67 2.83339 -0.03403 0.00018 115.225 6 5 0.11

Barrier Stretch Cut

cc-pVTZ -8.19 78742 -103633 87343.6 2.28973 8 7 0.00094
cc-pVQZ -2.66 80480 -106053 88055.9 2.28072 8 7 0.00037
cc-pV5Z -1.01 80792 -106194 87334.5 2.27853 8 7 0.00070
cc-pV6Z -0.54 80971 -106503 87990.3 2.27759 8 7 0.00066

Van-der-Waals Minimum Bending Cut

cc-pVTZ 0.01 0.25618 -0.00339 0.00003 116.895 6 5 0.03
cc-pVQZ 0.01 0.27187 -0.00371 0.00003 117.094 6 5 0.02
cc-pV5Z -0.02 0.27905 -0.00359 0.00002 117.318 6 5 0.02
cc-pV6Z -0.04 0.27481 -0.00347 0.00002 117.419 6 5 0.02

O3 Stretch Cut

cc-pVTZ -33.10 39597 -60268 54677 2.42878 12 11 2.25
cc-pVQZ -4.73 41842 -63666 59557 2.41174 12 11 2.18
cc-pV5Z -1.40 42428 -64334 60598 2.40769 12 11 2.16
cc-pV6Z -0.37 42664 -64658 61123 2.40591 12 11 2.16

Dissociation Valence Cut

cc-pVTZ -1.55 80584 -105732 92472 2.29560 6 5 0.00002
cc-pVQZ -12.28 82385 -108404 91419 2.28711 6 5 0.00001
cc-pV5Z -8.62 82709 -108628 90599 2.28514 6 5 0.00003
cc-pV6Z -7.09 82921 -108943 90599 2.28419 6 5 0.00002

C2v Symmetric Cut

cc-pVTZ -50.38 102880 -138070 124302 2.42181 9 8 0.00104
cc-pVQZ -9.41 106331 -144515 129357 2.40935 9 8 0.00397
cc-pV5Z -4.07 107430 -146058 130528 2.40613 9 8 0.00834
cc-pV6Z -2.42 107832 -146672 131247 2.40472 9 8 0.00286

C2v Bending Points

cc-pVTZ -0.39 16.56920 -0.17172 0.00226 116.859 22 8 0.12
cc-pVQZ 1.24 16.35920 -0.17003 0.00313 116.864 22 8 2.42
cc-pV5Z 0.85 16.35620 -0.17004 0.00296 116.858 22 8 2.22
cc-pV6Z 0.94 16.32990 -0.16942 0.00294 116.871 22 8 2.29
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Table 5: a) Dissociation energy from ic-MR-AQCC and ic-MR-AQCC+RMVD (Experimental value [3] corrected
by the value for Zero Point Energy (ZPE) of O2 and O3: 1.143 eV) b) Difference of the energy maximum at
r2 = 3.6 a.u. (cc-pVTZ), r2 = 3.8 a.u. (cc-pVQZ) respectively r2 = 3.9 a.u. (cc-pV5Z/cc-pV6Z) and the
dissociation limit energy at r2 = 15 a.u. within the MEP-Cut

basis set a) Dissociation energy b) Barrier top relative to dissociation limit
ic-MR-AQCC (eV) ic-MR-AQCC+RMVD (eV) ic-MR-AQCC (cm−1) ic−MR−AQCC+RMVD (cm−1)

cc-pVTZ 0.887 0.881 321.02 316.91
cc-pVQZ 1.022 1.019 57.43 47.46
cc-pV5Z 1.078 1.075 -46.94 -53.82
cc-pV6Z 1.099 1.096 -83.00 -89.81

(Q,5) 1.129 1.126 -152.23 -157.23
(5,6) 1.126 1.123 -144.68 -151.37

Table 6: a) Difference of the van der Waals minimum at r2 = 5 a.u. and the dissociation limit energy at r2 =
15 a.u. within the MEP-Cut b) Barrier calculated with the MEP-Cut especially with the maximum at r2 =
3.6 a.u. (cc-pVTZ), r2 = 3.8 a.u. (cc-pVQZ) respectively r2 = 3.9 a.u. (cc-pV5Z/cc-pV6Z) and the van der
Waals minimum at r2 = 5 a.u.

basis set a) van der Waals minimum relative to dissociation limit b) Barrier height
ic-MR-AQCC ic−MR−AQCC+RMVD ic-MR-AQCC ic−MR−AQCC+RMVD

(cm−1) (cm−1) (cm−1) (cm−1)

cc-pVTZ -151.32 -150.55 472.34 467.46
cc-pVQZ -165.00 -166.27 222.43 213.73
cc-pV5Z -189.41 -190.07 142.46 136.25
cc-pV6Z -197.13 -197.84 65.75 60.77

(Q,5) -217.97 -218.00 65.75 60.77
(5,6) -217.48 -218.26 72.80 66.88

AQCC using the cc-pVTZ basis set. As in Section 3.1 the 1D-Cuts were fitted with a polynomial
expansion and the resulting force constants are compared (see Tab. 7). The force constants at uc-MR-
AQCC are systematically lower by 8% than their ic-MR-AQCC counterparts. The exception is the van
der Waals minimum bending cut (< 15%), since these force constants are small in comparison to the
others. The difference in α0 and r0 is always smaller than 0.4 % (0.009 a.u., 0.214 ◦). The largest
difference is in the parameter E0, as expected, since this parameter is the statistically most uncertain
fit parameter. As an example for the fitted 1D-Cuts, the C2v symmetric cut is displayed in Fig. 2.
The MEP-Cut reveals qualitatively different predictions for the two different methods (Fig. 2). The bar-
rier has almost vanished at the MR-AQCC/cc-pVTZ level (barrier height 65.79 cm−1) and, in addition,
the barrier top has already dropped below the dissociation limit (−156.31 cm−1). The position of the
vdW minimum relative to the dissociation limit has decreased by 71 cm−1 to −222.10 cm−1 relative
to the ic-MR-AQCC values (see Tables 5 and 6). This is somewhat surprising as the vdW minimum
should be equally described with both variants. Since the barrier height and the dissociation energy is
far from converged with a cc-pVTZ basis, the MEP-Cut had to be recalculated with uc-MR-AQCC-
method and larger basis sets (cc-pVQZ, cc-pV5Z).
A graphical comparison of uc-MR-AQCC-method and its ic counterpart is presented in Fig. 3. The

cc-pVQZ results confirm the tendency already observed with the cc-pVTZ basis set: the presence of
the barrier is a consequence of the internal contraction while uc-MR-AQCC predicts no barrier and no
van der Waals minimum. The uc- and ic-MR-AQCC data are plotted with the energy reference point at
r2 = 15 a.u. (see Fig. 3). This shows that the shape of the curves agrees for r2 > 6 a.u. to better than
10 cm−1, while for shorter distances they differ by about 900 cm−1 at r2 = 3.4 a.u..
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3 Results

Table 7: Comparison of the fitted relative energies of the 1D - Cuts calculated with ic-MR-AQCC and MR-AQCC

1 D -Cut E0 ( cm−1) Fxx Fxxx Fxxxx x0 (a.u.|deg) Npoints Nparameters rms ( cm−1)

Barrier Bending Cut

ic-MR-AQCC -8.53 2.77276 -0.03502 0.00022 115.217 6 5 0.13
MR-AQCC -10.37 2.85323 -0.03551 0.00024 115.062 6 5 0.15
Drift (%) -17.71 -2.82 -1.39 -7.61 0.13

Barrier Stretch Cut

ic-MR-AQCC -11.98 79339 -104652 89005 2.28719 8 7 0.00042
MR-AQCC -6.44 78125 -102519 89807 2.29086 8 7 0.03091
Drift (%) 85.93 1.55 2.08 -0.89 -0.16

Van-der-Waals Minimum Bending Cut

ic-MR-AQCC 0.01 0.25597 -0.00340 0.00003 116.855 6 5 0.03
MR-AQCC -0.02 0.27414 -0.00337 0.00003 116.641 6 5 0.02
Drift (%) -158.00 -6.63 0.83 14.89 0.18

O3 Stretch Cut

ic-MR-AQCC -30.28 39881 -60809 55286 2.42750 12 11 2.25
MR-AQCC -52.75 38527 -58512 53675 2.43642 12 11 2.43
Drift (%) -42.60 3.51 3.93 3.00 -0.37

Dissociation Valence Cut

ic-MR-AQCC -1.957 80920 -106348 93291 2.29506 6 5 0.005
MR-AQCC 0.002 79930 -104494 92399 2.30005 6 5 0.004
Drift (%) -89352.09 1.24 1.77 0.97 -0.22

C2v Symmetric Cut

ic-MR-AQCC -50.38 102880 -138070 124302 2.42181 9 8 0.00104
MR-AQCC -85.59 100911 -134374 121174 2.42857 9 8 0.00589
Drift (%) -41.14 1.95 2.75 2.58 -0.28

C2v Bending Points

ic-MR-AQCC -0.38 16.58420 -0.17207 0.00226 116.860 22 8 0.11
MR-AQCC -0.25 16.55460 -0.17271 0.00225 116.897 22 8 0.15
Drift (%) 50.19 0.18 -0.37 0.65 -0.03

Table 8: Comparison of the dissociation energies calculated with ic-MR-AQCC and MR-AQCC

basis set ic-MR-AQCC (eV) MR-AQCC (eV)

cc-pVTZ 0.887 0.973
cc-pVQZ 1.022 1.111
cc-pV5Z 1.078 1.173
cc-pV6Z 1.099

(Q,5) 1.129 1.231
(5,6) 1.126
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Figure 2: C2v Symmetric Cut and MEP-Cut were calculated with MR-AQCC and ic-MR-AQCC and a cc-
pVTZ-basis set. The energy within the C2v Symmetric Cuts is relative to the ozone energy at r1 = 2.4 a.u.,
r2 = 2.4 a.u. and α = 117◦, within the MEP Cut relative to r1 = 2.275 a.u., r2 = 3.4 a.u. and α = 117◦.

The dissociation energy predicted at uc-MR-AQCC level is larger by 86 meV to 95 meV than its inter-
nally contracted counterpart (see Table 8). In fact, uc-MR-AQCC dissociation energy with a cc-pV5Z
even overestimates the experimental value by 0.030 eV.
The results suggest, that the barrier is an artifact of the internal contraction which is also in line with
the experimental finding of mass-independent isotope enrichment effect in ozone. In addition, this may
indicate that the good agreement of the ic-MR-AQCC dissociation energy at CBS limit 1.126 eV and
the experimental value 1.143 eV is owed to error compensation. On the other hand, overestimating the
experimental dissociation energy at the CBS limit with the uc-MR-AQCC by 88 meV is larger than to
be expected at this level of theory.

3.3 (ic)-MR-CISD

The energies calculated with MR-CISD+QP and ic-MR-CISD+QP almost reproduce the respective
MR-AQCC data (Fig. 4).
The a posteriori Pople size consistency correction decreases the barrier height, lowers the van der Waals
minimum and shifts the barrier maximum below the dissociation limit.

Also the MR-CISD energies a posteriorily Pople corrected are in agreement with the observed trends
for MR-AQCC: the dissociation energies derived from the internally contracted variants only slightly
underestimate the experimental value and the size-extensivity correction amounts to 0.06 eV at the
CBS limit. The uncontracted calculations yield at cc-pV5Z level a higher dissociation energy by
0.062 eV (MR-CISD) compared to the ic calculation, a larger with the Pople correction (0.083 eV)
also consistently leading to an overestimate of the experimental dissociation energies as compared to
uc-MR-AQCC.Within the framework of the ic-MR-CISD method it is possible to increasingly better
approximate the uc-MR-CISD method by increasing the number of reference states. To investigate
the correctness of the uncontracted methods, the energies of r2 = 3.9 a.u. of the MEP (barrier top)
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Figure 3: MEP-Cut calculated with MR-AQCC and ic-MR-AQCC and a cc-pVQZ-basis set. The energies of the
MEP Cut are relative to ozone at r1 = 2.275 a.u., r2 = 15 a.u. and α = 117◦.

and r2 = 5.0 a.u. of the MEP (van der Waals minimum) were calculated with the ic-MR-CISD+QP-
method, a cc-pVTZ basis set and the application of more than one reference wave function (see Ta-
ble 11), since the barrier should also decrease with the application of this method and more accounted
electron correlation. The energy of the former barrier top decreases more with the number of the ref-
erence functions than the energy of the van der Waals minimum. In short, this tendency fits to the disap-
pearing barrier with the MR-AQCC-method and MR-CISD+QP/+QD.

3.4 Calculation of Basis-set-superposition-error (BSSE)

The BSSE error was investigated at ic-MR-AQCC level only, because the BSSE of the ic-MR-AQCC
method is expected to be similar to the BSSE uc-MR-AQCC as well as ic-MR-CISD+Q/uc-MR-
CISD+Q with the same basis set.
The BSSE is approximately corrected for by the counter poise method which takes into account the dis-
tance dependence of the fragment energies in the presence of the respective ghost basis of the oxygen
atom (O∗) and molecule (O∗2):

∆EBSSE = EO2+O∗(R∞) + EO+O∗2(R∞)− EO2+O∗(R)− EO+O∗2(R). (15)

∆EBSSE is the BSSE correction. The infinite distance is approximated by r2 = 15 a.u.; the bond
length of O2 is chosen r1 = 2.275 a.u. for the MEP-Cut and r1 = 2.4 a.u. for the BSSE correction of
the dissociation energy.
At cc-pV6Z-basis, the calculated BSSE correction for ic-MR-AQCC is displayed in Fig. 5. This illus-
tration implies that the dissociation energy corrected with the BSSE should be lower (see Tab. 12). The
extrapolation of the BSSE correction was done with Equation 12. The BSSE correction energy was
inserted into ECorr.
Applying the correction calculated with ic-MR-AQCC to the MR-AQCC dissociation energy leads to a
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Table 9: Comparison of the dissociation energies calculated with ic-MR-CISD methods with and without size
consistency correction

basis set ic-MR-CISD ( eV) ic-MR-CISD+QD ( eV) ic-MR-CISD+QP ( eV) ic-MR-AQCC ( eV)

cc-pVTZ 0.857 0.895 0.893 0.887
cc-pVQZ 0.982 1.032 1.030 1.022
cc-pV5Z 1.032 1.089 1.087 1.078
cc-pV6Z 1.051 1.111 1.109 1.099

(Q,5) 1.077 1.142 1.139 1.129
(5,6) 1.075 1.138 1.136 1.126

Table 10: Comparison of the dissociation energies calculated with MR-CISD methods with and wihtout size
consistency correction

basis set MR-CISD (eV) MR-CISD+QD (eV) MR-CISD+QP (eV) MR-AQCC (eV)

cc-pVTZ 0.916 0.984 0.983 0.973
cc-pVQZ 1.040 1.124 1.123 1.111
cc-pV5Z 1.094 1.191 1.177 1.173

(Q,5) 1.140 1.235 1.234 1.231

Table 11: Relative energies of the barrier top and the van der Waals minimum calculated with ic-MR-CISD+QP,
a cc-VTZ basis set and a number of reference wave functions and compared with the MR-CISD+QP-energy

Number of reference wave functions Relative energies ( cm−1)
barrier top van der Waals minimum
r2 = 3.9 a.u. r2 = 5.0 a.u.

1 0 0
2 -75.11 -52.52
4 -133.11 -82.83
5 -143.14 -89.35

10 -191.73 -108.36

MR-CISD+QP -3175.07 -2813.97
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4 Summary

De = 1.148 eV at the cc-pV5Z level, thereby overestimating the dissociation energy by 0.005 eV.
Thus, the BSSE cannot account for the discrepancy with the experimental value, since the disso-
ciation energy at a cc-pV6Z basis set will be larger while the BSSE decreases with increasing ba-
sis set size. Moreover, in the limit of an infinite basis set the BSSE should vanish (see Table 12).
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Figure 5: Influence of the BSSE to the Minimum
Energy Path (ic-MR-AQCC/cc-pV6Z). The energies
with BSSE correction (+) and without BSSE correc-
tion (x) are relative to the uncorrected ozone energy
at r1 = 2.275 a.u., r2 = 3.4 a.u. and α = 117◦.

Table 12: Correction of the dissociation energy regard-
ing the basis set superposition error (ic-MR-AQCC-
method)

corrected
basis set dissociation energy ( eV) dissociation energy ( eV)

cc-pVTZ 0.459 0.887
cc-pVQZ 0.967 1.022
cc-pV5Z 1.053 1.078
cc-pV6Z 1.087 1.099

(Q,5) 1.124 1.129
(5,6) 1.122 1.126

4 Summary

The minimum energy path calculated with ic-MR-AQCC and ic-MR-CISD+QP show the typical bar-
rier and van der Waals minimum as in former calculations. The experimental dissociation energy for the
ozone dissociation (O3(1A1) −→ O(3P) + O2(3Σ−g )) is underestimated by 0.021 eV (ic-MR-AQCC)
and 0.011 eV (ic-MR-CISD+QP) including BSSE corrections of 0.004 eV. This good agreement with
the experimental value is likely to be due to error compensation, since the conceptually more accu-
rate uncontracted variants, MR-AQCC and MR-CISD+QD/QP, overestimate the experimental disso-
ciation energies substantially already at the cc-pV5Z level. Furthermore, the MEP cuts computed
with MR-AQCC and MR-CISD+QD/QP do not display a barrier which is in line with the observed
isotope enrichment effect. The discrepancy for the dissociation energy using uc-MR-AQCC and uc-
MR-CISD+QD/QP-methods is not related to the basis set superposition error. Since the dissociated
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fragments in contrast to the ozone molecule constitute highly symmetrical species, the deviation might
arise from some artifical bias in the choice of the configuration space.
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Abstract:
In this report I present the outcome of an examination and benchmark of several software packages
for solving linear systems of equations using various preconditioners. The preconditiones examined
are based on the Algebraic Multigrid method, Incomplete LU decomposition and the Frobenius Norm
approximation. The packages use Krylov-based iterative methods such as Restarted Generalized Min-
imum Residual (GMRES) or Conjugate Gradient (CG) as the solvers, allowing different approaches
to be set as the preconditioner.
The benchmark was performed on the supercomputers of the JSC, JUGENE and JUROPA.

1 Introduction

Given a linear system of equations An×n · b = x one can apply some well known methods, such as
Gaussian elimination, in order to solve the system. Using such a method has some major drawbacks
that make them impractical for nowadays systems that grow larger and larger. The asymptotic time
complexity of these methods is O(n3) means doubling the problem domain leads to 8 times longer
computation, a rate that is not provided by the growth of the available hardware.
A drawback of using Gaussian ellimination for sparse systems is the loss of sparsity during the process
which leads to additional memory consumption up to the level that current computer systems might
not be able to provide.
These two issues, among others, lead to a quest for a faster and sparsity preserving methods - precondi-
tioners. The preconditioner is a matrix P that minimizes the condition number of AP−1, thus allowing
a faster solution of A ·P−1y = b which is later followed by P ·x = y giving us the final result.
The seek for a perfect preconditioner constructing technique - such that will fit all the possible matri-
ces - is a very old and well researched. Still, no such technique is known and one must decide what is
the appropriate way to construct a perconditioner for a given problem. Many software packages exist
that provide the user with a preconditioner for an input, utilizing methods that are based on numerical
analysis, heuristics, similarity and more.
In this work two software packages - Hypre [1] and ILUPack [2] were examined on the supercomputers
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of the JSC. The construction of the preconditioners of Hypre have a parallel implementation and thus
allow utilizing the supercomputer and distributing the workload among the multiple nodes using MPI.
The rest of this report is organized as follows. First, Section 2 presents the background for this work.
Section 3 presents the software packages that were examined during this work. Section 4 contains the
description of the input matrices that were used for this work. The results of the work are presented in
Section 5. Our conclusions from this study are presented in Section 6.

2 Background

2.1 Krylov subspace

The n×mKrylov matrix generated by matrixAn×n and vector b is defined as

Kn =




∣∣∣∣∣∣∣∣∣∣

b

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

Ab

∣∣∣∣∣∣∣∣∣∣

A2b · · ·

∣∣∣∣∣∣∣∣∣∣

Am−1b

∣∣∣∣∣∣∣∣∣∣




This matrix is a starting point for some of the most successful methods in numerical linear alge-
bra for finding (some) eigenvalues of a given matrix - Lanczos, Arnoldi and more, and for solving
large sparse systems of linear equations - GMRES, Conjugate gradient and others. As construct-
ing each additional vector in the subspace requires only a single matrix-vector product, some black
box method for performing this computation can be utilized, be it a sparse multiplication, parallel
one or other. The dimension of the subspace spanned by the vectors generated is m and the vec-
tors

{Ak · b} k = 0 · · ·m− 1

are the base of the subspace. However, this base is suboptimal for this subspace, and the generated
vectors are nearly linearly dependent, therefore one should use some orthogonalization scheme in
order achieve better results.

2.2 Generalized Minimum Residual

The GMRES [3] method is an iterative method based on the constructed Krylov subspace and finding
the vector that minimizes the Euclidean norm of the residual using the Arnoldi iteration. The method
works on arbitrary non singular square matrices, by constructing the appropriate Krylov subspace, and
for each iteration finds the vector xn ∈ Kn that minimizes

‖r2‖ = ‖b−Axn‖2

The minimization is performed by using the Arnoldi iteration in order to generate an orthonormal
basis q1 q2 ...qn that form the matrix Qn, so we seek for the vector yn such that xn = Qn · yn. An
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additional outcome of the Arnoldi iteration is the upper (n+ 1)× n Hessenberg matrix H̃n such
that

AQn = Qn+1H̃n

Next we deduce ‖Axn − b‖ = H̃nyn − βe1 with β = ‖b − Ax0‖ , en is the first vector in the
standard basis of Rn+1 and x0 is the initial guess. This allows us to solve the least square problem of
size n

rn = H̃nyn − βe1

The GMRES algorithm can be expressed as follows:
while the residual is bigger than the treshold do

1. do one step of Arnoldi iteration

2. find the yn which minimizes ‖rn‖
3. xn = Qnyn

end do

The complexity of the algorithm depends on the black box matrix vector multiplication operation. For
a sparse matrix that have nnz non zero elements, this operation can be easily done within O(nnz)

floating point operations. In addition to vector matrix multiplication, at every iteration the mini-
mizing vector must be sought for, this taking O(mn) floating point operations for the m-th itera-
tion.

2.2.1 Restarted Generalized Minimum Residual

The restarted GMRES or GMRES(k) is a method to overcome the quadratic growth of the iteration
cost due to the O(mn) component for the m-th iteration. Instead of keeping the old basis starting x0

for the whole process, it is restarted after k steps having xk as the initial guess. This results in better
asymptotic complexity but might harm convergence in case k is not big enough to allow constructing
such Kn that allows minimizing xn.

3 Software packages

This work is based on utilizing a few software packages dealing with solving systems of linear equa-
tions through usage of preconditioned GMRES.

3.1 Hypre

The Hypre project [1] aims to provide a software package that deals with large sparse linear systems
of equations utilizing parallel and distributed computer systems. The package allows choosing and
setting up both a solver and a preconditioner from a large set of implemented algorithms according
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to the data representation used - the conceptual interface. The interfaces used in Hypre are as follow-
ing:

• Structured-Grid System Interface (Struct): This interface is appropriate for applications whose
grids consist of unions of logically rectangular grids with a fixed stencil pattern of nonzeros at
each grid point. This interface supports only a single unknown per grid point.

• Semi-Structured-Grid System Interface (SStruct): This interface is appropriate for applications
whose grids are mostly structured, but with some unstructured features. Examples include block-
structured grids, composite grids in structured adaptive mesh refinement (AMR) applications,
and over-set grids. This interface supports multiple unknowns per cell.

• Finite Element Interface (FEI): This is appropriate for users who form their linear systems from
a finite element discretization. The interface mirrors typical finite element data structures, in-
cluding element stiffness matrices.

• Linear-Algebraic System Interface (IJ): This is the traditional linear-algebraic interface. General
solvers and preconditioners are available through this interface

After choosing the conceptual interface one has to choose the solver and the preconditioner to use from
the following list. Some of the algorithms can be used only with appropriate conceptual interfaces, and
few can be used as a solver, a preconditioner or both.

Jacobi SMG PFMG Split SysPFMG
FAC Maxwell BoomerAMG AMS MLI

ParaSails Euclid PILUT PCG GMRES
FlexGMRES LGMRES BiCGSTAB Hybrid LOBPCG

In this work 3 of the preconditioners of the package were examined through the IJ interface using the
GMRES solver. Following is some overview of the preconditioners used in this project.

3.1.1 AMG

BoomerAMG is a parallel implementation of the algebraic multigrid method. The user can choose
between various different parallel coarsening techniques, interpolation and relaxation schemes through
parameter interface for the package.
The AMG method is based on approximating a solution for a coarse problem and then interpolating the
result to a finer grid. The method first deals with a high frequency errors thus pushing the error down
at the global scale. This method is known to perform well on differential equations but can be used as
a preconditioner for linear systems of equations as well.

3.1.2 Euclid

The Euclid preconditioning framework encapsulates a few techniques of preconditioner construction.
The current version of Hypre includes the parallel ILU(k) and the Block Jacobi ILU(k) algorithms.
These preconditioners are achieved by performing an incomplete LDU decomposition of the original
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matrix, thus reaching a sparse forms that still allows a fast deduction of determinants and thus solving
the system. As the process of LDU decomposition involves multiple communication and synchroniza-
tion acts among the processors participating at the parallel algorithm it is not recomended to use this
method for most of the problems when utilizing just a few processors as the overhead will be greater
than the benefit of using more than a single core.

3.1.3 Parasails

ParaSails is a parallel implementation of a sparse approximate inverse preconditioner, using a priori
sparsity patterns and least-squares (Frobenius norm) minimization. Symmetric positive definite (SPD)
problems are handled using a factored SPD sparse approximate inverse. General (nonsymmetric and/or
indefinite) problems are handled with an unfactored sparse approximate inverse. It is also possible to
precondition non-symmetric but definite matrices with a factored, SPD preconditioner. ParaSails uses
a priori sparsity patterns that are patterns of powers of sparsified matrices. ParaSails also uses a post-
filtering technique to reduce the cost of applying the preconditioner.

3.2 ILUPack

ILUPack states its goal as numerical solution of large sparse linear systemsAx = b by

• Iterative methods, in particular preconditioned Krylov subspace methods

• Preconditioner constructed from an incomplete LU decomposition

The solvers it provides are the GMRES(k) for arbitrary matrices and CG for symmetric positive defi-
nite matrices.
The preconditioners are constructed by performing nested ILDU decomposition of the matrix, the
nested decomposition is presented in the following 2 figures. First - the decomposition itself to 4 com-
ponents.

The frameworks performs the decomposition as long as it consider it reasonable, and then recursively
applies the same technique to the unfactored components as long as some treshold is kept.
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4 Data

This section presents the input matrices used for the benchmark. All these matrices are known to make
a hard life to the various solvers, they are very sparse and relatively large.
For testing we used 4 matrices, all of them represent 3D connectivity for various structures. Table 1
presents the characteristics, such as the dimension, the nnz, whether the matrix is symmetric positive
definite and gives some general description regarding the matrix domain.
During the benchmark all the matrices besides Anderson3D were presented in the binary CRS form and
occupied (150− 300)MB on disk. The Anderson3D matrix was generated on the fly by the software
according to its pattern.

Matrix Dimension nnz SPD Description

Kil 235, 962× 235, 962 12, 860, 848 YES Related to shell structure
(pressed metal)

kurbel 192, 858× 192, 858 24, 259, 520 YES Related to the 3D structure of an
engine crankshaft

w124g 401, 595× 401, 595 20, 825, 881 YES Related to 3D steel structure
Anderson3D 1, 000, 000× 1, 000, 000 5, 940, 100 NO Related to the (quantum) theory

of semiconductors

Table 1: Matrices characteristics

One of the most important details regarding the input matrix is its sparsity pattern. The ability to
distribute the workload evenly among the processors, the convergence factor, initial condition numbers
- are all defined by the pattern. Figure 1 presents the sparsity patterns of the 4 input matrices. The
bottom row zooms at the center of the matrix with radius of 1000. One can notice that the matrices are
extremely sparse with nnz ∈ [5n, 126n].
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(a) Kil (b) kurbel
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Figure 1: Sparsity patterns of test matrices
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5 Results

Here the results of the benchmark are presented. For all the experiments the GMRES solver was used,
with different restart parameters. First, Table 2 summarizes the result, presenting which matrices were
successfully solved using which preconditioner and on which machine. We can see that the Hypre-
AMG preconditioner was able to cope with Anderson3D on both Jugene and Juropa and with kurbel
on Juropa only. Hypre-Euclid was successful only on Jugene with Kurbel. The Hypre-Parasails algo-
rithm managed to cope only with Kil on Jugene. The ability of one machine to cope with a specific
matrix while failing on other machine first seems weird, as the code executed is expected to be iden-
tical. The probable variations are due to the limitations of the machines - on Jugene one can only ask
for a short computation time and much more limited amount of local memory thus allowing longer and
more memory consuming computations to succeed on Juropa while failing on Jugene. On the other
hand, Jugene can provide many more processors for the computation, and this may lead to convergence
at places Juropa failed.

Finaly, the ILUPack was able to solve all the matrices, Anderson3D for any requested tolerance and
the other ones to the tolerances presented at the table. Clearly, as the ILUPack comes compiled for
the Intel architecture only, it could not be able to be examined on Jugene and the results presented are
coming from Juropa only.

Kil Kurbel w124g Anderson3D

Hypre - AMG X Juropa X V
Hypre - Euclid X Jugene X X
Hypre - Parasails Jugene X X X
ILUPack 1e-5 1e-3 1e-3 V

Table 2: Results summary

5.1 Hypre

Next some more detailed results are to follow. We first address the Hypre package, and as it has a
parallel implementation we first show the scalability in terms of time and the number of iterations for
the Kil matrix on Jugene using the Parasails preconditioner. Figure 2 shows 2 plots for various terms
of tolerance requirement for the solver. The x axis is the number of processors being involved in the
computation.

One can clearly see the scalability of the method - and the asymptotic behavior that depends on the
requested tolerance. As for the setup times - the Parasails method is easy to construct and, as it is pos-
sible to perform row distribution of the preconditioner matrix among the processors, it requires almost
no synchronization or communication overhead. This leads to very short setup times as can be seen in
the plots.
Another interesting aspect of the same problem is presented in Figure 3. Here the x axis is the tol-
erance parameter and one can see the behavior of the time and iteration count for a given number of
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Figure 2: Times and iterations for Kil on Jugene using Parasails preconditioner

processors. As the convergence rate is nearly constant for a specific problem one can extrapolate these
results to approximate the expected number of iterations and times for other various tolerance values.
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Figure 3: Times and iterations for kil on Jugene using Euclid Parasails with 2048 processors vs tolerance

Next, we examine the kurbel matrix on Jugene using the Euclid preconditioner with 2 different restart
options - m = 500 and m = 1000.

For the Euclid preconditioner algorithm one can clearly see that the major part of the time spent during
the run is at the setup time. This is due to the construction of the preconditioner matrix which involves
the ILU decomposition of the original matrix, thus requiring a lot of synchronization and communica-
tion between the processors. Still, once you can utilize a few thousands processors for the task there
are results. The iteration count grows rapidly as the number of processors grow.
The restart parameter m sets the dimension of the Krylov subspace. It is clear that a greater dimension
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Figure 4: Times and iterations for kurbel on Jugene using Euclid preconditioner with m = 500

0 2000 4000 6000 8000 10000
0

500

1000

1500

s
e
c

Jugene: Setup and solve times for kurbelUS using Euclid with 
 restart = 1000 and tolerance = 1e−04

 

 

SetupTime

TotalTime

0 2000 4000 6000 8000 10000
0

5000

10000

Number of processors

 

 

Iterations

(a) Tolerance = 1e−4

0 2000 4000 6000 8000 10000
0

500

1000

1500

s
e
c

Jugene: Setup and solve times for kurbelUS using Euclid with 
 restart = 1000 and tolerance = 1e−06

 

 

SetupTime

TotalTime

0 2000 4000 6000 8000 10000
0

5000

10000

15000

Number of processors

 

 

Iterations

(b) Tolerance = 1e−6

Figure 5: Times and iterations for kurbel on Jugene using Euclid preconditioner with m = 1000

may lead to convergence where a smaller one would not. Yet, this has a cost in time and memory com-
plexity as the bigger basis must be constructed and stored and also regarded during the minimization
phase. Comparison of Figure 4 and Figure 5 shows clearly thatm has a major influence on the iteration
count, as well as the time spent at the solve phase - the margin between the setup and the total times.
Clearly, one must adjust this parameter to proper fit his problem domain.
Last, Figure 6 displays the behavior of the AMG preconditioner on kurbel matrix on the Juropa ma-
chine.

Unlike previous experiments on Jugene, here one can clearly see there is a minimal time that oc-
curs when using 32 processors, and it grows when using more. The number of iterations when using
AMG for this problem is more or less constant, and similar to Parasails the setup time is negligi-
ble.
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Figure 6: Times and iterations for kurbel on Juropa using AMG preconditioner

5.2 ILUPack

The ILUPack distributable contains a precompiled library for the Intel architecture, thus it could be only
examined on Juropa. Moreover, the implementation is sequential, which means it can not utilize SMP
or distributed environments and can only be run on a single processor. One rather important thing to
notice regarding ILUPack is the soft threshold it provides - which means setting the requested residual
will not eventually provide you with a solution up to that tolerance but rather some effort to reach it.
The software determines itself when it should stop according to some heuristic computation it performs
prior running the solver and not verifying the final residual versus the requested one, which leads to
the appearance of a new outcome - the achieved residual vs. the requested one. Figure 7 present the
result of executing the package on various matrices. The x axis for these plots is the requested residual.

For the Kil matrix, the achieved residual decreases as the requested tolerance drops, a behavior that can
be expected from the solver. This is also the case with the Anderson3D matrix. On the other hand, with
the kurbel and w124g matrices this is not the case - at some points asking for better precision leads to
a greater residual - a behavior that is unwanted for such a package.
Similar to the Euclidian preconditioner of the Hypre package, and due to the similarity of the methods,
the major part of the time is spent on constructing the preconditiner, and this time seems to be more or
less constant for these matrices. The iteration count is constant for all problems besides Anderson3D
which require more iterations in order to achieve better convergence, which also lead to longer total
time for the entire computation.

6 Conclusions

This work focused on examination of two software packages for solving linear systems of equations
using iterative, Krylov subspace based preconditioners on the JSC supercomputers. The Hypre package
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Figure 7: Achieved residual, times and iteration counts for the ILUPack on various matrices

has a parallel implementation and can be executed on both Jugene and Juropa. The ILUPack involves
ILU decomposition - a step that is extremely costy for parallel implementation and so there is no
parallel version of the package yet, and there is no version for IBM/BlueGene so it can be run only on
Juropa.
Different packages and different input data as well as other parameters such as number of steps before
restarting greatly infuence the outcome of the experiment. The scalability patterns as well as general
package capabilities can help users decide which of the packages should they utilize for their work
having structural similarity and resource availability in mind.
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Abstract:
We describe a NFFT-accelerated Ewald summation for calculating electrostatic potentials and forces
for a periodic system of charged particles. Furthermore, we have a glance at our implementation of
this method within the ScaFaCoS library and present the results for some special systems. In the last
part, we will give stimulations for further research and developments.

1 Introduction

The simulation of particles is an important toolkit for natural as well as material science. A particular
case is the computation of Coulomb interactions between a system of charged particles. Important
parameters in the simulation are potentials to estimate the total energy and thus the stability of certain
configurations. On the other hand, the forces acting at each particle can be used to simulate motions of
the system over a short time interval.

Since there are no analytic formulae for the motion of more than two mutually interacting particles, nu-
merical simulation is an indispensable method for the analysis of those systems. In spite of the develop-
ment of modern computer systems, it is necessary to have efficient algorithms to get realistic results for
large and complicated configurations within a reasonable period of time.

Due to physical limitations, the efficiency of current processors is not rising any longer. To get more
powerful computer systems anyway, it is necessary to run multiple processors in parallel. To benefit
from these techniques, the algorithms have to be adapted to this kind of hardware.
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2 Notation

We denote by Z,N,R,C the set of all integers, positive integers, real numbers and complex numbers,
respectively. The usual Euclidean space isR3, whose elements will be written in boldface, i.e., we have
x = (x1, x2, x3). The Euclidean norm on this space is denoted by ‖x‖ =

(
x2

1 + x2
2 + x2

3

)1/2. The
Euclidean scalar product between two vectors x,y ∈ R3 is xy = x1y1+x2y2+x3y3. Furthermore, we
denote the componentwise inverse for vectors with non-zero components by x−1 =

(
x−1

1 , x−1
2 , x−1

3

)

and the componentwise multiplication by x � y = (x1y1, x2y2, x3y3). We write 0 = (0, 0, 0) and
1 = (1, 1, 1).

For a multi-indexN ∈ 2N3, we set

IN =
{
k ∈ Z3

∣∣−N1/2 ≤ k1 < N1/2,−N2/2 ≤ k2 < N2/2,−N3/2 ≤ k3 < N3/2
}
,

the index set of possible frequencies.

3 The Coulomb interaction problem

3.1 Task definition

We consider a possibly infinite number of particles, each of which is located at position x` ∈ R3

provided with a charge q` ∈ R. We assume the positions to be all distinct. To store such systems in a
computer’s memory and to give a meaning to several of its physical quantities, we have to describe it
with a finite number of parameters.

We define a simulation box to be the parallelepiped spanned by three linearly independent vectors
b1, b2, b3 ∈ R3, namely

{λ1b1 + λ2b2 + λ3b3 | 0 ≤ λ1, λ2, λ3 < 1} .

Within this simulation box, we are givenM particles at positionsx1, . . . ,xM and with charges q1, . . . , qM .
For each box vector, we add the property of periodicity, which can be open or periodic. In the pe-
riodic case of box vector bξ, we replicate the box along this direction, i.e., we consider particles
x` + Zbξ, all of which have charge q`, in case of periodicity along box vector bξ (ξ ∈ {1, 2, 3}).
If we do not deal with purely open systems, we require the system to be neutrally charged, i.e.,∑M

`=1 q` = 0.

The electrostatic potential φ is defined as

φ (y) =
∑

x` 6=y

q`
‖y − x`‖

=
∑

`

q`K (y − x`) , where K (x) =

{
0 if x = 0,

1/ ‖x‖ otherwise.
(1)
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4 Ewald summation

The electrostatic fieldE is the negative gradient of the potential, namely

E (xj) = −
∑

x` 6=y

q`
y − x`
‖y − x`‖3

= −
∑

`

q`∇K (y − x`) , where∇K (x) =

{
0 if x = 0,

x/ ‖x‖3 otherwise.
(2)

The electrostatic force F is given by F (xj) = qjE (xj).

For this work, we will focus on cubic simulation boxes with box vectors parallel to the principle axes,
i.e., we have a box size B > 0 and vectors b1 = (B, 0, 0), b2 = (0, B, 0) and b3 = (0, 0, B). Purely
open systems have already been tested in the serial case [11].

3.2 Convergence matters

The reader will notice that the given definitions are not sufficient to determine the potential and field of
a periodic system precisely, since the series in (1) and (2) are only conditionally convergent in general,
i.e., the order of summation matters. In fact, for a simple NaCl grid, the sum (1) even diverges if it is
summed up along increasing Euclidean norms [2].

The correct summation order according to physical reality is given by ascending cubes [1]. An-
other approach to avoid this problem would be a three-dimensional Poisson equation with periodic
boundary conditions and inhomogeneity given by a sum of translated Dirac distributions [6, Chapter
7.1.2].

Beyond the question of the summation order, the convergence of the series given in (1) and (2) are
extremely slow and not useful for numerical calculations.

4 Ewald summation

4.1 Classical Ewald summation

The approach given here was first published by Ewald in 1921 [3]. Its main idea gets clear if we have
a closer look at the kernel function mentioned in (1), which has a singularity at the origin and a long-
range part causing the slow, conditional convergence. The approach is to split this kernel up into a
rapidly decaying short-range part and a smooth long-range part without a singularity. The former term
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will converge rapidly in space domain, whereas the latter will do the same in frequency domain. The
exact decomposition is φ = φ1 + φ2 − φ3 with

φ1 (y) =
∑

r∈Z3

M∑

`=1
y 6=x` for r=0

q`
erfc (α ‖y − x` + rB‖)
‖y − x` + rB‖ ,

φ2 (y) =
1

πB

∑

k∈Z3\{0}

e−π
2‖k‖2/(αB)2

‖k‖2
M∑

`=1

q`e
−2πik(y−x`),

φ3 (y) =

{
2q`α/

√
π if y = x`,

0 if y 6= x`, ` = 1, . . . ,M

and a free splitting parameter α > 0. The complementary error function is defined by erfc (z) =

2/
√
π
∫∞
z e−t

2
dt. It is now obvious that the convergence of these sums is rapid, so we can cut off

some large terms and approximate

φ1 (y) ≈
∑

r∈Z3,`=1,...,M
0<‖y−x`+rB‖<εI

q`
erfc (α ‖y − x` + rB‖)
‖y − x` + rB‖ , (3)

φ2 (y) ≈ 1

πB

∑

k∈IN\{0}

e−π
2‖k‖2/(αB)2

‖k‖2
M∑

`=1

q`e
−2πik(y−x`), (4)

where εI > 0 is a cutoff-radius in the space domain and IN gives a grid of possible frequencies.

It can now be shown that for a given approximation error and optimal choice of the free parame-
ters α, εI and N , a direct evaluation of the potentials and fields at all particles via Ewald summa-
tion would have a complexity of O

(
M3/2

)
[10]. There are error estimates for both space and fre-

quency domain [9]. Note that equation (4) differs from [11, Equation (4.9)] because of typing er-
rors.

4.2 An acceleration based on the NFFT

The idea to combine Ewald summation and NFFT was first published by Hedman and Laaksonen in
2006 [7]. The task of a NFFT is to compute the sums

fj =
∑

k∈IN
f̂ke−2πikxj , j = 1, . . . ,M (5)

for a given multi-indexN ∈ 2N3, at given nodes x1, . . . ,xM ∈ [0, 1)3 with given Fourier coefficients
f̂k ∈ C for k ∈ IN . The corresponding adjoint (in the sense of transposed and complex conjugated)
task is to evaluate the sums

f̂k =
M∑

j=1

fje
2πikxj , k ∈ IN (6)
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4 Ewald summation

for a given multi-index N ∈ 2N3 given nodes x1, . . . ,xM ∈ [0, 1)3 and given values fj ∈ C for
j = 1, . . . ,M . If we have algorithms which perform both NFFT and adjoint NFFT, the evaluation of
(4) reduces to the following algorithm.

Algorithm 1 (Evaluation of the Ewald far-field part). Given parameters are the Ewald splitting param-
eter α > 0 and the possible frequencies determined byN ∈ N3.

1. Set the nodes x1/B, . . . ,xM/B ∈ [0, 1)3.

2. Set the values fj ← qj for j = 1, . . . ,M .

3. Let S (k) =
∑M

j=1 fje
2πikxj , k ∈ IN , be the result of an adjoint NFFT with the given nodes

and values.

4. Set S (0)← 0 and multiply each S (k) with the coefficients

b̂k =
e−π

2‖k‖2/(αB)2

πB ‖k‖2
(k ∈ IN \ {0}) .

5. The required approximated potentials φ (xj) are given as the result of an NFFT applied to the
modified Fourier coefficients S (k) at the given nodes xj , j = 1, . . . ,M .

4.3 The basics of the NFFT algorithm

We follow the procedure described in [13, Section 1.1] and [11, Section 2] and start with a well-
localised continuous window function ϕ ∈ L2

(
R3
)
∩ L1

(
R3
)
, for example a multivariate Gaussian,

such that its periodic version
ϕ̃ (x) =

∑

r∈Z3

ϕ (x+ r)

has a uniformly convergent Fourier series

ϕ̃ (x) =
∑

k∈Z3

cke−2πikx with ck =

∫

[0,1)3

ϕ̃ (x) e2πikxdx, k ∈ Z3.

Let σ ∈ R3 be an oversampling factor with σ1, σ2, σ3 > 1, such that n = σ �N ∈ N3. We wish to
approximate the sum (5) by the linear combination

s1 (x) =
∑

`∈In
g`ϕ̃

(
x− n−1 � `

)

with g` ∈ C (` ∈ In). By the Fourier expansion of ϕ̃, we obtain

s1 (x) =
∑

k∈Z3

∑

`∈In
g`cke−2πik(x−n−1�`) =

∑

k∈Z3

ĝkcke−2πikx

=
∑

k∈In
ĝkcke−2πikx +

∑

r∈Zd\{0}

∑

k∈In
ĝkck+n�re−2πi(k+n�r)x
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with
ĝk =

∑

`∈In
g`e

2πik(n−1�`), k ∈ In.

Comparing the result to (5), we would like to choose

ĝk =

{
f̂k/ck if k ∈ IN ,
0 otherwise

if the Fourier coefficients ck decay rapidly. The inversion formula of the discrete Fourier transform
shows that then we have

g` =
1

n1n2n3

∑

k∈IN
ĝke−2πik(n−1�`), ` ∈ In,

which can be computed by a usual three-dimensional FFT.

After the cutoff in Fourier space, we truncate our window function ϕ in the real space by defin-
ing

ψ (x) =

{
ϕ (x) if −mξ/nξ ≤ xξ < mξ/nξ, ξ = 1, 2, 3,

0 otherwise

with a truncation parameter m ∈ N3 subject to mξ � nξ for ξ = 1, 2, 3 and forming a periodic
version

ψ̃ (x) =
∑

r∈Z3

ψ (x+ r) .

Now we have

s1 (x) =
∑

`∈In
g`ϕ̃

(
x− n−1 � `

)
≈
∑

`∈In
g`ψ̃

(
x− n−1 � `

)
=

∑

`∈In,m(x)

g`ψ̃
(
x− n−1 � `

)

with the index set

In,m (x) = {` ∈ In |nξxξ −mξ ≤ `ξ ≤ nξxξ +mξ, ξ = 1, 2, 3}

as a final approximation for the sum (5).

Algorithm 2 (NFFT). Given parameters areM nodes x1, . . . ,xM , the multi-indexN ∈ 2N3 defining
the possible frequencies, an oversampling factor σ, a truncation parameter m ∈ N3 and the Fourier
coefficients f̂k ∈ C for k ∈ IN . We define n = σ �N .

1. Compute the Fourier coefficients ck, k ∈ IN of the window function.

2. Compute the values ψ̃
(
xj − n−1 � `

)
for j = 1, . . . ,M and ` ∈ In,m (xj)

3. Let ĝk ← f̂k/ck, k ∈ IN and ĝk ← 0 for ` ∈ In \ IN .

4. Compute

g` =
1

n1n2n3

∑

k∈IN
ĝke−2πik(n−1�`), ` ∈ In

by an FFT.
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5 Implementation details

common interface

solvers DIRECT P2NFFT P3M . . .

internal base libraries PNFFT PFFT NEAR GRIDSORT . . .

external base libraries FFTW 3.3 . . .

Figure 1: The modular structure of the ScaFaCoS package.

5. The approximative results are obtained by

fj ≈
∑

`∈In,m(x)

g`ψ̃
(
x− n−1 � `

)
.

Step 1 can be done as a pre-computation and is needed only once. If the nodes remain unchanged,
the same is true for the calculation of ψ̃. It is easily seen that the complexity of this algorithm is
O (n1n2n3 log (n1n2n3) +m1m2m3M) and thus faster than the direct calculation with a complexity
of O (MN1N2N3) if σ andm have a bounded size.

For further details, such as an algorithm for the adjoint NFFT, different window functions ϕ and error
estimates, see for example [13, Chapter 1]. In order to get the electrostatic fields by Ewald summation,
one can efficiently calculate gradients of the trigonometric polynomial given in (5) by deriving the
window function, see [8, Chapter 8-3-2].

5 Implementation details

5.1 On the ScaFaCoS library

The ScaFaCoS library [15] is designed as an open-source collection of state-of-the art algorithms for the
Coulomb interaction problem with different box shapes and periodicity conditions. To achieve maximal
usability, all the solvers can be called by a common interface.

The modular structure shown in Figure 1 ensures that the subset of actually needed solvers can be
compiled if all required external components are available.

The solver mentioned in the title of this report is P2NFFT. It depends on the PNFFT and PFFT auxiliary
libraries [12] developed by Michael Pippig and the near-field solver by Olaf Lenz, René Halver and
Michael Hofmann. The PNFFT and PFFT themselves depend on the well-known FFTW subroutine
library [4] in version 3.3 with MPI support.

Further solvers contained in the ScaFaCoS package include a direct solver, which is suitable for small
non-periodic systems and for testing purposes, and the P3M solver, which is also based on an Ewald
summation. We will use both of them to estimate the accuracy of P2NFFT.
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5.2 The P2NFFT solver

Our implementation computes the potentials and forces (1) and (2) of a system described at the end of
Section 3.1 by the Ewald splitting mentioned in Section 4.1. The sum (4) is calculated by Algorithm 1
where the NFFT and adjoint NFFT are performed by the PNFFT library, which provides a parallel
implementation of Algorithm 2. For an efficient calculation of the near-field sum (3), the ScaFaCoS
near-field library is used.

The index set of the NFFT implemented in PNFFT is different from that we stated in Section 2,
namely

I ′N =
{
k ∈ Z3

∣∣ 0 ≤ k1 < N1, 0 ≤ k2 < N2, 0 ≤ k3 < N3

}

is used. Thus, P2NFFT utilises the bijection I ′N → IN , k′ 7→ kwhere

kξ =

{
k′ξ if 0 ≤ k′ξ < Nξ/2,

k′ξ −Nξ otherwise,
ξ = 1, 2, 3.

After that, step 4 of Algorithm 1 can directly be applied to the transformed indices.

Since we want to compare the results of the P2NFFT and P3M solvers, we chose the oversampling
factor to be σ = 1, which is possible for a Gaussian window function ϕ currently used. The error
estimates in [9] show that this choice of parameters still gives a reasonable result. The tuning routine,
which selects values for α, εI ,N andm according to a desired truncation error, was adopted from the
P3M solver and first developed in the ESPResSo project [14].

To complete the parallel P2NFFT solver, the nodes xj need to be sorted to fit the parallel data dis-
tribution of the FFT grid. Since we were not able to finish the integration of the ScaFaCoS parallel
sorting library during the guest student programme, our test programs simply exclude all the particles
not needed on the respective process.

6 Numerical results

6.1 NaCl grids

We now consider a simple grid structure consisting of a cubic box of size B ∈ 2N. For simplic-
ity of notation, we index our particles by j ∈ {0, . . . , B − 1}3 and set the positions and charges
as

xj = (0.5, 0.5, 0.5) + j and qj =

{
+1 if j1 + j2 + j3 is even,

−1 otherwise.

For these systems, the theoretical results are well-known: All the forces are equal to 0 due to symmetry
reasons, and the potentials at the positions of the particles are given by φ (xj) = Mqj , where M =

1.747564594633 . . . is the Madelung constant of the grid. The results for different grid sizes and
desired accuracies are given in Tables 1 and 2.
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6 Numerical results

Accuracy α εI m N φ error |φ−M | /M
1 0.416277 2.0 1 4 1.0736912297 3.856 · 10−1

1 · 10−1 0.865409 2.0 2 4 1.7079629581 2.266 · 10−2

1 · 10−2 1.150904 2.0 5 4 1.7452950265 1.299 · 10−3

1 · 10−3 1.378487 2.0 4 8 1.7474337868 7.485 · 10−5

1 · 10−4 1.573490 2.0 7 8 1.7475584441 3.519 · 10−6

1 · 10−5 1.746860 2.0 4 32 1.7475843710 1.132 · 10−5

1 · 10−6 1.904512 2.0 5 32 1.7475686878 2.342 · 10−6

1 · 10−7 2.050076 2.0 4 128 1.7476323042 3.875 · 10−5

Table 1: Tuning results and errors for serial calculation of an NaCl grid, B = 2

Accuracy α εI m N φ error |φ−M | /M
1 0.233432 3.0 1 4 2.9413864713 6.831 · 10−1

1 · 10−1 0.557076 3.0 2 16 1.7983182215 2.904 · 10−2

1 · 10−2 0.752447 3.0 3 32 1.7508668536 1.890 · 10−3

1 · 10−3 0.906653 3.0 5 32 1.7478080096 1.393 · 10−4

1 · 10−4 1.038201 3.0 4 128 1.7475829304 1.049 · 10−5

1 · 10−5 1.154861 3.0 6 64 1.7475660880 8.545 · 10−7

1 · 10−6 1.260772 3.0 6 128 1.7475645343 3.452 · 10−8

Table 2: Tuning results and errors for serial calculation of an NaCl grid, B = 16

6.2 Irregular structures

To test the implementation for forces and the parallelisation, we looked into systems with a less regular
distribution of the particles. We will not compare our results to exact results but to those of the P3M
solver, for which the considered system was a test case. It contains M = 300 particles and is given in
Figure 2. We measured numerical values for the total energy

E =
1

2

M∑

`=1

q`q`φ (x`)

and the root-mean-square deviation

d =

√√√√ 1

M

M∑

`=1

∥∥∥F ` − F̃`

∥∥∥
2

of the calculated forces F̃ ` to some given reference forces F ` (` = 1, . . . ,M ), see Table 3. Up to the
limited precision of the forces and apparent accuracy restrictions of P3M, the values for both solvers co-
incide. These results still hold if they are computed by up to 32 parallel processes.
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Figure 2: Simulation box of the test system for Section 6.2. Red dots and blue squares represent positive and
negative unit charges, respectively.

P2NFFT P3M
Accuracy E d E d

1 314.770544 3.203 · 10−1 314.770544 3.203 · 10−1

1 · 10−1 151.804315 1.098 · 10−1 164.799587 1.129 · 10−1

1 · 10−2 149.267852 8.580 · 10−3 150.654065 1.254 · 10−2

1 · 10−3 148.966722 9.319 · 10−4 148.892301 9.257 · 10−4

1 · 10−4 148.945429 8.529 · 10−5 148.937486 7.425 · 10−5

1 · 10−5 148.936785 8.823 · 10−4 148.942824 4.383 · 10−5

1 · 10−6 148.941848 2.117 · 10−4 126.203799 6.114 · 10−1

1 · 10−7 148.940754 3.637 · 10−4 124.327306 6.379 · 10−1

Table 3: Total energies and root-mean-square deviations of the forces for the test system
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7 Conclusions and outlook

7 Conclusions and outlook

We have implemented a solver which computes electrostatic potentials and fields for cubic periodic sys-
tems of charged particles. The solver works together with the ScaFaCoS interface and gives correct re-
sults for all implemented test cases. In contrast to the P3M solver, the implemented P2NFFT solver can
handle better accuracies. Time and scaling measurements were not sensible in the current state of devel-
opment of P2NFFT and not comparable to other ScaFaCoS solvers.

We will give a short overview of further desired functionality concerning the new solver.

• An efficient parallelisation needs integration of the gridsort auxiliary library into P2NFFT.

• In order to optimise the runtime, a pre-computation step could choose an optimal balance be-
tween the times needed for the real space part (3) and the Fourier space part (4). This would be
done by measuring some computation times similar to the flag FFTW_MEASURE of the FFTW
[5, Chapter 4.3.2].

• Purely open or mixed-periodic systems could be handled by the formulae given in [11, Chapter
4.1] or as tensor products of both approaches, respectively, but it should be investigated, whether
we have to adapt the error estimates.

• It could be checked if the Ewald splitting can be generalised to other configurations of box
vectors, e.g. non-orthogonal crystals.
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Abstract:
In this report we investigate and simulate the fluid leakage through a seal. The flow is obtained by
numerically solving the Reynold’s lubrication equation for fractal contacts. Fractal topograhies are
generated with different Hurst-roughness exponents in order to create simulation cells. The influence
of an external force pressing a flat elastic body against rigid substrates is calculated with the Green’s
function molecular dynamics (GFMD) and the overlap-model. Finally the flow currents for the two
models are compared.

1 Introduction

Seals are used e.g. to connect pipes. In this case the gap between the pipes needs to be closed or
sealed in the best possible way. Malfunction of a seal can have dramatic consequences, as we have
witnessed for the decline of the oil rig “Deep Water Horizon”. Overall the development process of seals
bases foremost on experimental investigations which is expensive and time-consuming. Therefore we
want to use numerical techniques to study the performance of seals. Unfortunately a surface is rough
so when you zoom in you see contact only at a few points. Therefore the most important problem
in seals is the influence of the surface roughness to the effective contact area. Because of the fine
geometry you want to resolve you need a fine discretisation. That is why many grid points are needed
which have to be updated every iteration which effects high computational costs. In this report a
parallel MPI-implementation will be presented which is able to solve the problem on highly parallel
machines.

2 Theoretical fundamentals

In this work the Reynold’s lubrication equation is used in order to calculate the fluid flow through a frac-
tal contact (one plain and elastic surface is pressed on another rough surface):

∇ ·J = ∇ ·
(
u(x, y)3

12η
· ∇p(x, y)

)
= 0 (1)
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Thereby J is the current through the seal, p the pressure, u(x, y) the gap height of the seal at the
position x, y und η the viscosity. This equation can be derived from the Navier-Stokes equation. You
can comprehend the equation as well in a plausible way if you compare the different terms with Ohm’s
law:

I = σ ·U =
1

R
·U (2)

To let a fluid flow a pressure difference is needed, because at constant pressure exists no force which
could move the fluid. In comparison to Ohm’s law ∇p is equivalent to the voltage. Furthermore, the
fluid flow will increase with a growing gap height, because the fluid has more space to flow. Hence the
conductivity in Ohm’s law is correlated to the gap height u(x, y) in the Reynold’s lubrication equation.
The viscosity inversely affects the current because a fluid flows worse the more viscous it is. (E.g.
heavy oil will result in a much smaller current through a seal than water.) Because of the continuity
equation a current doesn’t have a source or a sink. That’s why the divergence of J has to be zero.
By expanding the Reynold lubrication equation you obtain an equation which is similar to the Poisson-
equation:

⇐⇒ ∆p(x, y) = − 12η

u(x, y)3
· ∇
(
u(x, y)3

12η

)
(3)

Hence several solvers for the Poisson-equation can also be used for the Reynold lubrication equa-
tion.

3 Experimental setup

In the following subsections further details to the implementation are given.

3.1 Boundary conditions

While numerically solving the Reynold’s lubrication equation we assume periodic boundary conditions
along y-axis. Furthermore the pressure is set to 1 at x = 0 and 0 at x = L. Due to this pressure
difference the fluid will flow in the bigger positive x-direction.

The derivatives in the partial differential equation are approximated with differential quotients on the
discrete grid.

3.2 Solver for the Reynolds lubrication equation

In this part two different solvers for the partial differential equation will be presented.
Following there will be an error definition given in order to estimate the error or accuracy of a solu-
tion:

χ2
local = (∇ · Jlocal)2 (4)

χ2
global =

∑

i∈GridPoints
(∇ ·Jlocal,i)2 (5)
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Figure 1: The translucent simulation cells represent the periodic boundary condition along y-axis. The graph on
the top depicts the pressure course with p(0) = 1 and p(L) = 0. The fluid flows from high to low pressure.

Ideally the divergence of the current is zero if the solution has converged. That is why we can interprete
the deviant to zero as a local error. The global error is only the sum of all local errors. If this error is
smaller than 10−12 the solution is contemplated to be converged.

3.2.1 Local solver

As the name already reveals this solver is used to solve the problem only local.

Figure 2: The new pressure for a local point is only calculated under inclusion of the next-nearest neighbours.

Therefore we iterate over all gridpoints and calculate the local error for each point with the help of the
next-nearest neighbours. The local error is only linear in the local pressure so the latter can be changed
in order to get the local error equals zero. This solver is NOT converged after one iteration over all
grid points, because e.g. by changing the local pressure of the next nearest neighbour (x + 2, y) you
get again an error on (x, y). So in order to converge you have to do much more iterations over all grid
points. The disadvantage of this method is the extreme slow diffusion of “information” through the
system. Until a point in the middle of the system recognizes that at x = 0 a pressure is equal to 1

you need many iterations, because every point calculates its pressure only respecting the next-nearest
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neighbours. Hence the information diffuses only ∼ O(L2) through the system and each iteration costs
O(L2) the total effort is O(L4) which is an unwanted scaling behavior: A doubled system size causes
a by factor 16 increased effort.

3.2.2 Fourier solver

In order to bypass the disadvantages of the local solver another solver been implemented which works
in fourier space.

1. At first a local “force” is beeing calculated:

Flocal =
δχ2

local

δp
(6)

2. After this the force is Fourier transformed with the fftw3-library:

Flocal(r) −→ F̃local(q) (7)

3. In Fourier space we can stress the long wavelengths (small frequencies q) compared to the shorter
ones (great frequencies q):

̂̃
F local(q) =

F̃local(q)

(2π
L + q)α

(8)

α is a free parameter which can be accommodated in order to get better convergence. In the
equation are modes with smaller wavelengths understated by dividing them with a greater num-
ber than modes with a greater wavelength (smaller q). By using this transformation the slow
diffusion of information should be avoided, because the long wavelength-modes should spread
the information in the system much faster.

4. Finally the modified force is transformed back and the pressure gets updated. The free param-
eter t is used to minimize the global error (best deepest decent). Therefore the global error is
calculated for the factors t, −t and 0 and then the angular point of the fitted parabola is used.

pn+1 = pn + t ·FFT (
̂̃
F local(q)) (9)

Together with the local solver the new hybrid version should converge much faster.

A proper choice of the parameter α can reduce the number of iterations dramatically as depicted
in figure 3. For α = 0.55 almost 10% of the original number of iterations are needed. These
good results are only obtained for easy geometries from the fourier solver. For real fractals the
Fourier solver unfortunately looses its speed advantage because in this case there exists no charac-
teristic lengthscale any longer. That is why only the local solver is used for the following calcula-
tions.
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Figure 3: Convergence of the hybrid version for different α’s. The green (rightest) graph depicts the convergence
of the pure local solver. The calculation was done for the geometry in the left bottom corner.

3.2.3 Parallelizing the local solver with MPI

Beside a small parallelization with OpenMP the local solver has been parallized with MPI in order to
make the programm suitable for highly parallel machines. In order to parallelize the local solver the 2D
area has to be splitted among the processors. There exist two possibilities:

Figure 4: Possible decomposition in stripes and blocks.

The need of the next nearest neighbours in order to update the local pressure values causes a problem
in the boundary points of the decomposition hence the neighbour values are stored at other processes.
Therefore we introduce ghost points which have to be exchanged between neighboured processes after
each iteration.

If you analyze the scaling behavior of the 1D and 2D decomposition you will find out that the lat-
ter one scales better with an increasing number of processes (done in [6]). That is why a 2D de-
composition is used in this work. In order to obtain a 2D decomposition of the area the method
MPI_Cart_create() is used which ideally takes care that neighboured points in the grid are also
calculated on neighboured processors. This reduces the communication costs. Furthermore you can
state periodical boundary conditions along an arbitrary axis. MPI_Cart_shift() is used to get
neighboured processes which are needed to exchange the ghost points. The method automatically
takes care of the stated boundary conditions. The data for the ghost points of the left and the right pro-
cess are not stored contigously in memory because the pressure array is stored row-wise. By creating
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Figure 5: Scaling behavior of the two different decompositions.

an extra datatype with MPI_Type_vector() an extra copy of the ghostpoints to a contigous array
can be avoided. For storing the solution MPI file I/O is used. Each process obtains a window inside
the file in which it can write its data. After this the pressure is stored in the right order in a binary
file.

3.3 Generating fractal topographies

In order to generate fractal topographies modes inside a circle |q| < qcut in 2D Fourier space become
weighted by Gaussian numbers. Algorithmus for the heigth mapG(r):

1. Get 2 Gaussian numbers g1, g2 (for example with Box Mueller-algorithm)

2. calculate:

• R
(
G̃(q)

)
= g1 · q−(H+1)

• I
(
G̃(q)

)
= g2 · q−(H+1)

H is the Hurst roughness exponent which is a number in the range [0, 1]. For a larger Hurst
roughness exponent the fractal surface becomes smoother, because the roughness lives more on
the long lengthscales. From the equation follows that when using smaller H , the larger q are
less suppressed so the surface is much finer (compare figure 6). In reality typical surfaces have a
Hurst roughness exponent similar to 0.8.

3. Get G(r) = FFT
(
G̃(q)

)

Note that G(q) must be hermitian, otherwise G(r) is not real after back-transformation.

3.4 Influence of an external force

The influence of an external force on a surface can be calculated among others with 2 models:

• overlap model
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3 Experimental setup

Figure 6: Left: H = 0.8 Right: H = 0.2

• Greens function molecular dynamic (GFMD)

3.4.1 Overlap model

The external force presses a soft, deformable surface against a undeformable surface. According to the
overlap model all (invalid) points which would be inside the other material get cut and their value is
set to position of the surface. Therefore a sharp edge (right side figure 7) is generated at the border
of the contact. This model is often used by many engineers in order to calculate contact mechan-
ics.

Figure 7: Calculating the influence of an external force according to the overlap model.

3.4.2 GFMD model

In the GFMD model the displacement of a grid point has an influence on all other grid points. Hence
you do not get an sharp edge because the border points get “hauled up” by the displaced neighboured
points. In the GFMD-theory the full, soft material can be reduced to its surface, because the third
dimension can be out integrated for further calculations. This model produces results which pay much
more attention to the real physical behavior of materials than the overlap model.
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Figure 8: Calculating the influence of an external force according to the GFMD model.

4 Results

In this section we compare first with theoretical results in order to test the implemented solver. After
this the calculated results are presented.

4.1 Comparison with theory

We are using a very simple geometry in order to compare our results with an analytical solution.

Figure 9: Simple geometry with a cylinder as contact area. The upper graph depicts the pressure course. The
pressure in the middle might be appear unexpected - that happens because it is not defined inside the cylinder.

The pressure course can be intuitively understood - on the right is a slight over-pressure whereas behind
the cylinder a under-pressure can be seen. The Bruggeman equation is an analytical solution with the
limitation that the contact area in relationship to the whole area has to be small.

The relative difference increases with the relative contact area because of the limitation of the Brugge-
man equation.
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5 Conclusion

Figure 10: Relative difference between the analytical and the numerical solution in dependent of the contact area
(size of the cylinder)

Figure 11: Calculated current along the cylinder in vector plot.

4.2 Comparison overlap model↔ GFMD

Protracting the current calculated by the solvers over the derformed surfaces by the GFMD and overlap
model reveals significant differences:

In consideration of the great difference produced by the overlap model you can not justify the applica-
tion of this model.

5 Conclusion

The work during the guest student programm dealed with the question “What is the flow current as
a function of pressure difference and normal load with which the two surfaces are pushed together?”
With an increasing normal load / contact area the current through the system decreases as depicted in
figure 13 and 14.

The parallelized local solver with MPI needs about 2 minutes for a 512x512 fractal geometry on
one Juropa-Node whereas the parallelized OpenMP-version needs 30 minutes on a normal PC. Un-
fortunately the time to compute increases highly if the system is near the critical constriction which
means that there is nearly no more fluid flow through the system as a result of a strong normal load.
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Figure 12: Calculated currents through a geometry which was deformed by the overlap or GFMD model.

Figure 13: Left: topography with a contact area of 1.65 %. Bright areas represent a great gap whereas at dark
areas the surfaces are nearly in contact. Right: Calculated current through the simulation cell. You can see
two great paths for the fluid flow.

Figure 14: Left: topography with a contact area of 47.59 %. Right: Calculated current. You can see that the
second path has been closed by the external force. Furthermore the current has stiffly decreased (Note the
large difference in the scalebar).
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Abstract:
The goal of this work is a CUDA implementation of a GPU based raycasting algorithm and an octree
traversal in order to speed up the visualization of AMR datasets. For this purpose complex data
structures are employed to map the entire dataset to the graphics memory. An octree texture based
method is used to store the data in the GPU memory and the data lookup is based on a reduced-stack
traversal algorithm. The visualization algorithm uses the inherently hierarchical data structure for an
efficient visualization. The volume raycasting and hierarchical data retrieval are both computationally
demanding and massively parallel problems.

1 Introduction

Adaptive Mesh Refinement (AMR) is a numerical multilevel technique, associated with a particular
hierarchical data structure. This technique was introduced by M. Berger in the 1980’s. It is a method
to discretize the continuous domain of interest into a grid of many individual elements. This method
is applied in many domains like hydrodynamics, meteorology and in particular in astrophysics. In this
approach relevant regions of the computational domain are represented on different levels of resolution,
the related hierarchical data structure is represented by a nested rectangular subgrid. The method
starts with a base coarse grid, identifies regions of interest inside the domain that require refinement
and recursively adds finer and finer sub-grids until either a given maximum level of refinement is
reached.
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Contemporary GPUs are massively parallel processors that have outpaced CPUs in terms of floating
point operations per second which makes the GPUs interesting hardware platform for solving numerous
parallel compute-intensive tasks. Modern GPUs are very efficient at manipulating computer graphics,
and their highly parallel structure makes them more effective than general-purpose CPUs for algorithms
where processing of large blocks of data is done in parallel. Nowadays the use of hybrid (CPU-GPU)
clusters is increasing due to the less power consumption per computing unit of a GPU than a CPU
core.

2 GPU Architecture

CUDA is a framework for massive parallel computing on GPUs, where a hierarchy of thread groups
are executed independently. Threads executed in groups are called thread block and multiple equal-
shaped blocks can be executed in grids. Each thread executes the same function called a kernel. This
programming model can exploit an efficient fine-grained parallelism. Threads can use more kinds
of memory of different characteristics. All threads from all blocks can access one common global
memory. Each thread has its own local memory that is used for some automatic kernel variables.
The local memory is actually part of the global memory but each kernel can access only its own
instance. Each block of threads has its own shared memory accessible by all threads of the block. Local,
shared and global memories allow read-write access. There are another two types of memory available:
constant memory and texture memory. Both types are read-only and both can be accessed from all
threads. Texture memory also has more specific functionality like filtering and native multidimansional
addressing modes. In general global memory is not cached, on the opposite the texture memory and
the constant memory are cached and optimized for reading. Texture caches are designed for graphics
applications where the memory access patterns exhibit a great deal of spatial locality. Texture cache is
optimized for 2D spatial locality.

The G80 architecture was the first GPU which supported CUDA. It replaced separate vertex and pixel
pipelines with single unified processor, that executed vertex, geometry, pixel and computing programs.
In the G80 architecture each Streaming Multiprocessor(SM) contains 8 SPs (Shader Processors or
CUDA Core) and 2 SFUs (Special Function Unit). This multiprocessors works on 32 threads warps
and it needs 4 cycles to process a single precision floating-point operation. The stream processors share
L1 and L2 cache in eight 16-shader clusters. The clusters of sixteen streaming processors also share
four texture address units and eight texture filtering units, making up a total of 32 texture address units
and 64 texture filtering units.
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3 Octree data structure

The last generation NVIDIA GPUs so called Fermi is a multiprocessor made by a scalable array of
massively multi-threaded streaming processors. The SM executes threads in groups of 32 warp. Each
Streaming Multiprocessor in the fermi architecture contains 32 SPs and 4 SFUs. Each SP can fulfil
one single precision floating-point multiply–add (FMA) operation per cycle. Each SFU can fulfil four
single precision floating point operations per cycle.

On both architectures threads in warp are free to branch independently but because multiprocessors
can execute only one common instruction at a time some performance penalties occur if execution
paths of threads in one warp diverge. In that case the execution of warp threads is serialized, i.e.
multiprocessor executes each active path of kernel separately while threads that are not on that path
are disabled. After execution of all diverged paths the execution continues again in one common
path.

Graphics applications have generally a highly spatially local access to the memory, with stride patterns
well known in advance (spatial locality in terms of the address space). GPU caches have traditionally
been small, as in the G80 architecture, since the spatial locality means you don’t need all data in the
cache to service a complete memory request. Non graphics architecture like Fermi introduced non-
spatially local memory access and random access patterns, which the large, unified L2 is designed to
accelerate.

In the Fermi architecture each SM has a 64 KiB partitioned shared memory and L1 cache store. The
cache can be partitioned two ways at the thread type level with either 16/48 or 48/16 KiB dedicated
to shared memory and L1. Each sub block shares access to the store with the other, due to executing the
same warp. L1 is supported by a unified L2 cache shared across each SMs.

3 Octree data structure

An octree is a regular hierarchical data structure where each node subdivides the space it represents into
eight octants. The first node of the tree, the root, is a cube. Each node has either eight children or no
children. The eight children form a 2x2x2 regular subdivision of the parent node. A node with children
is called an internal node. A node without children is called a leaf.

The tree is stored in a 3D texture called indirection pool. An indirection grid is a cube of 2x2x2 cells.
Each node of the tree is represented by an indirection grid. A cell contains a data descriptor if the
corresponding child is a leaf, otherwise it contains the index of an indirection grid if the corresponding
child is another internal node.

The octree is stored in the texture memory instead of the global memory since there is the potential of
texture caches, the addressing calculations are hidden better and no special access patterns are required
to get good memory performance. There are two ways of binding data to a texture. First, data can
be bound to a texture directly from the so-called linear memory, what is in fact the directly accessible
global memory. Textures bound this way are restricted to be one-dimensional and no filtering or special
addressing modes are supported. The second way is to allocate the data as a CUDA array. The CUDA
array is a opaque memory optimized for the texture fetching that can be written from the host only.
Textures bound to the CUDA array memory can be up to three-dimensional and support several filtering
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and addressing modes. The use of the one dimensional addressing mode is not used because of a strong
addressing memory limititation.

The data are stored in an hybrid order, all the childs of a node are in successive positions. This order
simplifies the access to a node from another of the same level. From a certain node in the hierarchy it
is possible to move to a brother of the current node by offset, otherwise it is possible to access to a son
by an indirection address.

4 Tree lookup

Once the data is stored in the texture memory, it is possible to retrieve the value stored in the tree at a
point M ∈ [0, 1]3. The tree lookup starts from the root and successively visits the nodes containing the
point M until a leaf is reached. It is easy to explain the lookup process with a quadtree.

Let ID be the index of the indirection grid of the node visited at depth D. The tree lookup is initialized
with I0 = (0, 0, 0), which corresponds to the tree root. At depth D is necessary compute the coordinates
of M within the current node.

The local coordinates of M are computed according to the formula:

P = floor(M + 1− 2−(depth+1))
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4 Tree lookup

The cubes inside an octree are labelled, it is necessary to move among the elements of the current
level:

The next step is to update the indirecton grid address:

Inext = Iprev + P

after that is possible to read the addressed indirection grid from the texture memory. At this point if
a leaf is reached is necessary to calculate the data offset from the data descriptor content. The lookup
process ends getting the data from the texture memory.
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5 GPU Volume Raycasting

The Volume ray-casting algorithm is a direct volume rendering technique and can be derived directly
from the rendering equation. This equation is an integral equation in which the equilibrium radiance
leaving a point is given as the sum of emitted plus reflected radiance under a geometric optics ap-
proximation. One approach to solving the equation is based on finite element methods. The Volume
Ray-casting is classified as an image-space method where the main loop is over pixels of the output
image. In fact for each pixel of the image plane is traced a ray through the volume. Along the part
of the ray of sight that lies within the volume, equidistant or adaptive samples are selected. Then the
samples taken along the ray are composited to a single color.

There are several ways to composite the color of different elements along a ray, one of this is the so
called α− compositing.

The emission-absorption model yields a basic volume rendering equation, in terms of the radiance
(power per unit area per solid angle) arriving along a ray at the position x on this ray. Start defining the
optical depth as the integral of the absorption coefficient α
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5 GPU Volume Raycasting

τ(d1, d2) =

∫ d2

d1

α(t)dt

and the radiation energy as :

C =

∫ ∞

0
c(t)e−τ(0,t)dt

where c(t) stands for the opacity-weighted color.

The optical depth can be approximated by the Riemann-sum :

τ(0, t) =

∫ t

0
α(t)dt ≈

t/∆t∑

i=0

α(i∆t)∆t := τ̃(0, t)

getting a first approximation of the radiance integral:

C =

∫ ∞

0
c(t)e−τ(0,t)dt ≈

∫ ∞

0
c(t)e−τ̃(0,t)dt =

∫ ∞

0
c(t)e−τ̃(0,t)dt =

∫ ∞

0
c(t)

t/∆t∏

i=0

e−α(i∆t)∆tdt

In each voxel of the volume can be defined the opacity

Ai = 1− e−α(i∆t)∆t

and the color

Ci = c(i∆t)∆t

The compositing formula is obtained from the radiation energy approximation in terms of opacity and
color sampled stepping into the volume:

C̃ =
n∑

i=0

Ci

i−1∏

j=0

(1−Ai)
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The algorithm can work front-to-back accumulating the opacity-weighted color for all the steps in the
volume. In this way the computation starts with the sample nearest to the viewer and ends with the
one farthest to him. This work flow direction ensures that masked parts of the volume do not affect the
resulting pixel. In fact the advantage of front-to-back compositing is the early ray termination when
composite transparency falls below a threshold.

Algorithm 1 for each pixel on the image plane
calculate eye ray in world space
compute ray intersection with volume bounding box
while accumulatedOpacity < threshold && rayInsideBox do

octree data lookup
transfer function lookup
accumulate color and opacity
march along ray from front to back

end while

The work decomposition scheme is based on fine-grain task parallelism that achieves load balancing
among the multiprocessors. In ray casting, the concurrency is obvious since we can compute each pixel
value on the screen independently of all the other pixels. To take advantage of this fact, the screen is
divided into a grid of small tiles. A block of threads equal to the number of pixels on each tile will be
allocated for the tile and the block of threads will be executed by a multiprocessor, independently of
other blocks of threads.

The Ray - Box intersection is based on the Kay and Kayjia method and it uses two pairs of parallel
planes called (slabs). The method looks at the intersection of each pair of slabs by the ray, if the
ray is not parallel to the plane then begin to compute the intersection distance of the planes. The
intersections with the two parallel planes are Tnear and Tfar points. A ray misses the box If Tnear is
greater then Tfar or if Tfar is less than zero, otherwise the entry point Tnear and exit point Tfar are
calculated.
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6 Results

The main loop to calculate the color of each pixel consists in stepping along a ray, retrieving data
sample and accumulating opacity-weighted color. The step can be fixed to the minimum resolution
of the octree or adapted to the ray projected dimension of the current cube traversed. In general the
adaptive sampling strategy allows to reduce the rendering time for high quality rendering dramatically,
but on a SIMD multiprocessor like a modern GPU this will be only if all the threads on the same warp
traverse the octree ending at the same depth. The number of steps in the volume changes pixel by pixel
because of the difference of the distance beetween data’s location into the octree and the lookup node,
performed by different threads on the same warp.

6 Results

To evaluate the performance of the visualization process, the miniJUDGE cluster has been used. Mini-
JUDGE is a test machine for the IBM iDataPlex GPU cluster JUDGE (JUelich Dedicated Gpu Envi-
ronment). This cluster consists of 54 compute nodes, 2 login and service nodes and 2 GPFS gateway
nodes. Each compute node is equipped with 2 Intel Xeon X5650 (Westmere) 6 core processors of 2.66
Ghz, 96 GB main memory and additionally 2 NVIDIA Tesla M2050 GPU (Fermi) 3 GB memory. All
cluster nodes are connected via Infiniband. The test machine has the same configuration of the big-
ger one, but with only two nodes. Also a normal workstation has been used, equipped with one Intel
Core2 Quad CPU Q9400 2.66GHz, 4GB of main memory and an NVIDIA Quadro FX 4600 graphic
card.
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G80 Architecture Fermi Architecture
Nvidia Quadro FX 4600 Nvidia Tesla M2070

compute capability 1.0 2.0
CUDA cores 112 448
GPU Clock rate 500 MHz 1.15 GHz
Warp size 32 32
Global Memory size 777.19 Mbytes 6144 Mbytes
Memory Clock rate 700 MHz 1566.00 Mhz

The rendering target was generated using OpenGL pixelbuffer object extension [PBO], not available
on the Fermi card. This extension is useful to handle OpenGL buffer objects which can be mapped into
the CUDA address space and then used as global memory. In the other case the data are swapped to
the main memory and diplayed as a normal pixel buffer.

The AMR dataset visualized represents data of astrophysical simulations. The dataset was built with
the FLASH simulation environment and it is available in HDF5 format. It is organized in octree data,
composed of ten refinement levels plus other tree levels on each leaf node. The size of the data set is
68449x8x8x8 float and the memory occupancy of the dataset on the GPU is 473.77 MByte. The mea-
sures refer to the rendering of an image plane with dimensions 512x512 pixels.
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Theads inside the same block usually access data elements which are close each other in the texture
memory. If the block is big different blocks computes pixels which are far away from each other, this
produces more cache miss.
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7 Conclusion and Future Works

7 Conclusion and Future Works

This work presented an implementation of hierachical data structure on the GPU memory and a method
to use this data in order to make an interactive visualization. There are several ways to extend this
work. Increase the use of the texture cache converting the octree texture to a standard 2D texture,
because texture memory read is optimized for a bidimensional access. The visualization quality can
be improved by linear interpolation of the samples collected along the ray steps, but this will probably
raise the computational time by a significative amount of time.

References
1. R. Kaehler, J. Wise, T. Abel, H.-C. Hege. GPU-Assisted Raycasting of Cosmological Adaptive Mesh Refinement

Simulations. Proc. of Volume Graphics 2006, p. 103–110, Boston, USA, 2006.
2. J. E. Vollrath, T. Schafhitzel, and T. Ertl. Employing Complex GPU Data Structures for the Interactive Visualization of

Adaptive Mesh Refinement Data. International Workshop on Volume Graphics (VG’06) Boston, Massachusetts, U.S.A.,
pp. 55-58, 2006

3. Matt Pharr, Randima Fernando. GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation, 2005.

4. A. Williams, S. Barrus, R. K. Morley, and P. Shirley. An efficient and robust ray-box intersection algorithm. Journal of
Graphics Tools: JGT, 10(1) p. 49–54, 2005.

5. D. Kirk, W. Wen-mei Hwu: Programming Massively Parallel Processors, A Hands on Approach. Morgan Kaufmann,
2010.

6. S. Laine, T. Karras. Efficient Sparse Voxel Octrees. IEEE Transactions on Visualization and Computer Graphics 17, 8,
p. 1048-1059, 2011.

7. FLASH User’s Guide.
8. NVIDIA CUDA Programming Guide from the CUDA Toolkit v4.0.
9. NVIDIA CUDA Best Practices Guide from the CUDA Toolkit v4.0.

10. NVIDIA CUDA Reference Manual from the CUDA Toolkit v4.0.
11. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA Fermi Compute Architecture Whitepaper.
12. NVIDIA Tuning CUDA Applications for Fermi v1.0.

127





Brain volume reconstruction - parallel implementation of
unimodal registration

Petar Sirković
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Abstract:
In order to construct a 3D brain volume, a large number of 2D brain slice images are combined. These
images are usually significantly deformed during the preparation process and they have to be mapped
to the correct geometrical place. In cases when there is no geometrically correct reference image,
a sequence of mappings between neighbouring images is produced. This process is usually strictly
sequential. It takes several hours to compute one binary registration, which leads to several months
needed to produce a full brain volume. The purpose of this work is to test the parallelisation of this
process, the concatenation of binary registrations and investigate the potential problems that arise on
the way.

1 Introduction

Within the human brain mapping project at the research centre Jülich, one of the main tasks is to create
a high resolution 3D brain image. A large number (∼ 1200) of 2D high resolution brain slice images is
used to construct it. These images are usually obtained using PLI1 technique which reveals the spatial
orientations of nerve fibres. This technique relies on the post-mortem brain histology. In the process
of making these images, brain needs to be cut into very thin slices which are then mounted on glass
slides. This procedure inevitably introduces some deformations such as local shearing and tearing.

1PLI - Polarized light imaging
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Figure 1: Images from different modalities.

The original geometrical 3D shape is restored by mapping the slice images onto some geometrically
correct reference images. Usually these reference images are less detailed, and in some cases they are
not available at all. Then, neighbouring slices are taken as reference. Series of binary registrations
between the neighbouring slices are performed. These programs are usually strictly sequential. First,
slice no. 2 is mapped onto slice no. 1, then slice no. 3 is mapped onto new slice no. 2, etc. The problem
with this approach is that the since images have high resolution (usually 10 megapixels or more), one
binary registration takes about 3 hours on one core of a modern computer. Taking this into account, it
is easy to compute that it takes about 150 days to perform this process for the whole brain.

Figure 2: Preview of image mapping. The task is to align two slices of possibly different image modalities,
showing the same tissue parts under linear and nonlinear distortions.

1.1 Ideas for improvement

Instead of performing these registrations sequentially, binary registrations between original slice im-
ages could be performed independently and a full mapping for one particular slice image can then be
obtained by performing a concatenation of the results of the binary registrations. This concatenation of
the consecutive mappings requires an interpolation whose results should also be checked. The process
time can be further reduced by dividing images into parts (with some overlap) and performing regis-
tration between parts of neighbouring slice images almost independently, needing only some stitching
of the edges of the image parts. In the further text, a mapping process between images will be called a
registration, and its result will be called a deformation field.
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2 Theoretic part

2 Theoretic part

2.1 Some measures for measuring registration quality

Normalized correlation [1]
Normalized correlation (NC) is a similarity measure between two unimodal images. Given a fixed
image f , and a moving image m, it is defined by this formula:

NC(f,m) =

∑N−1
i=0 d(fi)d(mi)√

(
∑N−1

i=0 d(fi))(
∑N−1

i=0 d(mi))
,

where i loops over all pixels, d(fi) = f(pi) − µ(f) and d(mi) = m(pi) − µ(m), and µ(f) and
µ(m) are mean values of the fixed and moving images intensities in the overlapping region, respec-
tively.

Normalized mutual information [2]
Normalized mutual information (NMI) is a multimodality similarity measure. It is defined by this
formula:

NMI(f,m) =
H(f) +H(m)

H(f,m)
,

where f and m are fixed and moving image, respectively. H(f) and H(m) denote the single image
entropies

H(f) =
∑

wf

p(wf ) log2 p(w
f )

and H(m) =
∑

wm

p(wm) log2 p(w
f ),

and H(f,m) denotes the joint entropy of the images

H(f,m) =
∑

wf ,wm

p(wf , wm) log2 p(w
f , wm).

Dice coefficient [3]
Dice coefficient (DC) is a simple measure which measures the overlap of the regions (tissues) of interest
and is defined by

DC(a, b) = 1− N(|a− b|)
N(a) +N(b)

,

where N(a) and N(b) are the numbers of pixels in regions of interest in the respective images, and
N(|a− b|) is number of the non-overlapping pixels.

2.2 Registration methods

Registration is the process of mapping the moving image to the fixed image. It is usually performed
as an iterative optimization process made up from 3 stages: applying a transform to the moving
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image, interpolating it to the grid points and evaluating the quality of the transform by some mea-
sure.

Figure 3: Registration process scheme.

Rigid registration[1]
Rigid registration is one of the simplest registration types. It uses rigid transformations which are
defined by

Tr(p) = Arp+ t =

(
cosϕ sinϕ

sin−ϕ cosϕ

)
p+

(
tx
ty

)
,

where p represents a pixel position. The transformation is basically a composition of a rotation by the
angle ϕ and a translation t. Values for these parameters are optimized with respect to some measure
introduced before.

Affine registration[1]
Affine registration is the general linear registration. It uses affine transformations which are defined
by

Taf (p) = Aafp+ t =

(
a11 a12

a21 a22

)
p+

(
tx
ty

)
,

where p represents a pixel position. The transformation is a composition of a linear mapping in 2D
(matrix Aaf ) and a translation t. Values for these parameters are optimized with respect to some
measure introduced before.

2.3 Nonlinear registrations

In order to find a true shape for an image which has been deformed by some non-linear deformation
non-linear registration methods must be used. In this work the demons registration algorithm [4] [5]
was used, but there are some other methods such as free-form-deformation that uses B-splines, elastic
and fluid registration [1].

Demons registration [5] [4]
In the demons registration method voxels in the static image generate local forces to displace vox-
els in the moving image. The moving image is iteratively deformed. To each voxel a displace-
ment vector dr = (dx, dy, dz) is applied. The displacement vector in the n-th iteration is computed
as

drn+1 =
(I

(n)
m − I(0)

s )∇I(0)
s

(I
(n)
m − I(0)

s )2 + (∇I(0)
s )2

,
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where I(n)
s and I(n)

m are the intensity of the static and the moving image at the n-th iteration, respec-
tively. They are computed with the aim to reduce value of some fuction of local differences between
the fixed and the moving image. There are different versions of the equation for the displacement
vector. This version is convenient because the gradient of the static image ∇I(0)

s is constant through
all the iterations and thus it has to be computed only once [5]. This version is, because of that,
called passive force method. The important thing to notice is that in the demons registration method
voxels move independently and because of that there is no guarantee for the smoothness of the re-
sult [4].

3 Implementation

In this work a parallel version (algorithm 1) of the reconstruction of 3D brain image is implemented. Bi-
nary registrations between neighbouring slices are performed in parallel. Demons registration method
was used for the registration calculation, in particular, the ITK implementation of the method. Cal-
culated deformation fields are then concatenated using bilinear interpolation. For the communication
between processes, the MPI2 [6] interface is used. Processes handle their inputs and outputs indepen-
dently.

Algorithm 1 Pseudo code
MASTER DO read problem size
MASTER DO distribute jobs to other processes
ALL DO read your images
ALL DO perform your registrations
ALL DO perform concatenations of your own registrations
ALL DO perform "Allconcatenate" - processes exchange data
ALL DO apply new concatenations to all your deformation fields
ALL DO apply deformation fields to images and print them out

Insight Segmentation and Registration Toolkit [7]
Insight Segmentation and Registration Toolkit (ITK) is an open-source, cross-platform system that
provides an extensive suite of software tools for image analysis. In this work the ITK implemen-
tation of demons registration method itkDemonsRegistrationFilter was used with the following pa-
rameters: number of iterations = 1500, standard deviation = 1. The deformation field dB,A pro-
duced by the method satisfies B′(p) = B(p + dB,A(p)), where B′ is image B registrated on the
image A. For applying a deformation field to an image the ITK method itkWarpImageFilter was
used.

3.1 Concatenation of deformation fields

After applying one deformation field, mapped images don’t end up on the grid of the other image.
Concatenation of the deformation fields is simply an addition of movements described in the fields.
In order to concatenate them, interpolation of the deformation fields from grid points to all points

2MPI - Message Passing Interface
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in the plane is needed. The number of the concatenations of non-linear deformation fields that is
reasonable to make depends on the smoothness of the fields. In this work bilinear interpolation is
implemented. Coefficients for the interpolation are inversely proportional to the distance of the 4
surrounding grid positions. Concatenations of the deformation fields are also done in parallel. Firstly,
processes concatenate all deformation fields calculated by them. After that bottom-up accumulation
(algorithm 13) of data is performed.

Algorithm 2 Communication scheme - Allconcatenate
ALL DO add← 0

ALL DO current← my concatenated deformation fields
while step < nproc do

neighbour← myrank⊕ step
MPIsendrecv(current, tmp, neighbour)
if myrank ∧ step = 0 then

current← concatenation(current, tmp)

else
current← concatenation(tmp, current)
current← concatenation(tmp, add)

end if
step← step ∗ 2

end while

v0

v1

v2

v3
v4

vm

vr

d1 d2

d3 d4

Figure 4: The blue square is a pixel position in image no. 2 and it is mapped by vector v0 onto image no. 1.
The black squares are grid positions in the image no. 1, and they are mapped to the image no. 0 by vectors
v1,v2,v3 and v4. We would like to compute mapping of the original pixel from image no. 2 to the image
no. 0. We use interpolation of transformation from image no. 1 to image no. 0 to calculate the result. The

resulting vector of the concatenation is obtained as a linear combination, vr = v0 + vm = v0 +
∑4

i=1
vi
di∑4

i=1
1
di

.
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4 Results

4.1 Testing

One node (12 cores) of the JUDGE supercomputer was used. Only CPUs were used for the computation
because ITK works only on CPUs. One node of the JUDGE contains two Intel Xeon X5650 (Westmere)
6-core 2,66 GHz processors. Testing was done on the images whose sizes are 5%, 10%, 25% or 50%
of the full brain image size.

4.2 Result preview

Results of the algorithm (figure 5) over a short number (∼ 4) of concatenations are ok. There is not
much blurring and almost no additional artifacts arise, but after more concatenations (∼ 32) the result-
ing image is very blurry and it looks like someone has shaken it a bit.

4.3 Scalability

The registration part of the algorithm has a perfect time scaling, which was expected since the reg-
istrations are computed completely independently. However, the concatenation part of the algorithm
doesn’t scale that perfectly, because of the O(logm) factor that was introduced in the tree-like com-
munication scheme. Results can be seen in figure 6.

4.4 Load balance problems

The distribution of registration times for the different neighbouring slices was analyzed in table 1 in
order to see if there are some load balancing problems and to potentially eliminate them. The analysis
shows that the registration times don’t differ very much (max ∼ 1% − 2%) from each other, and we
can conclude that there are no load balancing problems.

Img size Avg time Std dev time Min time Max time
5% 9.743875 0.058692 9.675507 9.894207

10% 33.262259 0.133462 33.036071 33.591253
25% 213.756354 1.175624 212.468790 216.644891
50% 1046.990324 6.948083 1038.305198 1064.010131

Table 1: Analysis of the binary registration times and the load balance problems.

4.5 Statistical analysis of the section movements

The movement of the pixels over more concatenations was analyzed in the figure 7 in order to see
what are the potential problems in the method and how it can be speeded up even more. The aver-
age pixel movement grows approximately linearly with the number of concatenations, and the maxi-
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(a) Original image no. 4 (b) Moved image no. 4

(c) Original image no. 16 (d) Moved image no. 16

(e) Original image no. 64 (f) Moved image no. 64

Figure 5: On the left side are the original images 4, 16 and 64. On the right side are the same respective images
after applying 4, 16 and 64 concatenated deformation fields, respectively. Before calculating the registrations,
histogram matching of the images was applied and this causes the differencies in the brightness of images. It
can be seen that the number of the arfifacts that arise on the result images grows with the number of slices the
concatenations are bridging.
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Figure 6: The left picture shows the scaling of the inverse of the registration time with the increasing number of
processors. Expected scaling is O(n). The right picture shows the scaling of the inverse of the concatenation
time with the increasing number of processors.

mum pixel movement after the initial increase also grows linearly with the number of concatenations.
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Figure 7: Average and maximum pixel movement over specified number of concatenations.

4.6 Analysis of the number of iterations needed

Problems with the convergence of the demons registration method were spotted while testing some
simple test cases. That’s why the length of the vector produced by the method with different number of
iterations was analyzed. After the analysis in the figure 8 we can see that already after 100 iterations,
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almost full length has been achieved. After that the changes in the length are very small, and it’s not
clear whether the method converges or not. Also, since the graphs for the 5% and 10% images look very
similar, the convergence problem shouldn’t depend on image size.
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Figure 8: Analysis of the deformation vector length concerning different number of iterations. The numbers are
scaled with the length of the deformation vectors after 5000 iterations.

4.7 Remarks

The transformation field produced by the ITK method is not smooth. It is not reasonable to expect
that the interpolation of such fields would produce useful results. Diffusion smoothing was also imple-
mented but it was not clear if it provides better results, since without real reference, there was no other
way to say whether the results are good or not, except optically. Interpolation of transformation fields
with polynomials up to the power of 2 was tried, but it did not provide useful results. In the figure 9,
there are examples of a few images where we can see parts of the deformation fields produced by the
ITK method, which include strong inside movement towards to or strong outside movement outside of
one pixel. Also, there are parts where the deformation field is not smooth, or not even monotonous.

5 Conclusion

The goal of this work is fulfilled. The method is fully parallelized with almost perfect scaling. It can
be concluded that there are almost no load balancing problems, since the scaling is almost perfect, and
the registration times are all in few percent of the average time. The results it provides are ok up to a
small number of concatenations. After more concatenations it doesn’t produce good results, probably
because of the non-smoothness of the initial deformation fields. Problems with the ITK implementation
of the demons registration method were spotted. It does not produce smooth deformation fields and
also includes a lot of local rotations. It should be further analysed if the method converges and when,
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(a) strong inside movement (b) strong outside movement

(c) non-monotonous movement (d) non-smooth movement

Figure 9: Preview images of some specific regions of binary registrations where some unwanted artifacts arise.
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since from the tests made it is not clear. From the results can also be concluded that the concatenation
time is significantly smaller than the registration time, and that the registration part of the algorithm is
a bottleneck. A potential solution for this problem can be section-wise registration. In order to enable
this pixel movements over a sequence of registrations were investigated, since it is a good starting point
for the section-wise registration (estimate for the needed overlap). Additionally, this method can be
tested with some other registration method that produces more smooth deformation fields. It shouldn’t
be a lot of work since the concatenation part of the algorithm is independent from the registration
part.
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Abstract:
We describe the implementation and optimization of a Lattice Boltzmann code for computational
fluid-dynamics on the massively parallel BlueGene/Q architecture. We analyze the behaviour and the
performance using a prototype version of BG/Q which is installed at the IBM research lab Böblingen.
Using the large degree of parallelism of the underlying algorithm, it is possible to make use of all the
available parallel resources of the architecture (multi-node, multi-core, SIMD).

1 Introduction

Fluid-dynamics is studied today with the support of computational techniques for the highly non-linear
equations of motion, in regimes interesting for physics or engineering.
Over the years, many different numerical approaches have been proposed and implemented on several
massively parallel computers.
The Lattice Boltzmann (LB) method is a flexible approach, able to cope with many different fluid
equations (e.g., multiphase, multicomponent and thermal fluids) and to consider complex geometries
or boundary conditions.
LB then describes on the computer some simple synthetic dynamics of fictitious particles ("popula-
tions") that evolve explicitly in time and, appropriately averaged, provide the correct values of the
macroscopic quantities of the flow. The main advantage of LB schemes from the computational point
of view is that they are "local" (they do not require the computation of non local fields, communications
are only amongst nearest neighbors).
In recent years, the level of parallelism on a single processing node has increased, e.g. due to a larger
number of cores and wider SIMD vector units.
The challenge now is to combine effectively inter-node and intra-node parallelism.
In this report, I present the implementation of an LB application on an IBM BlueGene/Q (BG/Q) pro-
totype, a massively parallel supercomputing system, based on a multi-core processor.
The main tasks we had to address were two; i) adapting a complex numerical algorithm to the new ar-
chitecture and ii) split the computation on a set of different processing elements. The LB algorithm that
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we consider here is described in [5, 6]; it has already been ported and optimized onto several massively
parallel system as described in details in [2, 3, 4]

2 Lattice Boltzmann Method

The Lattice Boltzmann methods (LBM) is a class of computational fluid dynamics (CFD) methods.
This computational method is a simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations.
The lattice description is given in terms of an LB discretization (fl(x, t) are the lattice populations):

fl(x + cl∆t, t+ ∆t)− fl(x, t) = −∆t

τ

(
fl(x, t)− f (eq)

l

)
,

where the equilibrium distributions f (eq)
l is defined in terms of the macroscopic hydrodynamical fields.

The main idea is that the virtual particles interact in two phases, streaming and collision, which
reproduce the dynamics of fluids after appropriate averaging.
Since this method from the computational point of view is local, it can be parallelized on a large num-
ber of nodes/cores with good efficiency. In this work we consider the D2Q37 model which is suitable
to study behaviour of compressible gas and fluids.
The D2Q37 model (2-dimensions and 37 populations) is a model used to study accurately the "Rayleigh-
Taylor instability", an interface instability of two fluids of different densities triggered by gravity.
For instance, a cold-dense fluid over a less dense and warmer fluid triggers an instability that leads to
mixing of the two regions until the equilibrium is reached. For more informations see [1].

3 D2Q37 implementation

Here we describe the structure of the LB code, the data-structures and the implementation details.
To represent the fluid, we need a data-structure which comprises the 37 double-precision floating point
values representing the population of a fluid-cell in the D2Q37 model.
In this case we use a data-structure called pop_type that contains the array of populations and some
other parameters (velocity, temperature, etc.).
At each time step, each lattice-site is processed by applying three main phases: stream, bc and
collide.

t y p e d e f s t r u c t {
double p [ 3 7 ] ; / / p o p u l a t i o n s a r r a y
double u ; / / h o r i z o n t a l v e l o c i t y
double v ; / / v e r t i c a l v e l o c i t y
double rho ; / / d e n s i t y
double temp ; / / t e m p e r a t u r e
. . .

} pop_ type _ _ a t t r i b u t e _ _ ( ( a l i g n e d ( 3 2 ) ) ) ;
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void i n i t ( f ) {
f o r ( i = 0 ; i < NSITE ; i ++ )

f o r ( k = 0 ; k < 37 ; k++ )
f [ i ] . p [ k ] = i n i t i a l P o p V a l u e ;

}

void LBM_funct ( ) {
pop_ type f1 [NX∗NY] , f2 [NX∗NY] ;
f o r ( s t e p = 0 ; s t e p < MAXSTEP ; s t e p ++ ) {

s t r e a m ( f1 , f2 ) ;
bc ( f1 , f2 ) ;
c o l l i d e ( f2 , f1 ) ;

}
}

• stream(): this phase gathers for each site the populations according to the scheme shown in
Fig. 1. This process does not perform any floating-point computations but only accesses sparse
blocks of memory locations. This phase requires to access all neighbor-cells at distance 1, 2 and
3 within the grid that will collide during the next computational phase (collide()).

• bc(): this phase sets the boundary conditions, i.e. adjusts values of the cells at the top and
bottom boundaries of the lattice as shown in Fig. 2 (e.g., a constant given temperature and zero
velocity).

• collide(): this phase performs all the mathematical steps needed to compute the new popu-
lation values at each lattice site. This is the floating point intensive part of the code with ≈ 7820

DP operations per site. This phase is completely local, in fact it uses only the population of the
site on which it operates.

Figure 1: Visualization of the stream phase. Populations at a distance 1, 2, 3 lattice-points are gathered to the
lattice-point at the center.
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Figure 2: The bc phase needs to adjust the values only in the upper and lower 3 rows of the lattice.

To make the simulation, we maintain two copies of the lattice, each phase reads the inputs from one
lattice and writes the results to the other.

4 Parallelization

Figure 3: The first 3 columns of the sub-lattice of process C are sent to process P, the last 3 columns are sent to
process N and process C receives data from N and P.

This code, as said before, is massively parallelizable because of its locality properties.
Now we explain all the strategies applied to the code to exploit all the parallelism available in the LBM
algorithm both intra-node and inter-node.
First we consider the parallelization over multiple nodes. Here we use MPI to divide the job over
several MPI-processes. A lattice of size Lx × Ly is split over Np processes along X direction each
processing a sub-lattice of size Lx

Np
× Ly. During the stream() phase we need the neighbor-cells at

distance 1, 2 and 3 in X direction. The cells close to the Y borders of the sub-lattice of each process
need data of the neighboring sub-lattices processed by two other processes.
Therefore, before entering the stream() phase we have to exchange the first and the last 3 columns of
the sub-lattice with the neighbors. To do this we need a new phase called comm() where we exchange
the data between the processes, see Fig. 3.
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4 Parallelization

Figure 4: Mapping of the application onto a 2 dimension torus/mesh network.

This schema implies an ordering of the nodes along a virtual ring, so each node is connected with a pre-
vious and a next node as shown in Fig. 4. A first optimization which we implemented in order to make
use of the on-chip parallelism is to implement a thread parallelization inside a single MPI-process.
For this we use the standard pthread library. This approach avoids any overheads observed for other
high level libraries. Using the threads, we can further divide the sub-lattice over each thread and com-
pute each thread-lattice concurrently. If we have a sub-lattice of size Lx

Np
× Ly and Nt threads, each

thread has to compute only a thread-lattice of size Lx
NpNt

× Ly. This optimization often leads to a big
increase of performance, especially on multicore architectures.
In Fig. 5 we can see the splitting of the lattice between the threads. We now have a closer look into the
code executed by each process. For now we use barriers to synchronize between the phases of the algo-
rithm. (As discussed later it is possible to overlap processing of different phases.)

void LBM_funct ( ) {
f o r ( s t e p = 0 ; s t e p < MAXSTEP; s t e p ++ ) {

i f ( t i d == 0 ) {
comm ( ) ; / / exchange b o r d e r s

}
p t h r e a d _ b a r r i e r _ w a i t ( . . . ) ;

s t r e a m ( ) ; / / a p p l y s t r e am ( )
p t h r e a d _ b a r r i e r _ w a i t ( . . . ) ;

i f ( t i d == 0 ) {
bc ( ) ; / / a p p l y bc ( )

}
p t h r e a d _ b a r r i e r _ w a i t ( . . . ) ;

c o l l i d e ( ) ; / / compute c o l l i d e ( )
p t h r e a d _ b a r r i e r _ w a i t ( . . . ) ;

}
}

145



PORTING AND OPTIMIZATION OF A LATTICE BOLTZMANN D2Q37 CODE TO BLUE GENE/Q

Figure 5: Each thread processes a slice of the sub-lattice, in this example 12 threads are used.

5 BlueGene/Q

In this project we have ported our LBM code to the IBM BG/Q architecture and investigated the
performance.
BG/Q is a massively parallel supercomputing system with a very good power efficiency (FLOPS/Watt).
Since November 2010 it is No. 1 on the Green500 list and since July 2011 it is No. 1 and 2 with a huge
distance to No. 3 [7].
This new architecture surmounts the preceding BlueGene/P architecture due to higher clock frequency,
more cores per chip, memory, etc..
On BG/Q each Compute Card there is a chip with 16+1+1 cores (16 computational cores, 1 helper core
designed to handle OS service and 1 redundant spare) each capable of running SMT threads. Each
core has a 16+16 kB L1 data and instruction cache connected to a shared 32 MB L2 cache. Each core
comprises a Quad FPU SIMD that can process 4-wide DP vector instructions.
A water-cooled Node Card comprises 32 Compute Cards and optical modules to interconnect Node
Cards. The 5-D torus network links have a bandwidth of 2 GB/s per link. A rack hosts 32 Node Cards,
i.e. 1024 Compute Cards, 16384 cores which can execute up to 65536 threads.
Porting the code to BG/Q was really easy to do. No changes were required to get the code running on
BG/Q producing correct results. Exploiting this large number of threads and the 4-wide SIMD is the
real challenge now to improve the performance of this first code.

6 Optimization on BG/Q

A first easy optimization is to increase the number of threads per node.
With BG/Q we can use from 1 to 64 threads per compute card, with a really good scaling of the per-
formance for this particular application.
The next optimization step is to use the 4 available FPUs to perform up to 2 × 4 floating-point opera-
tions per clock cycle and core.
To use all 4 FPUs we need a suitable data-structure. This structure has to use vector data types where
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we can pack four double-precision numbers. These data types can be processed by QPX instructions
which are thus able to process four lattice-sites instead of one.
We combine the data at distanceNY/4 in the same variables as shown in Fig. 6.

Figure 6: Cells at distance NY/4 are combined together in order to exploit the streaming vector instructions
available in the processors.

Using this combine pattern we don’t have to change all the code, because if we have some distance
from the site combined in the same variable, the first neighbors are easy to find and compute, for exam-
ple most of the blue sites need only other blue sites. In this case we don’t need to change the code using
QPX intrinsics, but we only change the data-type. Packing the variables inside the vector variables is
straight-forward.
The new vectorized data-structure, called v_pop_type, looks as follows:

t y p e d e f s t r u c t {
v e c t o r T y p e p [ 3 7 ] ; / / p o p u l a t i o n s a r r a y
v e c t o r T y p e u ; / / h o r i z o n t a l v e l o c i t y
v e c t o r T y p e v ; / / v e r t i c a l v e l o c i t y
v e c t o r T y p e rho ; / / d e n s i t y
v e c t o r T y p e temp ; / / t e m p e r a t u r e
. . .

} v_pop_type _ _ a t t r i b u t e _ _ ( ( a l i g n e d ( 3 2 ) ) ) ;

void i n i t ( v_pop_type ∗ vf ) {
f o r ( i = 0 ; i < NX∗NY/ 4 ; i ++ )

f o r ( k = 0 ; k < 37 ; k++ )
f o r ( v = 0 ; k < 4 ; v++ ) {

t f [ v ] = i n i t i a l P o p V a l u e ;
v f [ i ] . p [ k ] = v e c _ i n s e r t ( t f [ v ] , v f [ i ] . p [ k ] , v ) ;

}
}

void LBM_funct ( ) {
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v_pop_type vf1 [NX∗NY/ 4 ] , v f2 [NX∗NY/ 4 ] ;
f o r ( s t e p = 0 ; s t e p < MAXSTEP ; s t e p ++ ) {

s t r e a m ( vf1 , v f2 ) ;
bc ( vf1 , v f2 ) ;
c o l l i d e ( vf2 , v f1 ) ;

}
}

To initialize this structure we have to insert the values in double precision in the right place inside the
vectorized variable.
Operations on the vector variables are then translated by the XL compiler generating code which in-
cludes QPX instructions. In our code, we need to change only some operations in the streaming phase
for the vectorization. During the stream() phase we need to swap the neighbors in Y+ and Y- when we
are respectively in the upper and the lower rows of the lattice. For example, from Fig. 6 we can see
that if we need the neighbor in Y + 1 of a red site we have to access the data of a blue site at the same
position within the vector.
Using the vector instructions provides a significant performance speed-up, independently of the num-
ber of the threads and MPI processes used on the same node.

7 Results

Figure 7: Plot of the performance as a function of the number of threads. Speedup is calculated as t1
tN

where tN
is the execution time with N threads and t1 is the execution time with 1 thread

In this section we will present results obtained before and after the optimizations and results from multi-
node runs. We start comparing the performance of the version without and with the vectorizations
Fig. 7, where we call "version 1" the version without vectorization and "version 2" the vectorized one.
We observe a significant speedup even if we use > 1 threads per core. Best performance is obtained
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for 64 threads per node.
Now let us look at the performance of the code parallelized over several nodes, using 1 to 32 nodes
with 4 MPI processes per node and 16 threads per process. We investigated both strong scaling (see
Fig. 8) and weak scaling (see Fig. 9).

8 Conclusion

Figure 8: Strong scaling speedup, calculated as t1
tN

. The global problem size is fixed, i.e. when we increase the
number of compute nodes the problem size per node decreases.

In this report we describe the implementation, the porting and the optimization of a multi-phase LB
code in 2D on the new massively parallel BlueGene/Q architecture. For this application, the inter-node
parallelization is quite easy to implement, but a careful optimization is necessary to perform the intra-
node parallelism. Starting from a code optimized for x86 architectures porting had been very easy. In
fact, the code hardly required any particular changes.
We obtained the following results:

• We have not yet reached the performance we expected to reach on this architecture, because:

– We used a prototype version of the system which does not run at target performance, e.g.
only 1 out of 2 memory controllers was populated.

– The algorithm used here has room for further improvements, e.g. we can merge the
stream() and the collide() phases in a single phase. This would allow to reduce
the execution time considerably.

– Communication can most likely be improved by optimizing the logical mapping of the
nodes onto the torus network.
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• The vectorization of the code is relatively easy to perform. Using the XL compiler we need
only to change the data structures. For this code we do not need to use QPX intrinsics since the
compiler knows how to process vector data types.

• The intra-node scaling is surprisingly good. The current code strongly benefits from the 4-way
SMT: Increasing the number of threads per core from 1 to 4 leads to a significant performance
increase with an almost linear speed-up until 32 threads per node. Best performance is achieved
using 64 threads per node.

• The scaling inter-node from 1 to 32 compute cards is really good, almost perfect.

Figure 9: Weak scaling speedup, calculated as Nt1
tN

. Here the problem size per node is fixed, i.e. when we
increase the number of compute nodes the global size of the problem increases.
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