Member of the Helmholtz Association

JSC Guest Student Programme
Proceedings 2012

Edited by Mathias Winkel

FZ)-JSC-1B-2012-01

#) J0LICH

FORSCHUNGSZENTRUM

Proceedings 2012

JSC Guest Student Programme
on Scientific Computing

Editor
Mathias Winkel

November 2012

FZJ-JSC-IB-2012-01

Jiilich Supercomputing Centre
Forschungszentrum Jiilich GmbH
D-52425 Jiilich

Tel: +49 2461 61-6402

Fax: +49 2461 61-6656

Email: jsc@fz-juelich.de

WWW: http://www.fz-juelich.de/ias/jsc/

FZJ-JSC-1B-2012-01

JSC Guest Student Programme on Scientific Computing
Proceedings 2012

The complete volume as well as reports from earlier Guest Student Programmes are freely available on
http://www.fz-juelich.de/ias/jsc/gsp

Editorial

As one of the leading HPC centres in Europe, Jiilich Supercomputing Centre provides supercomputer
resources, IT tools and HPC expertise for computational scientists at German and European univer-
sities, research institutions, and in industry. One important part of this mission is to introduce young
academics to HPC and its role in scientific research. To this end, JSC hosts regular support activities
and educational programmes.

The JSC Guest Student Programme on Scientific Computing has already been successfully running
for 13 years. Since the first programme in 2000, a total of 133 students have seized the opportu-
nity to join research teams from JSC and other institutes on the Forschungszentrum Jiilich campus
for ten weeks. Working on challenging topical scientific projects, they gained experience with up-to-
date hardware and software as well as HPC-related methods and algorithms. For many students, the
programme has been the foundation for a career in HPC and the basis for fruitful continuing coopera-
tions.

The JSC Guest Student Programme 2012 took place from 06 August to 12 October. Once again it
was run under the CECAM framework (Centre Européen de Calcul Atomique et Moléculaire) and
organized in cooperation with the German Research School for Simulation Sciences (GRS). Support
by IBM Deutschland through a sponsorship within the IBM University Relations programme is also
gratefully acknowledged.

This year’s announcement yielded a record response of applications from 13 countries, compris-
ing applicants from a particularly wide range of disciplines, including mathematics, physics, chem-
istry, computer science and engineering, biomedicine and earth sciences. Competition for the avail-
able places was especially strong, and after the final selection process, 13 students were invited to
Jiilich.

The guest students and their local advisers were:

Daniel Arndt (Gottingen) Mike Nicolai (JSC)

Kieran Austin (Leipzig) Thomas Neuhaus (JSC)

Mario Berljafa (Zagreb) Edoardo Di Napoli (JSC)

Khaldoon Ghanem (Aachen) Erik Koch (GRS)

David Haensel (Dresden) Ulrich Kemloh (JSC)

Christian Jost (Bonn) Stefan Krieg (JSC)

David Martin Rodriguez (Salamanca) Anupam Karmakar (JSC)

Sebastian Rupprecht (Augsburg) Martin Miiser (NIC), Wolf Dapp (NIC)
Barbara Schlogl (Wiirzburg) Martin Miiser (NIC), Mykola Prodanov (NIC)
Anne Springer (Bonn) Lars Hoffmann (JSC)

Artur Strebel (Wuppertal) Oliver Biicker (JSC), Wolfgang Meyer (JSC)
Felix Uhl (Bochum) Godehard Sutmann (JSC), Viorel Chihaia (JSC)

Tommaso Zanca

(Ferrara)

Dirk Pleiter (JSC)

During their stay, the participants worked on research projects in a broad area of fields, ranging
from applications in atmospheric sciences, fluid and molecular dynamics, particle-in-cell methods,
and safety research, to fundamental research in elementary particle physics and mathematical algo-
rithms. Besides using the multi-purpose cluster JUROPA and the GPU system JUDGE, one of the
key topics was the utilization of the newly installed IBM Blue Gene/Q system JUQUEEN in liilich
— number 5 on the November 2012 Top500 list and currently the most powerful supercomputer in
Europe.

During a concluding colloquium, the participants presented and discussed their work with their fellow
students, their supervisors, and other local scientists. Finally, more detailed reports have been prepared
and were compiled into this JSC publication. It underlines the students’ ability for self-contained, fo-
cused, and cooperative work as young scientists on up-to-date topics.

Of course, success of the programme is not only due to single persons but the result of the hard work of
many contributors. I would like to thank the guest students for their work and dedication, contributing
to challenging and exciting scientific topics as well as the advisers for their cooperation and patient
help, not only regarding the students’ work. Thanks go to the lecturers Florian Janetzko, Alexander
Schnurpfeil, Jan Meinke, Peter Philippen, and Willi Homberg from JSC, Suraj Prabhakaran from GRS,
and Jiri Kraus from NVIDIA who organised and held the training courses.

Additionally, I would like to thank Ivo Kabadshow who has been doing a great job as supporting
organizer and Ria Schmitz for her tireless work on and against bureaucracy. Special thanks go to
IBM Deutschland, in particular Andreas Pflieger and Martin Méhler, for significant financial support
and a great contribution to the colloquium.

The upcoming JSC Guest Student Programme will start on August 05, 2013. It will be officially an-
nounced in January 2013 and is open to students from the natural sciences, engineering, computer
science and mathematics after their Bachelor and before reaching their Master’s degree. Further in-
formation, reviews, former results, and the announcement of the upcoming programme are available
online at http://www.fz-juelich.de/ias/jsc/gsp.

Jiilich, November 2012 Mathias Winkel

Contents

|Barbara Schlogl |
| Plasticity in a Parallel Green’s Function Molecular Dynamics Code| 1
|ISebastian Rupprecht |
[Multigrid, conjugate gradient solver for Reynolds thin film equation]| 11
\Khaldoon Ghanem |
[Visualizing Complex Functions Using GPUs| 25
[David Martin Rodriguez |
[Porting and optimization of EPOCH to Blue Gene/Q | 37
\Christian Jost |
| Optimization of Lattice QCD kernels for Blue Gene/Q| 49
Lommaso Zanca |
[__Graph 500 benchmarking using flash memory cards 59
|Artur Strebel |
[Generating parallel random numbers: As easy as 1, 2, 37| 71
\Daniel Arndt |
[Design and Implementation of an Experimental Finite Element Solver| 83
IMario Berljafa |
[A parallel block iterative eigensolver for correlated eigenproblems| 95
|\Kieran Austin |
| A Universal Boltzmann Distribution in Simulation Experiments| 107
\Felix Uhl |
L__Efficient Communication Schemes for Parallel Stochastic Thermostats| 117
|Anne Springer |
[ldentification of Gravity Waves in AIRS Brightness Temperatures| 127
\David Haensel |
[Information sharing between agents in evacuation simulations 139

iii

Embedding Plasticity into a Parallel Green’s Function Molecular
Dynamics Code

Barbara Schlogl

Universitidt Wiirzburg
Fakulit fiir Physik und Astronomie
Theoretische Physik III
Am Hubland
97074 Wiirzburg

E-mail: bschloegl @physik.uni-wuerzburg.de

Abstract:

Numerical simulation of plastic deformation of solid bodies is still a challenging field in contact
mechanics. In this work we describe four different approaches to implement plastic deformation
into a parallel Green’s function molecular dynamics (GFMD) code originally developed for handling
only the elastic case. The first approach of local deformation in real space suffers from the fact
that its optimization is not universal over a range of pressures, as well as from discontinuities in the
displacement field. The second approach of pressure-dependent deformation taking into account the
position of nearest neighbours produces ringing artifacts from the transformation to Fourier space.
While the last two propositions seem promising, they need some further investigation to ensure or
refute their feasibility.

1 Introduction

Computer simulations and especially molecular dynamics play an important role in materials science.
In particular contact mechanics is dealing with phenomena occuring during the interaction of two or
more surfaces [[1]. For this purpose the roughness and plasticity of real surfaces also have to be taken
into account. Using a coarse grained approach we are able to simulate surfaces over a wide range
of lengths, ranging from the atomic level to mesoscopic scales. We in particular are interested in the
deformation of two bodies where one is pushed down on the other. Both are assumed to possess rough-
ness as well as elasticity. The latter makes the traditional assumption to the contact area ineligible for
our purposes, as will be explained in section [2] The section will cover the Green’s function molecular
dynamics (GFMD) code which enables us to examine the effects of elastic deformation. Still in many
cases the influence of plastic deformation may not be negligible. Here we aim to implement modifi-
cations to the existing code to be able to take plasticity into account. We will consider four different
approaches and examine their respective advantages and drawbacks.

PLASTICITY IN A PARALLEL GREEN’S FUNCTION MOLECULAR DYNAMICS CODE

2 GFMD code for Elastic Deformation

2.1 Setup

Consider two surfaces with roughness on different length scales ranging from the atomic to the macro-
scopic scale. As long as they move perpendicular to the interface we can neglect shear movement and
stress. This allows us to summarize their characteristics i. e. roughness and elasticity into either one of
the surface. The result may be an ideally flat surface which contains all of the elasticity in the system
while the other is perfectly rigid but carries the information about the combined roughness.

Now if the surfaces are to be brought in contact we are interested in finding the contact area and ac-
cordingly the gap distribution. Traditional approaches as summarized for example in [[1]] and described
in [2], assume the highest asperity to be in contact first, then the second, the third and so on. This
effectively corresponds to cutting through the height distribution of the undeformed surface at a cer-
tain height. Everything above would constitute as a point in contact while every point below would
correspond to a gap (see Fig.[[a)). Even though this may be sufficient for some applications or as a first
estimate, it does not take into account the elasticity of the surface. It will deform and may be pushed
down further than assumed, resulting in points of additional contact below the cut line. On the other
hand the particles exert forces on each other ensuring a continuous surface which may result in gaps
appearing above the cut (see Fig.[Tb).

This behaviour necessitates a more sophisticated approach on the task.

NP AN contact
/}\HU \\ no contact 'qu W W \\ fﬁa ﬁ

(a) Traditional picture of contact area (b) Contact area of a rough and an elastic surface

Figure 1: Comparison of contact areas

2.2 Green’s Function Molecular Dynamics

Molecular Dynamics (MD) allows us to compute the physical movement of interacting atoms or
molecules numerically. We solve Newton’s equation of motion through Verlet integration taking into
account that the movement of every particle will have an influence on its neighbours. Green’s function
molecular dynamics in particular is concerned with the treatment of semi-infinite elastic solids. The
full elastic response can be modelled though only surface atoms are taken into account. This is why
the method is considerably faster than an all-atom simulation while still taking into account the long
range interactions. [3]]

Since we are not interested in the time evolution of the process but rather in its outcome, i. e. the static
response of one surface being pushed at another with a certain pressure, we aim to damp the motion
as fast as possible. For this the damping should be chosen so that the centre-of-mass mode is critically
damped or slightly underdamped. One GFMD step in our implementation consists of:

2 GEMD code for Elastic Deformation

e Transforming the surface topology from real to Fourier space
e Calculating the elastic restoring forces

o Adding the external pressure

o Adding the damping forces

e Computing the Verlet integration

e Transforming the surface topology back to real space

e Applying boundary conditions

o Checking for termination (whether the equilibrium is reached)

2.3 Closer Look: Boundary Conditions

In order to understand in detail how the plastic deformation was implemented in the GFMD code it’s
worthwhile to have a closer look at the boundary condition. All of the proposed approaches for plas-
ticity modify them to some extent. After setting up the two surfaces, the flat, elastic displacement
field and the rough, rigid counterbody, we move the particles of the displacement field according to the
external pressure as predicted by the Verlet integration. Now the fundamental principle is that the two
bodies may not overlap, because this would correspond to the unrealistic situation of interpenetration
of the surfaces. Instead, every point violating this condition is placed on the surface of the counterbody
and may subsequently be altered further in accordance with the molecular dynamics. Note that our
implementation of GFMD can be used to simulate static contacts in systems of different length scales.
Thus the grid points may not correspond to ’real’ atoms in contrast to conventional MD. For symplicity
we will refer to the grid points as ’particles’ or *points’.

The boundary condition can be expressed as:

displacement = max(displacement, wallPos - effSurf)

where the initial displacement is determined by the molecular dynamics, ef£Surf describes the
height distribution of the rigid counterbody (effective surface) and wallPos is originally a fixed field
of reference, which may be chosen to zero or the initial displacement (see Fig.[2).

max(dispReal, wallPos - effSurf)

J

displacement
0000000000OOCGOOCS

.M eeccccccccccece

Figure 2: Boundary condition: the two surfaces are not allowed to overlap

PLASTICITY IN A PARALLEL GREEN’S FUNCTION MOLECULAR DYNAMICS CODE

3 Plastic Deformation

The ultimate goal is to develop an empirical method to calculate plastic deformation using the GFMD
approach and to apply it to data obtained from real surfaces. In principle all of the four suggested
approaches are based on a subtle change in the boundary condition. While keeping the boundary
condition for the displacement field as described in section [2.3] we assume the reference points of
wallPos no longer to be fixed. This effectively corresponds to deforming the effective surface, where
raising the wal1Pos is equivalent to a dent in the effective surface. Consequently this can be related to
the plastic deformation of the real substrate if we assume the hardness of the indenter to be sufficiently
big. The experimental data provided to us by the group of Dr. Martin Dienwiebel consisted of scans of a
copper OFHC surface of dimensions 650 by 650 pixels, where one pixel corresponds to 3.698 - 10~7 m,
bringing the total size to a square of sidelength 240.41 pm (see Fig.3). Additionally we got scans of
the rubin indenter which was of the same dimension. Then the indenter was pushed on the surface with
a certain force and subsequently removed to allow for scanning of the deformed surface. Afterwards
the indenter was restored to its position and pressed down with a higher pressure. The procedure was
repeated for forces of 0.8 N, 1.6 N, 3.2 N, 6.4 N and 12.8 N (see Fig. [3] for some characteristic
examples).

3.1 Fixed Local Change

As a first attempt to include plastic deformation we used a fairly simple and straightforward approach.
After each MD timestep (see sec. [2.2) the forces are transformed from Fourier to real space. Then
the pressure on each point is evaluated and compared to a threshold value. For our purpose we chose
the Vicker hardness of the experimental surface which was OFHC Copper. If the pressure on a point
exceeded the threshold, its position would be plastically deformed. To find a reasonable length scale
by which to distort the corresponding wallPos, we deemed a fraction of the absolute height of the
original, undeformed substrate a good starting point. It was necessary to optimize this proportionality
factor in order to reproduce the experimental data. If the value was chosen too small, the effect of
plastic deformation would be negligible and also the system would take a very long time to converge.
On the other hand choosing the proportionality factor too big led to an even graver problem. In this
case the points would tend to overshoot, being pushed away from the contact area too far, thus losing
contact and resulting in false "holes’ in the substrate (see Fig.[d). This issue will be further addressed
in section[3.4] First thing to note about this method is that the system was found to be very sensitive to
this parameter. If the surface is rough and contains some high asperities, the local force acting on them
can be considerably big and will lead to overshooting. This is relevant especially at the beginning of the
simulation when only a few points are in contact. One solution may be to choose the value depending
on time or contact area, i. e. smaller in the beginning with few contact points and bigger after. But this
would be on the one hand quite complex to Figure out and on the other be only slightly motivated by
actual physics. Furthermore we find that any optimization of this value is hardly transferable to other
values of pressure. It is quite intuitive that a higher pressure would lead to a bigger indentation, as can
clearly be observed in the experimental data (see Fig.[3). Since this approach did not take into account
the magnitude of the pressure, an optimization of parameters for one pressure will yield too small
deformation for higher pressures and overshoot for smaller pressures. In the next section we will take
this insight into account with a slightly more sophisticated method.

3 Plastic Deformation

(a) Original undeformed copper surface (b) Deformation with parabolic rubin indenter, force 1.6N

(c) Deformation with parabolic rubin indenter, force 12.8N

Figure 3: Experimental data

Figure 4: Application of the local approach to the experimental data. Note the detached points

PLASTICITY IN A PARALLEL GREEN’S FUNCTION MOLECULAR DYNAMICS CODE

3.2 Nearest Neighbours

3.2.1 Method

In principle the next approach is quite similar to the previous one except for two important refinements.
For one the change in wallPos will be pressure-dependent and secondly an attempt at preventing
overshooting is implemented.

Intuitively from everyday experience and supported by the experimental data (Fig.[3)) it is to be expected
that greater pressure on a surface will lead to a bigger deformation. As before, we pick all points on
which the pressure exceeds a certain threshold, but here we will change their respective wallPos
proportionally to the pressure they are exposed to. To be precise, it will be a certain fraction of the
amount by which the pressure exceeds the threshold. As before the system will be quite sensitive to
this proportionality factor.

Also we may still encounter the problem of overshooting. To account for this, we introduce the addi-
tional condition that in any given timestep a point may not be lowered further than its nearest neigh-
bours. Again being more precise it will be moved proportionally to pressure but at most to the mean
height of its nearest neighbours. This will on the one hand diminish the problem of points losing con-
tact, while at the same time ensuring that it is still always possible for points to move. The reason for
choosing the mean may not be obvious at first glance. Consider the condition that a point may not be
moved further than the highest nearest neighbour. This would not merely diminish the risk of points
losing contact but get rid of the problem altogether by being a much more conservative estimate. But
it would introduce a new problem where points forming a plateau with their surrounding neighbours
can not be moved further even though the pressure might still exceed the threshold. This necessitates a
compromise hence the choice of mean height of nearest neighbours.

Although these measures take care of the most basic issues in realizing the plastic deformation, the
implementation revealed a new serious problem. When changing the wallPos the displacement field
is changed accordingly. Since the change is only local on each point separately, discontinuities may ap-
pear in these fields. If subsequently the displacement field is transformed to Fourier space as necessary
for the MD loop (see sec. [2.2)), these discontinuities will introduce what is know as ringing artifacts.
[4] Due to the implementation peculiarities of the Fast Fourier transform the edges of any step func-
tion will be subject to overshoot and oscillations. A quite pronounced illustration of this problem can
be observed in Fig. [5] It shows the change in wallPos and therefore the plastic deformation of an
ideal parabolic indenter. Obviously it is not the expected response of the substrate, because the ringing
artifact completely obscures the actual parabolic deformation.

To alleviate this issue we attempted to smoothen discontinuities in the displacement field. Whenever
the height difference between two neighbouring points was found to be too steep, the lower point was
lifted by half the distance. When this did not improve the ringing artifacts sufficiently we looped over
the condition several times until all steps were smaller than a certain threshold. Unfortunately it was
not possible to find a threshold which was small enough to prevent ringing while at the same time
ensuring that the surface was not distorted too much.

3.2.2 Some remarks on parallel implementation

Although the code was already MPI-parallelized, accessing the height of the nearest neighbours re-
quired some additional communication, so the topic will be briefly addressed at this point.

3 Plastic Deformation

In principle we use a two-dimensional array for storing the topography of our surface and displace-
ment fields, where the index of the array is the x- and y-coordinate of the points respectively. Using
the fftw-library entails that this array will be partitioned in slices along the x-direction, rather than
the more common boxes. Since we apply periodic boundary conditions this means that in y-direction
we encounter no problems in accessing information about nearest neighbours to the left and right (see
Fig. [6). However the communication becomes necessary when the local topmost row on a processor
tries to access its top neighbour or the bottommost its bottom neighbour respectively. To deal with this
issue we introduce two arrays of ’virtual neighbours’. Each processor sends an array containing the
height of all points in the top row to the virtual bottom array of the previous processor as well as the
information about all points in the bottom row to the virtual top array of the next processor. Again we
suppose periodic boundaries. The arrays are kept updated automatically, because each point of the top
or bottom row will update the corresponding information on its own processor whenever it is modified.
Then after each MD timestep the whole arrays will be sent to the neighbouring processors to ensure
that the information about nearest neighbours is ever up to date.

X ==

Figure 5: Ringing artifacts in the wal1Pos for an ideal parabolic indenter Figure 6: Division
of the fields on
several processors.
Framed fields are
not able to access
their top/bottom
neighbours. Coloured
fields indicate arrays
of virtual neighbours.

3.3 Fourier Space method

In an attempt to circumvent the issue of ringing artifacts as described in the previous section, we tested
an approach avoiding unnecessary Fourier transformations.

The main idea is to eliminate the need for transforming the wal1Pos array from real to Fourier space
and the subsequent ringing artifacts from its discontinuities by introducing a wallPos already in
Fourier space. This field would then be modified in reciprocal space and the boundary conditions
applied to the displacement field before transforming the latter back to real space and check for termi-
nation (see sec.[2.2). Although this seems like an elegant way to avoid the ringing artifacts altogether,

PLASTICITY IN A PARALLEL GREEN’S FUNCTION MOLECULAR DYNAMICS CODE

this approach turned out to be more difficult than this short outline reveals.

The first problem to present itself was finding a reasonable threshold criterion. Operating in Fourier
space implies the use of complex numbers. It is necessary to interpret them correctly and the threshold
criterion we used before in sections [3.T]and [3.2]can no longer be applied. As we now compare complex
numbers, it is not as straightforward to tell when the pressure in Fourier space exceeds a maximum per-
missible value. So we would need to identify how the local force on a point in real space is expressed
in Fourier space and what would then be a reasonable criterion to decide whether and how to change
the boundary condition or its prerequisites.

The same underlying issue also sprouts difficulties when applied in reverse direction. Modifying the
displacement field on a certain frequency translates to changing several points on the real surface. This
is the reason why we cannot assume a simple response as before. Assume we solve the problem of
finding an appropriate threshold criterion, which may be frequency-dependent or otherwise modified
so that it holds for all frequencies in our domain. Furthermore assume the procedure to be imple-
mented analogous to the real space approach. If the pressure on one frequency exceeds the threshold,
the wallPos for this particular frequency will be modified. This implies changing the position of
several points all over the surface in real space. One may argue that this could reflect some long range
interactions but let us consider the case of some high asperities in contact. In that case the deformation
is expected to occur locally only on these points and would decrease the height of these spikes while a
response of a totally different location on the surface would not only be counterintuitive but most prob-
ably also wrong. Still this is what would be implied, were we to change the wallPos only locally on
one frequency as proposed until now.

Nevertheless it is not impossible to find a function to change the wallPos accordingly in Fourier
space in order to obtain a local response in real space restricted to only a certain area to be deformed.
This response function can be expected to be quite complex and most certainly requires change in
wallPos over a range of frequencies. This in turn will probably necessitate communication over
different processors which may slow down the parallelized code considerably.

In view of these of yet unresolved question and due to the end of the program drawing nearer, we aban-
doned this method for the time being in favour of another promising approach which will be described
in the next section. Nevertheless, further investigations in this direction may prove worthwhile using
our preliminary findings and are necessary to ultimately ascertain its extent of utility.

3.4 Bidirectional Local Change

The final approach at embedding plasticity revisits the idea of changing the wallPos in real space
again. However with a more successful take on the problem of overshooting.

This method is a combination of the ones introduced in sections [3.1]and [3.2] As before, the change in
wallPos is performed in real space and only locally on those points on which the pressure exceeds
the hardness. Again the amount of change is proportional to the difference of hardness threshold
and pressure. The important difference is that all points which have been deformed will be revisited.
Now each point will be examined if either the local pressure on it exceeds the threshold and modified
accordingly or if it had already been deformed once, there are two possibilities. If the point has not
been moved far enough, the pressure will still exceed the threshold and the point will be moved further.
If the point has been moved too far, then the pressure will be smaller than the hardness and the point
has to be moved back. For this purpose we look again at the difference between pressure and hardness
which now will be of the opposite sign and modify the point’s position proportionally. This implies

4 Conclusion

that a particle which overshot by a big amount will be moved further back than one which only differs
by a small amount. Effectively we hope to ensure finding an equilibrium as fast as possible, where
every deformed point comes to rest in a position where the pressure approximates the hardness, i.e. at
the threshold for plastic deformation.

We found that for small system sizes it was possible to find parameters which look very promising
and meet the expectations well, as can be seen in Fig. [/| for a ideal parabolic indenter. Still since the
parameters are extremely sensible to system size and not in an obvious straightforward dependency it
will take some further investigations to enable this method to being applied generally to other system
sizes and to the experimental data.

At the moment this last method seems to yield the most promising results given that a matching set of
parameters can be found.

"wallpos dat” +

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14
-0.16

Figure 7: Plastic deformation for a small parabolic indenter (128 x 128 grid points, height in arbitrary units)

4 Conclusion

In conclusion, we tried four different approaches to embedding plasticity into a parallel Green’s func-
tion molecular dynamics code. We described their properties and discovered their potential drawbacks.
The first two suggestions of fixed height local deformation and pressure-dependent deformation with
respect to nearest neighbours suffered from serious issues, respectively overshoot and ringing artifacts.
The Fourier space method needs some further investigation before we are able to draw definite conclu-
sions of its utility.

Meanwhile the last approach of changing the deformed points until they reach a point of equilibrium
at the threshold pressure yields the most promising results but needs some refinement to ensure gener-
alisation.

PLASTICITY IN A PARALLEL GREEN’S FUNCTION MOLECULAR DYNAMICS CODE

5 Acknowledgements

I would like to thank Prof. Dr. Martin Miiser and Dr. Mykola Prodanov for supervising my project,
the experimental group of Dr. Martin Dienwiebel for providing the experimental data, Mathias Winkel
and Ivo Kabadshow for organizing the program and most of all my fellow gueststudents for moral and
hands-on support and a lot of fun.

References

1. B.NUJ. Persson Contact mechanics for randomly rough surfaces. Surface Science Reports 61; 2006: 201-2

2. J.A. Greenwood and J.B.P. Williamson, Contact of Nominally Flat Surfaces. Proc. Roy. Soc. London, Ser. A 295; 1966:
300

3. Carlos Campaiid and Martin H. Miiser, Practical Green’s function approach to the simulation of elastic semi-infinite
solids. PHYSICAL REVIEW B 74; 2006: 075420

4. George Em Karniadakis and Robert M. Kirby II, Parallel Scientific Computing in C++ and MPI. Cambridge University
Press; 2003

10

Multigrid, conjugate gradient solver for
Reynolds thin film equation

Sebastian Rupprecht

Universitit Augsburg
86135 Augsburg
Germany

E-mail: sebastian.rupprecht@outlook.com

Abstract:

In this report, we study the flow between two solids with rough surfaces, as described by Reynolds
thin film equation. After deriving the equation’s weak formulation by variational calculus, we cal-
culate the current with a conjugate gradient method. To obtain better runtime performances we im-
plement sparse matrices and compare various iterative solvers and preconditioners. We show that the
conjugate gradient method is clearly superior to a local solver. This holds for both approaches to
model the contact area between the two surfaces, the traditional cutoff model and the elastic model.

1 Introduction

Failure of seals have caused some dramatic catastrophes in the last 30 years, for example the Challenger
disaster and the explosion and sinking of the oil platform *Deepwater Horizon’. While in 2010 a seal
failed to restrain gas from the borehole which finally was one of the reasons for the oil spill [1], in 1986
a seal in one of Challengers’s rocket boosters failed so that emanating gas could reach the fuel tank
which caused the explosion [2]. But seal failures can also have consequences in our daily life, like en-
ergy loss or environmental pollution. Therefore, the design of seals should play a more important role
in research than in the last years. Because experiments are expensive and time-consuming, we want to
simulate the performance of seals to gain a better understanding of them. The fluid flow between two
surfaces can be approximated by a partial differential equation (PDE), Reynolds thin film equation, in
two dimensions. After discretising the PDE with Finite Differences to obtain a linear system, we store
the resulting system with sparse matrices. Since the interface and the contact area between seal and
substrate largely depend on the surface roughness of the latter, we have to deal with the gap topogra-
phy [3]]. Following an introduction into the theory we consider various iterative methods to solve the
linear system and give a brief summary of different preconditioners. Finally, we compare our results
with those of the local method which was used in previous work [3]].

11

MULTIGRID, CONJUGATE GRADIENT SOLVER FOR REYNOLDS THIN FILM EQUATION

2 Reynolds thin film equation

In this work we use Reynolds thin film equation to model the thin film lubricant flow in 2D between a
rigid and a deformable surface with fractal contact. In [4] it is shown that it is reasonable to add all the
roughness to the rigid surface which leads to the model in Fig. [T}

gap topography: flat, elastic counter face contact topography:
fluid flow through R 4{*"";"3—'—&— - contactcompliance
interface il - contactresistance
source: Martin Miser Igldl rough SUbStrate

Figure 1: elastic contact between rough surfaces

2.1 Derivation of Reynolds thin film equation

Reynolds thin film equation can be derived by the Continuity Equation and Navier-Stokes Equations
integrated over the third dimension like in [S]] which leads us to

3
V.=V “(féy)-vp(x,y) —0 inQ, 1)
—n

o(zy)

where the domain €2 is the unit square (0,1) x (0, 1), J the current within the domain €2, p the pres-
sure, u(x,y) the gap height between the two surfaces at position (x,y), and 7 the viscosity. In the
following, we will aggregate the term ”(%)3 into the conductivity o(x, y), which consequently scales
with the third power of the gap height and inversely with viscosity. The fluid flow will decrease with
growing viscosity 17 which is very intuitive since viscosity is the measure of a fluid’s internal resistance
to flow. From the derivation of Reynolds thin film equation by the Continuity Equation for incom-
pressible fluids we know that the current does not have sources or sinks within the domain so that
the divergence of J has to be zero. We can see from Eqn. that we need a pressure difference to
obtain a current. Setting the pressure top = lonz = Oand p = O on z = 1 gives us a flow in
positive x-direction. To simulate a large system in y-direction we use periodic boundary conditions for
y = 0 and y = 1. This gives us the following boundary conditions in addition to Reynolds thin film
equation:

V-J=V]o(z,y) Vp(z,y)] =0 in (0,1) x (0,1)
p=1 on {0} x[0,1) (2)
p=0 on {1} x[0,1) 3)
p(z,0) = p(z,1) on (0,1) x {0, 1}. 4)

A rendering of the setup is shown in Fig. 2]

12

2 Reynolds thin film equation

Pressure

source: Andreas Liicke

Figure 2: visualisation of the setup with boundary conditions

Expanding Eqn. (T]) leads to the following equivalent equation

12y u(z, y)?
o=) (v 2g " VP))

where the round brackets denote an inner product. We can see that the right-hand-side depends on the
solution p such that we cannot use most of the solvers for the standard Poisson equation anymore but
we will need to derive a modified solver using finite differences that can be used for the generalized
Poisson Eqn. ().

2.2 Derivation of variational form

In the following we want to derive the weak form of Reynolds thin film Eqn. (T) in a similar way like
it is done in [6]. To deduce a more accurate method to solve Eqn. (T]) than directly applying numerical
derivatives, we should notice that o (z, y) does not have to be sampled at identical grid points as p(z, y).
We define the conductivities as sectionally constant within the regions of 4 neighbouring grid points
like in Fig.3]

Pi—1,5+1 Pi,j+1 Pi+1,5+1

Pit1,j Pi,j Pit1,5

Q ______ _sz -7

| | |

| si—Li—1 [gid—1 [

| I I

\ ng URIEERIEERE |

| [[
Pi—1,-1 Pij—1 Pi+1,5-1

Figure 3: uniform finite difference mesh for Reynolds thin film equation

13

MULTIGRID, CONJUGATE GRADIENT SOLVER FOR REYNOLDS THIN FILM EQUATION

With p; ; = p(x;, y;) being defined along the original grid points on a uniform mesh, we obtain

. h h
oig=0(i,j)=0|zi+5.0i+5), (6)
2 2
where h = %ﬂ is the constant grid length in our equidistant mesh of £ x £ grid points. This approach

allows us to express Eqn. (1)) in its weak form by using variational calculus. So we can remove all the
2"_order derivatives to leave only the 1%¢-order derivatives which we then will approximate numeri-
cally.

We define €2;; as the square region around a single pressure sample point p; ; as shown in Fig. [3] Since
Reynolds thin film equation shall be fulfilled in the whole domain €2, we take the surface integral over
€2;; and obtain

//V' [o(z,y) - Vp(z,y)] dQ =0, (7)
Qi

where df) = dxdy is the differential surface area. By applying the divergence theorem we can convert
the surface integral over {};; into a contour integral around the enclosing boundary C;; and obtain the
weak form of Eqn. (I)):

//V [0(z,y) - Vp(z,y)] dedy =]{J(w,y) - Vp(z,y) dn =0, (8)
where dn is the differential unit normal vector. Since we are working in two dimensions, C;; is a square
contour which can be split into four sub-integrals around each side of the square called S7, .S2, S5 and

S4Z
) 9 X B
ji__a(x,y) [axp(x,y)XJr aylf)(:r,y)y} dn—/sl+/52+/53+/s4-)

ij
In the following we want to simplify the four sub-integrals. Let us start with the integral along the right
edge of the enclosing contour S; with dn = Xdy:

h/2 dn h/2
G, .0 Nl 0
/— /U(x,y) L%p(:r,y)XJr pr(x,y)] Xdy = /a(w,y)axp(w,y)dy- (10)
S1 —h/2 —h/2

Since S; is the entire border between the regions €);; and €2;11 ; which are defined by p; ; and its
right neighbour p; 1 ;, we approximate the partial derivative by a difference quotient between the two
samples. We also assume the conductivity o (z, y) to be constant along the entire border with the value
given by the arithmetic average of both conductivities limiting the right boundary. Calculating the
integral gives us

Oiq 4o D 1

/ ~ | i ij—1| |Pitlj —Pij| _ (03 + 0 1] [Pi1.j — Pij] - (11)
2 h 2

S1

14

3 Solution of Linear System

The analogous calculations on the other three borders result in

1
/ ~ 5 loie1g + oigl [Piger = Pigly (12)
Sa
1
~ 5 [oi-1,5-1+ 0ic14] [Pi-1,j — Pijl (13)
S3
1
~ 5 loij-1 +oi-1j] [Pig-1 = pigl- (14)
Sa
With the following notation
ap = 0 +0i—1; +0;j-1+0i-1j-1, (15)
1
a1 =g o3+ 0ij-1], (16)
1
a2 =3 loi—1,j + 04 4], (17)
1
a3 = 5 [oi—1,j—1 4+ 0i—1] , (18)
1
as = 3 [oij-1+0i-1,5-1], (19)

we can express the contour integral in Eqn. (9) as

7{ A —agpi,j + a1Pi+1,j + a2pij+1 + aspi—1,j + asap;j—1 = 0. (20)
Cii

Equation (20) represents a five-point stencil for Reynolds thin film Eqn. (I). From here it is straight-
forward to generate a linear system which has to be solved.

3 Solution of Linear System

With the theoretical background from Section [2.2]it is possible to generate a system of linear equations
which we want to solve. But before we look onto different iterative solvers for this linear system, we
need to store our system using sparse matrices.

3.1 Sparse Matrices

The system matrix we obtain with the five-point stencil approach for Reynolds thin film equation is
very large for large grid sizes. With a grid of size £ x L (including both fixed left and right boundary)
the system matrix A has dimensions (£2 — 2L£)-by-(£% — 2£). But in each row of A we have only
at most 5 non-zero entries, namely ag, a1, ..., a4 which can be also zero in areas with no conductivity.
Notice that the 2L rows associated with the grid points neighbouring the left and right boundary have
at most 4 non-zero entries since the left respectively right neighbour is fixed and therefore implemented

15

MULTIGRID, CONJUGATE GRADIENT SOLVER FOR REYNOLDS THIN FILM EQUATION

in the right-hand-side vector b of the linear system. To avoid finite size effects we want to simulate the
current in a grid of size 4096 x 4096. Thus in this case at most approximately 8.4 x 107 (5£2 — 12£)
out of 2.8 x 10™ elements are non-zero. To save memory and especially to accelerate matrix-vector
multiplications in our calculations we implement sparse matrices in C++ with the help of the library
SparseLib++. In the following we describe the compressed column storage format which stores all
non-zero values in each column and their associated row indices in the arrays val () respectively
row (). Furthermore, pointers to the first element in each column have to be stored in the array col ()
to ensure a unique assignment [[7]]. We want to illustrate the procedure with the following matrix which
represents an extract of our system matrix (without dependency on upper and lower neighbours ao and
a4 which are stored in a far away off-diagonal):

1

1

ag —ay; 0 0
—a3 a} -a? 0
0 —ag ag —a:f
0
: 0 —aévfg aévf‘g —a{vf?’
0 0 —aé\LQ aé\LQ

Keeping in mind that C++ is based on 0-based indexing, this matrix can be stored with the help of the
following arrays:

val = [a(l), —ag, —a%,a%, —ag, . —af_?’,aé:_Q],
row=1[0,1,0,1,2,1,2,..],
col =[2,5,8,...].

Notice that for symmetric matrices (which, in general, our system matrix is not) it would be sufficient to
store only either the upper or the lower triangular portion of the matrix.

3.2 Method of Conjugate Gradient

We now want to solve a linear system of the form

Ax=b. 21
Let us assume that A € R™*" is a symmetric, positive-definite matrix and b € R™. We can reformulate
Eqn. (21)) as a minimisation problem. So the solution of Eqn. (ZI)) can be identified with the solution
of

(22)

min f(z) =

1
min 3 (Az,z) — (b,x).

We know that = € R™ is solution of Eqn. (2T)) if and only if it solves the minimisation problem
Eqn. 22).

For the solution we deal with the CG method which is an iterative method and can — in contrast to direct
methods — handle large systems. It generates a sequence of conjugate vectors which are the gradients
of the quadratic functional Eqn. (22). So the idea of conjugate gradients is:

16

3 Solution of Linear System

1. Minimise f(z) in the k'" iteration step in span{d®, d', d?, ..., d*~1} where d’ denotes the min-
imising direction in the i*" step.

2. Vectors d* shall be linear independent. It follows that span{d°, d', d?, ...,d"~'} = R™.

Consequently the CG method converges for polynomials of order 2 in exact arithmetic after at most n
iterations where n is the number of degrees of freedom. This result is rather theoretical and not directly
useful for us since we are only calculating with machine accuracy. On the other hand, the convergence
rate plays an important role because we are interested in an approximation in reasonable time rather
than an exact solution. Therefore, we hope that the algorithm converges in significantly fewer steps
than the number of degrees of freedom of our system (£2 — 2.£)2.

The CG method is extremely effective since in every iteration only one matrix-vector product is needed
which costs not more than O(n) for sparse matrices. The problem is that it only works with symmetric,
positive-definite system matrices, otherwise it will diverge in general. Consequently, we will have a
look to more general iterative solvers in the next section since we have seen that our system matrix is
normally not symmetric.

3.3 Alternative iterative solvers

We have seen in the previous sections that the system matrix that we obtained by discretising Eqn. (1))
is generally non-symmetric and so the CG method is not applicable. Thus we will deal with three
non-stationary methods which are all based on the CG method and can handle with non-symmetric
coefficient matrices:

e BiConjugate Gradient (BiCG)

The BiConjugate Gradient method generates sequences of minimising vectors like the CG method
for both the original system matrix A and its transpose A”. Not each of those sequences is or-
thogonalized, but they are made ’bi-orthogonal’, i.e. mutually orthogonal. In each iteration the
BiCG requires a matrix-vector multiplication with the system matrix and its transpose. The two
matrix-vector products are independent such that they can be done in parallel. Nevertheless, the
convergence of the BiCG method may be irregular and it is possible that the algorithm breaks
down [8]].

e Conjugate Gradient Squared (CGS)

The Conjugate Gradient Squared method is a variant of the BiConjugate Gradient method which
does not need the matrix-vector multiplications with A” because it applies the updating oper-
ations for both the A- and A”-sequences to the same vectors. Although the transpose of the
coefficient matrix is not required, the computational costs per iteration are similar to the previ-
ous method. However, the two matrix-vector products are not independent such that the number
of synchronisation points in a parallel environment has to be larger. Although the CGS method
converges typically about twice as fast as the BiCG method, the convergence behaviour is in
practice much more irregular. The method tends to diverge if the starting guess is close to the
solution [8]].

e BiConjugate Gradient Stabilized (Bi-CGSTAB)

17

MULTIGRID, CONJUGATE GRADIENT SOLVER FOR REYNOLDS THIN FILM EQUATION

The BiConjugate Gradient Stabilized method is also based on BiCG but uses different updates
for the A”-sequence. The computational costs per iteration are similar to BiCG and CGS but
the transpose matrix is not required. The Bi-CGSTAB method avoids the irregular convergence
patterns which can be observed in the CGS method while maintaining the same speed of conver-
gence. With the smoother convergence less accuracy of the updated residual is lost [[8].

In the following we want to use Bi-CGSTAB for our simulations because it combines both advantages
of BiCG and CGS: a high convergence rate and smooth convergence.

3.4 Preconditioners

We know that the convergence rate of iterative methods depends to a large extent on the condition
number of the system matrix. Now, we want to transform Eqn. (ZI) into a linear system with the
same solution but better spectral properties, i.e. the condition number of the latter is closer to 1 than
condy(A) is. Hence, our goal is to find a preconditioning matrix M that approximates the system
matrix A such that the transformed system

M~ YAz =M1 (23)

has the same solution as the original system and the spectral properties of A/ ~! A are more favourable
(conda(M~1A) < conda(A)).

Note that there is also a class of preconditioning matrices M that approximate A~! so that only multi-
plication of A by M is needed. Since it is hard to find those preconditioning matrices, we will concen-
trate on the first idea of approximating A. In order to work with the most efficient preconditioner we
want to compare the following three:

1. Jacobi Preconditioning
The Jacobi preconditioner is the simplest of those three because it only consists of the diagonal

of the system matrix A:
g, ift = j,
mij = .
0 otherwise.

For using Jacobi preconditioner we do not need extra storage since we can access the elements
in the system matrix instead of storing another vector [8]].

2. Incomplete LU (ILU) Preconditioningﬂ
Incomplete LU factorisation gives us the ILU preconditioner in the factored form M = LU ~ A
with L lower and U upper non-singular triangular matrix. Since the matrix (LU) ™! A is closer
to the unit matrix, the iterative method converges faster. Furthermore the calculation of y = Ax
with sparse A needs few computing time and the solution of ¢ = (LU)~!y can be calculated
efficiently by solving the equivalent linear system (LU)¢ = y by forward-backward-substitution
and making use of the sparse storage of L and U [&8]].

3. Incomplete Cholesky (IC) Preconditioning
For the case that we have a symmetric, positive-definite system matrix, we can use the IC pre-

"Factorisation is called incomplete if during the factorisation process non-zero elements in positions, where the original
matrix had a zero, are ignored.

18

3 Solution of Linear System

conditioner that is given in the form M = LL* where L is a lower triangular matrix and L* its
conjugate transpose. The IC preconditioner, which was derived from ILU factorisation, is nearly
twice as efficient as the ILU preconditioner if it is applicable [8].

To avoid breakdowns of the Jacobi and incomplete preconditioners because of zero elements, we use a
safety query in the algorithm which ensures that all conductivities smaller than 10~4° are set to 1040,
We have to consider that preconditioners cause extra costs because of the initial setup and its application
in each iteration. Consequently, we need a certain trade-off between the cost of constructing respec-
tively applying the preconditioner and the gain in convergence speed.

100000 100000
No Preconditioner —+— No Preconditioner ——

Jacobi Preconditioner —se— Jacobi Preconditioner —s—
ILU Preconditioner —s— ILU Preconditioner —+—
IC Preconditioner —a— 10000 IC Preconditioner —es—

10000 1000

100

iterations
time (sec)

1000

100 0.1
100 1000 100 1000

grid size grid size

(a) iterations (b) runtime

Figure 4: comparison of no preconditioning, Jacobi preconditioning, ILU preconditioning and IC precondition-
ing for 15% relative contact area (elastic model); Bi-CGSTAB did not converge for grid of size 2048 x 2048
without preconditioner

We can see in Fig. [that the incomplete factorisation preconditioners are superior to Jacobi precon-
ditiong and especially to no preconditioning since they do not only need less iterations (what was
expected) but also need less time to converge. For grids of size 2048 x 2048 the Bi-CGSTAB method
without preconditioning does not converge in a reasonable time anymore. This shows how important
preconditioning is for solving large systems with iterative solvers. We can also observe that the IC pre-
conditioner has the same convergence rate like the ILU preconditioner until grids of size 1024 x 1024
even though this preconditioner only works with non-symmetric matrices as mentioned above. It is
indicated by the values for grids of size 2048 x 2048 that for higher grid sizes the IC preconditioner is
more time-consuming than ILU so that we will use the ILU preconditioner by default.

But using preconditioners can lead to a different solution of the linear system. Let us for example
consider a domain where the conductivity has a circle defect, i.e. the conductivity is zero in a circle
within the domain. Let the conductivity be constantly one in the rest of the domain for better illustra-
tions. We can see in Fig. [5|that the obtained pressure when solving this system without preconditioning
is zero within the ’defect’ circle whereas the pressure using preconditioning with any of the three above
mentioned preconditioners is smoothed in this circle area. Looking at the current J = o (x, y)Vp(z,y)
reveals that preconditioning has no consequences on the obtained current in which we are actually in-
terested in. Preconditioning does not result in a different current since in this case a circle structure can
also be observed in that sense that the pressure along the circle boundary is constant to the surrounding
area.

19

MULTIGRID, CONJUGATE GRADIENT SOLVER FOR REYNOLDS THIN FILM EQUATION

0004
08 00035
0003
08 00025
0002
04
0.0015
02 0001
00005
0 0

0 02 04 086 0.8 1 0 02 04 08 08 1 0 0.2 04 06 08 1

08 -

(a) pressure for no preconditioning (b) pressure for preconditioning (c) current for preconditioning/no
preconditioning

Figure 5: effect of preconditioning on 512 x 512 grid with circle defect of conductivity

4 Simulations

We have seen in Fig. [[| that we add up all the roughness of both surfaces to the rigid one. The resulting
contact when an external force presses the deformable against the rigid surface can be measured in two
different ways [9]. By way of illustration we can consider in the case of contact the soft material to
be the initially parabolic body like in Fig.[f] In the (conventional) overlap model all the overlapping
components are cut and the positions of these points is set to the surface position. In the elastic model
the soft material gets deformed and the displacement of a grid point has an influence on all the other
grid points [9]. This model is more realistic since it describes the elastic response of materials better
than the overlap model.

source: Andreas Liicke source: Andreas Liicke

(a) overlap model (b) elastic model

Figure 6: comparison of mechanical contact models

We can see in Fig. [7] that the non-contact area is much more fractal in the elastic model and espe-
cially that the percolation threshold decreases from 50% (overlap model) to approximately 42% (elastic
model) relative contact area [3]].

Next, we want to have a look on how the Bi-CGSTAB method works on a system setup with 15%
relative contact area on a grid of size 512 x 512 with a zero initial guess, i.e. zero pressure within the
whole inner domain. We can see in Fig. [§]that in this case the algorithm works from the left to the right
which is reasonable since it detects the jump from p = 1 on the left boundary to p = 0 for all the right
neighbours and this information spreads in each iteration.

20

4 Simulations

I+ .
— load bearing
=)
=

elastic

34

" : Amml kst e,

0.42+0.02

clastic

PR o N R A A
white: no contact (lake), yellow: largest lake
B}) source:
black: contact (island), blue: largestisland Martin Muser

Figure 7: comparison of contact area for overlap (upper) and elastic (lower pictures) model at 46% contact

We now want to study the influence of the initial guess on the runtime performance of our Bi-CGSTAB
method. For this, we compare the zero initial guess with a mean-field pressure distribution initial guess,
i.e. a starting vector which describes the pressure decreasing linearly from the left (p = 1) to the right
boundary (p = 0).

We can see in Fig. [0] that Bi-CGSTAB with a mean-field initial guess only needs 300 instead of 500
iteration steps compared to Bi-CGSTAB with zero initial guess. Furthermore, we can observe that Bi-
CGSTAB needs far fewer iterations than the local solver on a grid of size 512 x 512 with 15% relative
contact area for the elastic model.

1e-05
Local Solver (zero guess,

)

Local Selver (linear guess)
CG Solver (zero guess)
CG Solver (linear guess)

o* % +

1e-06 e 0

1e-07

currentMean

1e-08

1e-09

1 10 100 1000 10000 100000 1e+06

iteration steps

Figure 9: comparison of local and CG solver for zero and mean-field initial guess on 512 x 512 grid with 15%
relative contact area (elastic model)

Because of the drastic runtime improvement with the better (mean-field) initial guess, we implement a
multigrid method for a better performance for large grid sizes, i.e. we use a hierarchy of discretisations
to obtain an optimal initial guess. For this, we average the given data to get a coarser grid, in our case we
start with a grid of size 32 x 32. The solution is then interpolated and used as an initial guess for the next
finer grid of size 64 x 64. Applying this procedure iteratively until arriving at the original grid, which
should be square and the total number of grid points an even power-of-two, gives us an initial guess
near the solution, which should shorten the runtime significantly.

21

MULTIGRID, CONJUGATE GRADIENT SOLVER FOR REYNOLDS THIN FILM EQUATION

current after 5 iterations

current after 30 iterations current after 90 iterations
1 35 1 0s 018
3 045 016
08 . 08 E ‘3‘5 014
06 5 06 03 o
0.1
025

04 15 04 02 008
; 015 0.06
02 02 01 004
05 005 002

0 0 0 0 0

0 010203040508070808 1 0010203040506070809 1 0 0102030405060708089 1

current after 330 iterations

0007 ’
0.006
08
0.005
0.004 08
0.003 04
0002
02
) 0.001
0 0

current after 150 iterations

current after 450 iterations
0,045 1

0.04
0035
003
0025

0.0035

0.003

0.0025

0.002

0.02 04 0.0015
0015
0.001
0.01 02
0005 0.0005
0 0 0
0 010202040506070809 1 0010203040506070808 1 0 0102030405080.70808 1

Figure 8: simulation with 15% relative contact area on 512 x 512 grid with zero initial guess

We now want to compare the multigrid, conjugate gradient solver ("global") for Reynolds thin film
equation with the solver which was used in a previous work on this topic [3]. The latter solves the
problem locally since each grid point only depends on the four nearest neighbours. The pressure for
each grid point is varied in order to minimise the local and consequently the global error which is the
sum of all local errors. Because iterations over all grid points are necessary, 'information’ diffuses
very slowly through the system (O(n?) with n total amount of grid points). We can see in Fig.
that the global solver produces exactly the same results like the local solver: The normalised current
mean] decreases much faster for the elastic model and for both models the percolation threshold is
approached. After we have ensured that our global solver works properly, we now want to compare the
runtimes of local and global solver.

In Fig. [I0b] we can observe the different runtimes of Bi-CGSTAB and the local solver for both the
overlap and the elastic model on grids of size 4096 x 4096. In the overlap simulations, the local
solver is more efficient for small contact area since in Bi-CGSTAB each iteration costs much more
and the number of iterations, which the local solver needs to converge, is still acceptable. At about
40% relative contact area this turns and Bi-CGSTAB is significantly superior. Using the more realistic
elastic model (where the local solver needs much more time to converge than in the overlap model)
we recognise that Bi-CGSTAB is already from about 10% relative contact area on faster than the local
solver. While the local solver needs about 10 days for the simulation, Bi-CGSTAB is converged after
less than 10 hours. This discrepancy continues to mount with the runtimes of the local solver increasing
exponentially while the conjugate gradient method seems to have an upper limit of iteration steps until
converging.

“normalised by the fluid current for zero contact

22

5 Acknowledgements

1000

1 te GlobalSolver_GFMD + Local Solver, overlap —+—
GlobalSolver_Overlap * Local Solver, GFMD ——
01 -] LocalSolver_GFMD * CG Solver, overlap *
*7 o LocalSolver_Overlap o CG Solver, GFM o
*

B 100
= 0.01 * . | .
@
E oo . -
5 & = 5
= 3
3 00001 “a = 10 x
= % ®
& "5 E
T 1605 § . =
E
5] N I
S 1606 1

n
1e-07
1e-08
0.1
0 0.1 02 03 04 05 0 005 01 015 02 025 03 035 04 045 05
relative contact area relative contact area
(a) comparison of fluid current (b) comparison of performance

Figure 10: comparison of local and global solver on 4096 x 4096 grids

Since the goal of our work was to calculate flow through elastic contacts with a relative contact area
near the percolation threshold (which lies at about 42% for this model [3]]) on grids of size 4096 x 4096,
we are very confident that this new implementation of a conjugate gradient solver makes it possible
to do these simulations in a reasonable time. This will enable us to describe and study the critical
behaviour near the percolation threshold.

5 Acknowledgements

I want to thank Mathias Winkel and Ivo Kabadshow for the great organisation of this year’s JSC guest
student programme. Furthermore I would like to thank my advisers Prof. Dr. Martin Miiser and
especially Dr. Wolf Dapp for his help and advice in those 10 weeks. But most of all I would like
to thank all the other guest students who made this guest student programme a unique experience for
me.

References

1. BP. Deepwater Horizon: Accident Investigation Report (2010)

2. U.S. Government Printing Office. Report of the Presidential Commission on the Space Shuttle Challenger Accident
(1986)

3. W. Dapp, A. Liicke, B. Persson, M. Miiser. Self-Affine Elastic Contacts: Percolation and Leakage. Phys. Rev. Lett. 108
(2012) 244301

4. B. Schlogl. Embedding plasticity into a parallel Green’s function molecular dynamics code. FZJ-JSC-IB-2012-01
(2012)

5. J. Egolf, S. Swaminathan, K. Spence. Air Bearing Optimization. Available from: http://www.math.udel.edu/ pe-
lesko/Teaching/Math512_ Fall_ 2005/MilestoneS(final).pdf

6. J. Nagel. Solving the Generalized Poisson Equation Using the Finite-Difference Method (2011)

7. R. Pozo, K. Remington, A. Lumsdaine. SparseLib++ v1.5 User’s Guide (1996)

8. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. 2nd ed. Philadelphia, PA: SIAM
(1994)

9. A. Liicke. Viscous flow through fractal contacts. FZJ-JSC-IB-2011-06 (2011)

23

Visualizing Complex Functions Using GPUs

Khaldoon Ghanem

RWTH Aachen University
German Research School for Simulation Sciences
Wilhelm-Johnen-Straf3e
52428 Jiilich

E-mail: k.ghanem@grs-sim.de

Abstract:

This document explains some common methods of visualizing complex functions and how to imple-
ment them on the GPU. Using the fragment shader, we visualize complex functions in the complex
plane with the domain coloring method. Then using the vertex shader, we visualize complex func-
tions defined on a unit sphere like spherical harmonics. Finally, we redesign the marching tetrahedra
algorithm to work on the GPGPU frameworks and use it for visualizing complex scalar fields in 3D
space.

1 Introduction

GPUs are becoming more and more attractive for solving computationally demanding problems. This
is because they are cheaper than CPUs in two senses. First, they provide more performance for less
cost i.e. cheaper GFLOPs. Second, they are more energy efficient i.e. cheaper running times. This
reduced cost comes at the expense of less general purpose architecture and hence a different program-
ming model.

There are two main ways of programming GPUs. The first one is used in the graphics community using
shading languages like HLSL, GLSL and Cg. In these languages, the programmer deals with vertices
and fragments and processes them with the so called vertex and fragment shaders, respectively. Actu-
ally, this has been the only way of programming GPUs for a while. Fortunately, in the recent years,
frameworks for general programming have been developed like CUDA and OpenCL. They are much
more suited for expressing the problem more abstractly in terms of threads. These threads are then
processed with the so called kernels.

Visualizing complex functions makes an ideal problem to be solved on the GPU because the function
needs to be evaluated at different points of the domain and these points are processed independently. We
deal in this document with three types of complex functions; each one requires a different visualization

25

VISUALIZING COMPLEX FUNCTIONS USING GPUSs

method and each method is most appropriately implemented on the GPU in a different way. The
complex functions, we are addressing, are functions in complex plane, functions on unit sphere and
functions in 3D space.

2 Complex Functions in Complex Plane

To visualize complex functions of a single complex variable, we would need a four-dimensional space!
However, by encoding the values in the complex plane in colors, we are able to visualize these functions
in two dimensions. This method is called Domain Coloring [1]].

2.1 Domain Coloring

For visualizing the function f : C — C : w = f(z2):
e Cover the range complex plane with some color map or scheme. i.e give each point w a color.

e For each point of the domain complex plane z, compute w = f(z) and then color z with the
color of w.

The result of the above procedure is a colored image of the domain (see Figure/[I)).

Domain, z Range, w
e T
I B AL SRR ~<o
------------ ~<. o
_- -
- ~
—”— \‘\
—”— \\\\
_--" [N ~
~< >
-1 1 °~< S 1
~
S~ ’
~ 4
oL R e i
............. ~So /o -
............ S L
"""""" \'"‘&'----.... /,
\\\\ ’
S~o -7

S m_———-

Figure 1: As an illustrating simple example, let us assume we want to visualize the square function 22 at only
four points 1, —1,7, —i. We give each of these points in Range plane a unique color. Then we compute
the function values at these points and color them according to the result: f(1) = f(—1) = 1 (green), and
f(i) = f(—i) = —1 (yellow). The image to the right is called color map and the one to the left is plot of 2>

2.2 Choosing Color Map

The goal here is to give each complex number a color. In principle, you can use any picture to cover
the complex plane. However, the resulting function plots are usually not easy to interpret. Also, the
picture cannot cover the whole infinite plane, and thus we need a more systematic way.

For a complex number w, choose color hue according to the argument arg(w) from a smooth color
sequence (color gradient). Then, choose color brightness according to the fractional part of the log, |w|
(see Figure[2). For a thorough explanation on how to read the plots of such color maps, see [2].

26

2 Complex Functions in Complex Plane

Figure 2: Two color maps differ by argument encoding. The first map interpolate between three colors; black,
red and yellow. The second map spans the whole spectrum.

2.3 Using the GPU

The coloring of the domain complex plane is embarrassingly parallel as each point of the plane is
processed independently. To utilize the GPU in this problem, we map complex points to screen pixels
and color them with a fragment shader written in some shading language. The procedure outline is as
following:

o Make a rectangle covering the whole screen using the graphics API, OpenGL or DirectX.

e The rectangle’s fragments will be created by the fixed functionality of the graphics pipeline.
These fragments are the final pixels of the screen, because there is only one primitive and it is
not clipped.

o Fragment shader will be executed for each fragment. Inside fragment shader:

— Transform the fragment screen coordinates to a complex point z using a transformation
matrix passed from main program.

— Compute the function at that point f(z) = w.

— Determine the fragment color according to the color map at the resulting point w.

2.4 Implementation

We developed an application that visualize complex functions of a single variable. The main pro-
gram is written using OpenGL graphics API and GLUT library while the fragment shader is written
in GLSL shading language. The application takes as input a list of complex functions expressed
with common mathematical symbols. Function expressions are parsed and translated into appro-
priate shader calls and operations using a lexical analyzer and a parser generated by lex and yacc
tools.

27

VISUALIZING COMPLEX FUNCTIONS USING GPUSs

Figure 3: Plots of some complex functions generated using our domain coloring program:
(z —2)%2(z+ 1 —2i)(z + 2 + 2i) /23 (left), sin(2) (center), log(z) (right).

3 Complex Functions on Unit Sphere

The second class of complex functions we address is functions defined on a unit sphere f : [0, 7] X
[0,277) — C : f(0,¢) = w. Although we could apply the domain coloring method to the surface
of unit sphere, we are already visualizing in three dimensions and it is convenient to use the extra
dimension we have at our disposal.

e Start with a unit sphere in 3D space.
e Each point on the surface has the spherical coordinates (r, 8,).
e Deform the sphere such that for each point r = | f(6, ¢)].

e Color the surface according to arg(f(¢,)) using some smooth color sequence as we did in
domain coloring method 2.1}

3.1 Calculating the normals

Since we are now working in 3D, normals at surface points should be provided for appropriate light-
ening. To calculate them, we express the deformed unit sphere as an isosurface of a scalar field:

F(r,0,0) =1/ f(0,0)f(0,p) — r with an isovalue equals zero. Then the gradient of the field V F is
normal to the isosurface.
The gradient in spherical coordinates is calculated using

OF 10F, 1 OF

VE= Tt 000 T o 0p?
where
-) -
oF _ | OF _ Shf+ 97 _ Re[3 /] oF _ Re[glf]
or 06 2J/fT H de |/l

So we do not only need to calculate the function value but also the partial derivatives of its complex
conjugate.

28

4 Complex Functions in 3D

3.2 Using the GPU

We generate a unit sphere (vertices and triangles). Then, using a vertex shader, each vertex of the
sphere is modified independently. Inside the vertex shader:

Retrieve vertex’s angles (6, ¢)

Compute function value f(6, ¢)

Modify vertex coordinates such that r = | f(6, ¢)|

Modify vertex color according to arg(f (6, ¢)) using some smooth color sequence.

Compute partial derivatives of the function and use them to compute the gradient vector.

Modify vertex normal such that it points in the direction of the gradient.

3.3 Implementation

Spherical harmonics are the most well known complex functions on a unit sphere. They form a com-
plete set of orthonormal functions thus any square-integrable complex function on a unit sphere can
be expanded as linear combination of them. Due to their importance, we developed an application for
visualizing linear combinations of spherical harmonics. The main program is written using OpenGL
graphics API and GLUT library, while the vertex shader is written in GLSL shading language. For a
stable method of evaluating spherical harmonics see [3]].

Figure 4: Plots of spherical harmonics Ysl (left), its real part (center), and the linear combination %Ylo + iY53 +
(2 +4id)Y; 3 (right)

4 Complex Functions in 3D

We often need to visualize discrete complex functions defined in 3D space f : R?> — C like wave func-
tions resulting form quantum mechanics calculations. First, we use the trick of encoding the argument
of the complex function in color as in the domain coloring method 2.1 What is left then, is visualising
the absolute value which can be considered as a scalar field in 3D space. This suggests the following
procedure:

29

VISUALIZING COMPLEX FUNCTIONS USING GPUSs

Specify one absolute value to visualize.

Calculate an isosurface of the absolute value using marching tetrahedra.

Color the isosurface according to the argument using some smooth color sequence.

If necessary, change the isovalue and repeat process to gain more info.

4.1 Marching Tetrahedra

Marching Tetrahedra is an isosurface extraction algorithm. Given a 3D scalar field, it finds the surface
on which the field has a constant value, the isovalue. The key idea of marching tetrahedra is noting that
isosurface of a volume is the union of the isosurfaces of its components.

The field values are given at the points of a mesh. Any mesh is naturally divided into mesh cells. In this
document, we consider structured meshes with parallelepiped cells (usually cubes). We could take the
mesh cell as our building block and find the isosurface of each mesh cell independently and then collect
them to form the final isosurface. This would be called Marching Cubes Algorithm[4, 5]. Marching
cubes suffer from some ambiguities in finding the isosurface of a mesh cell. These ambiguities are not
present in marching tetrahedra.

In Marching Tetrahedra Algorithm[6! 7], we go one step further beyond marching cubes and divide
each mesh cell into six tetrahedra. Then our building block is the tetrahedron. There are several
ways of splitting a hexhedron (usually a cube) into six tetrahedra. The way we do it is illustrated in

(figure 3)).

Figure 5: Splitting a cube (or a parallelepiped in general) into six tetrahedra. They are listed from right to left,
top to bottom: (0,6,4,7), (0,4,5,7), (0,5,1,7), (0,5,1,7), (0,1,3,7), (0,3,2,7), (0,2,6,7).

To find the isosurface of one tetrahedron, we check whether each of its four corners is above or be-
low the isovalue (let’s denote them as a plus or minus, respectively). The isosurface clearly passes only
through edges connecting corners of opposite signs. Since we only know field values at corners, we lin-
early interpolate them along the edges to get the intersection points (see Figure|[6).

30

4 Complex Functions in 3D

+ @ pO0, f(p0)=f0

p, an intersection point

Sp1, f(p1) = 1

Figure 6: The intersection of isosurface with an edge can be computed by considering a linear interpolation
along the edge. If two corners p0 and pl are of opposite signs then the intersection point on their edge p is

computed as p = ap; + (1 — a)po where o =]El:f})[) and c is the isovalue.

Besides getting the intersection points (isosurface vertices), we want to connect them. i.e form trian-
gles. First, note that the triangulation depends only on the signs of corners, not their exact field values.
Since we have four corners with two possible signs each, we have in total 2* = 16 different possible
patterns of a tetrahedron.

We enumerate the corners and represent the pattern of a tetrahedron by a 4-bits number, where each
bit indicates whether the corresponding corner is above or below the isovalue. Then we enumerate the
edges and use a lookup table with 16 entries. Given the tetrahedron’s pattern, the table should return
isosurface triangles in terms of the edges they connect (see Figure([7).

0000 0001 0010 0011
Vertex 0

(2,1,0) (3,4,0) (3.2,1), (3,4 2)
0101
(3,2,5), (3,0,2) (4,1,5), (0,1,4) (4,2,5)

Figure 7: To the left is our choice for enumerating corners and edges. To right is the triangulation for eight
different tetrahedron’s pattern. The other eight are obtained by flipping patterns’ bits and listing edges in
reverse order.

31

VISUALIZING COMPLEX FUNCTIONS USING GPUSs

4.2 Avoiding Duplicate Isosurface Vertices

We note in the original marching tetrahedra, that isosurface vertices (intersection points) lying on edges
shared between adjacent tetrahedra are duplicated. This is a disadvantage for two reasons. First, it leads
to unnecessary storage of repeated vertices e.g. a vertex on the diagonal of a mesh cell would be re-
peated six times. Second, if the generated surface is to be processed later or used for some calculations,
then this could produce artifacts due to round-off errors. To avoid this duplication, we split the algo-
rithm into two stages: Generating Vertices and Generating Triangles.

In the Generating Vertices stage, we loop over all edges. For each edge, check whether it is cut by
the isosurface (by checking whether the two end mesh points are of opposite signs). If so, calculate
the intersection point (isosurface vertex). Then store the vertex in a hash table indexed by some edge id.

In the Generating Triangles stage, we loop over all mesh cells. For each mesh cell, process all six
tetrahedra. For each tetrahedron, calculate its pattern. Using the tetrahedron’s pattern, get its triangu-
lation. Generate triangles using pointers to vertices (not vertices directly). Get vertices’ pointers by
looking up edge-vertex hash table generated in the previous stage.

For this to work, we need to identify the edges globally and we do it by associating each mesh point
with seven edges (see Figure[§). This association is unique and covers all possible edges. Then the id of
an edge connecting mesh points (i1, j1, k1) and (i2, j2, k2), where 0 < dg9—i; < land0 < jo—j; <1
and 0 < ko — k1 < 1, is a tuple with two entries. The first is the minimum of the two mesh point ids
(41,71, k1). The second is a number between 1 and 7 identifying the edge within the mesh point and
calculated as (io — i1) x4 + (jo — j1) * 2+ (k2 — k1).

Figure 8: Each mesh point (i,j,k) can be associated uniquely with seven edges. 1: (i,j,k)-(i, j, k+1) ; 2: (i,j,k)-G,
j+1, k); 5 30 (4,5,k)-(, j+1, k+1) 5 40 (1,,k)-G+1, j, k) 5 5: (1,),k)-(+1, j, k+1) ; 6: (i,j,k)-G+1, j+1, k) ; 7:
(1,j,k)-(i+1, j+1, k+1).

Note that using this association, the loop over edges in first stage is actually a double loop where the
outer is over mesh points and the inner is over edges associated with each mesh point. Also note that
the triangulation of a tetrahedron is, as before, expressed in terms of our enumeration of edges inside

32

4 Complex Functions in 3D

the tetrahedra (see Figure[7). So a mapping from the local edge enumeration to global edge ids should
be done before retrieving vertices’ pointers from the hash table.

4.3 Using the GPU

Unlike the previous two visualization methods, domain coloring and sphere deformation, we won’t use
a shading language but rather a GPGPU language like OpenCL or CUDA. Although it is possible to
implement the marching tetrahedra on vertex or fragment shaders (see [8, |9, [10]]), it is more convenient
to express the problem more abstractly using GPGPU. There are implementations of marching cubes
on OpenCL and CUDA (see [11} [12]), but to our knowledge, there is no public implementation of
marching tetrahedra using GPGPU yet.

We go along the same line of thought as in the last algorithm and separate generating vertices from
triangles. First a collection of threads, one for each mesh point, is created. Each of these threads runs a
kernel that would generate vertices lying on edges associated with the corresponding mesh point. Then
another collection of threads is created, one for each mesh cell. Each of these threads would generate
the triangles of tetrahedra associated with the corresponding mesh cell.

There are two main complications on the GPU. First, there is no dynamic memory allocation. So all
memory allocation and deallocation should be done before or after the computation but not during it.
One solution is to allocate memory for every potential vertex. However, this is impractical, as it would
need (7 vertices per mesh point x 3 coordinates per vertex) = 21 times the storage needed for the scalar
field. A similar argument goes for the triangles.

Second, the threads should work independently and write data to distinct memory locations. So each
thread should know where to write its results before starting the computation.

Circumventing these problems is done by splitting each stage into yet another three stages. First, we
count the number of vertices that would be generated per mesh point. Second, a prefix-scan is done
to get the number of generated vertices and a list of addresses for storing the vertices associated with
each mesh point. Finally, the necessary memory is allocated and vertices are generated and stored in
their appropriate locations. Triangle generation is also split into three stages similarly. This method is
highly inspired by [[11} [12].

Generating Vertices

1. Allocate necessary memory on GPU for array mpVert sNum.
mpVertsNum: An array of bytes. Its size equals the total number of mesh points. Element
mpVertsNum[mp] contains the number of vertices associated with mesh point mp.

2. Run kernel processMP for each mesh point to fill mpVert sNum.
Elements of mpVertsNum are calculated by counting the number of intersected edges
associated with each mesh point. An edge is intersected if its two ends are of different
signs (one above the isovalue and the other below).(see Figure [6)

3. Run kernel preScan on mpVert sNum and store the result in mpVert sBaseAddress.

33

VISUALIZING COMPLEX FUNCTIONS USING GPUSs

Generating Triangles

34

mpVertsBaseAddress: An array of integers. Its size equals the total number of mesh
points. Element mpVert sBaseAddress [mp] indicates where vertices, associated with
mesh point mp, should be stored in the vertex array. It is computed as a prefix-scan of
array mpVertsNum. So element mpVertsBaseAddress[mp] contains the sum of
mpVertsNum elements up to and excluding mp. There is an efficient implementation of
prefix-scan algorithm on GPU (see [13]).

4. Allocate memory on GPU for array verts of size vert sNum.

vertsNum: An integer containing the number of generated vertices.

It is computed as the sum of the last entries of mpVert sNum and its prefix-scanned ver-
sion mpVert sBaseAddress.

verts: An array of floats. Its size equals three times vertsNum. It stores the coor-
dinates of the generated vertices. The three coordinates of each vertex are stored con-
secutively. The vertices associated with each mesh point are stored consecutively from
3+mpVertsBaseAddress [mp] till 3xmpVertsBaseAddress [mp+1]. Vertices
of a mesh point are ordered according to the local ordering of the edges they lay on (see

Figure [g)).

5. Run kernel generateVerts for each mesh point to fill verts.
Vertex coordinates are computed as linear interpolation (see Figure [6).

1. Allocate necessary memory on GPU for array mcTriangsNum.
2. Run kernel processMC for each mesh point to fill array mcTriangsNum.

3. Run the kernel preScan on array mcTriangsNum and store the result in array
mcTriangsBaseAddress.

4. Allocate memory on GPU for array triangs.
5. Run kernel generateTriangs for each mesh cell to fill array triangs.

The semantics are very similar to Generating Vertices; Just replace mesh points with mesh
cells, edges with tetrahedra and vertices with triangles.

One complication in the final step is getting the addresses of vertices which will be used in form-
ing triangles. Triangles are expressed in terms of the edges on which their vertices lie. So the
problem reduces to knowing where the vertex of a certain edge is stored.

If mp is lowest numbered mesh point of an edge then the vertex of that edge will be located
at 3xmpVertsBaseAddress [mp] in array verts with some additional shift that depends
on other vertices associated with mp. To get this shift easily, we build an additional array
mpVertsEdgeIndex where the bit number i of element mpVertsEdgeIndex [mp] in-
dicates whether edge number 1 associated with mesh point mp is intersected by the isosurface.
This way, all the information needed for determining shifts of vertices associated with mesh
point mp are contained in mpVert sEdgeIndex [mp]. The computation of this array is most
conveniently done inside kernel processMP.

4 Complex Functions in 3D

4.4 More Details and Optimization

In the previous description, we omitted several aspects of the method to make the presentation more

clear.

They are explained here:

Many subtask like splitting the mesh cell into tetrahedra, getting triangles from tetrahedra pat-
tern, getting shifts from mpEdge Index, etc. can be done using look-up tables. These look-up
tables should be stored in the constant memory of GPU which is basically a small fast read-only
memory.

Considerable speed-up can be obtained by considering only mesh points that actually have a
non-zero number of associated vertices and only mesh cells that actually generate triangles. This
requires building yet another array for knowing which mesh points are ’active’. Note also that
by associating each mesh cell with its lowest numbered mesh point, a mesh cell can be skipped
if that mesh point is not active.

Kernels processMP and processMC can be combined for speed-up. This is because every
mesh cell can be associated with its lowest numbered mesh point and then both kernels need to
read the same memory locations. Thus, combining them saves repeated memory accesses.

For getting the normals, the central difference formula can be used to get normals at mesh points.
This could be done outside the marching tetrahedra algorithm. The normals at isosurface vertices
are then computed in the same way as the coordinates i.e. as a linear interpolation and this
computation can be incorporated inside kernel generateVers.

4.5 Implementation

Due to time constrains, we developed, as a proof of concept, an application running on CPU but follow-
ing the GPU-tailored algorithm. An OpenCL application is still under development. The application
takes as input GAUSSIAN CUBE format files for reading in the mesh and the scalar data. For full
account of complex functions, this file should be accompanied with another file specifying the argu-

ment.

After loading the data, the user can interactively change the isovalue to see different isosurfaces.

Iy
L

Figure 9: Isosurface plots of hydrogen wave functions 4d,, (left) and 4ds,2_,> (right)

35

VISUALIZING COMPLEX FUNCTIONS USING GPUSs

5 Summary

We described how to visualize three different classes of complex functions using the GPU. First, we
explained how to visualize complex functions of a single complex variable using the domain coloring
method on the fragment shader. Then, we explained how to visualize complex function defined on
unit sphere by deforming that sphere and coloring it. This is done on the vertex shader. Finally, we
explained how to visualize complex functions in 3D space by extracting the isosurfaces of the absolute
value using marching tetrahedra method and then coloring that surface. This was designed to work on
a GPGPU framework.

6 Acknowledgements

I would like to thank my supervisor Prof. Erik Koch for bringing this interesting program to my atten-
tion to and for providing the necessary knowledge and advice to finish the project successfully. I would
like also to thank German Research School for Simulation Sciences for sponsoring my project. Last but
not least, I would like to thank Jiilich Supercomputing Center staff and in particular Mr. Mathias Winkel
for organising the program and making it a unique experience.

References

1. Wikipedia contributors. Domain Coloring [Internet]. Wikipedia, The Free Encyclopedia [updated 2012 September 20;
cited 2012 Oct 07]. Available from: http://en.wikipedia.org/wiki/Domain_coloring

2. Lundmark M. Visualizing complex analytic functions using domain coloring [internet]. 2004 May [cited 2012 Oct 07].
Available from: www.mai.liu.se/ halun/complex/domain_coloring-unicode.html

3. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes, The Art of Scientific Computing. 3rd ed.
New York: Cambridge University Press;2007. Chapter 6, Special Functions; p.292-295.

4. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput.
Graph. 1987 Aug;21(4):163-169.

5. Bourke P. Polygonising a scalar field [Internet]. 1994 May [cited 2012 Oct 04]. Available from:
http://paulbourke.net/geometry/polygonise/

6. Doi A, Koide A. An Efficient Method of Triangulating Equivalued Surfaces by using Tetrahedral Cells. IEICE Trans
Inf Syst. 1991 Jan;E74(1):214-224.

7. Bourke P. Polygonising a Scalar Field Using Tetrahedrons [Internet]. 1997 Jun [cited 2012 Oct 04]. Available from:
http://paulbourke.net/geometry/polygonise/

8. Reck F, Dachsbacher C, Grosso R, Greiner G, Stamminger M. Realtime isosurface extraction with graphics hardware.
Eurographics 2004 Short Presentations; 2004.

9. Pascucci V. Isosurface computation made simple: Hardware acceleration, adaptive refinement and tetrahedral stripping.
Proceedings of IEEE TCVG Symposium on Visualization; 2004. p. 293-300.

10. Klein T, Stegmaier S, Ertl T. Hardware-accelerated Reconstruction of Polygonal Isosurface Representations on Un-
structured Grids. Proceedings of Pacific Graphics *04; 2004. p.186-195.

11. NVIDIA CUDA SDK - Physically-Based Simulation - Marching Cubes Isosurfaces [Internet]. 2008 [updated
2009 June 15; cited 2012 Oct 05]. Available from: http://www.nvidia.com/content/cudazone/cuda_sdk/Physically-
Based_Simulation.html#marchingCubes

12. NVIDIA OpenCL SDK Code Samples -OpenCL Marching Cubes Isosurfaces [Internet]. [cited 2012 Oct 05]. Available
from: http://developer.download.nvidia.com/compute/cuda/4_2/rel/sdk/website/OpenCL/html/samples.html

13. Harris M, Sengupta S, Owens JD. GPU Gems 3. Addison-Wesley Professional; 2007. Chapter 39. Parallel Prefix Sum
(Scan) with CUDA.

36

Porting and optimization of EPOCH (a Particle-In-Cell code) to
Blue Gene/Q

David Martin Rodriguez

Universidad de Salamanca
Facultad de Ciencias
Plaza de la Merced
37008 Salamanca (Spain)

E-mail: davidmr@usal.es

Abstract:

Laser-plasma interaction can be simulated with Particle-In-Cell (PIC) codes. We had a MPI paral-
lelized PIC code, called EPOCH, running on a BlueGene/P architecture in the Jiilich Supercomput-
ing Centre (JSC). Since the JSC was upgrading the hardware to a BlueGene/Q, the code needed to
be ported to the new architecture. Here we analyze the parallelization of the code and discuss the
possible need for hybrid parallelization to adapt the code to the multicore nature of BlueGene/Q.
Therefore we implement several hybrid parallelization strategies and analyze the impact on the code
performance.

1 Introduction

Due to the advances in laser technology we can nowadays experiment on high intensity light-matter
interaction. Either for economic, security or technological reasons it is not always possible to exper-
iment directly with these high intensity sources. Therefore we need a method to study and predict
laser-matter interactions. Nowadays the most reliable tools we can use for this purpose are the Particle-
In-Cell (PIC) codes. The PIC code used in this project, EPOCH, is an open source Fortran PIC code
for high intensity laser-plasma interactions. It is currently fully MPI parallelized using domain de-
composition. This decomposition can even vary dynamically due to a load balancing option already
implemented in the code. The installation of a new BlueGene/Q cluster in the JSC triggered the need
to port many codes to this new architecture. In the porting process of our code we discovered some
architecture specifics that can be exploited to obtain a better performance since the BlueGene/Q system
provides multicore compute nodes.

In order to improve performance we ought to implement a hybrid parallelization mechanism. Mean-
ing not only use MPI, but rather combine it with several threads per MPI rank. An analysis of the
code performance has been conducted in order to reveal where we should focus our efforts to im-
prove the code. Finally we have designed, implemented and compared several hybrid parallelization

37

PORTING AND OPTIMIZATION OF EPOCH TO BLUE GENE/Q

strategies. Comparisons show that hybrid parallelization offers a better performance under specific
conditions.

2 Particle-In-Cell codes

Since the introduction of the Chirped-Pulse-Amplification (CPA) technique, laser intensities are strong
enough to produce a massive ionization on matter, which turns into a plasma. For simulation purposes
it can be approximated as a collection of free charged particles.

To study the the laser-plasma interaction we can make use of some simulation tools called PIC codes.
In a PIC code the plasma is represented as a collection of macroparticles. Each of this macroparticles
is a representation of several real particles of a particular sort (protons, electrons, ...). Numerically it
can be treated as a distribution of charges. The laser is not considered as a collection of photons, but
as an electromagnetic field. The domain is discretized in cells in which the electromagnetic field is
stored.

2.1 Basic principles of a PIC code
A PIC code, using a a Finite Difference Time Domain (FDTD) scheme, solves the evolution of an

electromagnetic field described by the Maxwell equations and the particle motion using the Lorentz
force.

2.1.1 Electromagnetic field propagation

The Maxwell equations solved numerically by the PIC codes describe the behavior of the electromag-
netic field:

- - 10E 41 -
Vxp= 08 An;)
c Ot c
V-E=dnp (3)
V- B = “4)

where J is the current, E is the electric field, B is the magnetic field, and p the charge density. The
last two equations are actually set as initial conditions.

2.1.2 Particle Motion

A point charge experiences a force (called Lorentz force) due to electromagnetic fields

38

2 Particle-In-Cell codes

F=qlE+(vxB),)

where F' is the force (N), ¢ is the electrical charge of the particle (cu) and v is the current velocity of
the particle (m/s).

2.2 PIC algorithm

Essentially, a PIC code consists of a three step loop (Figure[I)). Each iteration of the loop resolves one
time step.

Move particles

E; Bcell—) E, Bparticle

E, Bpar':icle—> F—p—X

~

Evolve fields Particle to cell
Laser—>Ethe||

-~ x—|
E: BceIIrJ " E' BIceII

Figure 1: PIC loop

e Move particles.

We have the electromagnetic field of each cell and we need to calculate the movement of the
particles due to this electromagnetic field. Hence we first need for each particle to interpolate the
fields stored in the cells nearby. After doing this we will know the field that affects each particle.
The next step is to calculate the force generated on each particle and then move the particle. For
doing this we apply the Boris algorithm that resolves the Lorentz force.

e Particle to cell.

Due to the movement of the particles there is some amount of charge going through the bound-
aries of the cells. In other words, some currents are occurring at the boundaries of the cells. For
each boundary that a particle crosses, we deposit some current in the corresponding cell.

These two logical steps are usually joined in the real codes into a single step called push particles.
e Evolve fields.

This step, also called solver, resolves the first two Maxwell equations, calculating the evolution
of electromagnetic field for a time step using the currents and the previous electromagnetic field.

The introduction of the laser electromagnetic field in the system depends on the code. On some
PIC codes it is introduced at every iteration from one side of the simulation box. In other codes
the whole laser pulse is introduced in the simulation box at the beginning.

39

PORTING AND OPTIMIZATION OF EPOCH TO BLUE GENE/Q

3 EPOCH

EPOCH is an open source Particle-In-Cell code. Basically it is a loop over three major functions:

e update_eb_fields_half
e push_particles

e update_eb_fields_full

push_particles correspond to the steps Move particles and Particle to cell of section The
reason for merging this two steps is computational because some calculations (the movement of each
particle) and some modifications (the currents of the cells) must be done for each particle. That means,
if the two steps are joined together in one single function, we can avoid looping twice over all the
particles.

Concerning the step Evolve fields, here it is split in two halves: update_eb_fields_half and
update_eb_fields_full.

3.1 Parallelization

As discussed in the introduction, EPOCH was originally parallelized using pure MPIL. The domain is
decomposed in several parts and distributed among all the MPI ranks (Figure2)). That means that every
rank deals with some cells and the particles in this cells. The distribution of cells and particles among
the ranks can change even during runtime due to the dynamic load balancing implemented in the code.
Nevertheless the idea persists: one rank does the calculations for one set of cells and the particles
inside.

° °
° ° ° °
° — °
e ® EB o
°
o . o ~) .. (<]
° o © ©
particles
i | -
e o © °
(-]) (o] o
o
° ° o ©
°
o o 90
o ©° ° °
) (o]

Figure 2: EPOCH parallelization scheme. In the example the domain is decomposed in four parts for four MPI
ranks. The rank deals with the particles of his area of influence

The ranks have to communicate for each and every iteration of the loop. On one hand there is an ex-
change of particles between ranks and on the other, an exchange of fields.

40

4 Hybrid parallelization of EPOCH on JUQUEEN

4 Hybrid parallelization of EPOCH on JUQUEEN

JUQUEEN is the BlueGene/Q cluster we wanted our code to work on. BlueGene/Q is based on com-
pute nodes with 16 GB of Memory and 16 cores that are able to execute up to 64 threads simultane-
ously by hardware hyper-threading. That joined with the fact that each rank has to deal with a large
amount of particles opened the door for hybrid parallelization to take advantage of the multicore
architecture. If we use more than one thread per rank, these threads have access to the data of the
rank because they share memory. Therefore the computational load can be distributed among these
threads.

4.1 EPOCH analysis

In order to know where to apply the hybrid parallelization we need to understand the behavior of the
code.

We have tested the code for hard scaling using different optimization options in the compiler (Figure|3)),
concluding that:

e EPOCH scaling behavior is impressive. That means that the code is perfectly suitable for a
supercomputer like JUQUEEN.

e The best optimization tested for the code is O3. OS5 optimization does not show any improve-
ments.

Time comparison for different optimizations

100000

10000
== 05 without 10

== 03 without 10
00 without 10
1000

time (seconds)

100
1024 10240

MPI ranks

Figure 3: EPOCH time comparison for different optimizations of the compiler.

[4.07 _fields NMOD _update_eb_fields_half
[73.72 _particles NMOD _push_particles
0.01 _boundary NMOD_current_bcs
& [0.84 _ boundary_NMOD_processor_summation_bcs
[4.71 MPI_Sendrecv
0.72 _boundary NMOD_do_field_rmpi_with_lengths
L & 3.76 MPI Sendrecy
3.86 _ boundary NMOD_particle bcs
M 5.88 _fields NMOD_update_eb_fields_final

Figure 4: Time distribution.

41

PORTING AND OPTIMIZATION OF EPOCH TO BLUE GENE/Q

If we look at how the time is distributed in the execution of the code, we can see that most of the
time is spent in the particle pusher. 73% of the time is spent in the calculations and around 8,4% in
communications inside the pusher (Figure).

If we now focus on the time used in communications in the whole system (Figure[5]) we notice that most
of the time is spent in the communications of the pusher. In contrast if we take a look at the number of
communications and the bytes transferred in each function (Figures[6|and[7) we can assure that only a
third of the bytes communicated are transferred during the pusher. In conclusion we can remark that the
communications are more efficient in the solver than in the pusher.

[63.09 _ particles NMOD_push_particles

o 12.44 fields NMOD _update_eb_fields_half
M 19.34 _fields NMOD_update_eb_fields final

Figure 5: Comunication time distribution.

[39.65 _ particles NMOD_push_particles

M 23.94 _fields NMOD_update_eb_fields_half
[35.92 _fields_ NMOD_update_eb_fields final

Figure 6: Comunications distribution.

[2817 _particles NMOD_push_particles

[2811 _fields NMOD_update_eb_fields_half
e[4216 _fields NMOD_update_eb_fields final

Figure 7: Bytes transferred distribution.

4.2 Hybrid parallelization strategies

We considered two technologies: OpenMP and IBM Speculative execution.
The first one is commonly known and explaining it is far from the purpose of this document.

Speculative execution can be considered a step further in compiler-directed code parallelization. In
order to accomplish this kind of parallelization, the compiler must analyze the code and will only be
able to parallelize it in certain cases if there are no problems with dependencies. Since some languages
are really versatile, there may be some hidden dependencies that lead to errors in execution. In the new
IBM Blue Gene/Q this problem is solved by the compiler which is able to detect conflicts in execution
time and roll back those threads that were involved in the conflict.

4.2.1 Data Hazard problem

As we said, our goal was applying hybrid parallelization in the pusher algorithm. Thus, we first need to
understand the algorithm. In the next lines we can see a simplified pseudocode:

foreach part in particles {
dx = calculateMovement(cellFields)
part —>xNew = part—>x0Ild + dx
currents = calculateCurrent(part—>xOIld, part—>xNew)
indexes = calculateCellsToBeUpdated (part —>xNew)
foreach index in indexes({

42

4 Hybrid parallelization of EPOCH on JUQUEEN

cellCurrent[index] += currents[locallndex]
}
}

For each particle we need to calculate the movement it describes due to electromagnetic field stored
in the cells. In other words, we need to calculate the variation in its position (dx). After moving the
particle we calculate the current that its movement generates in the boundaries of the cells (currents)
and also we need the addresses of the cells that are affected by that particle (indexes). Once we know
what currents must be deposited in which cells, we just loop over the affected cells and update their
currents (cellCurrent).

The immediate parallelization of this algorithm is using one thread for a subset of particles. The prob-
lem is that there is a chance that two or more threads try to update the same cell at the same moment.
This concurrency problem of two threads updating the same value at the same time is commonly known
as data hazard. We have implemented several solutions to this problem and they will be discussed in
the next sections.

4.2.2 OpenMP unsafe version

This is not really a solution rather the version of the code in which we do not really take care of the
problem. Therefore, the execution of this version can lead to incorrect results. But it can be considered
a tool for testing purposes, since it give us an idea of the best performance we can expect with hybrid
parallelization. The loop is parallelized with OpenMP using a PARALLEL DO as we can see in the
next pseudocode.

/! declaration of private variables

foreach part in particles {
dx = calculateMovement(cellFields)
part —>xNew = part—>xOld + dx
currents = calculateCurrent(part—>x0ld, part—>xNew)
indexes = calculateCellsToBeUpdated (part —>xNew)
foreach index in indexes({
cellCurrent[index] += currents[locallndex]

}

}

4.2.3 OpenMP with atomic operations

In order to avoid the data hazard problem, we can just tell OpenMP that the problematic updates must be
done as atomic operations. This way when one thread is updating the current of one cell, there is no way
another thread can burst into the operation. Therefore, the final results should be correct. This time the
updates are marked as atomic as we can see in the next pseudocode:

foreach part in particles {

foreach index in indexes{

43

PORTING AND OPTIMIZATION OF EPOCH TO BLUE GENE/Q

cellCurrent[index] += currents|[locallndex]

}
}

4.2.4 OpenMP with reduction

OpenMP provides a clause to perform a reduction on one or more variables. A private copy for each
list variable is created for each thread. At the end of the reduction, the operation on the variable is
applied to all private copies of the shared variable and the final result is written to the global shared
variable. The loop is parallelized with OpenMP using a PARALLEL DO. In this case we add the
reduction clause in the OpenMP directive. In our code, the reduction is done over the array of currents
(cellCurrent). Reductions on arrays are implemented in Fortran, in contrast to other languages
like C.

non

(+:cellCurrent)

foreach part in particles {

foreach index in indexes{

}
}

cellCurrent[index] += currents[locallndex]

4.2.5 Speculative execution

In this case we told the compiler to execute the loop with speculative threads, as can be seen in the next
code:

(+:cellCurrent)
foreach part in particles {

foreach index in indexes{
cellCurrent[index] += currents[locallndex]

}
}

4.2.6 OpenMP storing currents

Here the strategy is to loop twice over the particles, making all the calculations in the first loop which
will be parallelized with OpenMP. In this first loop the calculated currents must be stored for each parti-
cle, so that in the second loop we only need to update the values of the cells:

foreach part in particles {
dx = calculateMovement(cellFields)
part —>xNew = part—>x0Ild + dx
part—>currents = calculateCurrent(part—>x0OIld, part—>xNew)
part —>indexes = calculateCellsToBeUpdated (part —>xNew)
}

44

4 Hybrid parallelization of EPOCH on JUQUEEN

foreach part in particles {
foreach index in part—>indexes{
cellCurrent[index] += part—>currents[locallndex]
}
}

4.3 Results
4.3.1 A small problem

In order to know if a hybrid parallelization will work or not, we used a small simulation with only one
MPI rank. The question was whether we could beat the execution time of the version with pure MPL
The results (Figure[§) show that:

e Speculative execution does not seem to be a valid alternative since it needs more time than the
pure MPI version probably because there are so many conflicts in execution time that the threads
roll back wasting runtime.

e The version storing currents does not give many benefits. Probably because we need to iterate
through all the particles twice.

e The version with atomic operation scales better than the rest, although it starts of with some
overhead.

e The performance of version with reductions is close to the unsafe version since it does not need
to spend so much time in synchronization mechanisms.

Hybrid strategies compatrison
180
160
140

120 == Nomal
@ === OpenMP Atomic
g 1o OpenMP Currents
§ 80 = ==fe= OpenMP Unsafe
9 - \ =p=m OpenMP Reduction
£ ® . - g = u Speculative
40 \ \‘
20 - - <
- —
0
2 4 8 16 32

threads

Figure 8: Hybrid parallelization comparison for a small job with only one MPI rank. The normal version (dark
blue with squares) refers to the pure MPI version that actually uses only one thread.

4.3.2 Areal case

We need to analyze the results on a larger scale with a real problem. We chose a fixed number of
nodes (512) and made some tests varying the number of MPI ranks per node and then the number

45

PORTING AND OPTIMIZATION OF EPOCH TO BLUE GENE/Q

of threads per rank. If we use only one rank per node and increase the number of threads per rank
(Figure [0 left) we can conclude that several of the hybrid parallelization strategies beat the pefor-
mance of a pure MPI version. But if we increase the number of MPI ranks per node (Figure [9]

right) the number of available threads decreases, and performance is better with a pure MPI ver-
sion.

The best option (OpenMP with atomic operations) scales really well, but for 8 ranks per node the
number of available threads is not enough to compensate the time spent in the creation of the threads.
The reader might find one option missing in this real case scenario: the OpenMP reduction. This
version fails in execution time while creating the threads because, for each reduction variable, OpenMP
creates a local copy for each thread and we presume that the size of the variables in this case scenario
was too large.

We have also found the best parameters (ranks per node and threads per rank) for each strategy com-
paring the best time for each strategy (Figure[T0).

1rank 8 ranks
6000 1400
5000 ._/'__"\V 1200
_ 1000
@ 4000 35
2 S 800
8 3
& 3000 % 600
g E
= 2000 T A0m = u
200
1000
0
0 2 4 8
2 4 8 16 32 64
threads threads
=il PUre MPI === OpenMP Storing Currents ==p==m= Speculative execution
=== OpenMP Atomic OpenMP Unsafe

Figure 9: Hybrid parallelization comparison for a more realistic simulation with only 1 MPI rank on the left and
with 8 on the right. The pure MPI version (dark blue with squares) uses only one thread.

Minimum times

800

700

B Pure MP|

M OpenMP Atomic
OpenMP Storing Currents

B OpenMP Unsafe

B Speculative execution

600
500
400

time (seconds)

300
200
100

Figure 10: Best times for each strategy. We have obtained the best time for each strategy changing the number
of ranks per node (from 1 to 8) and the number of threads per rank

46

5 Conclusions

5 Conclusions

We have analyzed the performance of the MPI parallelized PIC code (EPOCH) on a BlueGene/Q clus-
ter concluding that there was a chance to improve the performance using hybrid parallelization.

In order to implement a hybrid parallelization we have to deal with a data hazard problem. We have
implemented several strategies to deal with this problem and we have analyzed the performance of
these strategies.

Although we had promising results in a test case scenario, a pure MPI version is still better for a
real case scenario. Nevertheless, an unsafe hybrid parallelized version of the code beats the pure MPI
version in every studied case. Therefore we conclude that we could go deeper in this direction in further
studies. If we had the particles sorted by their position in one coordinate, we could just avoid the data
hazard just by selecting which threads deal with which particles.

References

1. K. Bennet, C. Brady, H. Schmitz, C. Ridgers, Developers Manual for the EPOCH PIC codes. University of Warwick

47

Optimization of Lattice QCD kernels for Blue Gene/Q

Christian Jost

Helmbholtz-Institut fiir Strahlen- und Kernphysik
Nussallee 14-16
53115 Bonn

E-mail: jost@hiskp.uni-bonn.de

Abstract:

In this project the QDP++ library of the USQCD software package was optimized for the Blue Gene/Q
supercomputer. The sublibrary 1ibintrin was recoded and works correctly. Due to compiler
problems with the used templates, the C++ was recoded but could not be compiled. While the new
library works correctly the full integration of the library into QDP++ could not be completed within
this project. Due to the limitation of the tests not every aspect of the code could be tested thoroughly,
but a problem with the data alignment in memory was found and fixed. The amount of data used was
very small and it can be assumed that the performance of the code will increase with larger problem
sizes due to better usage of the resources.

1 Introduction

1.1 Quantum Chromodynamics

The Standard Model of Particle Physics describes quarks as the basic building blocks of hadrons. Of
the four known interactions, the strong interaction is the strongest within hadrons. The field theory
describing the strong force at this level is called quantum chromodynamics or QCD. Each strong inter-
acting particle has a color charge which has to be conserved in the interaction. In contrast to quantum
electrodynamics, the field theory of electromagnetic interactions, QCD has three charges, red, blue and
green. The hadrons observed in nature are always colorless, which means they consist of color and
anti-color pairs or have an equal amount of all colors or anti-colors. The former are called mesons,
the latter baryons or anti-baryons, depending on their content. This phenomenon is called color con-
finement. Another feature of QCD, that other field theories do not have, is asymptotic freedom. That
is that the strong interaction becomes stronger as the energy of the interacting particles decrease [[1].
This phenomenon makes some usual approaches for computing, e.g. physical observables, unsuitable.
To calculate basic properties of particles, such as the mass, the calculations are normally done with the
particle being at rest. Then the interactions that need to be calculated are small and can be calculated
with perturbation theory. In case of QCD this is not possible since the interaction becomes stronger as
the energy decreases. One ansatz to solve this problem is to discretize QCD and solve it numerically.

49

OPTIMIZATION OF LATTICE QCD KERNELS FOR BLUE GENE/Q

This ansatz is called Lattice QCD or LQCD. The calculation of the lattice still yields a number of prob-
lems. The lattice has to be on the one hand fine grained to make precise calculations, on the other hand
the volume of the lattice has to be large enough to neglect finite size effects. This leads to the need
of high performance computing to be able to do the calculations within a reasonable amount of time.
Although with new supercomputers at the petascale there is a lot of computational power available, it
is usually easier to calculate the same problems for different higher quark masses and extrapolate the
results to the physical mass scale.

1.2 Blue Gene/Q

The IBM Blue Gene/Q is a modern supercomputer that was released in 2011. It is the third generation
of IBM’s Blue Gene Series and as of June 2012 the fastest supercomputer of the worlcﬂ At the same
time it is a very energy efficient system and also tops the GreenSO At the Jiilich Supercomputing
Center 8 racks of a Blue Gene/Q machine, called JUQUEEN, were set up in May 2012 and another 20
racks should be available in October 2012. Each rack consists of 2 midplanes having 16 node cards
each. Each node card includes 32 compute cards which in turn consist each of one chip module and
16 GB DDR3 memory. The chip is a 64-bit PowerPC A2 chip with 18 cores at 1.6 GHz. Only 16 of
the cores can be addressed directly, a seventeenth manages threading and I/O operations. The last core
is a backup for not working cores. The chip integrates also a chip-to-chip network. The network setup
is a 5D-torus so that each chip has 10 neighbors for fast access. This makes the system very scalable
and well suited for LQCD calculations [2, 3]].

Each core is capable to run 4 hardware threads at the same time adding up to a total number of 64
threads. Furthermore each core has a quad floating point unit capable of operations on 4 double preci-
sion values simultaneously. The chip is designed to work with atomic operations and allows transac-
tional memory and speculative execution, but these features were not used in this project.

For the quad floating point unit a special instruction set is used, the Quad Processing eXtension (QPX).
These instructions cover load and store operations, arithmetic operations, logical operations and per-
mutation operations. A subset of the commands interprets the four doubles as two complex numbers
and allows complex multiplication operations. To show the power of QPX instructions, a simple add
function written with normal C code and with C code enhanced with QPX instructions was written.
Table [T] shows the number of cycles each function needs to add two vectors of different sizes. The
starting size of the vector was four doubles and was doubled in each step. The measurement was done
with 100 iterations and with 10,000 iterations to be able to extrapolate the overhead if needed. The
results show that it is very efficient for large data sets to make use of QPX instructions. With a vector
size of 512 doubles, the QPX instruction code is more than twice as fast, at 4096 doubles almost more
than 2.7 times as fast.

"Top500, http://top500.0rg/lists/2012/06
2Green500, http://www.green500.org/?q=1lists/green201206

50

http://top500.org/lists/2012/06
http://www.green500.org/?q=lists/green201206

2 QDP++

iterations | size no QPX QPX ratio
4 575572 540391 1.07
8 594192 548448 1.08
16 635658 571353 1.11
32 720082 601528 1.20
64 890426 661476 1.35

100 128 1245970 781679 1.59
256 1915483 1022301 1.87
512 3300038 1502493 | 2.20
1024 6274492 2563134 | 245
2048 | 11850690 4557018 | 2.60
4096 | 23154936 8502389 | 2.72

4 57362000 53969231 | 1.06

8 59398608 54800448 | 1.08

16 63480054 57079741 | 1.11

32 71940682 60080728 | 1.20

64 88960826 66050116 | 1.35
10000 128 | 124500368 78029515 | 1.60
256 | 191342083 102080445 | 1.87
512 | 329797494 150080509 | 2.20
1024 | 627412686 256014010 | 2.45
2048 | 1185176947 455377872 | 2.60
4096 | 2315082450 850065514 | 2.72

Table 1: Comparison of the number of cycles used by a simple add function coded without using QPX instruc-
tions and coded with QPX instructions. The measurement was done using IBM’s hpm library. At a vector size
of 512 doubles the code with QPX instructions is more than twice as fast as the code without QPX instructions,
at 4096 doubles it is more than 2.7 times as fast.

2 QDP++

2.1 Implementation

A whole package of software related to LQCD has been developed by the USQCD communityﬂ The
package is divided into three layers. The bottom layer consists of libraries concerned with message
passing between processes (QMP), threading (QMT) and linear algebra (QLA). All other software of
the package is built on top of this layer. The middle layer implements mainly all mathematical struc-
tures and QCD objects. QCD Data Parallel (QCD in C and QCD++ in C++ [4]]) belongs to this layer.
The top layer is an assembly of applications, for example the software chroma.

In this project QDP++ should be optimized for Blue Gene/Q. The software is coded in C++ and re-
lies on template metaprogramming. Through the template structure a strong hierarchy is imposed on
objects. This structure ensures the correct behavior of spin and color components of objects and the
application of complex arithmetic operations where needed. The structure of a lattice object is imple-

*http://usqgcd. jlab.org/usgcd-software/

51

http://usqcd.jlab.org/usqcd-software/

OPTIMIZATION OF LATTICE QCD KERNELS FOR BLUE GENE/Q

mented for example in the following way:

typedef OLattice<PScalar<PColorMatrix<RComplex<float>,NC> > > LCM
This LCM is a lattice object, which transforms as a scalar under spin transformations, as a NCxNC matrix
under color transformations, where NC is the number of colors, and has complex entries. This allows
the code to take care of how to do operations on two objects without needing to loop over entries or lat-
tice points. Therefore the user does not need to know how to implement the operation. The addition of
two LCM a and b can then be written as LCM ¢ = a+b, for example.

In order for the code to be efficient on a wide range of architectures template specializations are used.
Apart from generic templates, there are, for example, templates that use SSE instructions to speed up
the code. The templates are specialized in such a way that both SSE2 and SSE3 can be used, depending
on the architecture. To have a reference, QDP++ was build on a local workstation using both SSE2 and
SSE3 instructions and running all supplied tests to make sure the built worked correct. To further test
QDP++ chroma was built on top of QDP++ and the chroma tests were executed. All of the tests tried
passed.

2.2 Adaption

JUQUEEN provides two compilers, the GCC compiler, version 4.4.6, and the IBM compiler XL
C/C++, version 12.1. The XL compiler is the only compiler that is able to handle QPX instructions, but
there is no specialization using these instructions. A first try to compile QDP++ with XL failed because
it seems XL cannot handle the template structure of QPD++. The compilation with GCC worked, but
the test failed to build because SSE instructions are used in the tests.

QDP++ uses a sublibrary called 1 ibint rin where basic, optimized functions are stored. This library
is coded completely in C code. Therefore in a first step only this library was adapted to JUQUEEN. For
the compilation of QDP++ GCC is used for the C++ part and XL for the C part. To make QDP++ aware
of the adapted library, now called 1ibgpx, a new configure flag was introduced and the makefiles were
changed accordingly.

The complete list of functions can be seen in table[2] They all operate on the following predefined data
types:

e su3_vector, a complex vector with three entries,

e su3_matrix, acomplex (3 x 3) matrix,

e wilson_vector, a vector of su3_vectors with dimension four and

e half wilson_vector, a vector of su3_vectors with dimension two.

The functions cover addition of vectors, multiplications between vectors and matrices, vectors and
adjacent matrices, matrix-matrix operations, projection of a vector onto another and the simultaneous
subtraction of four vectors from a fifth. To ensure that the ported functions produce the anticipated
results the functions were called with sample data. The results were then compared with the results
from the local, unchanged build. This test was later extended to enable the benchmarking of the
library.

During the benchmarking another problem showed up. The QPX load instruction looks for aligned

52

2 QDP++

name description
add_su3_vector sum of two vectors
mult_adj_su3_mat_4vec multiplication of a vector with 4 adjoint matrices

and storage of the results in 4 different vectors

mult_adj_su3_mat_hwvec multiplication of a half wilson vector with an ad-
joint matrix

mult_adj_su3_mat_vec_4dir | multiplication of a vector with 4 adjoint matrices
and storage of the results in 4 different vectors
given as array

mult_adj_su3_mat_vec multiplication of an adjoint matrix with a vector

mult_su3_an multiplication of an adjoint matrix with another
matrix

mult_su3_mat_hwvec multiplication of a half wilson vector with a matrix

mult_su3_mat_vec multiplication of a matrix with a vector

mult_su3_mat_vec_sum_4dir | sum of the multipliction of four matrices with four
different vectors

mult_su3_na multiplication of a matrix with an adjoint matrix
mult_su3_nn multiplication of two matrices
scalar_mult_add_su3_matrix | sum of a scaled matrix and another matrix
scalar_mult_add_su3_vector | sum of a scaled vector and another vector
su3_projector projection of one vector onto another
sub_four_su3_vecs subtraction of four vectors from a fifth

Table 2: The functions contained in the library 1 ibgpx that were adapted to JUQUEEN and their descriptions.
A self written test compared the results with the results of a unchanged build on a local workstation to ensure
correctness.

data. Since 1ibgpx works with single precision complex numbers, the alignment should is 16 bytes.
The su3_vectors contain 3 complex numbers or 6 floats, they are 24 bytes long. The su3_matrix
has 9 complex numbers and has a length of 72 bytes. The way the functions are called it cannot be
guaranteed that the alignment of the input data is 16 bytes as required by the load instruction. There
are several solutions to this problem that were discussed. First of all the function could be modified to
have an aligned version and an unaligned version and checks which code will be executed at run time.
Instead of modifying the whole code another option would be to assume that either one or two elements
are not 16-byte aligned for an su3_vector and deal with these possibilities separately. Another
solution could be that all data could be packed within a 16-byte alignment which would increase the
data volume but works always. The data increase is 33% for the vector and approximately 10% for
the matrix. Our solution to this was to load only two floats at a time which requires an alignment of 8
bytes. Since the alignments of su3_vector and su3_matrix are a multiple of eight, this seems to
work and the tests indicate correct behavior without crashing. The disadvantage of this solution is the
high number of QPX instructions used.

53

OPTIMIZATION OF LATTICE QCD KERNELS FOR BLUE GENE/Q

3 Benchmarking

3.1 Hardware Counters

On most modern chips hardware counters are implemented. These counters can count events that hap-
pen either in the core, the network or the memory. The number of counters depends on the specific
architecture and not all events can be recorded at the same time. The recordable events can be divided
into two subgroups. The general group of events can be recorded on nearly every chip. This could be
events like the total number of completed instructions or the number of cycles needed for the comple-
tion of a task. The second group of events is specific to every architecture. On JUQUEEN the number
of completed QPX instructions can be recorded, for example. These events can help to identify prob-
lems and bottlenecks in the code. For the benchmarking of the library, only core events and memory
events were recorded.

To record the events the IBM library hardware performance monitor (hpm) was used [5]. The li-
brary needs to have MPIE] initialized before the initialization of hpm and does the instrumentation
automatically. This results in an overhead that is recorded as well. To extrapolate the overhead of a
call to the 1ibgpx functions they were wrapped in a for loop and called between 1 and 1,000,000
times. All measurements were done with only one thread per node. If the coding was effective the
benchmark should show high performance. This is a result of a minimal number of instructions and
low number of cycles. At the same time the performance could be lowered if the memory would
not be used to its full extend. A high number of cache misses would indicate ineffective cache us-
age.

3.2 Results

The complete library 1ibgpx was adapted to JUQUEEN and the test showed that everything works
correctly. The benchmarking was done once without compiler optimization and once with level three
compiler optimization. There are notable differences between these two cases. We show the results for
the function add_su3_vector as an example. The code is shown in Figure[I]

The number of cycles needed for one run decreases with a factor of approximately 4.7 between no
optimization, needing 230 cycles, and level three compiler optimization, needing 49 cycles, as it can
be seen in Figure[2a] There is an overhead of approximately 9000 cycles, which is most probable due to
the measurement process itself and the surrounding for loop. At the same time the rate of floating point
operations per second (FLOPS) increases from about 60 MFLOPS to approximately 260 MFLOPS
at maximum which is shown in Figure 2b] The floating point operations per second F' are calculated

with the following formula
__ # operations

1
cycles M

where f is the chip’s operation frequency, which is 1.6 GHz. The number of operations performed is
six complex additions, the number of cycles per function call are shown in Figure 2a] At maximum
efficiency eight floating point operations are performed per cycle, resulting in a theoretical maximal
performance of Fi,x = 12.8 GFLOPS. In this test the performance is therefore only 2% of the theo-

*Message Passing Interface, http://www.mcs.anl.gov/research/projects/mpi/

54

http://www.mcs.anl.gov/research/projects/mpi/

3 Benchmarking

void
gpx_add_su3_vector(su3_vectorf =xaa, su3_vectorf xbb, su3_vectorf xcc)
{
/* QPX Variables x/
vectorddouble xmm2, xmm3, xmmO, xmml;

xmm0O = vec_ld2a (0L, (floatx) &((aa)-—>c[0]));
xmml = vec_ld2a (0L, (floatx) &((aa)—>c[1l]));
xmm0 = vec_sldw (xmm0O, xmml, 2);

xmml = vec_ld2a (0L, (floatx) &((aa)—>c[2]));
xmm2 = vec_ld2a (0L, (floatx) &((bb)—>c[0]));
xmm3 = vec_ld2a (0L, (floatx) &((bb)—>c[1l]));
xmm2 = vec_sldw (xmm2, xmm3, 2);

xmm3 = vec_ld2a (0L, (floatx) &((bb)—>c[2]));
xmm0 = vec_add(xmm0O, xmm2);

xmml = vec_add(xmml, xmm3);

vec_st2a (xmm0O, OL, (floatx) &((cc)—>c[0]));
vec_sldw (xmm0O, xmmO, 2);

vec_st2a (xmm0, OL, (floatx) &((cc)—>c[1]));
vec_st2a(xmml, OL, (floatx) &((cc)—>c[2]));

Figure 1: The source code of the function add_su3_vector of the library 1ibgpx that was adapted for
JUQUEEN.

retical maximal performance if the code is optimized. One reason for this low performance is that only
every second cycle a QPX instruction can be scheduled per hardware thread. Therefore with at least
two threads per core this problem would vanish. There are 14 QPX instructions in the code and there-
fore when operating with one thread the core spends 21 cycles or roughly 42% waiting or doing other
instructions. Since only very little data is used and it fits into the L1 cache, these numbers might change
quite significantly with other configurations. Due to the small amount of data there are no big amounts
of cache misses recorded, which can change for larger problem sizes. Since the test was only supposed
to test for correctness of data, testing with more data has not been done. Since all data is stored con-
secutively in memory, the data prefetch should work good enough that the run time increase due to the
larger problem size should not be too great. The total number of QPX instructions does not change
with the optimization levels and is the same number as in the code.

Although no explicit integer arithmetic operations were made in the code, the data shows that integer
operations are executed. This is shown in Figure 3| There is some overhead of approximately 350
operations, most probable due to the measurement process and the for loop that envelops the function
call. On average the unoptimized code has 13 integer operations while the optimized code has only
6. In comparison to the 14 QPX instructions done in the function there is a lot of integer arithmetic
done. This is probably due to the measuring process and the for loop wrapped around the function
call. The number of conditional and unconditional branching, as shown in Figure [} is within the
expectation. Since the function is called within another function, there should be at least one condi-
tional branching operation and one unconditional branching operation per function call. The reason
for the slightly higher number of unconditional branching operations in the optimized code is not
known.

An overview over the number of used QPX instructions in the different functions is shown in table [3]

55

OPTIMIZATION OF LATTICE QCD KERNELS FOR BLUE GENE/Q

libgpx add vector function libgpx add vector function
10° : 300
e
108 A 250
cycles/iteration unoptimized = 230 / A4
cycles/iteration optimized =48.5 s e
107 px-i ions/iteration = 14 / R 200
_;‘ 123
3 6 A _8'
S 10 / S & 150
B o s
10° AL 100
/ L
104 T 50 .
10° -1 0 1 2 3 4 5 6 03 0 1 2 3 4 5 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
iterations iterations
unoptimized KXX=x optimized messee optimized msssss® unoptimized KXxX=
(a) cycles (b) MFLOPS

Figure 2: The performance of the function add_su3_vector compiled without compiler optimization and
with level three compiler optimization. The performance is significantly better with compiler optimization.
The time a function call needs was measured within a for loop. The number of cycles as a function of the
iterations is shown in[(a)l The performance as a function of the iterations is shown in [(b)] The number of
cycles needed decreases from 230 to approximately 49 per call and the performance rises from 60 MFLOPS
to 260 MFLOPS. The data was produced using one thread on a JUQUEEN node with very small data sets and
might change significantly for other setups. From (a)]it can be seen that there is an overhead of approximately
9000 cycles, including the cycles due to the measurement process and a for loop wrapped around the function
call.

The table shows the total number of QPX instructions, the number of load and store instructions, and
the number of instructions that does the actual arithmetic operations, including the shuffle operations
that are due to the alignment workaround.

4 Summary

The adaption of QDP++ code to the Blue Gene/Q architecture and instruction set proved to be trickier
than anticipated. One of the major problems was the inability to compile C++ templates with QPX
instructions. Until the end of this project no working solution was found. The second major problem
had to do with the alignment of data in memory. The data is 24-byte or 72-byte aligned, depending on
the data type, while the QPX instructions needed the data to be aligned as multiples of 16. The issue
could be worked around with loading and storing only two floats at a time, requiring and 8-byte align-
ment and shuffling the data into the correct registers. This leads to a greater overhead and a decreased
performance. Nevertheless a self-written test showed that the functions of the basic sublibrary worked
as expected and the sublibrary was integrated into the package.

5 Acknowledgement

I would like to thank Dr. Stefan Krieg and Prof. Dr. Dirk Pleiter for their support and advice during
this project as well as Mathias Winkel and Ivo Kabadshow for the organization of the program. A big

56

References

libgpx add vector function

— —
(@] o
[«2] ~
T T

—

o
[6)]

T

integer arithmetics

iterations

unoptimized Exxx optimized ==

Figure 3: The number of integer arithmetic operations executed in function add_su3_vector. The plot
shows the measurement done without compiler optimization and with level three compiler optimization. In
the optimized version the number of integer arithmetic operations is halved. There is some overhead probably
due to the measurement itself and a for loop that envelops the function call.

thank you to Michael Knobloch for his help with PAPI and Scalasca, to Thorsten Hater for his help
with Scalasca and to Andrea Nobile for his help with hpm and providing the tools to extract interesting
data from the logs. This all would have been very boring without the other students and their part in
this exciting program.

References

1. F Tekin, R. Sommer, U. Wolff and Alpha Collaboration. The running coupling of QCD with four flavours. Nucl. Phys.
B, 2010 Nov; 840:114-128, [arXiv:1006.0672v1].

2. P. Vezolle. IBM Blue Gene/Q architecture and system software overview [Internet]. Presented at: Workshop “Introduc-
tion to Blue Gene/Q” 2012 May, [cited 11.10.2012]. 54 p. Available from: http://www.fz—-juelich.de/ias/
Jsc/EN/Expertise/Supercomputers/JUQUEEN/Documentation/Documention_node.html.

3. R. Haring et al. The IBM Blue Gene/Q compute chip. IEEE Micro, 2012 Mar/Apr; 32(2):48-60.

4. R. Edwards, B. Joo. The Chroma Software System for Lattice QCD. Nucl. Phys. Proc. Suppl., 2005 Mar; 140:832-834,
[arXiv:hep-1at/0409003].

5. M. Gilge et al. IBM System Blue Gene solution: Blue Gene/Q application development [Internet]. IBM Redbook; 2012
Aug [cited 11.10.2012]. 160 p. Available from: http://www.redbooks.ibm.com/abstracts/sg247948.
html.

57

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Documentation/Documention_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Documentation/Documention_node.html
http://www.redbooks.ibm.com/abstracts/sg247948.html
http://www.redbooks.ibm.com/abstracts/sg247948.html

OPTIMIZATION OF LATTICE QCD KERNELS FOR BLUE GENE/Q

libgpx add vector function libgpx add vector function
107 107
g 10° E 6 A]
o ranches/jteration ungptimized = 1 810 . . L 7
(3] ranches/iteration ‘optimized = 1.2 < branches/iteration unoptimized = 2 /
s 10° g branchesyiteration optimized = 2 y
5 510° < -
£ 10t] = yd
(s} =
=z kvt /) i
Ei0 y 510 /
o o
5 °
102 10 E
10! 1 0 1 2 3 4 5 6 10° 1 0 1 2 3 4 5 6
10° 10 10 10 10 10 10 10 10° 10 10 10 10 10 10 10
iterations iterations
unoptimized ExXxx optimized me——— unoptimized ExXxx optimized ee——
(a) unconditional (b) conditional

Figure 4: The branching of the function add_su3_vector compiled without compiler optimization and with
level three compiler optimization. Since the function is called within another function there should be two
conditional branching operations, in which both the optimized and the unoptimized code agree. Where the
unconditional branching operation is coming from is not clear, neither why the unoptimized code is better.

function number of instructions

total | arithmetic | load store
gpx_add_su3_vector 13 4 6 3
gpx_mult_adj_su3_mat_4vec 160 130 18 12
gpx_mult_adj_su3_mat_hwvec 44 31 7 6
gpx_mult_adj_su3_mat_vec_4dir 199 138 49 12
gpx_mult_adj_su3_mat_vec 46 37 6 3
gpx_mult_su3_an 91 70 12 9
gpx_mult_su3_mat_hwvec 44 31 7 6
gpx_mult_su3_mat_vec 172 136 24 12
gpx_mult_su3_mat_vec_sum_4dir 46 37 6 3
gpx_mult_su3_na 92 71 12 9
gpx_mult_su3_nn 92 71 12 9
gpx_scalar_mult_add_su3_matrix 44 17 18 9
gpx_scalar_mult_add_su3_vector 14 5 6 3
gpx_su3_projector 48 31 8 9
gpx_sub_four_su3_vecs 32 14 15 3

Table 3: The table shows the overview over the different functions of the library 1ibgpx and the number of
QPX instructions they use respectively. The second column shows the total number of instructions, the third
column the number of arithmetic operations including the shuffling operations to assemble the data into the
correct registers. The last two columns show the number of load and store instructions, respectively.

58

Graph 500 benchmarking using flash memory cards

Tommaso Zanca

University of Ferrara
Faculty of Science, Department of Physics
Via Saragat 1, 44122 Ferrara, Italy

E-mail: tommaso.zanca@student.unife.it

Abstract:

The performance of supercomputers is measured using benchmarks, where a large amount of data
are computed by the machine. Graph 500 is a benchmark designed for testing the access speed to
data that present highly irregular patterns, typical of graph structures. Volatile memory is easily
exceeded for this kind of applications, so additional memory from external devices is necessary. Our
analysis focused on flash memory cards, which present larger access speed to data than hard disks,
and memory dimension of several hundreds of GBytes. The performance measurements have been
performed on the computer cluster JUNIORS installed at Forschungszentrum Jiilich.

1 Introduction

Using the words of Lord Kelvin: “If you cannot measure it, you cannot improve it”. For this purpose
benchmarks are used to measure the supercomputer performances. Nowadays the ranking of the most
powerful supercomputers is built using the High-Performance Linpack Benchmark. This consists in
solving a set of linear equations A -z = b with A being a large, densely populated matrix. The per-
formance metrics is the number of floating-point operations per second (FLOPS), used to construct the
Top500 List [1]]. The Linpack benchmark deals with a very regular problem, so no conclusions can be
drawn with respect to the performance of applications with highly irregular data access, such as graph
problems.

Graph 500 is a different type of benchmark that aims on providing kernels which reflect the require-
ments of applications which deal with graph problems, i.e. with random access to the memory due to
the highly irregular data pattern. In this case we have a different performance metrics, namely the num-
ber of traversed edges per second (TEPS), that is used to build the Graph 500 List [2]. The huge amount
of data is a typical feature for graph problems, and the way how to store all these data is an important
aspect to take into account. The volatile memory is the best solution if we want a fast access to data, but
its capacity is severely limited. On the other hand, hard disks can offer very large memory dimension,
but this time the slow access speed is the limiting factor. Non-volatile flash memory cards are a new
kind of memory storage that offers new opportunities, allowing storage dimensions of several hundreds
of GBytes, with high I/O operations per second rate (IOPS).

59

GRAPH 500 BENCHMARKING USING FLASH MEMORY CARDS

2 Background

We introduce some basic notions about graph theory and real networks, in order to better understand
the Graph 500 algorithm.

2.1 Graph theory definitions

First we need to define the mathematical elements that we will use in the next paragraphs:

Definition 1 (Graph). A graph is an abstract representation of a set of objects, called nodes (or
vertices), where some pairs of the nodes are connected by links, called edges.

Definition 2 (Distance). The distance is the number of edges in a shortest path connecting two vertices.
Definition 3 (Diameter). The diameter is the greatest distance between any pair of vertices.

Definition 4 (Degree). The degree of a node is the number of edges the node has to other nodes.

2.2 Real networks

Graphs are a useful mathematical tool to study the features and the behaviour in time of real networks,
like the World Wide Web, social networks, protein interactions, etc. Real networks across a wide range
of domains present surprising regularities, such as power laws, small diameters, communities, and so
on. Here we present the main properties [3]].

1. Degree distribution
The degree-distribution of a graph is a power law if the number of nodes N, with degree d is
given by Ny o< d=7 (v > 0) where 7 is called the power law exponent. Power laws have been
empirically found, for example, in the Internet [4], the Web [5, (6], citation graphs [[7] and online
social networks [8]].

2. Densification power law
The relation between the number of edges E(?) and the number of nodes N(¢) in evolving net-
work at time 7 obeys the densification power law (DPL), which states that E(t) oc N(¢)*. The
densification exponent a is typically greater than 1, implying that the average degree of a node
in the network is increasing over time (as the network gains more nodes and edges). This means
that real networks tend to sprout more edges than nodes, and thus densify as they grow [9, [10].

3. Shrinking diameter
The diameter of graphs tends to shrink or stabilize as the number of nodes in a network grows
over time [9, [10]. This is somewhat counterintuitive since from common experience as one
would expect that as the volume of the object (a graph) grows, the size (i. e. the diameter) would
also grow. But for real networks this does not hold as the diameter shrinks and then seems to
stabilize as the network grows.

60

2 Background

2.3 Kronecker Graph Model

In this section we present a model used to construct a network with the properties mentioned above.
A good realistic network generation model is important for extrapolations, hypothesis testing, “what if”’
scenarios and simulations, when real graphs are difficult or impossible to collect.

The model that we present is called Kronecker Graph Model [3]], and it is based on a recursive con-
struction. Matrices are the mathematical tool used by this model. At each graph we can associate an
adjacency matrix defined in this way:

Definition 5 (Adjacency matrix). An adjacency matrix of a finite graph on n vertices is the n X n
matrix where the entry a; ; is 1 if vertex © and vertex j are connected, otherwise a; ; is 0

We begin with an initiator graph K, with N1 nodes and F; edges, and by recursion we produce suc-
cessively larger graphs Ko,K3,... such that the k" graph K} has N, = NJ nodes. If we want these
graphs to exhibit the densification power law, then K} should have Ej, = E{“ edges. The procedure
used to produce densifying graphs with constant or shrinking diameter, and thereby to match the qual-
itative behaviour of real networks, is described in terms of the Kronecker product of two matrices. The
Kronecker product is defined in this way:

Definition 6 (Kronecker product of matrices). Given two matrices A = [a; ;| and B of sizes n x m
and n' x m/ respectively, the Kronecker product matrix C of dimensions (n-n’) x (m-m’) is given
by

a1 B a12B - a1,B

| a21B a2B - a2, B
C=A®B= . .

an,lB an,QB T an,mB

We then define the Kronecker product of two graphs simply as the Kronecker product of their corre-
sponding adjacency matrices.

Definition 7 (Kronecker product of graphs). If G and H are graphs with adjacency matrices A(G)
and A(H) respectively, then the Kronecker product G ® H is defined as the graph with adjacency
matrix A(G) ® A(H).

Iterating the Kronecker product we can produce a growing sequence of matrices:

Definition 8 (Kronecker power). The k" power of K, is defined as the matrix K. {k] (abbreviated to
Ky,), such that:
KK, =K 9K ®.. K =K1 ®K

k times

Finally we define the Kronecker graph:
Definition 9 (Kronecker graph). Kronecker graph of order k is defined by the adjacency matrix K W,
where K is the Kronecker initiator adjacency matrix.

61

GRAPH 500 BENCHMARKING USING FLASH MEMORY CARDS

2.4 Graph problems

One of the most common problems in graph theory is the graph traversal. It consists in visiting all the
nodes in a graph in a particular manner, for example listing all the nodes in an ascending order with
respect to their distance from a root node. In the next paragraph we focus on a specific technique that
outputs such a list.

2.5 Breadth-first search

The breadth-first search (BFS) is a strategy for searching in a graph that aims to expand and examine
all nodes by systematically searching through every solution. As mentioned above, the node list (parent
array) generated by this algorithm as output is ascending ordered with respect to the distance of the
nodes from a starting node, called root node.

This is the algorithm pseudocode:

1 initialize an empty queue Q

2 insert the root node in Q

3 while Q is not empty

4 u = top of Q

5 remove u from Q

6 for each neighbour v of u

7 if v has not been visited yet and it is not in Q
8 insert v in Q from below

9 mark u as visited

3 Graph 500 benchmark

The intent of Graph 500 benchmark is to develop a compact application that has multiple analysis tech-
niques (multiple kernels) accessing a single data structure representing a graph. In addition to a kernel
to construct the graph from the input tuple list, there is one additional computational kernel to operate
on the graph. The input values required to describe the graph are:

e Scale (S): the logarithm base two of the number of vertices (/V), so we can write N = 29,

e FEdgefactor: the ratio between the number of edges of the graph and the number of its vertices.

3.1 Overall benchmark

The benchmark performs the following steps:
1. Generate the edge list.
2. Construct a graph from the edge list (timed, kernel 1).

3. Randomly sample 64 unique search keys with degree at least one, not counting self-loops.

62

4 Performance measurements

4. For each search key:
a) Compute the parent array using the BFS algorithm (timed, kernel 2).
b) Validate that the parent array is a correct BFS search tree for the given search tree.

5. Compute and output performance information.

3.2 Performance metrics

The performance metrics computed by the benchmark is the Traversed Edges Per Second (TEPS).
This value is an index of the computational power of the machine on which the benchmark runs. Let
timegs be the measured execution time for kernel 2. Let m be the number of edges traversed by the
search, counting any multiple edges and self-loops. The performance rate (number of edge traversals

per second) is defined as
m

TEPS =

timegs

4 Performance measurements

4.1 JUNIORS

The Graph 500 benchmark has been performed on JUNIORS (JUelich Novel 10 Research System).
This is a computer cluster installed at Forschungszentrum Jiilich. It is based on a x86 architecture and
it consists in one Login Node and 10 Compute Nodes (juniors] to juniors10). Each node is composed
of 2 CPUgs, each of which consists of 6 cores, for a total of 12 cores and 48 GBytes of shared memory
per node. The JUNIORS cluster is equipped with:

e Hard disk drives

e 2 kinds of flash memory cards:
— Texas Memory Systems Ramsan 450 GBytes
— Fusion-10 Duo 320 GBytes

4.2 Benchmark configurations

The Graph 500 benchmark has been executed on juniors5 and juniors6 using the OpenMP Application
Program Interface parallelized version. The main intent of the measurements is to compare the time ex-
ecution and the performance metrics TEPS between three different storage memory types:

e Volatile memory
e Hard disk

e Texas Memory Systems Ramsan cards

63

GRAPH 500 BENCHMARKING USING FLASH MEMORY CARDS

For the flash memory cards case, the flash memory has been mapped into the process’ virtual memory
space using the mmap() function inside the xmalloc_large_ext() routine. The flash cards memory
capacity is 450 GBytes.

4.3 Problem size

Figure [I] shows the dimension of generated data (problem size) as a function of the scale parameter.
Enabling the external memory devices (hard disk or flash memory card), from scale 25 a large amount
of data starts to be written on the external drive. For scale larger than 26, the amount of data ex-
ceeds the volatile memory capacity, and the benchmark can be performed only with external memory
storage devices. This happens for data dimensions lower than the 48 Gbytes available from the ju-
niors node because the data writing is not well optimized, and more memory space is required than
necessary.

Scale Data size (GBytes)

14 4.19'10_3 102 T T T T T T T T T T T T T 71
15 8.39-1073
16 16810_2 @ 101 L H
17 3.35-1072 g.
18 6.71-1072 C oL |
19 1.34-107¢ g
20 2.68-107" - o' L]
21 5.37-107! €
22 1.07-10° g
23 2.15-10° <107 F 7
24 4.29-10° 5

100 10
32 f‘;g 181 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

e Scale

27 3.44 - 10!

Figure 1: Problem size for different scale values.

4.4 Performance for volatile memory application
4.4.1 Construction time, BFS median time and TEPS measurements

Table [I] shows the execution time for the construction and BFS routines, and the performance met-
rics TEPS using the volatile memory. The measurements have been performed for different threads
numbers, spanning from 1 to 12. The input value for the scale is 20, generating 268 MBytes of
data.

The same measurements have been performed for different scale values, keeping the number of threads
equal to 12 (Table 2] Figure [3aand Figure [3b).

64

4 Performance measurements

Threads number Construction time (s) BFS median time (s) Median TEPS

1 8.86 388101173 1070 430107 100
2 5.31 34510104 1070 488107100
3 3.77 275101723 1070 61910738710
4 903 2.32.10- 11T 1070 7 301074210
5 2.35 2.06-10"1723 1070 g91.107HL L 10
6 2.03 1.81.107 11711070 935,107 L3110
. 178 15110771107 113108705110,
8 1.65 1.46-10-178371070 135108+ L0 107
9 1.51 1131071759707 151108t L8100
10 1.37 1.07-10-1F8211070 1591084221107
1 1.29 0.97-10-2F6% 1070 1 70. 108420107
19 124 0.04-10-224 11070 881087701

Table 1: Construction time, BFS median time and median TEPS measurements for different threads numbers.

Scale Construction time (s) BFS median time (s) Median TEPS

M 289107 72110750 8651050 o
B 8T 163-10°555 7500 325108559050
16 678107 3.49-1079755 00 8.03-10575 56
17 128107 7.30-107505 00 20210873511
1B 240 142-102 550000 2.09-10°53 050
19 503107 3181072737100, 2.65- 105751110
20 10410° 8071072755100 2.00- 108735110
21 228-10° 252.1071130 1005 135108073 1%
2 420100 7381071500 90194107550
2 90410 213103500 6460107
2 1870 ST st
2 38100 L06-1055000 5.00-107 510,
26 767100 21710755100 5.03-107725 110

Table 2: Construction time, BFS median time and median TEPS measurements for different scale values.

65

GRAPH 500 BENCHMARKING USING FLASH MEMORY CARDS

10° T T T T T T T T T T] 2.2e+08 T T T T T T T T T T T
Construction time m—] [
BFS Median time —1 | 2e+08 B
I 1.8e+08 | :
1.6e+08 - —
o [
8 10 1@ Mesos o
g E o 120408 |t | | (o]]
= [
10408 |t] A
8E+07 []
66+07 [ﬁﬁ R
4e+07 o 7
o1 2 3 4 5 6 7 8 9 10 11 12 13 01 2 3 45 6 7 8 9 10 11 12 13
Number of threads Number of threads
(a) Construction time and BFS Median time (b) Performance metrics TEPS
Figure 2: Measurements for different threads numbers.
10° T T T T T T T T T T 4e+08 T T T T T T T T T T T
Construction time m— | [
102 b . BFS Median time ———1] 3.5e+08 [{ B D P
o B A ses0o 1 iji[' IBRERN
T .] 2.56+08 [- |- .
2 10" F & %) I
= 1 o
© i o 2e+08 - T e s E H S B
E 10" F 4 F R
= ‘] 1.5e+08 |1 (| |- T e e e o
R B O . L i | . a
107 F] 1e+08 11 s - R
F ; 5407 (1 | | ' ﬁﬁm .
104 L |] 0
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Scale Scale
(a) Construction time and BFS Median time (b) Performance metrics TEPS

Figure 3: Measurements for different scale values.

102 FT T T T T T3
M ‘ Flash1 reading bandwidth ———
0 : Flash2 reading bandwidth
10" i Flash1 writing bandwidth ———
M Flash2 writing bandwidth ———]
100 |ttt T
@ B i i i i L]
o [yt i ; ; i 1
Si 107 A T T A RS T |
m - ! i B
)

:_

109 - USRS USRNSSR SOSSRRSINE RSN SR W AL

0 L i i i i il

010° 210* 410* e10* 810* 1.10°
Time (s)

Figure 4: Flash cards bandwidth measurements.

66

4 Performance measurements

4.5 Scalasca & PAPI

The Graph 500 benchmark has been analyzed using two performance analysis tools: Scalasca and
PAPI. Scalasca is a software used to measure and analyze the runtime behaviour of parallel programs,
while PAPI is a library that is used in Scalasca to collect low level performance metrics of computer
systems. We focused on two types of measurements:

e Clock cycles (PAPI_TOT_CYC)
e Level 1 and level 2 cache misses (PAPI_L1_DCM and PAPI_L2_TCM)

Tables 3| [and [5] show the measurements for the generation routine (generate_kronecker_range()), the
creation graph routine (create_graph_from_edgelist()) and the BFS routine (make_bfs_tree()). We can
notice that in the BFS routine the ratio between cache misses and total cycles is bigger than in the
other two routines, which is likely due to the increased amount of random access to the memory for
the BFS.

generate_kronecker_range()
SCALE PAPI TOT_CYC PAPI L1 DCM PAPI L2 TCM

16 2.99-1011 3.35-10°% 2.55-10°
18 1.28-1012 2.58 - 107 9.91-106
20 5.47-1012 8.37-10° 5.78-107
22 2.49-1013 3.72-1010 3.51-10%

Table 3: generate_kronecker_range() routine.

create_graph_from_edgelist()
SCALE PAPI TOT_CYC PAPI L1 DCM PAPI L2 TCM

16 4.34-10° 2.96-10° 1.21-10°
18 1.42-10'° 2.23-107 4.87-10°
20 6.05- 10 1.03-10° 2.37-107
22 2.54- 10" 3.81-108 3.41-108

Table 4: create_graph_from_edgelist() routine.

make_bfs_tree()
SCALE PAPIL_TOT CYC PAPI_L1_.DCM PAPI L2 TCM

16 4.57-109 1.51-107 1.07- 107
18 1.49-1010 6.14-107 4.56 - 107
20 3.76 - 1010 3.64-108 2.99-108
22 1.62- 10 2.85-10° 2.49-10°

Table 5: make_bfs_tree() routine.

4.6 Performance for different storage devices

After testing the Graph 500 benchmark using only the volatile memory, we enabled hard disk and flash
memory cards as external storage memory devices, in order to compare the benchmark performances.

67

GRAPH 500 BENCHMARKING USING FLASH MEMORY CARDS

Table [6] shows these measurements for scale 25 and 26. For these scale values it is possible to see ex-
ecution time differences between the different storage memories, because the data are partially written
on the external devices, slowing down the performance. For scales lower than 24, no significant differ-
ence appears because data are almost entirely written and read in the volatile memory, while for scales
larger than 26 it is not possible to perform the benchmark with only the volatile memory, because data
dimensions exceed its capacity.

Scale Construction time (s) BFS Median time (s) Median TEPS

. 109 107
Volatile memory 25 3.83-10! 1.06-101 7575 100 5.09-107 57 Toe
. 10° . 106
Hard disk 95 4.71-102 9.42-10°771 010 5.76- 10750 106
. -1 . 7
Flash memory card 25 1.02-102 9.67-10°75% 100 5.62-107153700
. 109 100
Volatile memory 26 7.67-10! 21710073710 5031077275 106
. 103 107
Hard disk 2 3.66-10% 2.43-1037270 10, 3.34-10773 100,
eyt 10T
Flash memory card 26 3.91-10° 3.77-1037527 00 1.79-107732710

Table 6: Different storage devices.

In Table|7| we can analyze in more detail the execution time between the different benchmark routines
for scale 26. In this case the comparison is done with 2 flash memory cards enabled simultaneously.
The unique very large difference is in the graph creation routine, where a large amount of data are
written on the flash cards, causing a significant increase of execution time. For the BFS routine no
flash card access is observed, which explains the BFS timings being the same for the volatile and flash
memory version.

Kernel Execution time for volatile memory (s) Execution time for 2 flash cards (s)
Graph generation 244 243

Graph construction 78 2620

BFS 24.5 4+ 2.5 24.5+5.5

BFS validation 17+2 19.5+0.5

Table 7: Execution time for different routines (scale 26).

4.7 Flash cards bandwidth

The flash cards bandwidth measurements have been obtained using the script tmsmon.pl, a simple tool
implemented within this project used to count the number of blocks read and written on the flash cards
using the card’s hardware counters as well as Linux block layer counters. The size of each block on the
flash device is 4096 Bytes, and the reading and writing operations are performed always on full blocks,
which may result in much more data being read and written than absolutely necessary. The bandwidth
values, shown in Table [§] have been calculated taking the ratio between the total amount of data read
or written on 2 flash cards and the execution time spent during the construction routine. Table [9]shows
measurements for different kernels for scale 27. For this scale only three BFSs have been performed,
because of the large execution time required. The writing operations are performed only during the
generation and construction routines, while the reading operations are performed during construction,
BFS and BFS validation routines. The amount of read and written data is much larger than expected,

68

5 Conclusions

which means that the writing on the flash cards blocks is not efficient. In Figure 4] we can see the
reading and writing bandwidth for single cards. While the writing operations look similar, the reading
ones are significantly different.

Scale Bandwidth (Bytes/s)
read write

24 0 3.2-10°

25 2103 8.9-108

26 1.4-10% 1.3-10°

27 1.2-109 2.7-108

Table 8: Aggregate average bandwidth measurements for 2 flash cards.

Kernel Execution time Data written =~ Writing bandwidth Data read Reading Bandwidth
(s) (Bytes) (Bytes/s) (Bytes) (Bytes/s)

Graph generation 4.96-102 9.66 - 103 1.9-107 0 0

Graph construction ~ 9.37 - 104 2.54-1013 2.7-108 1.10-10'4 1.2-10°

BFS 2.33-1034+2.5-102 0 0 3.25-1018 +3.6-101 1.4-10°

BFS validation 6.07-101 +1.2-101 0 0 3.43-10% +1.3-107 5.13-107 + 1.7 -107

Table 9: Scale 27 performance for 2 flash cards.

4.7.1 FIO

FIO is a benchmark used for 10 performance operations. With this software we obtained informa-
tion about the bandwidth and IOPS for flash cards and hard disk in sequential and random read-
ing and writing, as we can see in Table |10| (Values in brackets are the vendor specifications of the
flash memory card). The bandwidth measurements for reading operations obtained from Graph 500
(Figure) match very well the FIO values for one of the two flash cards, while for the other flash
card the reading bandwidth is two orders of magnitude lower. The writing bandwidths instead are
similar for the two flash cards, but they are one order of magnitude lower than the FIO measure-
ments.

Bandwidth (Bytes/s) 10PS
read write read write
seq rand seq rand seq rand seq rand
Hard disk 1.12-10% 1.13-10%° | 2.56-10° 4.23.10° | 2.81-10* 2.81-10* | 6.30-10> 1.08-10?
Flashcard | 1.30-10° 1.03-10° | 8.92-10° 8.82-10% | 3.25-10° 2.57-10° | 2.23-10° 2.21-10°
(1.25-10°) (9.00-10%) (3.00-10°) (2.20-10°)

Table 10: FIO measurements.

5 Conclusions

From the Graph 500 benchmark executions we saw that for scales smaller than 25 the generated data
dimension is significantly lower than the volatile memory capacity, and there is no difference between
enabled and disabled external storage memory devices, because also in the second case the data are al-
most entirely read and written in the volatile memory. For scale 25 and 26 it is still possible to perform

69

GRAPH 500 BENCHMARKING USING FLASH MEMORY CARDS

the benchmark with only volatile memory. In case of enabled external storage memory, a consider-
ably large amount of data are written on the external drive during the construction routine, causing a
significant increase of execution time. In these cases the reading operations to the external memory per-
formed during the BF'S routine are negligible, which results in similar execution times for enabled and
disabled external memory. From scale 27 the volatile memory is not sufficient to perform the bench-
mark, and the external memory becomes necessary. In this case, in addition to writing operations, also
the reading operations are considerably large, causing an increase of execution time for the BF'S routine
too. The read and written volumes are much larger than the problem size, which means that the blocks
counted in reading and writing operations are just partially full of data, leading to low efficiency. From
the bandwidth analysis, the flash cards show larger access speed than hard disks, both in reading and
writing operations. Compared to hard disks, flash memory cards represent the best solution when the
volatile memory is not sufficient to manage large amounts of data.

6 Acknowledgements

I would like to thank my adviser Prof. Dr. Dirk Pleiter and Dr. Marcus Richter, for guiding me
throughout this work experience. Thanks to Mathias Winkel, Ivo Kabadshow and all the JSC staff, for
making possible this very interesting and instructive programme. Finally thanks to all the other guest
students, for the great time spent together.

References

1. TOP500 Supercomputer Sites. Available from: http://www.top500.org

2. The Graph 500 List. Available from: http://www.graph500.org

3. J. Leskovec, D. Chakrabarti, J. Kleinberg, C Faloutsos, Z. Ghahramani. Kronecker Graphs: An Approach to Modeling
Networks. Journal of Machine Learning Research 11 (2010) 985-1042

4. M. Faloutsos, P. Faloutsos, C. Faloutsos. On power-law relationships of the internet topology. Proceedings of the Con-
ference on Applications, Technologies, Architectures and Protocols for Computer Communication, pages 251-262,
1999.

5. J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. The web as a graph: Measurements,
models and methods. Proceedings of the International Conference on Combinatorics and Computing, 1999.

6. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J. Wiener. Graph structure
in the web: experiments and models. Proceedings of the 9th International Conference on World Wide Web, 2000.

7. S. Redner. How popular is your paper? An empirical study of the citation distribution. European Physical Journal
B,4:131-134, 1998.

8. D. Chakrabarti, Y. Zhan and C. Faloutsos. R-mat: A recursive model for graph mining. SIAM Conference on Data
Mining, 2004.

9. J. Leskovec, J. M. Kleinberg and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and possi-
ble explanations. Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, pages 177-187, 2005.

10. J. Leskovec, J. M. Kleinberg and C. Faloutsos. Graph evolution: Densification and shrinking diameters. Transactions
on Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

70

Generating parallel random numbers: As easy as 1, 2, 37

Artur Strebel

Bergische Universitidt Wuppertal
GauBstraBe 20
42119 Wuppertal

E-mail: astrebel @studs.math.uni-wuppertal.de

Abstract:

In this paper a general introduction into random number generation is given and some of the most
common pseudo-random number generators (PRNGs) are described. Lately these PRNGs have en-
countered some problems with modern computer architectures. I also present a novel approach to
random number generation proposed by John K. Salmon et al. in [[1]: The Random123 library. It
contains three PRNGs, the first two are based on cryptographic standards (AES and Threefish), the
third one taking a new approach. All three PRNGs have excellent statistical properties and produce at
least 264 x 2'2® random numbers while maintaining good performance on both multi core and single
core architectures. These PRNGs have been compared with the SPRNG library which is currently
used at the Forschungszentrum Jiilich.

1 Introduction

A random number generator (RNG) produces sequences of numbers which do not seem to follow
any pattern thus being “randomly generated”. Achieving this goal is a difficult task since a computer as
a deterministic machine will not be able to produce real non-deterministic numbers. Therefore pseudo-
random number generators (PRNGs) were developed. These algorithms have become an important
part of many applications such as molecular dynamics or diverse Monte Carlo simulations. Since these
applications have been developed to be run on modern multi core architectures it has become crucial
for PRNGs to be able to run in parallel as well.

In this paper I present a novel approach to parallel random number generation. First I will provide a ba-
sic insight into random number generation by giving basic definitions and quality criteria in section 2.
It also covers some currently used pseudo-random number generators. Since they are designed to run
on a single core it is necessary to provide schemes to parallelize these PRNGs. This will be described
in section 3 revealing also general problems with these PRNGs considering parallelization which lead
to the new Random123 PRNGs from Salmon et al. They will prove to have good statistical properties
while being on par with the SPRNG library considering CPU time. The big advantage of these novel
PRNGs is their intuitive setup and minimalistic memory usage. This library is discussed in section 4
along with the SPRNG library which implements parallelized versions of some conventional PRNGs.

71

GENERATING PARALLEL RANDOM NUMBERS: AS EASY AS 1, 2, 3?

In section 5 I present results from statistical tests and compare the SPRNG and the Random123 library
regarding these statistical properties and run time on multi core architectures. In the end I give recom-
mendations on which PRNG to use depending on the application.

2 Random number generation

The first part of this section focuses on giving a general insight on random number generation and
theoretical measurements evaluating the quality of the produced numbers. The second part will provide
examples for some established pseudo-random number generators.

2.1 Basic Definitions

There are two different approaches on random number generation. The first approach are physical
random number generators which generate real random numbers by measuring random sources from
physical processes. These processes may be radioactive decay or atmospheric noise. Sequences pro-
duced by a physical random number generator are non-reproducible and generated fairly slow.

Since it is extremely important for scientific simulations to have reproducible data, physical random
number generators are not suited for scientific computing. For this purpose pseudo-random num-
ber generators (short: PRNGs) have been designed. They can be defined as a 5-tuple (S, p, f,U, g),
where

e S is a finite set of states s called the state space,

e i is a probability distribution on S used to select the initial state (seed) sg,
e f: S — §Sis the transition function,

o U is the output space,

o g: S — U is the output function.

It is very natural to set S = Z/nZ with n = 2"V where W is the size (in bit) of the used data type
(float, double,...). This is mainly for computational purpose since every set can be reduced
to its internal bit-representation. Then, with f and g being well defined, it is obvious that the period
of a PRNG is bounded by the cardinality of S. Every good PRNG is designed such that it exhausts
(nearly) the complete state space. The output space is typically chosen to be &/ = (0, 1). This enables
the invoking application to scale the random numbers to any interval needed.

This kind of random number generators allow reproducible streams of numbers by invoking the same
PRNG with the same seed. The downside of PRNGs is the fact that they are by construction determin-
istic thus not really “random”. So the question following this observation is how to decide whether a
sequence of numbers is "random" or if it follows some obvious pattern. In the following, two criteria
for measuring "randomness" are given. The first one focuses on checking whether the random numbers
follow an uniform distribution while the second one checks if the generated numbers are in some sense
"unpredictable".

Consider n successively generated numbers and interpret them as coordinates in a n-dimensional unit
square (assuming I/ = (0, 1)). Dividing this unit square into k subsquares with equal size and counting

72

2 Random number generation

the points per subsquare should lead to a multinomial distribution with an expected value of %.

So taking 100 points and assuming k£ = 4 would mean that each subsquare should hold about 25 points
in order to pass this test. It can be seen as a generalization of a Bernoulli distribution with success
probability p = % for every subsquare.

The spectral test is a very powerful test which analyzes the lattice structure of certain classes of PRNGs
thus giving a good a priori measurement of its quality. This test and the according PRNGs are discussed
in the next part.

A more technical criterion is commonly used by cryptographers and is referred to as the (strict)
avalanche criterion. Given an input s; and the according output u; after applying the PRNG the
following implication has to hold:

Change one single bit in s; = Each bit in u; has a 50% probability to change.

This test gives an indicator on how the output is linked to the input. So to put this criterion in other
words, every output bit should be affected by every input bit. While this property is far more important
for security of cryptographic algorithms it will prove useful in setting up and generating high quality
random numbers as seen later on.

So in general a good PRNG should produce numbers which are both uniformly distributed and un-
predictable. Another important criterion for randomness is the mutual independence of the generated
numbers. Looking at the first class of PRNGs which will be discussed in the next section this criterion
will not be met leading to problems when trying to parallelize them.

2.2 Conventional PRNGs

Most of the currently used PRNGs have one general property in common. They use a complex tran-
sition function f and a trivial output function g to generate random numbers. Either g is simply the
identity making the output space equal to the state space or g is a linear mapping into (0, 1). Both
ways, the output function is not fundamentally responsible for the quality of these PRNGs hence we
will concentrate on analyzing the transition function f. This function generates the current number s;
by applying a complex function to the last state s;_1. One of the simplest PRNGs is a Linear Con-
gruential Generator (LCG). Because of the simple transition function this generator is fairly fast. It is
given by:

f(s)=axs+b modm

The parameters a, b, m can be chosen arbitrarily but heavily influence the quality of the generated
random numbers. Applying the spectral test to the produced sequence results in a qualifiable lattice
structure which can be described with the theorem of Marsaglia:

Marsaglias theorem: Given a LCG with ;41 = ax s;+b mod m and u; = %, the points defined by
a k-tuple (uy, . .., uy k1) of consecutive random numbers are distributed on a maximum of v/m x k!
parallel hyperplanes in R¥.

This theorem implies the more or less undesirable fact that LCGs always have this hyperplane structure.
So keeping this in mind the goal of a good LCG is to achieve this upper bound as good as possible thus

73

GENERATING PARALLEL RANDOM NUMBERS: AS EASY AS 1, 2, 3?

approximating an uniform distribution by choosing appropriate parameters. An example for poorly
chosen parameters is the LCG "RANDU" with a = 65539, b = 0, m = 23!. Using Marsaglias
theorem with £ = 3 yields a maximum of 2344 possible hyperplanes while RANDU only reaches
15 hyperplanes. So the distances between these hyperplanes is too big to approximate a uniform
distribution.

A more general form of a LCG is the Multiple Recursive Generator (MRG). MRGs use more than one
previously generated number to compute the next random number:

n

f(si) = Z (a; x si—j) +b mod m

j=1

Depending on the parameter choice this PRNG tends to have better statistical properties and a longer
period than a LCG. An often used special case of a MRG is a Lagged Fibonacci Generator (LFG)
where each random number s; depends on exactly two previous states s;_;, S;—x (1 and k are called the
lags of the generator and w.l.0.g. [> k), both having multiplier ¢ = 1 and b = 0.

Presumably the most well known PRNG is the Mersenne Twister. Its name comes from the extremely
long period of 219937 — 1 which is a Mersenne prime number. The computation of the random num-
bers has a couple of steps consisting of XOR and bitwise AND operations. The Mersenne Twister
produces 624 numbers in one iteration which leads to equally distributed random number in hyper-
cubes up to dimension 623. On the downside, these numbers have to be stored resulting in a high
memory usage of 2,5 kB. So using this PRNG for applications where memory is limited this is not
optimal.

3 Going parallel

Considering the development of high performance computing (HPC) which focuses on heavily parallel
machines it is only natural to update PRNGs to reflect these changes. So the goal is to run a PRNG on a
multi core architecture each producing an unique, independent stream of random numbers. This section
presents two approaches to parallelize already existing PRNGs: the substream and the multistream
approach. Both are relatively straightforward but both have their own issues when trying to apply to
conventional PRNGs.

3.1 Substream approach

The first idea is to split up the state space into disjoint subspaces and assign each to one core. This
is a fairly simple approach and requires only one set of good parameters. The big downside of this
approach is that many PRNGs do not allow deterministic partitioning meaning it can not be assured
that a certain partitioning leads to independent streams. Assuming the state space has been split into
two subsets with arbitrary starting states s; and s; it may be possible that applying the PRNG on sy,
already leads to the state s; after a few steps thus making the streams dependent. It has also to be taken
into account that the state space will of course be smaller on each core. So PRNGs with a rather small
period are not optimal for this approach.

74

3 Going parallel

A good example for substream parallelization is the Mersenne Twister. Its state space is big enough and
the partitioning can be done by executing a rather complicated jump ahead procedure.

3.2 Multistream approach

The other approach takes a look at the set of parameters. As already mentioned, nearly every PRNG has
parameters which affect the output stream and the quality of the random numbers. So the idea of the
multistream approach is to use different sets of parameters on each core. This approach is easy to set
up since every PRNG can be invoked in the same way only using different parameters. This approach
needs a PRNG with easy to compute or predefined sets of good parameters. For most PRNGs the set
of good parameters is not only fairly limited but also it might be non-trivial to find good parameters or
the quality of the numbers has to be examined afterward.

As for conventional PRNGs, LFGs are well suited for the multistream approach. It can be shown
that for this PRNG the number of different streams is limited to maximal 2("W=D*(=1=1 1t should
be noted that despite the big amount of distinct streams it might be tricky to setup different streams
without getting stream dependencies. The Random123 library which will be presented later also favors
this multistream parallelization.

If the PRNGs allow both kinds of parallelization it is of course possible to combine them to achieve a
better rate of scalability. Again, the Random123 library allows this kind of hybrid parallelization in a
very natural and convenient way.

3.3 Parallelizing conventional PRNGs

Now knowing two ways to parallelize a PRNG we can look back at the conventional PRNGs and try
to apply these schemes. Starting with the LCGs it is obvious that using the multistream approach is in
general more appropriate since the partitioning of the state space is rather difficult to achieve before-
hand. Nevertheless, if b = 0 the substream approach may be feasible by calculating the k-th random
number via s;, = a* x sp mod M. Depending on the application both approaches can come in handy.
If the state space is big enough for the application and a good parameter a is given the substream
approach with b = 0 can be used. If only a few cores are available using predefined sets of good
parameters with the multistream approach may be preferred.

Similar results naturally hold for MRGs and LFGs. A special case of a LFG should be highlighted in
this context. Instead of adding the two lagged random numbers the Multiplicative LFG uses a multi-
plication to combine these numbers. This allows again the substream approach as described above.
The Mersenne Twister can be parallelized via the substream approach as pointed out in the respective
section. But is has to be kept in mind that the Mersenne Twister requires a big amount of memory
which can be even more critical on multi core architectures.

Even though some successful libraries implementing parallel random number generation are avail-
able there is one very central property which nearly all conventional PRNGs share. All PRNGs
rely on using at least the previously generated random number to compute the next one thus mak-
ing the PRNG sequential. This property is very undesirable when trying to parallelize any applica-
tion.

75

GENERATING PARALLEL RANDOM NUMBERS: AS EASY AS 1, 2, 3?

4 Parallel PRNGs

As seen in the last part of the previous section the ultimate goal of parallel number generation is to be
able to generate each number independently of all others in order to minimize memory requirement
and maximize scalability. This section introduces two libraries which will prove to be well suited
for parallel applications. The SPRNG library uses conventional PRNGs and parallelizes them via
multistream approach. The Random123 library chooses a completely novel approach using modified
cryptographic block ciphers to achieve high quality, easy to set up random numbers. These libraries
are presented in this section with giving only a little to none qualification about quality and CPU time.
These results will be given in the next section.

4.1 The SPRNG library [3]

The Scalable Parallel Pseudo Random Number Generator library (SPRNG) implements five different
types of conventional PRNGs.

The first one is a combined generator consisting of a 64-bit LCG and a MRG. Its transition function is
given by:

z(n) = z(n) + y(n) * 23 mod 2
y(n) = 107374182 « y(n — 1) + 104480 x y(n — 5) mod 2147483647

y(n) stays constant for every stream so the 64-bit LCG x(n) defines the different streams. This leads to
a period of 2219 which the possibility of over 108 different streams.

Generator two and three are both simple LCGs with a 48 respectively 64- bit modulus leading to accord-
ing periods of 24® and 264. The number of different streams available is in the order of 5 x 10 and 108,
In order to assure stream independence large prime numbers are used for parameter b. Empirical tests
have shown that this method improves the theoretical results presented in [4]].

The fourth generator is a Modified LFG. The transition function is a XOR-conjunction of two slightly
modified LFGs:

z(n) = z(n) XORy(n)
X(n)=Xn—-k)+X(n—-1) mod M
Y (Y(n—k)+Y(n—-1) mod M

<
I

Note that 2z(n) = (X (n) >> 1) << 1 meaning the last bit is set to zero while y(n) = Y (n) >> 1.
This modification eliminates some stream correlations which have been noticed in the unmodified
version. With default parameters (k = 861, [= 1279, M = 232) this PRNG has a period of around
21310 with possibly 23764 different streams. As mentioned above setting up different streams while
retaining stream independency might be a tricky task. For further information about this problem see

[5].

76

4 Parallel PRNGs

The fifth generator is a multiplicative LFG which has already been mentioned above. The transition
function is given by:

x(n) =xz(n—k)*x(n—1) mod M

Using this PRNG with default parameters (k = 5, 1 = 17, M = 2%%) it achieves around 2'°%® distinct
streams each with a period of 234, It has the same concern about stream correlations as the previous
PRNG.

4.2 Cryptographic block ciphers

Cryptographic block ciphers have already been successfully used for random number generation since
their task of providing an output which seems to lack any measurable structure and is highly sen-
sible to slight changes to the input is exactly what is needed for good random numbers. The main
reason why they have not been able to come out on top is that they are significantly slower than con-
ventional PRNGs. The Random123 library tackles this problem by trading security arrangements for
speed. First of all I will introduce two cryptographic functions which are the basis for the block ci-
phers.

Definition: A SP-network is a diffusive bijection consisting of iterative rounds of blockwise bijective
substitutions (S-boxes) and permutations (P-boxes).
So a SP-network is a bijective mapping providing all dependencies between input and output bits

ol biEE bl b

Figure 1: A SP box with four parallel S-boxes and a P-box afterwards. The P-box should distribute the output
from each S-box as broad as possible to ensure good diffusion.

needed to meet the avalanche criterion. All block ciphers in this paper can be seen as a SP-network.
They differ by using different bijections for the S-boxes. Depending on the SP-box several rounds are
needed to provide enough diffusion. Diffusion gives a hint how well the output is linked to the input.
So a function with good diffusion links every input bit with every output bit thus meeting the avalanche
criterion.

77

GENERATING PARALLEL RANDOM NUMBERS: AS EASY AS 1, 2, 3?

Definition: The Feistel function is a bijective construction between 2p-bit inputs from an arbitrary
keyed p-bit function F}, and a bijective (keyed) p-bit function By, and a group operation .

L=R6&F(B, (L) R=B, (L)
I|. R
v
Fi
Bk
|
L' R’

L' =By(R) R =F(R)&L

Figure 2: A schematic Feistel function. Given the output one can reconstruct the input by the functions given at
the top. @ is typically a bitwise AND or XOR.

Feistel functions are often used for S-boxes. It allows the use of non-bijective functions without losing
the possibility to decode the output.

The first very well known cryptographic standard is the Advanced Encryption Standard (AES). It is used
in many applications for example SSH, WPA?2 or PGP. AES is designed as a ten round SP-network us-
ing rather complicated SP-boxes. The input message will be encrypted in 128-bit blocks and addition-
ally eleven precomputed 128-bit keys are XOR’ed with the input of each SP-box. The other algorithm
is called Threefish. This standard is using a 72 rounds SP-network but with much easier and faster S-
boxes by only using elementary operations like additions, rotations and XOR operations. As with AES
Threefish uses an additional 128-bit key to encrypt its 128-bit input. Both algorithms can be expanded
to work on 256-bit words and keys providing even better security.

4.3 The Random123 library [1]

As already mentioned, AES and Threefish are too slow to be used as an efficient PRNG. Therefore
it is necessary to modify these algorithms such that the good quality of the random numbers is still
given but run faster by a significant factor without taking too much or even any additional memory.
This is mostly achieved by reducing the number of rounds. For AES only five rounds are needed to
still pass all important statistical tests which will be discussed later. Also the round keys are computed
by a variation of the Weyl/-function. In this case it is a simple addition with a constant which leads
to fast computation and no memory overhead. Compared to storing the eleven round keys separately
in AES this is a gain of 11 X sizeof(datatype) bit with only a negligible extra CPU cost. This
“new” algorithm is called Advanced Randomization System (ARS). The efficiency of this algorithm can
be drastically improved if the processor supports AES-NI, a new instruction set for AES encryption

78

5 Numerical Results

which speeds up the algorithm by a factor of around eight. Having this instruction set is crucial for ARS
since otherwise it will significantly fall behind in CPU time compared to other PRNGs. In a similar
way, Threefish is sped up by only applying a maximum of 20 SP-boxes although even less are required
to guarantee good statistical properties. This algorithm is natively able to split up the output to produce
up to 4 random numbers at once which can come quiet handy in some applications. To differentiate
this algorithm from Threefish this one is called Threefry. The third PRNG in the Random123 library is
called Philox and uses a fairly simple Feistel function which is extremely well suited for GPUs. This
Feistel-function is given by:

L' =BL(R) = (R x M) mod 2V
R =Fy(R)@L=|RxM/)2"V|®okaL

It only needs seven rounds and can similar to Threefry produce up to four numbers at a time.

This kind of PRNGs are called counter-based because the transition function can be as simple as
possible by just being a counter: f(xz) = = + 1. Since the avalanche criterion is met for these PRNGs
even a slight change of the state space will lead to a completely different and independent number. In
this way, the generation of a random number is only dependent on the counter and the key eliminating
all dependencies between the produced random numbers. We can therefore either use the substream
approach to divide the state space in a very natural way by just assigning the first kK numbers to the first
core, the second k to the second core and so on or we use the multistream approach and run the same
counter space on each core and just change the key. Again, changing the key, can be nothing more than
just increasing its value by one. If an unique system constant (e.g. the MPI rank) is used as a key the
memory for storing the key can be saved. So the parallelization of the Random123 PRNGs is very easy
to set up and produces no memory overhead at all.

5 Numerical Results

So, having an overview on the different PRNGs the important question is how good these PRNGs are,
considering statistical quality and CPU time. While there is literally an infinite amount of tests for ran-
domness it is important to have a library providing the most important ones in a convenient way. One
of these libraries is the TestUO1 library which will be described in the next part. Some routines of this
library are applied to the PRNGs from SPRNG and Random123. Finally, I produced 10'? random num-
bers with these random number generators and measured the CPU time.

5.1 TestUO01 batteries

The TestUO1 library [6] implements various tests to measure statistical patterns in the random num-
ber stream. There are three test batteries which apply a set of tests on a PRNG and report any sus-
picious results they find. The first one is SmallCrush and includes 15 tests. As the name implies
this is a rather small test and checks for the most basic patterns. Failing tests from this battery is
a clear sign for statistical flaws in this PRNG and should most times lead to dismissing this PRNG.
The second battery is Crush. It consists of 96 tests and is a good indicator for the quality of a
PRNG. Consequently, the third battery is BigCrush and has 106 tests with most of them also being

79

GENERATING PARALLEL RANDOM NUMBERS: AS EASY AS 1, 2, 3?

in Crush but with significantly bigger parameters. Only a very few PRNGs pass the stringent tests of
BigCrush.

5.2 Crush results

Here I provide a comparison of the SPRNG and Random123 PRNGs. The numbers in the table indicate
the number of tests the according generator failed in the according Crush test. The starred results are
literature values.

Generator SmallCrush Crush BigCrush
SPRNG-MRG 5 - -
SPRNG-LCG48 0 5 8
SPRNG-LCG64 0 1 8
SPRNG-LFGI 0 0 0
SPRNG-LFG2 0 3 4
ARS 0* 0* 0*
Threefry4x32 0 0 0
Philox 0* 0* 0*

As seen from the table all Random123 PRNGs pass every test thus being crush-resistant. Except for the
MRG from SPRNG all other generators also produce acceptable results.

5.3 CPU time measurements

Another important criterion for a good PRNG is the needed CPU time. In the following I give a direct
comparison between the SPRNG and Random123 libraries by measuring the time taken to produce
10'2 random numbers on up to 1024 cores. These tests have been run on JuRoPA, a computer cluster
from the Research Centre Jiilich with 2208 compute nodes each having two Xeon X5570 Nehalem-
EP quad-core processors at 2.93 GHz[[7]. Both libraries have shown to scale nearly perfect for up
to 1024 cores. It has to be noted that these 10" numbers have not been tested for statistical prop-
erties. Also, even if not in the table it is to expect that ARS will perform about twice as fast as
Threefry.

Generator 20 cores 2° cores 210

cores
SPRNG-MRG 4838 148 4.63
SPRNG-LCG48 4837 149 4.65
SPRNG-LCG64 | 7260 219 6.87
SPRNG-LFG1 8090 249 7.81
SPRNG-LFG2 8832 263 8.32
Threefry4x32 12875 384 12.03

Looking at the table and combine it with the statistical results we can see a tradeoff between statistical
quality and CPU time.

80

6 Conclusion

6 Conclusion

In this paper I gave a basic insight into random number generation and its parallelization approaches.
I then explained why the current generators have problems with HPC and presented a novel approach
to random number generation by using modified cryptographic standards. They are very natural to
parallelize and have both good performance and pass stringent statistical tests. Nevertheless, using the
optimal PRNG highly depends on the demands of the invoking application and computational resources
(memory usage and CPU time). The main criteria are statistical quality of the random numbers, CPU
time, memory usage, scalability.

If low memory usage is critical the PRNGs from the Random123 library can be recommended since
they produce no memory overhead despite from the space needed for the key and the counter. Also,
since different streams are easy to set up and reliably independent the Random123 PRNGs are well
suited for highly scalable applications. The SPRNG library is partially better when comparing CPU
time but sacrifices some statistical quality for it. But if the invoking application is not susceptible
to these statistical flaws using one of the first three PRNGs from SPRNG will result in fast number
generation. If the application focuses on statistically flawless numbers then either a LFG from SPRNG
or the Random123 library is recommended.

Looking into the future it is probable to see further research into counter-based random number genera-
tion since its usage is very intuitive and scales extremely well on multi core architectures.

References

1. John K. Salmon, Mark A. Moraes, Ron O. Dror, David E. Shaw. Parallel Random Numbers: As Easy as 1, 2, 3,
D.E. Shaw Research, New York, NY 10036, USA

2. J.E. Gentle, W.Hirdle, Y.Mori. Handbook of Computational Statistics, Springer Verlag, 2004

3. M. Mascagni and A. Srinivasan (2000), Algorithm 806: SPRNG: A Scalable Library for Pseudorandom Number Gen-
eration, ACM Transactions on Mathematical Software, 26: 436-461

4. O.E. Percus and M.H. Kalos: Random number generators for MIMD processors, Journal of parallel and distributed
computing, 6 (1989) 477-497

5. M. Mascagni, S.A. Cuccaro, D.V. Pryor, M.L. Robinson: A fast, high quality, and reproducible parallel Lagged-
Fibonacci pseudorandom number generator

6. P. LEcuyer and R. Simard, TestUOI: A C Library for Empirical Testing of Random Number Generators, ACM Trans-
actions on Mathematical Software, Vol. 33, article 22, 2007.

7. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA _node.html

81

Design and Implementation of an Experimental
Finite Element Solver

Daniel Arndt

University of Gottingen
Institute for Numerical and Applied Mathematics
Lotzestr. 16-18
D-37083 Gottingen, Germany

E-mail: d.arndt@math.uni-goettingen.de

Abstract:

In Finite Element applications it is often desired to have a modular design in order to change different
parts of the program easily. However, in the classical assembly approach, e.g., the element type and
the physical problem are strongly coupled.

In this project a Visitor Pattern is used to overcome this coupling. It turns out that this is a promising
approach for a modular design. All basic functionalities of an Finite Element code were implemented
and no serious problem occured.

1 Introduction

The Finite Element Method (FEM) is one of the most used techniques to solve partial differential
equations numerically, and was awarded to be one of the top 10 Computational Methods of the 20th
Century [5]. Especially for domains with complicated geometries FEM can be easily applied, other
methods may have some difficulties here.

Since the 1960s FEM is a constantly growing research area. Especially in the last few years some
innovative concepts has been introduced, like:

e Extended Finite Element Method (XFEM)
e Discontinuous Galerkin Method (DG)
e [sogeometric Analysis (IGA)

To analyze these fields a flexible framework is beneficial. At the moment there are not many FEM
codes that have enough flexibility. In a lot of FEM solvers, e.g., the element type is strongly attached
to the problem to solve. Therefore, it is often hard to change the physical problem and keep the element

type.

83

DESIGN AND IMPLEMENTATION OF AN EXPERIMENTAL FINITE ELEMENT SOLVER

The aim of the project is to develop a code in which different elements and different physical problems
can both easily be exchanged independently of each other. Furthermore, the code should offer the flexi-
bility needed for modern finite element techniques. For doing so, the code must be designed as modular
as possible. To gain this flexibility the Visitor Pattern is used. This pattern makes it possible to extend
a given class with additional methods without modifying the class itself. In our case the basic FEM
class holds different elements and is extended by a class that describes the physical problem. In this
sense for every new physical problem one module has to be written.

2 Code Design

When developing software one often needs to solve commonly occurring design problems. Instead
of solving these design problems every time again, one may want to use ideas of solutions to these
problems that were thoroughly thought through. This is the concept of Design Patterns.

In 1994 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, commonly known as the
Gang of Four, published a book [2] in which they described 23 software design patterns which are
nowadays the classic Design Patterns. They are separated these patterns in three categories

o Creational Patterns: Separate a system from how its objects are created, composed, and repre-
sented.

o Structural Patterns: Identify simple ways to realize relationships between entities.

e Behavioral Patterns: Identify common communication patterns between objects and realize
these patterns.

2.1 Visitor Pattern

The Visitor Pattern is a behavioral pattern. It concerns the problem of a class which continuously
has to be extended by functions. Instead of changing the base class every time, the idea is to sepa-
rate new algorithms in a new class. The new class which realizes new methods is then called “visi-

99

tor”.

This concept can be implemented as following (cf. Figure[I). The base class has to have an interface
method that takes a derived visitor class as argument. In Figure [I] this method is called “accept”. Then
the desired method can be used by calling the interface method with the respective visitor class as
argument.

The executed function both depends on the derived class that provides the interface and on the derived
visitor class.

84

2 Code Design

<<interface>>

Client Visitor

visit(ConcreteElement : Object)

i | <<realize>>
|

ConcreteVisitor

Element

accept(Visitor : Object)

T visit(ConcreteElement : Object)

ConcreteElement

accept(Visitor : Object)

Figure 1: The class Element implements an “accept” method and the class Visitor a “visit” method. The func-
tionality which has to be added to the Element class is then described in the class ConcreteVisitor.
The operation can afterwards be used in the class ConcreteElement by calling the accept method with a
ConcreteVisitor instance as argument.

2.2 Structure of the Finite Element Method

A Finite Element program can be divided in three parts:

1. Preprocess: First the problem to be solved has to be specified. Afterwards a mesh for solving it
is generated.

2. Solving process: The finite dimensional (linear) problem is assembled and then solved by suit-
able direct or iterative linear solvers.

3. Postprocess: Quantities of interest have to be calculated out of the solution and may for example
be displayed graphically.

The main focus in this work lies in the matrix assembly process. Here the different Finite Ele-
ment Methods have the biggest differences when using different elements (like in XFEM, DG or
IGA).

In the Finite Element approach the domain is partitioned into finitely many subdomains. On each
of these so called elements the numerical solution u" to the given partial differential equation is

", with small sup-

described by a linear combination of a finite number of basis functions {¢; =1

port.

n

uh = Zngf)j (1)

Jj=1

85

DESIGN AND IMPLEMENTATION OF AN EXPERIMENTAL FINITE ELEMENT SOLVER

The differential equation can then equivalently be described in a variational formulation
a(u,v) = Il(v) Yo (2)

where a is a bilinear form and [a linear form. Inserting the ansatz for u” the following equations have
to be solved

n

=1

Typically in the bilinear form an integral has to be computed. In the case of a Diffusion equation
(Au = f) the bilinear form a may be written as

a(u,v) = / Vu-Vvdr = Zak(u,v), 4)
@ p
ag(u,v) = Vu-Vudz.
Qp
This integral can be divided in integrals over the element domains €2, and (3) can be rewritten as
DD (i =1(¢) i=1..n.)
k oj=1

The integrals are now usually calculated by applying quadrature formulas with quadrature points
and quadrature weights w,. This means that (5) can be reformulated as

ZZZV@qu Voj(rg)wgcj = Zfoqublqu 1=1...n. (6)
q j=1

With the notations
U=> U*
k
UE = ap(¢s, ;) (7
bi = 1(¢i)

the discretized solution is then the solution to the linear system U - ¢ = b. In order to assemble this ma-
trix for each element €2, the matrix Uy, is calculated. In the example one has to determine

=D Voilag) - Vé;(zq)ws.)
q

The classical approach for programming this assembly process is shown in Listing[8.1] as realization of

@).

for (int k=element_begin;k<element_end; k++) {
nlocnodes=elementlist [k]->nodes.size();
MatZeroEntries (element_matrix);

86

2 Code Design

VecSet (element_rhs, 0.0);
for (int i=0;i<nlocnodes;i++)
for (int j=0; j<nlocnodes; j++) {
for (int g=0; g<nquad; g++) {

gp=mesh->quadpoints[q];
loccontrib=shll (i, gp,det) *shll (j, gp, det);
loccontribx=weights[qg] xdet;
MatSetValue (xelement_matrix, i, j, &loccontrib, ADD_VALUES) ;

Listing 8.1: Classical design

The idea is to calculate the contribution for each element separately. The first loop (line 1 in Listing(8.1)
goes over all elements. For each element the contribution of all combinations of basis functions are
calculated by using a quadrature formula. Here it is sufficient to take only basis functions into account
that are not equal to zero on the considered element. That is the reason why the upper limit in the
second and third loop are not equal to n (line 5 and 6 in Listing 8.1).

Here, the description of the physical problem is inside of four loops in the code (line 9 in Listing [8.1)).
Therefore, to change the physical problem one has to modify the code that is related to the geometry.
In order to overcome this we use the Visitor Pattern. In the new approach the part that is responsible
for the description of the physical problem is replaced by a call to an interface method which takes
the physical problem as argument (line 5 in Listing [8.2). In this way the physical problem, which is
implemented as derived class (Listing[8.3), visits the geometry class to assemble the linear system (line

12 in Listing [8.2).

S

for (int k=element_begin;k<element_end; k++) {
nlocnodes=elementlist [k]->nodes.size();
MatZeroEntries (element_matrix);
VecSet (element_rhs, 0.0);
this->accept_assemble(...);

accept_assemble (visitFEMx problem,Elementx element,
int nlocnodes, Matx element_matrix,
Vec* element_rhs) {
problem->assemble (this,element, nlocnodes, element_matrix,element_rhs);

Listing 8.2: New design with Visitor Pattern, FEMclass

int AdvDifflD::assemble (fsQl* mesh,Elementx element, int nlocnodes, Matx element_matrix) {
for(int i=0;i<nlocnodes; i++)
for (int j=0; j<nlocnodes; j++) {
for (int g=0; g<nquad; g++) {
gp=mesh->quadpoints[q];
loccontrib=shll (i, gp, det) *shll (j, gp,det) ;
loccontribx=weights[q] xdet;
MatSetValue (xelement_matrix,i, j, &loccontrib, ADD_VALUES) ;

}

return 0;

87

DESIGN AND IMPLEMENTATION OF AN EXPERIMENTAL FINITE ELEMENT SOLVER

Listing 8.3: New design with Visitor Pattern, Diff1D

The associated class design is visualized in the Figures 2] and [3] The class FEMclass implements
the main functions which can be called from outside the class to solve a predefined physical problem.
The derived element classes specify which shape functions can be used and which mesh generators are
implemented. On the other hand visitFEM just provides the assemble functions needed to be called
from the FEMclass. The derived problem classes specify which parameters have to be set, whether
initial valued have to be set and most important how the assembling is done.

FEMclass

+ accept_initial()

+ accept_assemble()

+ accept_boundaries()

+ init()

+ solve_problem()

+ solve_problem_instat()
+ finalize()

- loadgrid()

- assemble_matrix()

- solve_matrix()

- output()

fsQ1 fsQ2

fsP1

+sQ1() +15Q2()

+fsP1()
+ accept_initial()
+ accept_assemble()

+ accept_initial()
+ accept_assemble()
+ accept_boundaries()

+ accept_initial()
+ accept_assemble()
+ accept_boundaries()

+ accept_boundaries() -sh01(- sh01()

-sh11() -sh11()
: 22?38 - sho2) - sh02()
- loadgrid()) |Sh1d2(),d()) ish1d2()'d()
; - loadgri - loadgri
- load2Dtria() load D0 load1D()
- load2Dquad() - load2Dquad()

Figure 2: The UML diagram shows that the class FEMclass is responsible for the whole solving solving
process. The subclasses implement the different kinds of elements.

For the underlying data structure PETSc [1] is used. In this way PETSc is also responsible for the
parallelization during the assembling and solve process. During the project especially PETSc’s manual
[3] was very helpful and was often used.

3 Code Validation

The FEM solver was validated with different kinds of physical problems and element types. The test
problems are taken from the book [4] where also an analysis for them can be found. In the one-
dimensional case linear and quadratic elements were tested. In two dimensions Q1 and Q2 as well as
P1 elements were considered.

All the following cases were solved on meshes with Q1 elements.

88

3 Code Validation

VisitFEM

-ierr

+ set_initial_values()

+ assemble()

+ assemble()

+ set_boundary_values()

S

AdvDiff2Dinstat
AdvDiff1D AdvDiff1Dinstat -
AdvDiffiDSUPG ’ R
AdvDiff2D nu
-a -a _a -a
- Pe -nu “nu -nu - theta
-nu - theta _tau -a -tau
- ierr - tau - ierr
+ AdvDiff DSUPG() + AdvDifi2D()
+ AdvDiff1D() + AdvDiff1Dinstat() + assemble() + assemble() + AdvDiff2Dinstat()
e Lm0 || L assombil) e vsueed | | + a0
+ set_boundary_values() A -
+ set_boundary_values() + assemble() +1hs() +rhs() + assemble()
+rhs() + set_boundary_values() + set_boundary_values()
+rhs()

Figure 3: The class visitFEM has just the functionality to assemble an element. The subclasses describe the
physical problems by implementing the assembling process accordingly.

1D Advection-Diffusion equation with and without SUPG stabilization

The first example is a simple Advection-Diffusion equation with either Dirichlet or homogeneous Neu-
mann boundary conditions. It may be written in the form
AUy — VUgy = S

reN=(0,1) ©)

Here a is the parameter that describes advection and v is responsible for the diffusion. The variational
form which is solved for is then

a(w, uz)r2 + v(We, uz)r2 = (W, 8) 2 Yw (10)

The numerical solution is instable when a is to big as can be seen in Figure[da]

In order to stabilize the behavior observed in the former case in this example a SUPG stabilization is
implemented. Therefore, the idea is to add the stabilization term

/a-waa-(uz—z/um—s)dQ (11
Q

to the variational formulation. In the case of linear elements the second derivatives are equal to zero
and the final variational formulation reads
12)

a(w,ug) 2 + v(wg, uy) 2 + at(wg, aug — s) 2 = (w,s) 2 Yw.

Now with the same parameters the numerical solution is no longer unstable. This can be seen in

Figure [4b]

89

DESIGN AND IMPLEMENTATION OF AN EXPERIMENTAL FINITE ELEMENT SOLVER

03 03
numerical solution —+— numerical solution —+—
exact solution - --- - exact solution - --- -
025 B 0.25 -
02t B 02t
s> 015f 4 s o5
01 | - 0.1 |
0.05 | B 0.05 -
o o
0 0.2 0.4 0.6 08 1 0 0.2 0.4 06 0.8 1
X X
(a) unstabilized (b) SUPG stabilized

Figure 4: Numerical solution to the 1D Advection-Diffusion equation

1D instationary Advection-Diffusion equation

Finally for the one-dimensional case an instationary example with Dirichlet or homogeneous Neumann
boundary conditions is considered. Based on the strong form:

Ut — VlUgy + Q- Up = S reN=(0,1) (13)
the weak form reads:
(w,ue) 2 + v(wg, ug) 2 + alw,ug) 2 = (w,)2 Vw. (14)
For the time discretization the @-scheme is used. The fully discretized equation reads

(w, u"™) 2 + TOW (wg, uf ™) 2 + a(w, upth) p2) (15)

= (w,u")r2 + 7(w,8)r2 — 7(1 — O)(V(wy, ult) 2 + a(w,ul)r2) Yw.

The following pictures (Figure [5) show a discontinuous initial condition that is transported in -
direction while diffusion is working on it.

=00 —— =20 — =40 ——

(a)t=0.0 (byt =20 (©)t=4.0

Figure 5: Numerical solution to the instationary 1D Advection-Diffusion equation

90

3 Code Validation

2D Advection-Diffusion equation

For the two-dimensional part also a Advection-Diffusion equation with Dirichlet or homogeneous Neu-
mann boundary conditions is implemented. Based on the strong formulation:

a-Vu—vAu=s zeQN=(0,1) x(0,1) (16)
the weak formulation can be written as:
(w,a-Vu)rz + v(Vw,Vu) 2 = (w,s) 2 Vw. (17)

In Figure[6]a solution with homogeneous Dirichlet boundary condition is shown.

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Figure 6: Numerical solution to the stationary 2D Advection-Diffusion equation

2D instationary Advection-Diffusion equation
Finally there is also in two dimensions an instationary example. Analog to the one-dimensional case
based on the strong form

up—vAu+a-Vu=s zeQ=(0,1)x(0,1) (18)
the weak formulation that is discretized with the ©-scheme can be written as

(w, u™) 2 + 7O W(Vw, VU™ ™) 12 + (w,a- Vu") 12) (19)
= (w,u")r2 + 7(w,s)2 —7(1 — O)(v(Vw, Vu") 2 + (w,a-Vu'")2) Yw.

In the following images (Figure[7) again a discontinuous initial solution on which advection and diffu-
sion are working can be seen.

91

DESIGN AND IMPLEMENTATION OF AN EXPERIMENTAL FINITE ELEMENT SOLVER

08
0s
04
02

(@t=00 (b)t=0.4 ©)t=08

Figure 7: Numerical solution to the instationary 2D Advection-Diffusion equation

Parallel Performance

During the project scaling results on the supercomputer JUROPA were obtained. A two-dimensional
Advection-Diffusion equation on a quadratic mesh is considered. As shown in Figure 8a)the developed
code scales with 4 - 10° nodes up to 256 processors well. This is clearly due to the effect that solving
the linear system needs most of the run time. This part got no special attention during the project.
In contrary the project focussed on the assembling process, which scales much better as shown in

Figure [Sb]

100 (o3 100

Runtime in s
Runtime ins
-

0.1

. 4.0e4 dofs —+— 4.0e4 dofs —+—
2.5e5 dofs 2.5€5 dofs
1.0e6 dofs ------ 1.0e6 dofs «--x---
4.0e6 dofs & 4.0e6 dofs &
linear scaling ———— linear scaling ————

L L
1 10 100 1000 1 10 100 1000
Number of MPI processes Number of MPI processes

(a) Runtime assembly and solver (b) Runtime assembly

Figure 8: Scaling on JUROPA with 1 MPI process/core

4 Conclusion and Outlook

The project shows that the Visitor Pattern is a promising approach to overcome the strong coupling
between geometry and physical problem. In the developed Finite Element solver the geometry and
problems can easily and independently be changed. During implementing all the basic functionalities
of an Finite Element code were implemented and no serious problem occured.

92

5 Acknowledgments

The code will be used in future work in the SimLab Highly Scalable Fluids & Solids Engineering. Es-
pecially Discontinuous Galerkin Methods and Isogeometric Analysis will be implemented.

5 Acknowledgments

I would like to thank my adviser Dr. Mike Nicolai for always having good answers to my many ques-
tions and for giving me suggestions on how to write Finite Element code. I had fun and learned a lot.
Further thanks go to Mathias Winkel and Ivo Kabadshow for organizing the Guest Student Programme.

References

1. Balay S, Brown J, Buschelman K, Gropp WD, Kaushik D, Knepley MG, et al.. PETSc Web page; 2012. Available
from: http://www.mcs.anl.gov/petsc.

2. Gamma E, Helm R, Johnson R, Vlissides JM. Design Patterns: Elements of Reusable Object-Oriented Software. 1st
ed. Addison-Wesley Professional; 1994.

3. Balay S, Brown J, , Buschelman K, Eijkhout V, Gropp WD, et al. PETSc Users Manual. Argonne National Laboratory;
2012. ANL-95/11 - Revision 3.3.

4. Donea J, Huerta A. Finite Element Methods for Flow Problems. 1st ed. Chichester, West Sussex, New York: John
Wiley & Sons; 2003.

5. Givoli D. The Top 10 Computational Methods of the 20th Century. IACM Expressions. 2001;11:5-9.

93

http://www.mcs.anl.gov/petsc

A parallel block iterative eigensolver optimized for sequences of
correlated eigenproblems

Mario Berljafa

Faculty of Science, Department of Mathematics
University of Zagreb
Bijenicka cesta 30
10000 Zagreb
Croatia

E-mail: mberljafa@gmail.com

Abstract:

In many materials science applications simulations are made of dozens of sequences; each sequence
groups together eigenproblems with increasing self—consistent cycle outer—iteration index. Succes-
sive eigenproblems in a sequence possess a high degree of correlation. In particular, it was demon-
strated that eigenvectors of adjacent eigenproblems become progressively more collinear to each other
as the outer—iteration index increases. This result suggests one could use eigenvectors, computed at a
certain outer—iteration, as approximate solutions to improve the performance of the eigensolver at the
next one. In order to exploit this correlation we developed a block iterative eigensolver and showed
the benefit of the usage of approximate versus random starting vectors. Moreover, we showed that the
algorithm performs substantially better than the correspondent direct eigensolver, even for significant
portion of the sought spectrum.

1 Introduction

In the last 30 years Density Functional Theory has been applied in a range of problems in physics,
chemistry, biology and other. The problem that arises is the computation of the so called Kohn—Sham
(KS) equations. Typically this equations are solved using an outer—iterative self consistent cycle: it
starts from an initial guess for the charge density function, performs a few iterations and then con-
verges to a final density. In practice, this outer—iterative cycle requires some form of discretization,
and the effect of the discretization is the translation of the KS equations to a set of generalized eigen-
value problems for each outer—iteration cycle. It was proposed to look at this set as dozens of se-
quences of eigenvalue problems, where each sequence groups together problems with equal k—vectors
and an increasing outer—iteration cycle index £. We now concentrate on a sequence for a fixed k—
vector.

95

Thus, we consider a sequence of IV correlated generalized hermitian eigenvalue problems identified by
a progressive index £

{P@} = pO p@_ p™) . pO . A0z - By, 1)
The matrices A) are hermitian indefinite and the matrices B() are hermitian positive definite for
all indices ¢, which gives us a bounded discrete spectrum with real positive and negative eigenval-
ues

Amin:)\lg)QS---S)\n:)\maxa (2)

where n indicates the size of the matrices AX) and B(). The sequence is part of a process striving for
convergence, which is achieved by consecutively solving all the problems in the sequence. Moreover,
the solution of problem with index ¢ is necessary to initialize the eigensystem at iteration (¢ + 1). Thus
forcing us to solve one problem only after having solved the previous one.

Only a small part of the bottom end part of the spectrum is souhgt—after, no greater than 15% —
20% and usually quite smaller. The matrices A® and BO composing the eigenpencils PO are
dense and the matrices B(®) tends to be quite ill-conditioned. The range of the problem we consid-
ered varies from n ~ 2000 to n ~ 9000. Each of the generalized eigenproblem is solved in two
steps. First the matrix B is factorized by a Cholesky decomposition which, in turn, is used to
reduce the generalized into standard eigenproblem. In a second step we solve the standard eigenprob-
lem.

The standard eigenproblem can be solved with a direct or an iterative method. A direct solver gen-
erally transforms the matrix into a tridiagonal one and then solves the eigensystem using standard
algorithms like QR, Divide—and—Conquer or MRRR to name a few. Direct methods are the algorithms
of choice when one is dealing with dense matrices, while iterative methods are usually applied to
sparse matrices or matrices for which matrix—vector multiplication is the only convenient operation to
perform.

Contrary to common practice we are going to use iterative methods, based on matrix—vector multipli-
cation. This choice is motivated by a strong correlation between adjacent eigenproblems, as evidenced
by the progressive collinearity of successive eigenproblems. Meaning, eigenvectors of the same eigen-
value from different eigenproblems are correlated. As the sequence index increases, the angle between
those eigenvectors from adjacent eigenproblems decreases, reaching 108 or even 10710 for the se-
quence index £ ~ 20. Thus making the vectors more and more collinear [[1].

While most standard iterative methods receive only one vector as input, it is desirable to work with
a multiple number of vectors instead of a single one. Block iterative methods accept a variable set
of multiple starting vectors. These methods have a faster convergence rate and avoid stalling when
facing small clusters of eigenvalues. When augmented with polynomial accelerators their performance
is further improved.

In our case we want to use a block of vectors with the specific objective of exploiting the correlation
between successive eigenpairs. Let’s assume we have already solved that the standard eigenproblem,
HOY®) = y©OA® related to the generalized eigenproblem A X () = B® XWOA® with index
¢, where B(Y) = LOLO™ is the Cholesky factorization of B?).L(®) is lower triangular and H®) =

96

2 The algorithm

LOTAOLO™ Then the solution (A(E), Y(z)) is fed to our choice of eigensolver so as to speed up
the solution of eigenproblem H(‘+1)y (¢+1) — y (¢+1) A(+1),

The aim of this paper is to study how a specific iterative algorithm, Block Chebyshev Filtered Subspace
Iteration (BChFSI) behaves when fed with approximate solutions, in comparison with random starting
vectors. A parallel version is proposed and examined as well as a comparison between BChFSI and
a corresponding direct eigensolver. In we present the algorithm, both sequential and par-
allel versions. In we show the numerical results, discuss the various approaches and theirs

efficiency. With we conclude.

2 The algorithm

The chosen block iterative solver, BChFSI builds on top of the Subspace Iteration method. Its main
characteristics are the acceptance of multiple starting vectors and the use of Chebyshev polynomials
in order to highly accelerate the subspace iteration convergence. A schematic description of BChFSI
is:

1. start

2 Input an initial system of vectors Y = 01, Um] -

3: iterate:

4; Filter the vectors by computing ¥ = C’m(Y).

5 Orthonormalize Y.

6 Compute the Rayleigh quotient G = YHHY and solve the reduced

standard problem Gw = Aw giving (A, W)
Compute new Y =YW.
Test for convergence.

®° 3

In the following we describe the theoretical background needed for the algorithm and conclude this sec-
tion with a detailed pseudo—code of the implemented BChFSI. In we define the Cheby-
shev polynomials and point out its main properties. In we show why in order to use the
Chebyshev filtering we need to perform a few Lanczos steps. In[subsection 2.3|we discuss the details re-

garding the check for the convergence, and in we present the detailed pseudo—code.
ilustrates details on the parallelization of the algorithm.

2.1 Chebyshev polynomials

Let A € C™ ™ be a complex matrix, {()\;, v;) }i it’s eigenpairs, w € C™*! a complex vector and p an
arbitrary polynomial. Expanding w = >_" | 7;v; in the eigenbasis, we obtain

p(Aw =" p(Ai)vivi. 3)
=1

Our objective is to enhance eigenvectors corresponding to eigenvalues in a specific interval of the
spectrum while, at the same time, be able to discard all the others. provides an effective
tool for filtering out unwanted eigenvectors.

97

The problem of finding the optimal polynomials is set up as a min—max problem. It was shown (see
[2]) that the optimal polynomial of degree m is the scaled and translated Chebyshev polynomial of the
first kind of order m.

Definition 1. The Chebyshev polynomial C,,, of the first kind of order m, is defined as

cos (m arccos(zx)) , rze|—-1,1],
€, () — J 0 (marceos(a) [~1,1] @
cosh (marccosh(x)), |z| > 1.
One can easily verify that the Chebyshev polynomials satisfies the following three term recurrence
C() (1‘) =1
Cy(z) == (&)
Cmt1 () = 22Cy, () — C—1 (), m € N.

which makes the computation efficient. Despite their definition, from the three term recurrence it can
be shown that the C, () is a polynomial of degree m in z.

In practice, what makes the Chebyshev polynomials the most suitable is the rapid increase outside the
interval [—1, 1]. In fact, the convergence of enhanced versus unwanted eigenvectors is controlled by
the magnitude of the ratio 2 (();\";t)) . This ratio can reach 10'? already for polynomials of degree m = 20,

making the Chebyshev polynomials the optimal choice for our proposed target.

The scaled and translated Chebyshev polynomials C,, are defined as

A Ce[A =) /e]
Cr(A\) = 5¥————FF ©6)
"= Gl o) /e
The rescaling is needed due to the blow up of the ratio ’;((/E\",“t)), to avoid overflow, and the parameters
¢, e are used to map any interval to the interval [—1, 1]. We will talk more about the mapping in the next
subsection. In[Algorithm I| we present the pseudo—code of the filter.

Algorithm 1 Chebyshev filter.
Require: H, vectors Zj to be filtered, c, e, A\1,DEG.
Ensure: Filtered vectors Zpgg.

—

o1 4¢e/ (A —¢)

o1
. 71+ —(H — cl) Zy

€
3: fori=1— DEG — 1 do
1

(2/01 — i)

Oi+1
" (H —cl,) Zi — 0410 Zi1

[\

4: Oit1 <

5: Zz'+1 — 2

6: end for

The algorithm is the straightforward implementation of the three term recurrence, applied
to the scaled and translated Chebyshev polynomials.

98

2 The algorithm

2.2 The Lanczos algorithm

From it follows that p(\) needs to be small in magnitude for the unsought, and high
for the desired eigenvalues. Since the desired eigenvalues are those from the bottom end part of
the spectrum, the spectrum needs to be partitioned in two disjoint intervals. One containing the
eigenvalues we are seeking for and the other containing the unwanted eigenvalues. Let the inter-
val containing the unwanted eigenvalues be labeled I. The Chebyshev polynomial p which satis-
fies

p(x) >ply) Yyel,VreR\I

will provide the effect we are looking for.

To benefit from the rapid increase of the Chebyshev polynomials outside the interval [—1, 1], the inter-
val I = [, 8] needs to be mapped into the interval [—1, 1]. The remaining problem is to determine the
lower bound « and the upper bound § of the interval .

The lower bound can be defined as the highest (current) approximation for the wanted eigenvalues,
while the upper bound needs some more attention. The upper bound is actually the extreme right end
of the whole spectrum of the matrix and can be computed by the k—step Lanczos iteration where k is
in general very small, [3]].

A pseudo-code of the k—step Lanczos iteration is given in |Algorithm 2| For the Hermitian matrix
A, the algorithm builds the matrices Vj, and T}, such that AV, = Vi1 + Bkvk+1e£, where V), =
[v1...vg] is n x k and has orthonormal columns, T}, is k& X k and is tridiagonal with ;s on the
diagonal and fjs on the superdiagonal and the subdiagonal and ey, is the kth column of the & x &
identity matrix.

Algorithm 2 k—step Lanczos.
Require: A Hermitian matrix A, initial vectors v; of norm unit.

1: Bo < 0,9« 0
2: for j=1— kdo

3 wj = Avj — ﬂjflvjfl
4 aj = (wjlv)
5: Wj = W5 — Q5
6: Bj+1 = [|lwjll2
Wj+1

7: Vig] = ———

! Bj+1
8: end for

The upper bound g is then computed as

B =Tl + lef z&] | Bryal, (7)
where Tkzk = UEZk-

Now that we have identified the limits of the filtered interval, we can insert them in the unspecified

99

constants of We define ¢ = (8 +«) /2 and e = (8 — «) /2 thus mapping the interval
I = [, f] into the interval [—1, 1].

2.3 Locking the converged eigenvectors

A standard technique that manages the different rates of convergence of the eigenpairs is the so called
locking. As soon as the first eigenpair has converged the corresponding eigenvector can be frozen and
the computation can be carried on with the remaining vectors. Since eigenpairs typically converge in
chunks and the main time consuming part of the subspace iteration is the matrix—vector multiplication,
locking techniques supplie remarkable computation savings. From a mathematical point of view, what
allows us to perform the locking is the Rayleigh—Ritz theorem.

Theorem 1 (Rayleigh—Ritz). Let) be a subspace containing an eigenspace X < Y of the standard
eigenproblem Hw = Mw. Let Y be a basis of vectors for Y = span(Y),Y! a left inverse of Y,
and Hy = YTHY:, the so-called Rayleigh quotients for H. If (A, W) are primitive Ritz pairs of the
reduced problem, i.e., HyW = WA, then (A, YW) are Ritz pairs for the original eigenproblem and
span (YW) = X.

The theorem allows us to split an initial eigen—subspace) in successive subspaces Y = Vconv+Veony
with Veony an eigen—subspace of) and ngNV its orthogonal complement. At each iteration Vcony
grows at the expense of V. Since the theorem can be applied at the same time to)V and any of
its subspaces, it ensures that Vony remains invariant while yCLONV is scanned for additional eigen—
subspaces, leading us to the following strategy.

1: iterate:
2: Setj =1.
3: Receive as input an orthonormal basis Z = [Q, Y} for), where

Q = [Q1, SER) ijl] , Span (Q) = yCONV and

~ A

Y = [g]’7gk] , Spal (Y) = yCLONV'

4: Update G = YHHY and compute Ritz vectors W = [Wj, ..., W] and
associated eigenvalues A= P\j’ ... ,5\4 .
5: Test convergence for (Aj, w;), ..., (A, w).

Set iconv = number of converged eigenpairs.
Set j = j 4 iconv. Append converged vectors to ().
Computenew ¥ =Y W.

2.4 Block Chebyshev filtered subspace iteration

Finally, in we illustrate the detailed pseudo—code of the Block Chebyshev Filtered Sub-
space Iteration. Apart from the matrix describing the eigenproblem and the starting approximations
for the eigenpairs the algorithm requires as input a stopping criteria TOL for checking the conver-
gence, a degree DEG for the scaled Chebyshev polynomial and the number of wanted eigenvalues,
NEV.

BChFSI was implemented using the Intel MKL LAPACK and BLAS libraries. LAPACK was used for
solving the reduced problem with a direct solver — MRRR, and for the re—orthogonalization. BLAS

100

2 The algorithm

Algorithm 3 BChFSI

Require: H, approximate eigenpairs (A, Y) , TOL, DEG, NEV.

Ensure: Wanted eigenpairs (A,Y).

1: converged < 0

2 A+ []

3 Y []

4: upper <— LANCZOS(H,RANDN(n, 1))

5. repeat

6: A1 < min; A(7)

7: lower «+ max; A ()

8 Y ¢ CH_FILTER (H .Y, lower, upper, A1, DEG)

o Vear(|yY])
10: Y « Y [:,converged : NEV]

11: G« YOy > Compute the Rayleigh quotient.
12: Solve GW = WA. > Compute the primitive Ritz pairs (f&, W) .
13: Y« YW > Compute the approximate Ritz pairs <A, }A/VAV) .
14: for i = cor}verged — NEV do > Check which among the Ritz vectors converged.
15: if HHY("%)A_ AQY(, il < TOL then
el

16: A+ [A /A\(z)} > Lock converged eigenpairs.
17: Y « [Y Y(:, i)}

18: else

19: break
20: end if
21: end for
22: converged < ¢ > Lock converged eigenpairs.
23: A « A(converged : END)
24: Y « Y(:,converged : END)

25: until converged < NEV

was used for matrix—vector multiplication in the k—step Lanczos iteration, for computing
the norms during the convergence check and most important for the matrix—matrix multiplications. As
we saw in the filter mainly consists of matrix—matrix multiplications. BLAS Level 3
subroutine _GEMM (general matrix—matrix multiplication) is the most optimized over all the routines
in the library thus making it the best choice for our purposes.

2.5 Parallelization

After running the tests on the sequential implementation of BChFSI it was observed that the filtering
takes around 91% of the total time needed for the computation. The re—orthogonalization takes =~ 1%,

101

initializing and solving the reduced problem requires &~ 4% of the total time and the remaining 4%
is mainly consumed by the convergence check. Therefore, our parallelization effort focuses on the
Chebyshev filter.

Since Intel MKL provides multi—threaded versions of the libraries, LAPACK and especially BLAS, the
easiest way of parallelization is just using these capabilities. Another approach was to build our own
parallel version using OpenMP. In the second approach the distribution of the matrices is done in the
following way. The rows of the matrix H are distributed among cores. For k cores, the first |n/k | rows
are distributed to the 1st core, the next |n/k| rows are distributed to the 2nd and so on. The (eventual)
extran (mod k) rows are distributed to the first n (mod k) threads. Vectors to be filtered are shared
among all the threads.

After testing both versions, the OpenMP one was performing slightly better due to better offloading of
the work. This is justified by the small size of the vector matrix to be filtered.

Thus, the final parallel version is made of the OpenMP filter and multi—-threaded LAPACK and BLAS
in the rest of the algorithm.

3 Numerical resulis

Since our main task is to show the importance of feeding the approximate solutions to the eigensolver
we have tested BChFSI also with starting random vectors. In other words, we show the benefit of using
approximate solutions by comparing BChFSI when random vectors are used as input.

The tests were performed on JUROPA using one node with 8 cores. Each node consists of two Intel
Nehalem quad—core processors, 2.93GHz. The theoretical peak performance is 11.71 Gigaflops per
core.

@
o

o-1 thread.
oo o2 threads.
70l . o o o © ° o o—Q f <-4 threads.
v o o -+-8 threads.
o ©O
Q
60 9 |
— ° o
& 50 i
°, o o o
Clé a0 o o o _
- N p—a—a_ =8 o R
:) o a o o
0 3o " "]
%30 \ e
oo o °o—o
20+ T |
o a
10 % |
0 | | | | | |
0 5 10 20 25 30 35

15
Iteration index.

Figure 1: Problem size n = 2628, NEV = 136. Different number of threads.

102

3 Numerical results

In we can see the behavior of BChFSI fed with approximate solutions as the iteration index
increases. The size of the problem is n = 2628, and we are looking for the bottom NEV = 136 (5.17%
of the total spectrum) eigenvalues and corresponding eigenvectors. What we can notice immediately
is that, as the iteration index increases, the time needed decreases. That’s because the eigenvectors
corresponding to the same eigenvalue of adjacent eigenproblems are becoming more and more collinear
as the iteration index increases. In the same Figure we can see the benefit of the parallelization, using
two cores the average speedup is 1.8 times, using four cores 3.5 times and with eight cores the parallel
version is about 7 times faster than the sequential version. As we will see later, for bigger systems the
speedup is even better.

Our algorithm was compared with a direct solver — MRRR implemented in LAPACK, using multi—
threaded BLAS. In the Figures to come, this is labeled as Direct, while BChFSI with random starting
vectors is labeled Random, and BChFSI fed with approximate solutions, from the previous iteration, is
labeled Approx.

200k & o a o & = a o] o o o o o & B
180 —
160 —
— 140 P < < P < < ¢ ¢ ¢ « —
5 <] <
0] —t—a
£, 1201 —
g
i= 1001 o b
- [0 o o O 0,
o 80- —
O
60* o © © © O 0. o ° |
40+ E
- Approx.
20}} -a-Random. n
~Direct. | | | | | |

N

0 12 14 16

2 8 1
Iteration index.

Figure 2: Problem size n = 6217, NEV = 256. Different approaches.

In[Figure 2]and[Figure 3|we compare the the three parallel algorithms, BChFSI with approximate solu-
tions, BChFSI with random vectors and the MRRR, for different systems.

In we have a system of size n = 6217 and NEV = 256 eigenpairs are sought—after, which
corresponds to 4.11% of the spectrum, and in we analyze the behavior of a system of size
n = 8970 where NEV = 972 (10.83%) eigenpairs are needed.

We can once again notice the phenomena of computation time reduction for BChFSI fed with ap-
proximate solutions as the iteration index increases. The other two algorithms don’t benefit from this
property because they are solving each problem independently from the others. Thus, not exploiting
the correlation.

For the system of size n = 6217, the gain of feeding approximate solution results in a starting speedup
of 2.2, and grows as the iteration index increases to 3.1 after the first 8 iterations. This jump in speedup
is due to the fact that at that point we needed only two iterations to converge with the Approx, while

103

with Random we still need 5 iterations. For the last two iterations the speedup of Approx against
Random reaches 3.6.

Comparing Approx versus Direct, we can see that at the beginning Approx are 1.4 times faster than
the Direct method, and as the iteration index increases this factor grows up to 2.4 making the BChFSI
considerably faster.

Apart from the problem size, the main difference between the system on [Figure 2| and [Figure 3|is that
for the system in a much bigger portion of the spectrum is desired, almost 11%. Despite this,
we are still faster than a direct solver, and the benefit of using the approximate solution over just using
random vectors results in a speedup of 5.6.

1200~ *

1000 _

8001 *

600~ *

CPU Time[sec].

400 & —5—3 b

200~ Approx.
=-Random.
0 ~Direct.
5 10 5 20 25 30
Iteration index.

Figure 3: Problem size n = 8970, NEV = 972. Different approaches.

4 Conclusion

The aim of the project was to implement both the sequential and parallel version of BChFSI and show
the benefit of using approximate solutions. Exploiting the approximate solutions by feeding them to the
eigensolver allows a better performance when compared with direct solvers even for dense matrices.
An important point in surpassing the direct solver was the almost perfect scaling of the parallel version.
We conclude saying that the target of the project is completely fulfilled.

Acknowledgments

I want to thank my adviser Dr. Edoardo A. Di Napoli for guiding me through this project. For all the
explanations and help given as well as for the understanding. A great thanks goes also to Prof. Dr. Sc.
Sanja Singer for the Letter of Recommendation.

104

References

References

1. Di Napoli E, Bliigel S, Bientinesi P. Correlations in sequences of generalized eigenproblems arising in Density
Functional Theory. Computer Physics Communications 2012; 183:1674—1682.

2. Saad Y. Numerical Methods for Large Eigenvalue Problems. 2nd edition. http://www-users.cs.umn.edu/
~saad/eig_book_2ndEd.pdf

3. Zhou Y, Li RC. Bounding the spectrum of large Hermitian matrices. Linear Algebra and its Applications 2011;
435:480-493.

105

http://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Observation of a Universal Boltzmann Distribution in Dynamic
Simulation Experiments of the 1D-Heisenberg Spin Model

Kieran Austin

University of Leipzig
Institute for Theoretical Physics
Briiderstra3e 14-16
04103 Leipzig

E-mail: austin@itp.uni-leipzig.de

Abstract:

In this exploratory study, computer simulations of the classical Heisenberg spin model are carried out
in the microcanonical ensemble. It is shown that the Boltzmann distribution can be generated in a
dynamical simulation for various settings of the system parameters. The temperature was measured
with the use of a novel expression and its correctness is verified. A short outlook is given for the use
of this new tool.

1 Introduction

A physicists approach to numerical simulations is most often one where the underlying theoretical
background comes from a probabilistic view, i.e. statistical physics. Moreover, the Boltzmann factor
is one of the central tools used, e.g. to generate the canonical distribution for some system of interest.
It is easy to define a temperature in this approach, as this parameter can be directly set to any desired
value in the Boltzmann factor.

The classical approach to physics is, of course, a deterministic one, where the dynamics of the system
is given by some equation of motion. The propagation in time is governed by a Hamiltonian H, which
value is the energy of this system. The equation of motion does not directly incorporate the temperature.
Although the temperature can easily be measured in real-life experiments, how can this be done for a
dynamical simulation?

A novel expression could be derived in [1] for the temperature, assuming ergodicity. This is a very
useful tool for measuring the temperature in a dynamical way. An even more important aspect of this
is that it is now possible to test these two approaches to physics and compare obtained results. Of
course, these two approaches should not be contradictory, but rather complementary in understanding
the behaviour of some system of interest.

107

A UNIVERSAL BOLTZMANN DISTRIBUTION IN SIMULATION EXPERIMENTS

This study is dedicated to exploring the behaviour of the Heisenberg Spin Model in one dimension in
a dynamic computer simulation. Some work has been done in the past [2], though the temperature
has not been measured directly with this novel expression. It is especially of interest here, how this
magnetic system behaves in the process of equilibration and thermalisation. For this a microcanon-
ical ensemble is prepared in which the subsystem is in an out-of-equilibrium state and connected to
a much larger bath. Solving the equation of motion for this system and measuring energy and tem-
perature should then show that the subsystem firstly thermalises and secondly follows the canonical
distribution.

2 The Heisenberg Spin Model

In order to understand a magnetic system with the methods of computer simulations, one needs to find
implementable models. These models have to describe the system of interest to some extent correctly,
but are generally an abstraction of nature. One of the most famous models for a magnetic system is the
Heisenberg Spin Model. It has been studied exhaustively in the past, and from statistical approaches
some analytic expressions for its behaviour could be derived. Here it will be defined and throughout
this study used in a classical sense.

The Heisenberg Spin Model is defined by its three-component spin vectors

si = (s, 57, 57) (1)
for every particle in a system of N particles. Each spin vector follows the constraint ||s;|| = 1, meaning
it can freely rotate in three dimensions on a sphere with radius one. Furthermore, this constraint means
that there are two degrees of freedom per spin. The third vector component can always be derived by
knowledge of the other two. These particles with the attribute ’spin’ are then arranged on a lattice, with
equal spacing. Each spin then has a set of next neighbours. Here, these 3D-spins are arranged in one
dimension, which can be thought of as a chain of spins.

In this investigation the Hamiltonian #H of the system will the often used two-point correlation func-
tional

H=— Z JijSZ‘Sj . (2)
(i.7)

The index of summation (i,) implies a summation over all next neighbour spin pairs, i.e. only next
neighbours directly interact with one another. The type and strength of coupling of these spin pairs is
governed by the parameter .J;;. Generally one speaks of a ferromagnetic coupling if J;; > 0, and an
antiferromagnetic coupling if J;; < 0. Usually, the couplings are set to |J;;| = 1. For ferromagnetic
and antiferromagnetic couplings this means that the spins energetically favour a parallel or antiparallel
arrangement, respectively.

The dynamics of the system is described per spin by the following equation of motion:

E—aisixsz (3)

108

2 The Heisenberg Spin Model

Figure 1: Two cutouts of the spin chain. (a) The spins, expressed as a three-dimensional vector, can move on a
sphere with radius one. (b) The equation of motion for each spin can be visualized as a precession about its
local effective field formed by its next neighbours.

This equation can be rewritten to s; = s; X Mg and desribes a Larmor precession of the spin about an
effective local field

M= Y Jis;.)

Jj=nn(i)

The index of summation denotes a summation over all next neighbour spins at position ¢. The preces-
sion is basically a rotation of the spin about the axis defined by the vector sum of its neighbours. This
rotation does not change the energy locally, and thus conserves the energy of the whole system. In
Figure[I|the spin chain is visualized.

An exact expression for the energy of the Heisenberg spin chain was derived in [3]]. For a homogeneous
ferromagnetic Heisenberg spin system (J;; = 1) the energy per spin is

e(p) = o coth(p) , 5)

where £3 is the inverse temperature 3 = (kgT)~! and kp set to unity. From this the specific heat can

be derived: p
_ _p20€
8) = 83

These exact expressions enable a comparison of experimental data of a dynamic simulation to exact
results derived from statistical physics.

=14 B%(1 — coth?(B)) . (6)

The general expression of the temperature found in [[1] is written as a limit of a time average.

B =li 1tv VR Ny 7
=iy Y eae) @

Note that the integrand only incorporates the Hamiltonian A of the system, which can be calculated
for every time step. The inverse temperature for spin systems, derived in [4]], enables the calculation of
an inverse temperature [3;

4H

= 3 and 3= () . 3
>

The index ¢ denotes the inverse temperature at one time step in the solution of the equation of motion
for the whole system. The average 3 = (3;) then yields the inverse temperature for the whole system,
assuming long enough time series and that it is in equilibrium. Computationally, this is very convenient.
The energy of the system and the time derivative s; is determined at every time step anyway for solving
the equation of motion.

b=

109

A UNIVERSAL BOLTZMANN DISTRIBUTION IN SIMULATION EXPERIMENTS

3 Methods

In this exploratory study it is of interest how a Heisenberg spin ring in the microcanonical ensemble
behaves under a thermalisation process. For this, periodic boundary conditions are applied to the
Heisenberg spin chain, meaning that the first spin has the last spin of the chain as one next neighbour.
This ring has NV particles with a spin, and is declared the subsystem. The subsystem is then connected
to a much larger ring with B particles (B > N), which is declared to be the bath. The connection
of the subsystem with the bath means that both rings can interact with each other, as illustrated in
Figure 2] The Hamiltonian of the whole system 7{ can be separated into a sum of a bath, interaction
and subsystem Hamiltonian:

H=Hp+Hr+Hs.)

Each of these can be measured individually. The interaction Hamiltonian 7{; is a summation over the
connecting bonds between bath and subsystem. They were chosen randomly, and a number of four in-
teraction bonds was chosen throughout this study. Because a comparatively small number of interaction
bonds was chosen, the interaction Hamiltonian #; is presumed to be negligible.

It is necessary to be able to set the energy to a certain value for the whole system. To do so, the
z-component of each spin vector is initially set to be in the range s? € [h, 1], where h € [—1,1].
The other two spin vector components can then be chosen randomly to be on a circle with radius
r; = /1 —(s7)?, such that the constraint ||s;|| = 1 is still fulfilled. The boundary values for the
parameter h correspond to different values for the temperature, and thus to different values of energy.
A limit h — 1 corresponds to S — oo (or 7" — 0) and an energy per spin e — —1, since all spins are
then completely aligned. A limit » — —1 corresponds to 3 £ 0 (or 7" — oco) and an energy per spin
e < 0. The spins in this case are completely random.

Figure 2: The system that was simulated in this study. The subsystem (inner ring) interacts with a large bath
(outer ring). This microcanonical system follows energy conservation.

110

3 Methods

Another aspect is of importance. There is an ongoing discussion about the microcanonical ensemble
in a molecular dynamics simulation. Usually the microcanonical ensemble is understood to have three
globally constant parameters, namely the number of particles IV, the volume V and the total energy
E. One study [6] finds that the correct ensemble that must be associated with molecular dynamics is
one where the total linear momentum and the constant of motion associated with the Galilean boosts
must additionally be incorporated. Because it was not clear how this could affect a spin system, the
total magnetization M =) . s; was set close to zero, | M| = 0. A method of over-relaxation was used.
Having an initial start configuration of the system, randomly chosen spins were reflected along the axis
of its local effective field M.¢. Because this is basically a rotation of 90°, it conserves the total energy
F of the system.

Two methods for solving the equation of motion have been used. These are the Predictor-Corrector
and the Suzuki-Trotter decomposition method that have been proposed by [3]] for the integration of the
equation of motion of classical spin systems. For both methods one time iteration step means evolving
the system by a time step Jt.

3.1 The Predictor-Corrector Method

The basic idea behind the predictor-corrector method is to series expand the integration process of
the equation of motion. For each spin the equation of motion (3)) can be rewritten to a more sym-
bolic form, s; = f(s;). First, an update is predicted by the explicit Adams-Bashforth four-step
method:

~ ot

Si(t+dt) =s;(t) + 2 [55f(si(t)) — 59f(si(t — ot)) + 37f(si(t — 20t)) — 9f(s;(t — 3dt))] . (10)
Second, this is corrected to a better approximation by applying one iteration of the Adams-Moulton
three-step method:

St 1) = 8i(t) + o0 [0 (Sa(t +01)) + 19 (si(1)) — B (si(t — 60) + F(silt —200))] . (1D

Both steps have a local truncation error of O(3t°). A small downside of this method is that an additional
algorithm has to be implemented. This method needs the four initial time steps s;(0), s;(0t), s;(20t)
and s;(30t) to determine the next step in time s;(40t). For this, the Runge-Kutta method was imple-
mented, which accumulates truncation errors too fast for it to be used for the whole simulation.

The magnetization is conserved within machine accuracy, if periodic boundary conditions are applied,
as is the case here. A pitfall of this method can be, that the total energy of the system is not a conserved
quantity. In fact, the total energy seems to increase linearly in time. This is illustrated for a rather small
system in Figure 3]

3.2 The Suzuki-Trotter Decomposition Method

This method employs the fact that the time propagation of each spin is a precession about the local
effective field. The chain, or more generally speaking the lattice, is decomposed into two sublattices
A and B in a checkerboard style. Each spin is assigned a new attribute, expressed in colours. It can

111

A UNIVERSAL BOLTZMANN DISTRIBUTION IN SIMULATION EXPERIMENTS

(a) " Predictor-Corrector - (b) " Predictor-Gorrector -
ST-Decomposition —-—-— ST-Decomposition -----—-
-0.794936

0.893650

0.893648 -0.794938

0.893646 L L L L -0.794940 L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 3: The two methods in comparison. (a) The magnetisation per spin versus time. The Predictor-Corrector
method (PC) conserves the magnetisation, while for the Suzuki-Trotter decomposition method (STD) it seems
to fluctuate around some mean value. (b) The total energy per spin versus time. While the STD method
conserves the energy exact, the energy in the PC method seems to rise linearly in time.

either be white’ or "black’. Every ’white’ spin then is set, such that it has only ’black’ spins as next
neighbours, and vice versa. All *white’ or *black’ spins belong to the sublattice .4 or I3, respectively.
The sublattices are then alternately updated. Each spin is thus rotated about an angle IM;t dependent
only on spins on the other sublattice.

Mz(Mz . Si(t)) Mz(M,L . Si(t)) M,L X Si(t)

N + |si(t) — N cos(|M;|ot)+ M| sin(|M;|0t) (12)

si(t+dt) =

Here, M; denotes the local effective field of the spin at position ¢. In order to obtain small errors for
every iteration step, each iteration step is decomposed into several steps, updating the sublattice with
some fraction of the time step &t. In this study, the spins of sublattice .A are updated by a half time
step 6t/2, then the spins of sublattice B by a full time step dt, and finally the spins of sublattice A
again updated by half a time step. All spins are then updated by one full time step d¢. This gives a local
truncation error of the order of (6t)3.

The Suzuki-Trotter decomposition method exactly conserved the total energy of the system, because
the updates correspond to a rotation about the local field. The magnetization though is not a conserved
quantity. Again, see Figure |3|to compare both discussed methods for solving the equation of motion.

112

4 Results

4 Resulis

To explore the behaviour of the spin system several experiments were carried out. Each experiment
differs from the others in the settings of some system parameters or methods for solving the equa-
tion of motion. The parameters that were changed are the size of the bath B, the couplings of the
bath Hamiltonian Hp and the couplings of the interaction Hamiltonian ;. The couplings of the
subsystem Hamiltonian Hg were set to unity, i.e ferromagnetic. Also, for all experiments the size
of the subsystem was kept at N = 128. Bath and Subsystem were always coupled by four inter-
action terms. For each experiment the initial setting of the spin in the bath was varied, resulting in
different temperatures. The spins of the subsystem were initially set to be random, resulting in high
values for the absolute temperature of the subsystem. After some time the two temperatures of the
subsystem and bath should mix, although the temperature should mainly be driven by the much larger
bath.

The process of thermalisation of the subsystem can be seen in figure E] (a). After an initial value e $ 0,
the energy settles at some mean value with some fluctuations. Also, for smaller couplings of the interac-
tion Hamiltonian, the process takes longer. This is, of course, easily understandable: The energy trans-
fer between bath and subsystem is hindered by weaker couplings.

In Figure (b) the histogram €2(e) of the subsystem energy is plotted. One can see that the distribution
of the subsystem energies in fact follows a GauBian distribution. In the following table values for the
energy and specific heat of the subsystem are exemplarily displayed.

exact fit measured
e -0.291 -0.280 -0.281
c 024 0.22 0.21

This and the above discussed thermalisation show that the simulation does in fact show the expected
physical behaviour, and also that the method used works correctly to within some error.

>02 01 T T T T T T d T
measure +
03 (a) i 0.09 -(b) gaussian fit 7
\ 0.08 |
-0.4 1 7 0.07
|
= 05 1 oo0s
2 ’\ g o005
© 061 | T 0.04
50000 100000 | 0.03
0.02
0.01
0
0 5000 10000 15000 20000 045 -04 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05
time t e

Figure 4: A simulation with the STD method with glassy interaction couplings. (a) The time series of the
thermalisation process for two different couplings of the interaction Hamiltonian. The energy per spin of the
subsystem settles and fluctuates around some mean value. (b) The histogram (2 of the subsystem energy at an
inverse temperature 5 ~ 0.92.

113

A UNIVERSAL BOLTZMANN DISTRIBUTION IN SIMULATION EXPERIMENTS

In Figure [5] several plots of the measured subsystem energy (left) and specific heat (right) versus
measured inverse temperature are shown for different experiments. The values were all measured as
time averages after thermalisation of the subsystem, and compared to the exact expressions discussed
above.

Comparing the Suzuki-Trotter decomposition (STD) and Predictor-Corrector (PC) method, one can see
that the energy values for the PC-method are slightly higher than the exact curve. This is probably due
to the earlier discussed linear increase of the energy over time. The STD-method generally delivers
values closer to the exact curve.

To show the universality of the Boltzmann distribution, the width ¢ of the GauB3-distributed couplings of
the bath were set to different values. Also the strength and type of the coupling have been systematically
changed. These experiments were carried out with the use of the Suzuki-Trotter decomposition method.
As one can see in Figure[5all measured data points lie on the exact curves. The GauBl width was chosen
to be quite narrow, i. e. one tenth of the mean value.

The specific heat plots show large errors, although the values are somewhat in the vicinity of the
exact values. This can have several reasons. The statistical errors might be large, due to too short
measured time series and the fact that the specific heat is a derivative of the measured energy values.
The errors also seem to increase for 5 — oo, where the spins are in the state of absolute parallel
alignment. The increasing magnetization might have an influence on this, though this is not fully
understood.

114

4 Results

esub(B)

esub(B)

esub(B)

Figure 5:

exact B
B=1024,
B=8192,

vs)

g

o

N

B
aaaal
wonnn

O ¥ X +

3 4 5 6
inverse temperature

exact B —coth([IS)

B=8192,6=0 , ferro

B=8192,6=0 , glassy
B=8192, 6 =0.1, glassy

* X +

3 4 5 6
inverse temperature

B!

act -
J; =041
J= .25

B= 8192
B=8192,

T T
oty —

,STD

X

3 4 5 6
inverse temperature

Csub(ﬁ)

Csub(ﬁ)

Csub(ﬁ)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

}

1 exact: 1+[5 (1-c
B=1024,6=0.1,
B=8192,c=0.1,STD Pt
B=1024,6=0.1,PC %
B=8192,c=01,PC =
1 2 3 4 5

L A

/'t

2 2
exact: 1 + 1-coth
B=8 92,c[s5 0.0, ferr(g)) | R
B=8192, ¢ = 00, glassy :--%--:

B= 8192 = I01,g|assy "

1 2 3 4 5
inverse temperature

X + :

exact: 1 (1- coth2
Bo5192, 0.1 e
B= 8192 J, 025 STD Leaxge-d

1 2 3 4 5
inverse temperature B

The energy (left) and specific heat (right) per spin of the subsystem for different settings of the system

parameters and different methods for solving the equation of motion. The parameter B denotes the size of
the bath, o denotes the standard deviation of the GauB-distributed J;;s of the bath, and ‘ferro’ and ‘glassy’
denotes the type of coupling of the interaction Hamiltonian H;. Unless otherwise noted the absolute values
of the latter are one. (top) Comparison of the two integration methods for different bath sizes B with glassy
interaction couplings. (center) Comparison of the STD-method for different interaction and bath couplings.
(bottom) Comparison of the STD-method for different glassy interaction couplings.

115

A UNIVERSAL BOLTZMANN DISTRIBUTION IN SIMULATION EXPERIMENTS

5 Conclusion and Outlook

In this exploratory study, the energy and specific heat of the subsystem were measured for the dynamic
Heisenberg spin system in the microcanonical ensemble. More importantly a novel tool for measuring
the temperature of the system was implemented and used. It was shown that the correct Boltzmann
distribution for the subsystem could be generated in this dynamic simulation by solving the equation
of motion with two different methods. Though there were some large, mainly statistical, errors in the
measurement of the specific heat, it is assumed that the expression for the temperature yields correct
values.

To stress this, this expression for the temperature is a very powerful tool. For the first time, it is now
possible to directly compare statistical approaches to computational physics with the approaches of
molecular dynamics. Furthermore, with this, the fundamentals of physics can be further explored and
analysed by computer simulations in the future.

The first steps should be to further and thoroughly analyse Heisenberg spin systems. Explorations of
how these systems behave for different interaction and bath couplings, for different system sizes and
in higher dimensions should be considered. If this is understood, simulations of spin glass systems
could be carried out, to understand their thermalisation processes. Also, simulations of the quantum-
Heisenberg system could be carried out to check whether the Boltzmann distribution can be generated
with these methods.

References

1. Rugh HH. A dynamical Approach to Temperature. Phys Rev Lett. 1997 Feb 3;78(5):772-4.

2. Jin F, Neuhaus T, Michielsen K, Miyashita S, Novotny M, Katsnelson MI, De Raedt H. Equilibration and Thermaliza-
tion of Classical Systems. arXiv:1209.0995 (2012).

3. Fisher ME. Magnetism in One-Dimensional Systems—The Heisenberg Model for Infinite Spin.
Am J Phys. 1964;32:343-6.

4. Nurdin WB and Schotte K. Dynamical temperature of spin systems. Phys Rev E 2000 Apr;61(4):3579-82.

5. Krech M, Bunker A and Landau DP. Fast spin dynamics algorithms for classical spin systems.
Comput Phys Commun. 1998;111:1-13.

6. Ray JR and Zhang H. Correct microcanonical ensemble in molecular dynamics. Phys Rev E 1999 May;59(5):4781-5.

116

Efficient Communication Schemes for Stochastic Thermostats in
parallel MD Simulations

Felix Uhl

Fakultit fiir Chemie und Biochemie
Lehrstuhl fiir Theoretische Chemie
Ruhr-Universitit Bochum
Universitatsstrale 150, 44801 Bochum

E-mail: felix.uhl @theochem.ruhr-uni-bochum.de

Abstract:

A new algorithm for the parallelization of the Lowe-Andersen thermostat is presented. The imple-
mented algorithm allows for a better control of the system’s temperature compared to the original
implementation in the IBIsCO code. This algorithm is more efficient than the original one, obtaining
a speedup of a factor up to 14, depending on the chosen processor scheme.

1 Motivation

Molecular dynamics (MD) simulation techniques play an important role in the physical sciences. To
control the temperature or to reach an equilibrium state in these simulations is neither a trivial nor an
easy task. There are many approaches to introduce thermostats to MD simulations acting on the entire
system or locally. In the present work the Lowe-Andersen (LA) thermostat [1]] used in the IBIsCO
code [2] is parallelized. The current implementation of this thermostat is mostly serial and produces
slightly wrong results, which makes an equilibration of the system very difficult. Even slightly wrong
temperatures could lead to unintended dynamics. Therefore it is important to detect the source of the
temperature deviation and to correct it. Because the correct adjustment of the temperature with the
LA thermostat is a very time consuming step, a parallelization improves the total performance of the
program significantly.

2 Introduction

2.1 Molecular Dynamics

Under the condition that relativistic and quantum mechanical effects are neglected, the time evolution
of a cartesian system is fully determined by the Newtonian equations of motion:

117

EFFICIENT COMMUNICATION SCHEMES FOR PARALLEL STOCHASTIC THERMOSTATS

F, = mil2,(t). (1)
Here F; and El(t) are the force acting on and the acceleration of the i-th point like particle of mass
my;, respectively.

A system consisting of N particles with the coordinates { R;} is described by N equations of motion,
coupled through the interaction potential V ({R;}):

MR, =F, = -V, V({R;})
MRy = Fy = =N, V({R;})

MyRy = Fy=-VyV({R;}). 2)

The equations of motion can be solved by time discretization using the velocity Verlet algorithm:

1. The new position of the particles are calculated:
Ri(t + At) = R(t) + v; () At + g0 F, (1) A2

2. The new forces are calculated at the new positions:
Ei(t+ At) = =ViV({B;(t + At)})

3. Using the new and original forces, the new velocities are determined:
0;(t+ At) = v,(t) + g [F(t) + Fi(t + At)] At

4. If t < tmax, then continue with step 1.

For an isolated system the total energy, the linear and the angular momentum must be conserved. In
the case that additionally the volume and the number of particles are fixed the particles are evolved
in the microcanonical or NVE ensemble. All other ensembles can formally be obtained from the
microcanonical ensemble [4]. Systems that use temperature instead of energy as a control variable
correspond to the canonical or NVT ensemble. In the case of an ideal gas the temperature is given by
the equipartition theorem as

r_2 (Eiin)
g ks

where ¢ is the number of degrees of freedom of the system and kg denotes the Boltzmann constant. The

; 3)
average kinetic energy ((Fxin)) can be obtained from classical mechanics as:
Fxin = — —M,;; . (4)

This relation links the temperature of a system directly to the velocities of the individual particles. To
control the temperature of a system kinetic energy needs to be added or extracted from the particles
using different kinds of thermostats. Although a system might have the right average kinetic energy

118

2 Introduction

it might not be equilibrated. At the thermodynamic equilibrium the velocity distribution matches the
Maxwell-Boltzmann distribution.

2.2 The Lowe-Andersen Thermostat

Thermostats can be classified as stochastic or deterministic depending on whether they use random
numbers or not. The velocity scaling and the Berendsen thermostat [5] are two deterministic ther-
mostats in which the velocities are rescaled. The rescaling is performed in a way that the kinetic energy
gives the desired temperature. If the initial total momenta are zero, both scaling methods keep them in-
variant. However these two thermostats do not ensure a Boltzmann distribution of the velocities. Tem-
perature gradients inside the system do not vanish after applying the thermostat. Another deterministic
approach is the Nosé-Hoover thermostat. Trough a friction term in the equations of motion the particles
are slowed down or accelerated. This approach does not perturb the dynamics of equilibrium systems
significantly. However it does not satisfy Galilean invariance [6].

The Andersen thermostat [7] is based on a stochastic approach and couples the system to a heat bath.
The physical idea is, that due to collisions between particles and bath particles, the simulated system
adopts the bath temperature. Because a complete second temperature controlled dynamics is quite
time consuming, the collisions are applied using random velocity corrections. Those corrections are
performed with a predefined frequency of correction (I'). New velocities are randomly chosen from
the Boltzmann distribution and applied to the particles. The advantage of this thermostat is that it
acts locally and thereby takes care of temperature gradients inside the system. Because the velocities
are chosen randomly it does not conserve linear and angular momenta and is not Galilean invari-
ant.

To overcome the disadvantages of the Andersen thermostat, Lowe modified the method using a pairwise
correction to the particle velocities [1]]. To reduce the computational effort, only the particles within a
predefined cutoff radius 7“4 (see Figure|l) are considered. The following steps are performed during
a pairwise velocity correction of two particles ¢ and j:

1. Determine the unit vector ¢;; along the line connecting the centers of particle ¢ and j.

2. Project the vector (v; — v;) onto the vector ¢;; to obtain v;; ..o = [(v; — ;) €;] &;-

3. Select a random velocity vang = [(’ \/ (k8T)/ (yij)} from the Boltzmann distribution correspond-
ing to a desired temperature.
¢’ is gaussian random number and p;; = (mim;)/(m;+m;) denotes the reduced mass of the two
particles.

4. Add (’Urand §’L] -
momenta.

Qz’j,proj) to v; and subtract it from v;, to conserve the linear and the angular

The corrected velocities of two particles ¢ and j are given by

119

EFFICIENT COMMUNICATION SCHEMES FOR PARALLEL STOCHASTIC THERMOSTATS

) 7,9ulLA
7
\

\
Yi new Urandom
*.7
//{] Yjnew

i ,”,j

Figure 1: Pairwise correction to the velocities of the particles ¢ and j using the Lowe-Andersen approach.

VY = .
- yi(t + % (vrand - (QZ' - Q]’) ‘Qj) “€ijs LAt > ¢,
(2
yj(t), I'At < ¢
Y — i)
! Qj(t) - HZ] (Urand - (Qi - Qj) 'Qj) “€ij» TAt> (.

2.3 Two Algorithms for the Lowe-Andersen Thermostat

Because one particle usually has more than one neighbour the question arises how the velocity correc-
tions should be performed within one timestep. One way would be to consider the values of the already
modified velocities (LA1-method). The other method would use the initial velocities of the particles
(LA2-method). In the latter case all the changes in the velocities are combined and added to the initial
velocities of the particles.

LA1: Suppose that the velocity of a particle ¢ has already been updated with k£ — 1 neighbouring parti-
cles. Then the velocity of the particle 7 after the k-th correction is given by

k k—1} | Mik [ik k-1
Qz{ }:Qi{ Y+ n,ZL {ﬁde (Q;{ }_Qk>§ik:| ik

)

Hik {k— 1} Hik Hik ik
1 - Hik : 6
< m. ezkezk) ms (ngzk) Eik T — ms Urand, T €ik - ()

3 (3 (2

If we consider all k corrections for the LA1 method, it will result in

k k

k 2 0 Z Hi Hi
Ql{ = H <1 - ”€Zj61j> { }+ - Yj l] it rrij Eajde Cik> (7)
T

; m -
Jj=1 Jj=1

where y;{o} denotes the initial value of the velocity.

120

2 Introduction

LA2: In the k-th velocity correction the initial velocity is used instead of y;-{kfl}. The corrected velocity
of particle i is is given by

k ik 0 ik Hik ik
Qz{ P <1 - T;%%) Qz{ Yy mi (Vk€ir) €t + milvzandfgk' (8)

Q % i

The final velocity of particle ¢ after k£ independent corrections is

k k u

) " . i i i

o't = > (1= ee, vl + > oo () €+ > g€ ©)
j=1 i = j=1 M

Equations [7]and 9] only differ in the first term. In the first term in equation[7]a product is used whereas
in equation[9]it is a sum. If every particle is corrected only once during a timestep, the two methods
become identical. To study the consequence of the two approaches, both algorithms were imple-
mented into a serial MD code [8]]. 8000 particles interacting through a Lennard-Jones potential were
arranged in a cubic geometry with periodic boundary conditions. The interparticle distance was chosen
to be equal to the equilibrium distance. The calculations were performed using conventional reduced
Lennard-Jones units [8]].

Evolution of Temperature using LA1 Evolution of Temperature using LA2
18 18
Freq = 50.0 Freq = 50.0
. 16F Freq=25.0 —— . 16 Freq=20.0 ——
iy Freq=5.0 = Freq=5.0
o 14 Freg=01 —— o 14 Freq=01 ——
2 12 g 121
g 10t} 8 10}
= £
|2 8 I |q_) 8 v v T R
LT T 6
| | | |
5000 6000 7000 8000 5000 6000 7000 8000
Timesteps Timesteps

Figure 2: Time evolution of the temperature for the LA1 or LA2 method applying various correction frequencies.

For both methods a timestep of 0.001 time units (tu) was chosen. The system was equilibrated for
5 tu using velocity scaling at each timestep. Then the simulation was continued for additional 10 tu,
applying the LA1 and LA2 thermostat in each timestep, respectively.

The temperature evolution during the simulation period is presented in Figure 2] In both cases the
temperature is fluctuating around a constant value. The LA2 method only gives the right tempera-
ture if the frequency of correction is small enough. For bigger values of I' the temperature is always
higher than the desired temperature. In the case of I' = 50 it is roughly twice the target tempera-
ture.

In the case of the LA1 method the current temperature is fluctuating around the target temperature for
all frequencies.

121

EFFICIENT COMMUNICATION SCHEMES FOR PARALLEL STOCHASTIC THERMOSTATS

2.4 The Difficulty of Parallelizing the Lowe-Andersen Thermostat

As shown above it is important to always use the current velocities to perform further corrections. This
leads to problems in the parallelization, independent of the parallelization scheme (volume elements
are assigned to processors; groups of particles are assigned to processors depending on their index;
et cetera). Assume a pair of particles is selected for the Lowe-Andersen correction. As long as both
particles are assigned to the same processor the current velocities of both particles are known to the
processor. But if the particles are assigned to different processors, the correcting processor has to know
the current velocity of both particles. That means that, if the velocity of a particle near the boundary
gets corrected, the updated velocity has to be send to the neighbouring processors before the velocity
of the same particle gets updated with the old velocity. Also both particles must not be involved in
further correcting processes during a correction. This is necessary to ensure a pure LA1 correction of
all particles.

3 The IBIsCO Code

The IBIsCO code [3]] is an MD software developed for coarse-grained simulations in which the nu-
merical potentials are derived by iterative Boltzmann inversion. IBIsCO is written in Fortran, and it is
parallelized using MPI [2]]. A periodic simulation box is decomposed, usingan NPX x NPY x NPZ
scheme, into domains which are assigned to different processors. Certain properties of particles lo-
calized near the processor boundaries are exchanged with the neighbouring processors. For the in-
teraction of the particles a boundary area is defined on the processors by the interaction cutoff ra-
dius.

3.1 Original Implementation of the Lowe-Andersen Thermostat

The original implementation of the LA thermostat in the IBIsCO code is performed as follows:

1. The components of the velocities and of the coordinates as well as the global indices are collected
on the master processor using seven indipendent MPI__GATHERV calls.

2. All collected information is rearranged considering their global index.

3. The velocity correction is successively performed for each processor domain by the master pro-
CEessor.

4. The velocities are sent back to the host processors using three independent sending processes.

This implementation leads to several problems. A large amount of memory is allocated on the master
processor for the positions, velocities and indices of the particles in the system, which might lead to
a lack of memory for large simulations. A second problem is the serial character of this quite expensive
method, which leads to a significant slowdown and an inefficient hardware usage.

122

4 Implementation of the modified Lowe-Andersen Thermostat

4 Implementation of the modified Lowe-Andersen Thermostat

To eliminate the flaws and imperfections of the original Lowe-Andersen implementation, the IBIsCO
code was modified. Besides a pure LA1 correction the modified algorithm aims to minimize the work-
load on the master processor, the data movement on the processors as well as to optimize the data
movement between processors.

To guarantee a pure LA1 thermostat, the pair corrections are performed in every domain by the host
processors. Only pairs of which both particles are located in the domain are taken into account. All
remaining corrections need to be performed across the processor boundaries. They are carried out by
the master processor. In this way no particle can be corrected by two different processors at the same
time. Compared to the original implementation this version also reduces the amount of data that needs
to be sent to the master processor. Because this algorithm is still partially serial, further optimizations
have to be performed (see section [6).

The number of sending processes are minimized by copying the velocities, coordinates and the global
index on the host processors to a single array and collect them with a single MPI__GATHERV call. To
send back the corrected velocities to their host processors a single MPI__SCATTERV call is used.

Vod] [Ve2] [Ve3
ut] (V2] [w3] -
mi mao ms3 e my
Tz 1 Tx2 Te3 .. TN
Ty,1 Ty,2 Ty,3 e Ty,N
Tz,1 22 23 .. TzN

"Uz,l‘ ’Uz,2‘ ’Uz,:s

[Poa] [ur] ™ 7ex rua raa [Ba] [Pea] [Bez] -

Figure 3: Top: Arrangement of the imported data on the master processor as a matrix. Bottom: Real arrange-
ment of the data in the memory. Boxed entries are chosen by the MPI_DATATYPE mask for the back sending
process. v are the velocities, m the masses and r the positions of the particle ¢; z, y and z denote the cartesian
components.

The data movement on the master processor is reduced by not copying the received data to new ar-
rays, but by accessing it then directly from the imported array (figure [3). To guarantee the veloc-
ities to be sent back efficiently, a handle (MPI_DATATYPE) was defined. It selects from the ma-
trix in Figure [3| only the velocities. Because MPI can only handle gaps in the data, but not at the
end of the MPI_DATATYPE, the z component of the velocities and the masses of each particles
were exchanged. This leads to an unusual data arrangement, but can be handled more efficiently by
MPI.

123

EFFICIENT COMMUNICATION SCHEMES FOR PARALLEL STOCHASTIC THERMOSTATS

5 Analysis of the modified Lowe-Andersen Algorithm

All following calculations were performed with the IBIsCO code using the original and the modified
Lowe-Andersen implementation, respectively.

In a first test the efficiency of the temperature adjustment of both implementations was investigated.
Therefore a system consisting of 160000 coarse-grained particles contained in a cubic box with a
side length of 30.30 nm was set up and was simulated for 10 ps using a timestep of 10 fs. The target
temperature was set to 450 K and the correction frequency was I' = 0.5. A LA-cutoff radius of 1.6 nm
was used.

The temperature evolution over time is presented in Figure @] For both methods the instantaneous
temperature fluctuates around a constant value. The new implementation matches the target tempera-
ture on average whereas the original implementation deviates by 20 K. By analysing the code it was
discovered that in the original implementation the velocities were sent back to the host processor di-
rectly after the corrections inside the corresponding domain were performed. Further corrections to
those particles lead to a partial LA2 correction scheme and gives higher temperatures. Another ad-
vantage of the new implementation is the smaller temperature fluctuations compared to the original
implementation. Those larger fluctuations also result from a partial LA2 correction (compare Fig-

ure[2)).

Evolution of Temperature

530
original implementation

510 - modified implementation
x desired temperature -------
S 400
o
é’ 470 f
(] \) ,
2 50 Wil

430 L L L

0 250 500 750 1000
Timesteps

Figure 4: Time dependent temperature evolution for the original and modified implementation of the Lowe-
Andersen thermostat.

To investigate the speedup of the new implementation, the above simulations were repeated for different
sizes of the processor domains. Therefore the simulation box was divided equally in each direction into
2, 3 or 4 domains, which results in 8, 27 and 64 processors.

The CPU times are presented in Figure[5]and table[I] Figure [5|shows that the original implementation
scales poorly with the number of processors. In addition to the better scaling behaviour, the modified
method needs less total computation time. A comparison of CPU times reveals a speedup of a factor
of six to fourteen, depending on the number of processors (compare table [I). The speedup seems
to converge with a higher number of processors. The more processors are used, the shorter the time
needed for the particle corrections on the processor. At the same time the total size of boundary regions
increases. Therefore more particles need to be sent to the master processor, which results in a longer
serial calculation.

124

5 Analysis of the modified Lowe-Andersen Algorithm

Scaling of the original Lowe-Andersen Implementati Scaling of the modified Lowe-Andersen Implementatit
1650 250
2 1600 2 200
® ®
E £
= [
1550 150
1500 L 100 L
8 27 64 8 27 64
Processors # Processors

Figure 5: Comparison of the simulation times using the modified and original Lowe-Andersen implementation
with a varying amount of processors.

Table 1: Comparison of the simulation times using the modified and original Lowe-Andersen implementation
with a varying amount of processors.

time(original)

time(original i dified me(original)
proc. time(original)/s time(modified)/s TR

8 1588.8 263.7 6.03
27 1572.9 115.8 13.58
64 1550.0 108.4 14.30

To investigate this effect of the different size of the boundary area on the speedup, a larger system of
540000 particles was simulated using the same conditions as for the previous tests. A total number
of 96 Processors was used. The simulation box was divided in different ways (compare table [2) into
NPX x NPY x NPZ processors. This results in different sizes for the boundary regions. In table
the ratio of the average number of sent particles ({Ngen)) and the total number (Nyy) of particles are
presented.

Table 2: Comparison of the simulation time using the original and modified Lowe-Andersen implementation
with 96 processors. The speedup depends on the ratio of total number of particles and the average sent
particles.

System division % time(original) /s time(modified)/ %
NPX =2, NPY =6,NPZ =8 0.430 2565.8 356.0 7.208
NPX =4, NPY =3,NPZ =8 0405 2517.4 270.6 9.302
NPX =4, NPY =6,NPZ =4 0.378 2865.3 284.4 10.076

The ratio of the simulation times needed for the simulation rises as less particles need to be sent to the
master processor in the new implementation. This is due to more corrections being performed inside the
processor domains. In both cases only the ratio between the CPU times are representative, because the
rest of the simulation also depends on the division of the simulation box.

125

EFFICIENT COMMUNICATION SCHEMES FOR PARALLEL STOCHASTIC THERMOSTATS

6 Conclusions and Outlook

In this project the Lowe-Andersen thermostat implemented in the IBISCO code was successfully
improved. The original implementation of the LA thermostat in the IBISCO code gives higher in-
stantaneous temperatures than demanded. This is due to a partially LA2 controlled velocity cor-
rection. The modified version of the parallelization gives the correct temperature with less fluctua-
tions.

The modified version is faster up to a factor of 14 depending on the number of processors and the
division scheme of the system. The LA thermostat algorithm can be further improved using a direct
communication between the neighbouring processors. In such a case one processor will send the
information from the boundary region to 13 of its 26 neighbouring processors (6 x side, 12 x edge,
8 x corner) and receive data from the other 13 processors. If implemented in the right way, this leads
to a totally parallelized pure LA1 scheme.

7 Acknowledgement

I would like to thank Dr. Godehard Sutmann and Dr. Viorel Chihaia from JSC for their support and
answering many questions. I would also like to thank Prof. Dr. Dominik Marx at Bochum University
for his recommendation, which made my attendance possible. Special thanks to Mathias Winkel and
Ivo Kabadshow for organizing the guest student programme. I would like to thank my fellow students
for the great time in Jiilich.

References

1. Lowe CP. An alternative approach to dissipative particle dynamics. Europhys Lett. 1999;47(2):145-151

2. Karimi-Varzaneh HA, Qian H-J, Chen X, Carbone P, Miiller-Plathe F. IBIsCO: A Molecular Dynamics Simulation
Package for Coarse-Graind Simulation. J] Comput Chem. 2011;32(7):1475-1487

3. IBIsCO [homepage on the Internet]. Theoretical Physical Chemistry TU Darmstadt: Florian Miiller-Plathe; [up-
dated 2008; cited 2012 Oct 18]. Available from: http://www.theo.chemie.tu-darmstadt.de/ibisco/
IBISCO.html

4. Marx D, Hutter J. Ab Initio Molecular Dynamics. Cambridge University Press; 2010

5. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external
bath. J Chem Phys. 1984;81:3684-3690

6. Koopman EA,Lowe CP. Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations.
J Chem Phys.2006;124:204103

7. Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J] Chem Phys.1980;72:2384

8. Frenkel D, Smit Berend. Understanding Molecular Simulations: From Algorithms to Applications. Academic Press;
2008

126

http://www.theo.chemie.tu-darmstadt.de/ibisco/IBISCO.html
http://www.theo.chemie.tu-darmstadt.de/ibisco/IBISCO.html

Identification of Gravity Waves
in AIRS Brightness Temperatures

Anne Springer

University of Bonn
Institute for Geodesy and Geoinformation
NuBallee 17
53115 Bonn

E-mail: annespr@uni-bonn.de

Abstract:

The Atmospheric Infrared Sounder (AIRS) provides infrared radiance data, which are used to calcu-
late brightness temperatures. Stratospheric gravity waves can be found in temperature perturbation
data. A toolbox is developed to identify gravity waves in the AIRS data and to analyse their proper-
ties. This information can be used to gain a better understanding of gravity wave sources and their
propagation in the stratosphere. The output of our toolbox is a statistic of amplitudes and wavevectors.
Case studies give information about the functionality of the toolbox and reveal the dependency of the
results on certain control parameters. Gravity waves are detected with success and the wavevectors
and corresponding amplitudes are determined with good accuracies.

1 Introduction

Gravity waves play an important role in the circulation of the middle atmosphere. The current pub-
lic debate about climate related topics, such as global warming, evidence the need for reliable global
climate and circulation models. The stratospheric and mesospheric circulation can only be explained
by considering the momentum and the energy which is transported by gravity waves. Hence, a deeper
understanding of the origin and propagation of gravity waves will permit a better modelling of the
circulation in the atmosphere. A review about the effects and the role of gravity waves in the middle
atmosphere is given by [3]].

In this work we identify gravity waves in Atmospheric Infrared Sounder (AIRS) brightness tempera-
ture data. Different analysis methods, which determine the properties of gravity waves, are assembled
in a gravity-wave-toolbox as described in sectiond] On the one hand we use the Fast Fourier Transfor-
mation (FFT) and on the other hand a sine fit.

In section 2| we introduce the phenomena of gravity waves and briefly respond to the sources of grav-
ity waves. We present some background information about the AIRS data in section [3] In section [3]
this report concludes with a demonstration of the results of our work by means of a concrete case
study.

127

IDENTIFICATION OF GRAVITY WAVES IN AIRS BRIGHTNESS TEMPERATURES

2 Atmospheric Gravity Waves

Gravity waves are observed in temperature, wind and density. They transport momentum from lower
altitudes into the mid and upper atmosphere. Their existence is pictured by considering the stable
stratification of the atmosphere [2]. A thought experiment (figure [Ta)) illustrates the essential mecha-
nism. An air parcel of density p; is shifted upwards by some event. In a next step it cools down and
extends. As a consequence the density of the air parcel decreases. But the density of the background
atmosphere also decreases with a certain amount. At some moment the air parcel is heavier than the
background atmosphere. Consequently gravity provokes a downward shift. All in all, the air parcel
oscillates around its equilibrium position. This is the mechanism which occurs in gravity waves.
There are different sources of gravity waves. Well known initiators are airflow over mountains and
convection. Mountains provoke an initial upward shift of the air parcels. Convection transports heat
from lower to higher altitudes, which produces a warm front and activates gravity waves. More detailed
information to these and other sources are given in [5]]. In Figure[Ib|the propagation of a gravity wave
is depicted. Again we examine the behaviour of one air parcel. Starting with a warm front, in a next
step our air parcel is shifted upward along this warm front. Then it will cool down, become less dense
and at a certain point it moves downwards again. Consequently, the air parcel is oscillating perpendic-
ular to the propagation direction of the wave. In propagation direction we observe a change of warm
and cold and a change of upward and downward wind. The changes are related to the wavelength .
It is obvious that the wave can be detected by regarding either the temperature, or the up and downward
winds or the changes in density. By the way, due to the changes in temperature, clouds unveil gravity
waves. They condense at the cold fronts but not in warmer parts of the air. Figure [Ic|shows, seen from
space, clouds which uncover gravity waves.

N
H
P2
gﬂpi N oy
T:

(a) The stable atmosphere: an air par- (b) The gravity wave with wavelength (c) Gravity waves are unveiled

128

cel with density p; is shifted up-
wards, cools down, expands and has
a lower density. The background at-
mosphere also changes its density.
At a certain point the air parcel is
heavier than the background atmo-
sphere and is shifted down again
due to gravity.

A propagates to the right. After a
warm front, an upward wind fol-
lows, then a cold front, a downward
wind and again a warm front. The
air parcels oscillate perpendicular to
the propagation direction.

by clouds. In this Figure we
show gravity waves as seen
from space.

Figure 1: Gravity waves occur in a stable atmosphere and are unveiled by clouds.

3 AIRS Data

3 AIRS Data

The Atmospheric Infrared Sounder (AIRS) instrument is one of six Earth observation instruments on
board of the AQUA satellite. The mission was launched in 2002 in order to obtain information about
the Earth’s water cycle. The AQUA satellite orbits the Earth one times in 99 minutes, so about 14 times
a day. The AIRS instrument is a cross-track scanning instrument. Each scan has an extension of 1600
km. The size of the 90 footprints is bigger at the extreme edges of the scan than in nadir direction. The
measuring principle is pictured in Figure [2a]

AIRS /2009_194 / nighttime

latitude [deg]
o
4.3 micron BT perturbation [K]

Direction
of Flight

longitude [deg]

(a) Measuring principle of the AIRS instrument: (b) For this Figure brightness temperature data from the chan-
Infrared energy is measured in 2378 different nels which are sensitive to gravity wave were computed. The
channels for scans of 1600 km extension in background temperature was subtracted and the remaining
across-track direction (source: [6]). perturbation data contains the wave structures we want to

analyse.

Figure 2: The AIRS instrument on board of the AQUA satellite provides infrared radiation data, from which
brightness temperature data can be deduced.

The AIRS instrument measures infrared energy in 2378 channels [1]]. Each wavelength is sensitive to
the temperature over a certain range of height in the atmosphere. Gravity waves can be examined by
using the channels which see the altitudes between 30 - 40 km. An example for 12 hours of AIRS
data is shown in Figure[2b] The infrared radiation has been converted to brightness temperatures using
the Planck function. In the Figure the background temperature has been subtracted in order to make
smaller structures visible. This brightness temperature perturbation data is subject to our further inves-
tigations.

In the lower latitudes we can clearly distinguish the distinct descending paths. In the southern hemi-
sphere different wave structures can be determined. To identify and model these waves we developed
the gravity-wave-toolbox, which is presented in the next section.

129

IDENTIFICATION OF GRAVITY WAVES IN AIRS BRIGHTNESS TEMPERATURES

4 The Gravity-Wave-Toolbox

The essential part of the gravity-wave-toolbox are two methods: the Fast Fourier Transformation (FFT)
and the sine fit (figure [3). First of all we want to specify our problem and then develop a strategy to
solve it.

The aim of this work is to develop a tool which calculates the amplitude and the wavevector at every
data point. We begin with a view to the linear wave theory.

T

0 100 200 30 40 50 60 700 00 “0 00 200 300 400 S0 600 0 gm0
x [km] k] T

(a) This Figure shows a data set with (b) One sine function is fitted to the (c) The FFT reveals the most important

one sine and superposed noise. The data. wavenumber, which corresponds in
signal has a wavelength of about this case to a wavelength of 300
300 km. km. But energy is also transferred

to other wavenumbers.

Figure 3: We use two methods to analyse our data: FFT and sine fit

4.1 Linear Wave Theory

Gravity waves propagate three dimensional and the amplitude increases with the height exponentially
if the wave propagates conservatively and if the background remains constant [5]]. From the linear
wave theory we get the description of a three dimensional wave as shown in equation (Il The wave is
determined by the wavelengths in x-, y- and z-direction A\;, A, and)., the phase ¢ and the amplitude
Toexp(572). Tp is the temperature perturbation at some reference height zp and H ~ T7km the

2H
atmospheric scale height.

zZ—2z0. . 27 27 2

5H)Sln()\—m:r—I—)\fyy%- —z+¢) (D

AT = Toexp(S

As we analyse extracts of wave structures we neglect the exponential growth of the amplitude. Further-
more we examine two dimensional data, so that the third component), of the wavevector is omitted.
Therefore we obtain the model presented in equation 2]
2T 27
AT = Asin(—x + —y + ¢) (2)
Az Ay
Based on the given brightness temperature perturbations A7 we aim to determine the highlighted
parameters.

130

4 The Gravity-Wave-Toolbox

4.2 Analysis by Fast Fourier Transformation

The Fast Fourier Transformation (FFT) is applied to calculate the values of the Discrete Fourier
Transformation (DFT) in an efficient way. Equation [3| defines the DFT for a one dimensional data
set of size N. Input are the temperature perturbations AT; and we obtain the fourier coefficients

Ck.

N-1

jk
cr = ZO eXp(—QT(‘ZNATj) 3)
]:

We extend the one dimensional FFT for two dimensional data by executing the FFT first on each
row and then columnwise on the obtained results. From the coefficients c; we deduce the ampli-
tude A and the phase ¢ at each frequency. The wavenumbers respectively the wavelengths are ob-
tained from the spacing of our data points. The resolution of the wavenumbers is limited as deter-
mined by equation It depends on the sampling rate F of the input data and the number N of
samples.

F

fres = N (4)

In our study the spacing of two data points is about 18 km. Consequently our sampling rate is F =

18% = 0.0556%. Let us now suppose a number of N = 40 data points. Then we obtain for the

wavenumber resolution a value of f,..; = 0'3%56 ﬁ = 0.0014%.

Figure [a] pictures the example of a sine with a wavelength of 300 km. From the FFT we obtain the
amplitudes for each wavenumber. They are shown in Figure @b] We select the wavenumber with the
highest amplitude as result of our analysis. The wavelengths corresponding to the three maximum
amplitudes are 684 km, 342 km and 228 km. Due to the limited resolution 342 km is the best approx-
imation we can obtain for our signal wavelength. The analysis returns exactly the same value of 342
km for a signal with a wavelength of 400 km or 450 km. In summary the resolution of the wavenumber
is worse for large wavelengths.

There are two possibilities to overcome the problem of the limited resolution. As equation |4{ indi-
cates we can either decrease our sampling frequency, which corresponds to a closer spacing of the data
points, or increase the number of samples.

We can reach a closer spacing of our data points by interpolation. The number of samples can be
increased by applying zero padding. That means, we add a certain number of zeros to our data (fig-
ure[dc). As we can see, the values of the corresponding spectrum in Figure [dd| are spaced much closer
than before in Figure[db] The disadvantage of the zero padding is the appearance of side lobes. The ex-
tension of the data set with zeros corresponds to a multiplication with the boxcar-function. The fourier
transformed of the boxcar function is the sinc-function, which causes the mentioned side lobes. Addi-
tionally, the energy is distributed to different wavenumbers with the effect, that the amplitudes decrease.
We accept this to gain a better resolution of the wavenumbers. These effects are lowered by using a dif-
ferent window than the boxcar function. We use a Bartlett window.

131

IDENTIFICATION OF GRAVITY WAVES IN AIRS BRIGHTNESS TEMPERATURES

TIK

0 100 200 300 400 500 600 700 800 0 0.005 0.01 0015 002 0.025 0.03
x km] nu [14km]

(a) A sine with a wavelength of 300 km. (b) Result of the FFT applied on the data of Fig-
ure@ The resolution is rather low.

002
0.8
[PRGETS
0.014
0m2r

3 [l g
<

00081

0.006 -

0.004°

. o
0 200 400 600 800 1000 1200 1400 1800 1800 0 0.005 0.01 0.015 0.02 0.025 0.03
* [km] nu [1km]

(c) A certain number of zeros is added to the sine (d) The spectrum of the fourier transformed of
of Figure@ the extended signal reveals side lobes, but has
a better resolution than the result displayed in

Figure b}

Figure 4: The resolution of the result of the FFT is limited. It can be improved by zero padding.

4.3 Analysis by Sine Fit

Regarding the AIRS data there is mostly exactly one wave which stands out of a certain region. Con-
sequently we want to fit exactly one sine to our data. This is achieved by applying the least squares
method. We minimize the cost-function, which is the sum of the squared residuals of every observation,
as indicated by equation [5} The residuals are defined as the difference between the observations AT}
and the corresponding result from the model displayed in equation [2] using the estimated parameters
A, Az, Ay and ¢. The model of equation [2|is two dimensional. We can modify the model to fit a one
dimensional sine by omitting either the x-term or the y-term.

N—-1
2= Z TJQ» — min o)
=0
2 2
rj = AT; — Asin(3a; + —y; +) ©)
Az Ay

132

4 The Gravity-Wave-Toolbox

We are dealing with a non-linear model, which is solved by the Gau3-Newton-Algorithm. Therefore we
need starting parameters, which can be taken from the results of the FFT. Convergence is not guaranteed
and depends strongly on the quality of the starting parameters. Figure [5] shows three dimensions of
the cost function of a wave with wavelength A, = 300 km and A\, = 500 km. Figure [Sa pictures
the cost-function in A, -direction, Figure @] in \,-direction and [5c|in direction of the phase. For the
amplitude the minimization problem is linear and the cost-function quadratic. As we can deduce from
the Figures, bad starting parameters will lead to a local minimum and not necessarily to the required
global one.

x10* x10*

P NN —J\J 10000 3
12
1.25

5000 115

Ghiz

105 1
000 -800 -600 400 200 O 200 400 600 800 1000 -1000 -800 600 —400 -200 O 200 400 600 800 1000 -1000 -800 -600 400 -200 O 200 400 600 800 1000
Ix [kimi] ty [km] phi [rad]

(a) Cost function for the parameter A, (b) Cost function for the parameter A, (c) Cost function for the parameter ¢

Figure 5: Cost function plotted along the axis of different parameters for a data set which contains a wave with
Az = 300 km and A, = 500 km.

To overcome this problem we automatically test a certain number of starting parameter sets. Then we
select the result which leads to the smallest value of the cost function.

4.4 Technical Aspects

The two methods are applied for extracts of our data set. That means, we take a box of size NxN and
shift it over our data. The perturbation data which is contained in this box, is analysed by the FFT and
the sine fit. The parameters are saved for the point in the centre of the box.

Alternatively we can also apply FFT and sine fit only in one dimension: in x- or in y-direction. In this
case, instead of the box we work with a stripe in x-or y-direction and shift it over the data set.

Before applying our analysis methods some other steps have to be accomplished. The proceeding of
our work is visualized in Figure 6]

First of all we have to subtract the background atmosphere to reveal the gravity wave structures. There-
fore we fit a polynomial of degree four to the data for each across-track scan and subtract it from the
data. We obtain the brightness temperature perturbation data. As we already mentioned in section [3]
the footprints at the extreme borders of each scan are bigger than those in nadir direction. As the FFT
requires equally spaced data we interpolate the data in across-track direction. Furthermore we can use
the interpolation step to increase the sampling rate in order to obtain a better resolution of the FFT.
Optionally the data can be smoothed with a median or a moving average filter. Furthermore we calcu-
late the variance of the data to decide if the area manifests enough variation to contain a gravity wave.
The thus prepared data is now analysed by our gravity-wave-toolbox. We choose a box size NxN. For
example 40x40 data points, which correspond to about 720x720 km, have proved suited. Now we ac-
complish the FFT with the option of zero padding. We have the possibilities to achieve the analyses in

133

IDENTIFICATION OF GRAVITY WAVES IN AIRS BRIGHTNESS TEMPERATURES

| Substract Background |

\ 4

| Interpolation |

v
| Smoothing |

| Check Variance |

¥

Box Size

Zero Padding

Starting
Parameters

2D 1D 2D 1D

NN

N

A,)'x'ly: P

Figure 6: The proceeding to identify gravity waves is as following: First we subtract the background. Then we
interpolate the data, smooth it if necessary and check the variance. Afterwards the gravity-wave-toolbox is
applied and gives the wave parameters.

two dimensions or in one dimension, in x- or y-direction. The results from the FFT are used as source
for determining suited starting parameters for the sine fit. This analysis also can be accomplished in
the different dimensions and directions.

As a result we obtain for each option the parameters amplitude A, wavelength)., wavelength)\, and
phase ¢ at each data point. The parameters are plotted to obtain a statistic about their magnitude at
each location.

5 Case Studies

In order to test our analysis toolbox we carried out some case studies on selected examples of the
AIRS data. But we also tested different strategies on synthetic data. We now present results from the
analysis of a gravity wave in the south-east of the African continent. We work in the coordinate system
of the satellite. The x-axis corresponds to the across-track direction and the y-axis to the along-track
direction.

Figure [7a] shows the selected extract in detail. The gravity wave is situated in the lower left part. We

134

5 Case Studies

Levelz=0

AIRS / 2009_194 / nighttime T T U — T L — L

latitude [deg]

-05

)
4.3 micron BT perturbation [K]

0 200 400 600 800 1000 1200 1400 1600 1800 20!
longitude [deg] across-track distance [km]

(a) The red rectangle shows the extract of perturbation (b) The extract is plotted in the coordinate system
data which is analysed. of the satellite with the x-axis in across-track di-
rection and the y-axis in along-track direction

Figure 7: In order to demonstrate our gravity-wave-toolbox we chose the case of a gravity wave in the south of
the African continent.

can determine an amplitude of about [1.5]K, a wavelength in x-direction of about 600 km and in y-
direction of about 300 km.

We will now take a look on the results we obtain from our analysis tool. First of all we accomplish
a FFT in two dimensions with a box size of 40x40 data points. The results are displayed in Fig-
ure [§] For each data point we have calculated from its surrounding box amplitude, wavevector and
phase.

As Figure [8a]indicates the amplitude is estimated with up to 1.3 K lower than the real amplitude. This
is due to the distribution of the energy to other wavenumbers. As expected the amplitude decreases
to the right and upper part of the extract. The phase (figure shows clearly the wavefronts. The
wavevector is estimated homogeneously in the whole extract. In x-direction we get a wavelength of
800 km and in y-direction of 400 km. Thus, the result from the FFT is only a bad estimate for the
wavelengths of 600 km and 300 km. Reason is the low resolution of the FFT.

The application of zero padding leads to much better results. In Figure 9a] mainly two wavelengths
for the x-direction are distinguished. The obtained 600 km fit to the extract as well as the 300 km in
y-direction.

The approximated values from FFT were used as starting parameters for the sine fit and provide the
results pictured in Figure[I0]

The gaps correspond to areas in the data where the structure of the perturbation data cannot be repre-
sented by a sine. These areas are confirmed by a look on Figure[7] The amplitudes and the phase found
by the sine fit correspond to our former observations. But the great advantage of the sine fit method is
the good resolution of the wavelengths. As Figure[I0b|pictures, the wavelength increases in x-direction
an the expected value of 600 km is yielded. In y-direction a more or less homogeneous wavelength of
300 km is confirmed.

Variation of the box size has shown, that, especially for the sine fit, its size should not be chosen too
small. In this case study a size of 40 x 40 data points turns out to be appropriate. As experiments

135

IDENTIFICATION OF GRAVITY WAVES IN AIRS BRIGHTNESS TEMPERATURES

Level =0 Level =0
1600 - - - 1600 - - - 1000
14
1400 - 1400 -
— 12 — 800
E 1200 . E 1200 o 2
2 = <
o 1 o £
2 1000 q = g 1000 7 600 §
k] k3 k] i
S 800 4 08 3 S 800 , 3
3 3 3 <
£ 600 . 06 § £ 600 B 00 %
£) g §
g 400 - S 400 . ?
T T
200 §
200 4 0.2 200 -
[0 0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
across-track distance [km] across-track distance [km]
(a) Amplitudes (b) Wavelengths in x-direction
Level z=0 Level =0
1600 T T T 7 1600 T T T T 1000
1400 ! 6 1400 4
. 800
=] 1200 - 3
E 1200 5 E :
3 1000 2 1000 - i
q = £ 600 §
5] § g
5 4 E z 3
S 800 s 2 T 800 :
g s 8 8 600 400 £
£ 600 4 a = J H
ew g i
2 2 400 s H
£ 400 q ® 200 §
200] 1 200 .
o G [0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
0 200 400 600 800 1000 1200 1400 1600 1800 2000
across-track distance [km]
across-track distance [km]
d) Wavelengths in y-direction
(c) Phases (d) g y

Figure 8: The FFT is applied using a box of size 40x40.

with synthetic data confirm, the optimal box size depends on the wavelength we have to identify. Fur-
thermore, by testing synthetic data with different magnitudes of noise we found out that both of our
methods are quite robust towards noise.

The application of FFT and sine fit in only one direction leads to results with a more detailed structure
that also contain values of a bad quality. Therefore we prefer the two dimensional analysis, which
implies more data.

Level z=0 Level z=0
1600 e 1200 1600 — T 1200
1400 i T et 1400 .
1000 ¢ 1000
E 1200 H E 1200 2
5 s 800 £ o 800 £
§ 1000 o S = T § 1000 o T
3 - e = < 2 3
S 800 . 600 3 S 800 s 600 3
3 : s :
g 600 T . H g 600 . £
3 M 400§ 5 w0
g 400 — g 400 - :
200 200 *
200 s 200 s
0 0 0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
across-rack distance [km] across-track distance [km]
(a) Wavelengths in x-direction (b) Wavelengths in y-direction

Figure 9: Applying zero padding improves the results by providing a better resolution.

136

6 Conclusion and Outlook

Level z=0 Level z=0
1600 - - - - 1600 - - 1000

1400

1200

1000

800

600

along-track distance [km]
i
amplitude{K]
along-frack distance [km]

400

wiavalandth in vodirartinn fam]

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
across-track distance [km] across-track distance [km]
(a) Amplitudes (b) Wavelengths in x-direction
Levelz=0 Level z=0
1600 T T T 7 1600 T T T T 1000

i
phase [rad]

along-track distance [km]

along-track distance [km]
wavalanath in u_diraction flanl

0 200 400 600 800 1000 1200 1400 1600 1800 2000
across-track distance [km]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
across-track distance [km]

(c) Phases (d) Wavelengths in y-direction

Figure 10: The sine fit method is applied using the results of the FFT as starting parameters.

6 Conclusion and Outlook

We developed a toolbox to identify gravity waves in AIRS data and to analyse their properties. In this
report we presented the result of one case study. Further case studies were accomplished and led to
similar conclusions. The quality of the identification depends on the choice of different parameters,
such as box size, method and dimension. For convective gravity waves the sine fit does not always
fullfill the expectations because of their circular form.

The FFT is a reliable method but has a poor resolution, whereas the sine fit yields to accurate results but
reveals convergence problems. This disadvantage of the FFT was resolved to some extend by applying
zero padding and a special window function. The sine fit was improved by checking different starting
parameters.

All in all the best way to identify the gravity waves turned out to be the following: We use the two
dimensional approach by selecting a certain box size. Then we apply the FFT using zero padding.
Finally we refine the results from the FFT by achieving the sine fit with different sets of starting pa-
rameters.

The next step will be to apply the gravity-wave-toolbox on the whole AIRS data set and gain global
statistics about the occurrence and properties of gravity waves. Furthermore the toolbox shall be ex-
tended for the analysis of three dimensional brightness temperature data.

137

IDENTIFICATION OF GRAVITY WAVES IN AIRS BRIGHTNESS TEMPERATURES

7 Acknowledgements

I would like to thank my adviser Dr. Lars Hoffmann for his support with knowledge and hints. I am
very grateful for the programming skills I learned from him and the interesting tasks he found for me.
Furthermore I appreciated a lot the introduction to gravity waves, which was given to me by Dr. Peter
Preusse. Besides I would like to thank Prof. Dr.-Ing. Jiirgen Kusche for indicating the guest student
program to me and for his recommendation. I also would like to thank Dipl.-Ing. Lutz Roese-Koerner
for telling me about his experiences with this program. Finally I would like to put into words my
gratitude to Mathias Winkel and Ivo Kabadshow for organising the guest student program and thank
the other students for their contribution to a nice and instructive time.

References

1. H. H. Aumann, et al. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Process-
ing Systems. IEEE Trans. Geosci. Remote Senes., 41 (2003), 253:264.

2. C. I Lehmann, Y. -H. Kim, P. Preusse, H. -Y. Chun, M. Em, S. Y. Kim. Consistency between Fourier transform and
small-volume few-wave decomposition for spectral and spatial variability of gravity waves above a typhoon. Atmos.
Meas. Tech. Discuss. 5 (2012); 1763:1793; doi:10.5194/amtd-5-1763-2012.

3. L. Hoffmann, M. J. Alexander. Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance
measurements for gravity wave studies. J. Geophys.Res. 114 (2009); D07105; doi:10.1029/2010JD014401.

4. J Houghton. The Physics of Atmospheres. 3rd ed. New York: Cambridge University Press; 2002.

5. D. C. Fritts, M. J. Alexander. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41(1) (2003);
1003; doi:10.1029/2001RG000106.

6. AIRS Atmospheric Infrared Sounder; 2012. Available from: http://airs. jpl.nasa.gov/.

138

http://airs.jpl.nasa.gov/

Information sharing and collaboration between agents in
evacuation simulations

David Haensel

Dresden University of Technology
Faculty of science
Department of Mathematics
01062 Dresden
E-mail: david@davidscorner.de

Abstract:

This work describes a graph based navigation algorithm for pedestrian dynamics simulation in case
of evacuation. The main goal of every pedestrian is to leave the building over the shortest path.
Additionally to an implementation of the classical shortest path strategy, an information gathering
and sharing scheme is modelled. We introduce a reasoning structure for the agents in the simulation.
They are able to notice closed or broken escape routes and share it with other pedestrians in the
surrounding. We qualitatively analyzed the influence of the radius and the information propagation
speed in an office building.

1 Introduction

The investigation of pedestrian dynamics applies to situations with many people crowded in a spe-
cific space. These situations occur in subway stations, airports, well known sights and many other
places in everydays life. The complexity and the size of those infastructures is frequently increas-
ing and with it the number of people using it. Additionally there are more often large indoor and
outdoor events with high pedestrian densities. Unfortunately casualties happened at those places or
events through history. For example the fire in a textile factory in Karachi (Pakistan) in 2012 or ru-
mors during coronation of tsar Nicholas II in Moscow (Russia) in 1896. Therefore, the investiga-
tion of pedestrian dynamics in those situations is needed to improve buildings, evacuation routes and
events.

According to Hoogendoorn et al [1]] one can divide pedestrian dynamics simulations in three levels of
operation: the strategical level, the tactical level and the operational level (Figure[T)). At the strategical
level pedestrians decide for a final destination and choose the route to reach that. On the tactical level
pedestrians perform short term decisions, e.g. changing decisions because of closed doors or jams
or avoiding obstacles. The operational level concerns the modeling of pedestrian motion including
acceleration, deceleration and stopping.

139

BASIC REASONING IN EVACUATION SIMULATION

Strategical level b—\
Tactical level 4’—\

Operational level

Figure 1: Three levels of operation in pedestrians simulation framework as described in [1]]

Most evacuation simulation software neglects individual knowledge of pedestrians about the building
and the actual state of escape routes. Unexpected states of escape route e.g. closed doors are either
ignored or known from the beginning of the simulation. To obtain a more realistic behavior it is neces-
sary that the pedestrians have individual knowledge about the status of escape routes. Depending on this
knowledge the decisions taken by the pedestrians during the simulation will vary.

The ideas developed in this work mainly apply to the tactical and strategical levels. For finding the
final destination and the route to it we used a graph generated from the given geometry data. In case of
closed doors this graph was changed and the information was shared between pedestrians. The algo-
rithm is implemented in the Jiilich pedestrian simulator, a collection of tools for pedestrian dynamics
simulations developed at the research centre Jiilich in Germany.

For the modeling of pedestrian motion at the operational level the generalized centrifugal force model
mentioned in [3]] is used. In this model the motion of every pedestrian 7 is defined by the equation of
motion (described in equation, where the force F; is the sum of influencing forces:

d2R;
dt2

SR NS S o2 0
jE./\/i weW;

my;

Here, F"" is the force which drives the pedestrian i towards a certain destination, F{7is the repulsive

force acting from pedestrian j on pedestrian ¢ and I*:Z;fp is the repulsive force from walls and obstacles
acting on pedestrian ¢. In the simulation pedestrians are modeled as ellipses. The size of the ellipses in
moving direction is velocity dependent and increases with the velocity [3]].

2 Graph based navigation

For the navigation in the building a graph generated from the given geometry data is used. With this
graph pedestrians are able to navigate through the building and find the emergency exit with the shortest
distance.

140

2 Graph based navigation

2.1 Graph structure

The simulated geometry is divided in navigation areas. The boundaries of the navigations areas are the
navigation lines (see Figure[2)). There are three kinds of navigation lines:

Crossings are virtual doors between two navigation areas in the same room.

Transitions are doors between two navigation areas in different rooms.

Hlines are help lines in navigation areas to facilitate pedestrians movement around obstacles.

Room

Obstacle Navigation area Wall

NavLine

Crossing Transition Hline

Figure 2: Data structure of the geometry.

From this geometry data we derived a graph structure. The graph uses a navigation line as vertex and
connects two vertexes with an edge when they are visible to each other. An edge is always related
to a certain navigation area connecting the two navigation lines (vertexes). Moreover it expresses the
absolute distance between the two navigation lines (Figure [3).

RoutingGraph

- Building: *building
- vertexes: map<int, Vertex>
+ BuildGraph(): *RoutingGraph
+ GetNextDestination(p: *Pedestrian): *Vertex
+ GetNextDestination(line_id: int, p: *Pedestrian): *Vertex
+ CloseDoor(door_id: int): void

Vertex

+ navigation_line: NavLine
+ID: int

+ exit: bool

+ edges: map<int, Edge>

Edge
+ dest: *Vertex
+ src: *Vertex
+ distance: double
+ area: navigation_area

Figure 3: Routing graph class-diagram

In order to create the graph we iterate through all rooms and the included navigation areas. For every
navigation area we consider all navigation lines in this area. After adding the new lines as vertexes it

141

BASIC REASONING IN EVACUATION SIMULATION

is checked if they are visible to each other. Therefore, three points in each line are taken and checked
if one connection of all possible connections (between the three points each) does not intersect with an
obstacle, wall or hline. If this applies it means, that there is at least one visible connection between the
two lines.

After the creation of the graph it is possible to navigate pedestrian through the building. To find the
emergency route we used the absolute distance between vertexes. For navigation with graphs and other
heuristics more information is provided in [5] or [6]]

2.2 Shortest path computation as sub-graph

To navigate pedestrians to the next emergency exit one could use the absolute distances. Using that
approach lead to the global shortest path (compare [2]). This is achieved by calculating the absolute
edge distance and from this the route distance to a certain emergency exit. We used a slightly mod-
ified Dijkstra algorithm [4)]. The modification is a constraint on the set of next possible edges. The
assumption limiting the set of next possible edges is, that the next chosen edge can not be in the same
navigation area than the last edge coming from to the vertex, except if the vertex represents a hline.
This assumption ensures, that the pedestrian chooses the direct way through a navigation area. The
pedestrian is just allowed to go through doors and not tangent to them. Hlines are an exception because
they are in a navigation area and all incident edges are in the same navigation area. After calculating
the distances, every emergency exit is the root of a tree with the shortest paths from vertexes with a path
to the emergency exit. This approach makes a navigation possible.

2.3 Navigating pedestrians with global knowledge

With the described graph, pedestrians are able to navigate through a building assuming that they have
global knowledge about closed or barred doors and are always taking the shortest way to the emergency
exit. If a door is closed it is simply ignored during the creation of the graph.

For the navigation each pedestrian gets an initial destination. At this stage all visible navigation lines
are taken in consideration. To choose the shortest path, the distance between the pedestrian and the
line is added to the distance between the line and the emergency exit. If the pedestrian reaches a vertex
(navigation line) the next destination is given from the tree with shortest paths. Then the navigation is
just from vertex to vertex (Figure [)).

3 Information collection and propagation

As aforementioned the knowledge of closed doors is known for all pedestrians before. This is not
quite realistic. The pedestrians should discover closed doors during the simulation. The goal is, that
pedestrians arrive at a closed door, take notice that the door is closed, search a new route and share this
information with other pedestrians.

To keep track knowledge about closed doors we implemented a collection of door state objects. If a
pedestrian reaches a closed door he/she will remember the status of the door and the time he/she saw

142

3 Information collection and propagation

[Routing-graph }

FindExit()
Reached 7 Changed nav. Has had
Hline? no area? yes dest.?
yes no
yes
Get next dest. Search dest.
no from graph and set it

[Next simulation step }7

Figure 4: The graph based navigation algorithm.

it. From now on he/she has the information he/she needs to avoid this door. After some changes in the
routing graph the pedestrian has to search for a new route. This route search is similar to the initial
route choice.

3.1 Graph changes and graph storage

Due to the fact that all information used for the navigation is taken from the graph and not anymore from
the geometry data, changes in the graph are needed. To model a closed door, the corresponding vertex
and all adjacent edges are deleted. After this the trees with the shortest ways have to be recalculated.
After this every pedestrian would need his own graph to make these manipulations without influencing
the other pedestrians. This would not be really memory efficient. This is the reason why a graph
storage is used (Figure[5).

GraphStorage

- graphs: collection

+ GetGraph(IDs:set): *graph
- CreateGraph(IDs:set, FromIDs:set):void
- Initialize():void

Figure 5: GraphStorage class-diagram
The graph storage manages all used graphs. It takes a set of IDs representing the closed doors (rep-

resenting vertexes) and delivers the corresponding graph for a pedestrian (See Figure [5] GetGraph()).
If the graph does not exist yet, the storage creates the graph from an existing graph by deleting the

143

BASIC REASONING IN EVACUATION SIMULATION

given vertexes (CreateGraph()). With this approach it is possible to take different knowledge about
the building in consideration. For this purpose we implemented the knowledge about closed doors. In
general every knowledge about the building which could be applied to the routing graph could be used
here.

At this point every pedestrian has to discover closed doors by its own. To solve this problem we
implemented an information sharing algorithm.

3.2 Information propagation

To share information we assumed that every pedestrian shares information with all other pedestrians
in the neighborhood. While this assumption might be realistic, it lacks empirical evidence at the mo-
ment.

3.2.1 Information sharing space

In real life situations humans have many possibilities for sharing information. One method is sending
visual signals (a hand wave for instance). The receptor of the signal should be in a specific sight range.
Using audio signal is one other option. This option is also constrained in space and will be influenced
by doors and walls.

In all cases the information sharing is restricted in space and time. In our implementation we defined a
sharing space:

Definition 1 (Information sharing space rspqrc)-
The information sharing space is the space with radius rspqre in a navigation area around a pedestrian
in which this pedestrian informs all other pedestrians.

Wall
Door

Closed door 6

Figure 6: Information sharing space. Pedestrian 1 informs pedestrian 2 and 3. Pedestrian 4 and 5 do not get
the information because they are in another navigation area. Pedestrian 6 and 7 are to far for getting the
information.

With this limitation the information is shared with pedestrians in a certain space in the same navigation
area.

144

4 Simulation and results

3.2.2 Information sharing delay time

A pedestrian would usually need some time to receive the information before he could share it again.
In the simulation this fact introduces a natural delay time:

Definition 2 (Information sharing delay time Atgpqre)-
The information sharing delay time is the time Atgpqre a pedestrian has to wait before sharing new
information.

With the delay time and the sharing radius it is possible to calibrate the information propagation espe-
cially the propagation velocity for realisticity.

Wall
. Door
4 | Closed door
6
‘\ : 3 \2)
delay-time

Figure 7: Information sharing delay time. Pedestrian 1 shares information with pedestrian 3. Pedestrian 3 has to
wait until he could share the information with 6.

4 Simulation and results

All simulations (Figure [§] 9] & are done with the Jiilich pedestrian simulator, with the geometry
shown below.

In this images the color of pedestrians is velocity dependent. Fast pedestrians are green, slow pedes-
trians are red. In both simulations the emergency exit on the right is closed and the emergency exit on
the left is open.

In the first simulation (Figure [8)) every pedestrian had the same knowledge. Everyone knows from the
beginning that the right emergency exit is closed, so everyone is going directly to the exit on the left
side. Jams just appear on bottlenecks or doors.

145

BASIC REASONING IN EVACUATION SIMULATION

Figure 8: The first simulation. Everybody knows from the beginning that the right emergency exit is closed.

In the second simulation (Figure 0] & the right emergency exit is closed again but no one knows
it at the beginning and the parameters are Atgpqre = 1.5s and 7gpqre = 2m. In Figure [the first
pedestrian reaches the closed emergency exit at the right side (the red pedestrian in front of the door).
The pedestrians in the right half of the building still have the goal to go to the right emergency exit. In
the second image (Figure [I0) some pedestrians already changed the direction and shared information
about the closed emergency exit. In the lower right corner of the floor a jam arises because two groups
of pedestrians are moving in opposite directions. A few seconds later all pedestrians are informed about

the closed door and everyone is going to the left emergency exit.

146

4 Simulation and results

;g‘] = "u.'.’:g:| h d . E’, / ,
e \ee \ M’
17

%]
r
i

.

l.' ::?
il - - U

SANLET aurntnd

Figure 9: The second simulation. The red pedestrian in front of the right emergency exit just reached the closed
door.

o0 5 e
¥ fo:..“‘?r.’..u Lk d F
H 1]

00

‘.—;-.
-
«®

p— o 5%
] v
8 %
t
o 33)
0 Jsme
o..:.'::.'-] . \\ T
3
‘ L2
a "
I _‘ i
=== ' e e et
y o O - celels

Figure 10: The second simulation. Some pedestrians already changed direction. Jam arises in the lower right
corner of the floor.

147

BASIC REASONING IN EVACUATION SIMULATION

5 Conclusion

In this work we implemented a graph based navigation algorithm. Further we implemented a first
reasoning structure which enables the pedestrians to avoid broken escapes routes, for instance closed
doors. With the two information sharing parameters, the space and the delay a quite realistic informa-
tion sharing is obtained. The graph storage could be used to have different routing graphs depending
on individual knowledge about the building. There are further things one should do to use the approach
described. The parameters information sharing space (Definition[I]) and information sharing delay time
(Definition[2)) have to be calibrated for more realisticity. The results of the simulations have to be quan-
tified and proofed. For more realisticity one could apply a probability to the door state information and
reduce it during the propagation to model uncertainty of the information. Additionally there are further
things which could be interesting to investigate. One could apply weights depending on the capacity of
navigation areas to the graph edges to make a flow optimization. Automatic re-routing in case of jams
and automatic creation of navigation lines could be interesting.

References

1. Hoogendoorn SP, Bovy P, Daamen W. Microscopic Pedestrian Wayfinding and Dynamics Modelling. In: Schrecken-
berg M, Sharma S, editors. Pedestrian and Evacuation Dynamics. Springer; 2002, 123-155.

2. Kemloh U, Seyfried A, Holl S. Modeling The Dynamic Route Choice Of Pedestrians To Assess The Criticality Of
Building Evacuation. Advances in Complex Systems [Internet]. 2012 [cited 2012 Oct 2];15(3):1-22. Available from:
http://www.worldscientific.com/doi/abs/10.1142/50219525912500294

3. Chraibi M, Kemloh U, Schadschneider A, Seyfried A. Force-based models of pedestrian dynamics. Networks and
Heterogeneous Media. 2011; 6:425-442

4. Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959; 1:269-271

5. Berkhahn V, Kneidl A, Klein W. Graph-based approaches for simulating pedestrian dynamics in building models. In:
Scherer R, Menzel K, editors. Proceedings of European Conference on Product and Process Modelling; 14-16 sep 2010:
Cork, Republic of Ireland: CRC Press; 2010. p. 389-394

6. Kneidl A, Borrmann A, Hartmann D. Generation and use of sparse navigation graphs for microscopic pedestrian simu-
lation models. Advanced Engineering Informatics [Internet]. 2012 Apr [cited 2012 Oct 5];1-9. Available from:http:
//linkinghub.elsevier.com/retrieve/pi1/S1474034612000365

148

http://www.worldscientific.com/doi/abs/10.1142/S0219525912500294
http://linkinghub.elsevier.com/retrieve/pii/S1474034612000365
http://linkinghub.elsevier.com/retrieve/pii/S1474034612000365

	Contents
	Barbara Schlögl: Plasticity in a Parallel Green's Function Molecular Dynamics Code
	Sebastian Rupprecht: Multigrid, conjugate gradient solver for Reynolds thin film equation
	Khaldoon Ghanem: Visualizing Complex Functions Using GPUs
	David Martín Rodríguez: Porting and optimization of EPOCH to Blue Gene/Q
	Christian Jost: Optimization of Lattice QCD kernels for Blue Gene/Q
	Tommaso Zanca: Graph 500 benchmarking using flash memory cards
	Artur Strebel : Generating parallel random numbers: As easy as 1, 2, 3?
	Daniel Arndt: Design and Implementation of an Experimental Finite Element Solver
	Mario Berljafa: A parallel block iterative eigensolver for correlated eigenproblems
	Kieran Austin: A Universal Boltzmann Distribution in Simulation Experiments
	Felix Uhl: Efficient Communication Schemes for Parallel Stochastic Thermostats
	Anne Springer: Identification of Gravity Waves in AIRS Brightness Temperatures
	David Haensel: Information sharing between agents in evacuation simulations

