
INTRODUCTION TO PARALLEL PROGRAMMING

WITH MPI AND OPENMP
14–18 February 2022 | Benedikt Steinbusch | Jülich Supercomputing Centre

Member of the Helmholtz Association

INTRODUCTION TO

PARALLEL PROGRAMMING WITH

MPI AND OPENMP

Benedikt Steinbusch | Jülich Supercomputing Centre | 14–18 February 2022

CONTENTS

I Fundamentals of Parallel Computing 3

1 Motivation 3

2 Hardware 3

3 Software 4

II First Steps with MPI 4

4 What is MPI? 4

5 Terminology 5

6 Infrastructure 6

7 Basic Program Structure 7

8 Exercises 8

III Blocking Point-to-Point Communication 9

9 Introduction 9

10 Sending 10

11 Exercises 11

12 Receiving 11

13 Exercises 12

14 Communication Modes 12

15 Large Numbers 12

16 Semantics 13

17 Pitfalls 13

18 Exercises 13

IV Nonblocking Point-to-Point Communication 14

19 Introduction 14

20 Start 15

21 Completion 15

22 Remarks 16

23 Exercises 17

V Collective Communication 18

24 Introduction 18

25 Reductions 18

26 Reduction Variants 19

27 Exercises 20

28 Data Movement 20

29 Data Movement Variants 22

30 Exercises 22

31 In Place Mode 23

32 Synchronization 24

33 Large Numbers 25

34 Nonblocking Collective Communication 25

VI Derived Datatypes 26

35 Introduction 26

36 Constructors 27

37 Exercises 28

38 Address Calculation 29

39 Padding 30

40 Large Numbers 31

41 Exercises 31

VII Input/Output 31

42 Introduction 31

43 File Manipulation 32

44 File Views 34

45 Data Access 35

46 Consistency 41

47 Large Numbers 41

48 Exercises 42

VIII Tools 42

1

49 MUST 42

50 Exercises 43

IX Communicators 43

51 Introduction 43

52 Constructors 43

53 Accessors 44

54 Destructors 46

55 Exercises 46

X Thread Compliance 46

56 Introduction 47

57 Enabling Thread Support 47

58 Matching Probe and Receive 47

59 Remarks 48

XI First Steps with OpenMP 48

60 What is OpenMP? 48

61 Terminology 49

62 Infrastructure 50

63 Basic Program Structure 50

64 Exercises 52

XII Low-Level OpenMP Concepts 52

65 Introduction 52

66 Exercises 54

67 Data Environment 54

68 Exercises 56

69 Thread Synchronization 56

70 Exercises 57

XIII Worksharing 57

71 Introduction 57

72 The single construct 57

73 single Clauses 58

74 The loop construct 58

75 loop Clauses 58

76 Exercises 59

77 workshare Construct 59

78 Exercises 59

79 Combined Constructs 59

XIV Task Worksharing 60

80 Introduction 60

81 The task Construct 60

82 task Clauses 61

83 Task Scheduling 62

84 Task Synchronization 62

85 Exercises 62

XV Wrap-up 62

XVI Tutorial 63

TIMETABLE

Day 1 Day 2 Day 3 Day 4 (Day 5)

09:00

10:30

Fundamentals

of Parallel

Computing

Blocking

Collective

Communication

I/O First Steps with

OpenMP

Tutorial

COFFEE

11:00

12:30

First Steps with

MPI

Nonblocking

Collective

Comm.

I/O Low-Level

Constructs

Tutorial

UTENSILS

13:30

14:30

Blocking P2P

Communication

Derived

Datatypes

Tools &

Communicators

Loop

Worksharing

Tutorial

COFFEE

15:00

16:30

Nonblocking

P2P

Communication

Derived

Datatypes

Thread

Compliance

Task

Worksharing

Tutorial

2

PART I

FUNDAMENTALS OF PARALLEL COMPUTING

1 MOTIVATION

PARALLEL COMPUTING

Parallel computing is a type of computation in whichmany calculations or the

execution of processes are carried out simultaneously. (Wikipedia1)

WHY AM I HERE?

The Way Forward

• Frequency scaling has stopped

• Performance increase throughmore parallel hardware

• Treating scientific problems

– of larger scale

– in higher accuracy

– of a completely new kind

PARALLELISM IN THE TOP 500 LIST

1994 1999 2004 2010 2015 2021

104

106

N
u
m
b
e
r
o
f
co
re
s

Average Number of Cores of the Top 10 Systems

1Wikipedia. Parallel computing —Wikipedia, The Free Encyclopedia. 2017. URL:

https://en.wikipedia.org/w/index.php?title=Parallel_computing&oldid=787466585

(visited on 06/28/2017).

2 HARDWARE

A MODERN SUPERCOMPUTER

MICROCHIP
CPU

MEMORY
RAM

TH
Accel.

MEMORY
RAM

Internal Bus

MICROCHIP
CPU

MEMORY
RAM

TH
Accel.

MEMORY
RAM

Internal Bus

MICROCHIP
CPU

MEMORY
RAM

TH
Accel.

MEMORY
RAM

Internal Bus

…

Interconnect Interconnect Interconnect

PARALLEL COMPUTATIONAL UNITS

Implicit Parallelism

• Parallel execution of different (parts of) processor instructions

• Happens automatically

• Can only be influenced indirectly by the programmer

Multi-core / Multi-CPU

• Found in commodity hardware today

• Computational units share the samememory

Cluster

• Found in computing centers

• Independent systems linked via a (fast) interconnect

• Each system has its ownmemory

Accelerators

• Strive to perform certain tasks faster than is possible on a general purpose CPU

• Make different trade-offs

• Often have their ownmemory

• Often not autonomous

3

https://en.wikipedia.org/w/index.php?title=Parallel_computing&oldid=787466585

Vector Processors / Vector Units

• Perform same operation onmultiple pieces of data simultaneously

• Making a come-back as SIMD units in commodity CPUs (AVX-512) and GPGPU

MEMORY DOMAINS

Shared Memory

• All memory is directly accessible by the parallel computational units

• Single address space

• Programmer might have to synchronize access

Distributed Memory

• Memory is partitioned into parts which are private to the different computational units

• “Remote” parts of memory are accessed via an interconnect

• Access is usually nonuniform

3 SOFTWARE

PROCESSES & THREADS & TASKS

Abstractions for the independent execution of (part of) a program.

Process

Usually, multiple processes, each with their own associated set of resources (memory, file

descriptors, etc.), can coexist

Thread

• Typically “smaller” than processes

• Often, multiple threads per one process

• Threads of the same process can share resources

Task

• Typically “smaller” than threads

• Often, multiple tasks per one thread

• Here: user-level construct

DISTRIBUTED STATE & MESSAGE PASSING

Distributed State

Program state is partitioned into parts which are private to the different processes.

Message Passing

• Parts of program state are transferred from one process to another for coordination

• Primitive operations are active send and active receive

MPI

• Implements a form of Distributed State and Message Passing

• (But also Shared State and Synchronization)

SHARED STATE & SYNCHRONIZATION

Shared State

The whole program state is directly accessible by the parallel threads.

Synchronization

• Threads canmanipulate shared state using common loads and stores

• Establish agreement about progress of execution using synchronization primitives, e.g.

barriers, critical sections, …

OpenMP

• Implements Shared State and Synchronization

• (But also higher level constructs)

PART II

FIRST STEPS WITH MPI

4 WHAT IS MPI?

MPI (Message-Passing Interface) is a message-passing library interface specification.

[…] MPI addresses primarily the message-passing parallel programmingmodel, in

which data is moved from the address space of one process to that of another

process through cooperative operations on each process. (MPI Forum2)

• Industry standard for a message-passing programmingmodel

• Provides specifications (no implementations)

• Implemented as a library with language bindings for Fortran and C

• Portable across different computer architectures

2Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 4.0. June 9, 2021. URL:

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

4

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Current version of the standard: 4.0 (June 2021)

BRIEF HISTORY

<1992 several message-passing libraries were developed, PVM, P4,…

1992 At SC92, several developers for message-passing libraries agreed to develop a standard for

message-passing

1994 MPI-1.0 standard published

1997 MPI-2.0 standard adds process creation andmanagement, one-sided communication,

extended collective communication, external interfaces and parallel I/O

2008 MPI-2.1 combines MPI-1.3 and MPI-2.0

2009 MPI-2.2 corrections and clarifications with minor extensions

2012 MPI-3.0 nonblocking collectives, new one-sided operations, Fortran 2008 bindings

2015 MPI-3.1 nonblocking collective I/O

2021 MPI-4.0 large counts, persistent collective communication, partitioned communication,

session model

COVERAGE

1. Introduction to MPI ✓

2. MPI Terms and Conventions ✓

3. Point-to-Point Communication ✓

4. Partitioned Point-to-Point Communication

5. Datatypes ✓

6. Collective Communication ✓

7. Groups, Contexts, Communicators and Caching (✓)

8. Process Topologies (✓)

9. MPI Environmental Management (✓)

10. The Info Object

11. Process Initialization, Creation, and Management

12. One-Sided Communications

13. External interfaces (✓)

14. I/O ✓

15. Tool Support

16. …

LITERATURE & ACKNOWLEDGEMENTS

Literature

• Message Passing Interface Forum. MPI: A Message-Passing

Interface Standard. Version 4.0. June 9, 2021. URL:

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

• William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. Portable Parallel

Programming with the Message-Passing Interface. 3rd ed. The MIT Press, Nov. 2014. 336 pp.

ISBN: 9780262527392

• William Gropp et al. Using Advanced MPI. Modern Features of the Message-Passing Interface.

1st ed. Nov. 2014. 392 pp. ISBN: 9780262527637

• https://www.mpi-forum.org

Acknowledgements

• Rolf Rabenseifner for his comprehensive course on MPI and OpenMP

• Marc-André Hermanns, Florian Janetzko and Alexander Trautmann for their course material

on MPI and OpenMP

5 TERMINOLOGY

PROCESS ORGANIZATION [MPI-4.0, 7.2]

Terminology: Process

An MPI program consists of autonomous processes, executing their own code, in an

MIMD style.

Terminology: Rank

A unique number assigned to each process within a group (start at 0)

Terminology: Group

An ordered set of process identifiers

Terminology: Context

A property that allows the partitioning of the communication space

Terminology: Communicator

Scope for communication operations within or between groups, combines the

concepts of group and context

5

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org

OBJECTS [MPI-4.0, 2.5.1]

Terminology: Opaque Objects

Most objects such as communicators, groups, etc. are opaque to the user and kept in

regions of memory managed by the MPI library. They are created andmarked for

destruction using dedicated routines. Objects are made accessible to the user via

handle values.

Terminology: Handle

Handles are references to MPI objects. They can be checked for referential equality

and copied, however copying a handle does not copy the object it refers to.

Destroying an object that has operations pending will not disrupt those operations.

Terminology: Predefined Handles

MPI defines several constant handles to certain objects, e.g. MPI_COMM_WORLD a

communicator containing all processes initially partaking in a parallel execution of a

program.

6 INFRASTRUCTURE

COMPILING & LINKING [MPI-4.0, 19.1.7]

MPI libraries or system vendors usually ship compiler wrappers that set search paths and required

libraries, e.g.:

C Compiler Wrappers

$ # Generic compiler wrapper shipped with e.g. OpenMPI

$ mpicc foo.c -o foo

$ # Vendor specific wrapper for IBM's XL C compiler on BG/Q

$ bgxlc foo.c -o foo

Fortran Compiler Wrappers

$ # Generic compiler wrapper shipped with e.g. OpenMPI

$ mpifort foo.f90 -o foo

$ # Vendor specific wrapper for IBM's XL Fortran compiler on BG/Q

$ bgxlf90 foo.f90 -o foo

However, neither the existence nor the interface of these wrappers is mandated by the standard.

PROCESS STARTUP [MPI-4.0, 11.5]

The MPI standard does not mandate a mechanism for process startup. It suggests that a command

mpiexecwith the following interface should exist:

Process Startup

$ # startup mechanism suggested by the standard

$ mpiexec -n <numprocs> <program>

$ # Slurm startup mechanism as found on JSC systems

$ srun -n <numprocs> <program>

LANGUAGE BINDINGS [MPI-4.0, 19, A]

C Language Bindings

C #include <mpi.h>

Fortran Language Bindings

Consistent with F08 standard; good type-checking; highly recommended

F
0
8

use mpi_f08

Not consistent with standard; so-so type-checking; not recommended

F
9
0

use mpi

Not consistent with standard; no type-checking; strongly discouraged

F
7
7

include 'mpif.h'

FORTRAN HINTS [MPI-4.0, 19.1.2 -- 19.1.4]

This course uses the Fortran 2008 MPI interface (use mpi_f08) which is not available in all MPI

implementations. The Fortran 90 bindings differ from the Fortran 2008 bindings in the following

points:

• All derived type arguments are instead integer (some are arrays of integer or have a

non-default kind)

• Argument intent is not mandated by the Fortran 90 bindings

• The ierror argument is mandatory instead of optional

• Further details can be found in [MPI-4.0, 19.1]

MPI4PY HINTS

All exercises in the MPI part can be solved using Python with the mpi4py package. The slides do

not show Python syntax, so here is a translation guide from the standard bindings to mpi4py.

• Everything lives in the MPImodule (from mpi4py import MPI).

6

• Constants translate to attributes of that module: MPI_COMM_WORLD is

MPI.COMM_WORLD.

• Central types translate to Python classes: MPI_Comm is MPI.Comm.

• Functions related to point-to-point and collective communication translate to methods on

MPI.Comm: MPI_Send becomes MPI.Comm.Send.

• Functions related to I/O translate to methods on MPI.File: MPI_File_write becomes

MPI.File.Write.

• Communication functions come in two flavors:

– high level, uses pickle to (de)serialize python objects, method names start with

lower case letters, e.g. MPI.Comm.send,

– low level, uses MPI Datatypes and Python buffers, method names start with upper

case letters, e.g. MPI.Comm.Scatter.

See also https://mpi4py.readthedocs.io and the built-in Python help().

OTHER LANGUAGE BINDINGS

Besides the official bindings for C and Fortranmandated by the standard, unofficial bindings for

other programming languages exist:

C++ Boost.MPI

MATLAB Parallel Computing Toolbox

Python pyMPI, mpi4py, pypar, MYMPI, …

R Rmpi, pdbMPI

julia MPI.jl

.NET MPI.NET

Java mpiJava, MPJ, MPJ Express

Andmany others, ask your favorite search engine.

7 BASIC PROGRAM STRUCTURE

WORLD ORDER IN MPI

• Program starts as 𝑁 distinct processes.

• Stream of instructions might be different for each

process.

• Each process has access to its own private memory.

• Information is exchanged between processes via

messages.

• Processes may consist of multiple threads (see

OpenMP part on day 4).

𝑝0 𝑝1 𝑝2 …

INITIALIZATION [MPI-4.0, 11.2.1, 11.2.3]

Initialize MPI library, needs to happen before most other MPI functions can be used

C int MPI_Init(int *argc, char ***argv)

F
0
8

MPI_Init(ierror)

integer, optional, intent(out) :: ierror

Exception (can be used before initialization)

C int MPI_Initialized(int* flag)

F
0
8

MPI_Initialized(flag, ierror)

logical, intent(out) :: flag

integer, optional, intent(out) :: ierror

FINALIZATION [MPI-4.0, 11.2.2, 11.2.3]

Finalize MPI library when you are done using its functions

C int MPI_Finalize(void)

F
0
8

MPI_Finalize(ierror)

integer, optional, intent(out) :: ierror

Exception (can be used after finalization)

7

https://mpi4py.readthedocs.io

C int MPI_Finalized(int *flag)
F
0
8

MPI_Finalized(flag, ierror)

logical, intent(out) :: flag

integer, optional, intent(out) :: ierror

PREDEFINED COMMUNICATORS

After MPI_Init has been called, MPI_COMM_WORLD is a valid handle to a predefined

communicator that includes all processes available for communication. Additionally, the handle

MPI_COMM_SELF is a communicator that is valid on each process and contains only the process

itself.

C

MPI_Comm MPI_COMM_WORLD;

MPI_Comm MPI_COMM_SELF;

F
0
8

type(MPI_Comm) :: MPI_COMM_WORLD

type(MPI_Comm) :: MPI_COMM_SELF

COMMUNICATOR SIZE [MPI-4.0, 7.4.1]

Determine the total number of processes in a communicator

C int MPI_Comm_size(MPI_Comm comm, int *size)

F
0
8

MPI_Comm_size(comm, size, ierror)

type(MPI_Comm), intent(in) :: comm

integer, intent(out) :: size

integer, optional, intent(out) :: ierror

Examples

C

int size;

int ierror = MPI_Comm_size(MPI_COMM_WORLD, &size);

F
0
8

integer :: size

call MPI_Comm_size(MPI_COMM_WORLD, size)

PROCESS RANK [MPI-4.0, 7.4.1]

Determine the rank of the calling process within a communicator

C int MPI_Comm_rank(MPI_Comm comm, int *rank)

F
0
8

MPI_Comm_rank(comm, rank, ierror)

type(MPI_Comm), intent(in) :: comm

integer, intent(out) :: rank

integer, optional, intent(out) :: ierror

Examples

C

int rank;

int ierror = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

F
0
8

integer :: rank

call MPI_Comm_rank(MPI_COMM_WORLD, rank)

ERROR HANDLING [MPI-4.0, 9.3, 9.4, 9.5]

• Flexible error handling through error handlers which can be attached to

– Communicators

– Files

– Windows (not part of this course)

• Error handlers can be

MPI_ERRORS_ARE_FATAL Errors encountered in MPI routines abort execution

MPI_ERRORS_RETURN An error code is returned from the routine

Custom error handler A user supplied function is called on encountering an error

• By default

– Communicators use MPI_ERRORS_ARE_FATAL

– Files use MPI_ERRORS_RETURN

– Windows use MPI_ERRORS_ARE_FATAL

8 EXERCISES

EXERCISE STRATEGIES

8

Solving

• Do not have to solve all exercises, one per section would be good

• Exercise description tells you what MPI functions/OpenMP directives to use

• Work in pairs on harder exercises

• If you get stuck

– ask us

– peek at solution

• CMakeLists.txt is included

Solutions

exercises/{C|C++|Fortran|Python}/:

. Most of the algorithm is there, you add MPI/OpenMP

hard Almost empty files you add algorithm and MPI/OpenMP

solutions Fully solved exercises, if you are completely stuck or for comparison

EXERCISES

Exercise 1 – First Steps

1.1 Output of Ranks

Write a program print_rank.{c|cxx|f90|py} that has each process printing its rank.

I am process 0

I am process 1

I am process 2

Use: MPI_Init, MPI_Finalize, MPI_Comm_rank

1.2 Output of ranks and total number of processes

Write a program print_rank_conditional.{c|cxx|f90|py} in such a way that process

0 writes out the total number of processes

I am process 0 of 3

I am process 1

I am process 2

Use: MPI_Comm_size

PART III

BLOCKING POINT-TO-POINT

COMMUNICATION

9 INTRODUCTION

MESSAGE PASSING

b
e
fo
re

a
ft
e
r

𝜋

𝜋 𝜋

BLOCKING & NONBLOCKING PROCEDURES

Terminology: Blocking

A procedure is blocking if return from the procedure indicates that the user is allowed

to reuse resources specified in the call to the procedure.

Terminology: Nonblocking

If a procedure is nonblocking it will return as soon as possible. However, the user is

not allowed to reuse resources specified in the call to the procedure before the

communication has been completed using an appropriate completion procedure.

Examples:

• Blocking: Telephone callPhone

• Nonblocking: Email@

PROPERTIES

• Communication between two processes within the same communicator

Caution: A process can sendmessages to itself.

• A source process sends a message to a destination process using an MPI send routine

9

• A destination process needs to post a receive using an MPI receive routine

• The source process and the destination process are specified by their ranks in the

communicator

• Every message sent with a point-to-point operation needs to bematched by a receive

operation

10 SENDING

SENDING MESSAGES [MPI-4.0, 3.2.1]

* MPI_Send(<buffer>, <destination>)

C

int MPI_Send(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)↪

F
0
8

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count, dest, tag

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

MESSAGES [MPI-4.0, 3.2.2, 3.2.3]

Amessage consists of two parts:

Terminology: Envelope

• Source process source

• Destination process dest

• Tag tag

• Communicator comm

Terminology: Data

Message data is read from/written to buffers specified by:

• Address in memory buf

• Number of elements found in the buffer count

• Structure of the data datatype

DATA TYPES [MPI-4.0, 3.2.2, 3.3, 5.1]

Terminology: Data Type

Describes the structure of a piece of data

Terminology: Basic Data Types

Named by the standard, most correspond to basic data types of C or Fortran

C type MPI basic data type

signed int MPI_INT

float MPI_FLOAT

char MPI_CHAR

…

Fortran type MPI basic data type

integer MPI_INTEGER

real MPI_REAL

character MPI_CHARACTER

…

Terminology: Derived Data Type

Data types which are not basic datatypes. These can be constructed from other (basic

or derived) datatypes.

DATA TYPE MATCHING [MPI-4.0, 3.3]

Terminology: Untyped Communication

• Contents of send and receive buffers are declared as MPI_BYTE.

• Actual contents of buffers can be any type (possibly different).

• Use with care.

Terminology: Typed Communication

• Type of buffer contents must match MPI data type (e.g. in C int and

MPI_INT).

• Data type on sendmust match data type on receive operation.

• Allows data conversion when used on heterogeneous systems.

Terminology: Packed data

See [MPI-4.0, 5.2]

10

11 EXERCISES

Exercise 2 – Point-to-Point Communication

2.1 Send

In the file send_receive.{c|cxx|f90|py} implement the function/subroutine send(msg,

dest). It should use MPI_Send to send the integer msg to the process with rank number dest

in MPI_COMM_WORLD. For the tag value, use the answer to the ultimate question of life, the

universe, and everything (42)3.

Use: MPI_Send

12 RECEIVING

RECEIVING MESSAGES [MPI-4.0, 3.2.4]

* MPI_Recv(<buffer>, <source>) -> <status>

C

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int

source, int tag, MPI_Comm comm, MPI_Status *status)↪

F
0
8

MPI_Recv(buf, count, datatype, source, tag, comm, status,

ierror)↪

type(*), dimension(..) :: buf

integer, intent(in) :: count, source, tag

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• count specifies the capacity of the buffer

• Wildcard values are permitted (MPI_ANY_SOURCE & MPI_ANY_TAG)

THE MPI_STATUS TYPE [MPI-4.0, 3.2.5]

Contains information about receivedmessages

C

MPI_Status status;

status.MPI_SOURCE

status.MPI_TAG

status.MPI_ERROR F
0
8

type(MPI_status) :: status

status%MPI_SOURCE

status%MPI_TAG

status%MPI_ERROR

3Douglas Adams. The Hitchhiker’s Guide to the Galaxy. Pan Books, Oct. 12, 1979. ISBN: 0-330-25864-8.

C

int MPI_Get_count(const MPI_Status *status, MPI_Datatype

datatype, int *count)↪

F
0
8

MPI_Get_count(status, datatype, count, ierror)

type(MPI_Status), intent(in) :: status

type(MPI_Datatype), intent(in) :: datatype

integer, intent(out) :: count

integer, optional, intent(out) :: ierror

Pass MPI_STATUS_IGNORE to MPI_Recv if not interested.

MESSAGE ASSEMBLY

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 0 1 2 3

Buffer 0 1 2 3 ? ? ? ? ? ? ...

MPI_Send(buffer, 4, MPI_INT, ...)

MPI_Recv(buffer, 4, MPI_INT, ...)

PROBE [MPI-4.0, 3.8.1]

* MPI_Probe(<source>) -> <status>

C

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status

*status)↪

F
0
8

MPI_Probe(source, tag, comm, status, ierror)

integer, intent(in) :: source, tag

type(MPI_Comm), intent(in) :: comm

type(MPI_Status), intent(out) :: status

integer, optional, intent(out) :: ierror

Returns after a matching message is ready to be received.

• Same rules for message matching as receive routines

• Wildcards permitted for source and tag

11

• status contains information about message (e.g. number of elements)

13 EXERCISES

2.2 Receive

In the file send_receive.{c|cxx|f90|py} implement the function recv(source). It

should use MPI_Recv to receive a single integer from the process with rank number source in

MPI_COMM_WORLD. Any tag value should be accepted. Use the received integer as the return

value of recv. If you are not interested in the status value, use MPI_STATUS_IGNORE.

Use: MPI_Recv

14 COMMUNICATION MODES

SEND MODES [MPI-4.0, 3.4]

Synchronous send: MPI_Ssend

Only completes when the receive has started.

Buffered send: MPI_Bsend

• May complete before a matching receive is posted

• Needs a user-supplied buffer (see MPI_Buffer_attach)

Standard send: MPI_Send

• Either synchronous or buffered, leaves decision to MPI

• If buffered, an internal buffer is used

Ready send: MPI_Rsend

• Asserts that a matching receive has already been posted (otherwise generates an error)

• Might enable more efficient communication

RECEIVE MODES [MPI-4.0, 3.4]

Only one receive routine for all sendmodes:

Receive: MPI_Recv

• Completes when amessage has arrived andmessage data has been stored in the buffer

• Same routine for all communication modes

All blocking routines, both send and receive, guarantee that buffers can be reused after control

returns.

15 LARGE NUMBERS

LARGE COUNT AND LARGE BYTE DISPLACEMENT [MPI-4.0, 19.2]

Use of int/integer and MPI_Aint/integer(MPI_ADDRESS_KIND) problematic in

certain situations.

New conventions for datatype use

• Count type arguments use the MPI_Count/integer(MPI_COUNT_KIND) datatype.

• Byte displacements are represented as

– MPI_Aint/integer(MPI_ADDRESS_KIND)when applied to memory

– MPI_Offset/integer(MPI_OFFSET_KIND)when applied to files

– MPI_Count/integer(MPI_COUNT_KIND)when applied to either files or

memory

Implementation strategy

• Procedures added beginning with MPI-4.0 follow the new conventions.

• Procedures which existed before MPI-4.0

– in C get a counterpart with a _c suffix in the function name that follows the new

convention

– with use mpi_f08 get a specific routine under the same generic name that follows

the new convention

– with use mpi and include 'mpif.h' get no updated version.

LARGE COUNT EXAMPLE

C

int MPI_Send(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)↪

int MPI_Send_c(const void* buf, MPI_Count count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)↪

12

F
0
8

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count, dest, tag

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

type(*), dimension(..), intent(in) :: buf

integer(MPI_COUNT_KIND), intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

integer, intent(in) :: dest, tag

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

16 SEMANTICS

POINT-TO-POINT SEMANTICS [MPI-4.0, 3.5]

Order

In single threaded programs, messages are non-overtaking. Between any pair of processes,

messages will be received in the order they were sent.

Progress

Out of a pair of matching send and receive operations, at least one is guaranteed to complete.

Fairness

Fairness is not guaranteed by the MPI standard.

Resource limitations

Resource starvationmay lead to deadlock, e.g. if progress relies on availability of buffer space for

standard mode sends.

17 PITFALLS

DEADLOCK

Structure of program prevents blocking routines from ever completing, e.g.:

Process 0

call MPI_Ssend(..., 1, ...)

call MPI_Recv(..., 1, ...)

Process 1

call MPI_Ssend(..., 0, ...)

call MPI_Recv(..., 0, ...)

Mitigation Strategies

• Changing communication structure (e.g. checkerboard)

• Using MPI_Sendrecv

• Using nonblocking routines

18 EXERCISES

2.3 Global Summation – Ring

In the file global_sum.{c|cxx|f90|py} implement the function/subroutine

global_sum_ring(x, y, root, comm). It will be called by all processes on the

communicator comm and on each one accepts an integer x. It should compute the global sum of

all values of x across all processes and return the result in y (as the function return value in

Python) only on the process with rank root.

Use the following strategy:

1. The process with rank root starts by sending its value of x to the process with the next

higher rank (wrap around to rank 0 on the process with the highest rank).

2. All other processes start by receiving the partial sum from the process with the next lower

rank (or from the process with the highest rank on process 0)

3. Next, they add their value of x to the partial result and send it to the next process.

4. The root process eventually receives the global result which it will return in y.

The file contains a small main() function / program that can be used to test whether your

implementation works.

Use: MPI_Send, MPI_Recv (andmaybe MPI_Sendrecv)

13

Process 0 1 2 3 4

root 1 1 1 1 1

x 3 1 7 4 9

tmp 8

12

21

24

y - 24 - - -

+

+

+

+

Bonus

In the file global_prefix_sum.{c|cxx|f90|py} implement the function/subroutine

global_prefix_sum_ring(x, y, comm). It will be called by all processes on the

communicator comm and on each one accepts an integer x. It should compute the global prefix

sum of all values of x across all processes and return the results in y (as the function return value

in Python), i.e. the y returned on a process is the sum of all the x contributed by processes with

lower rank number and its own.

Use the following strategy:

1. Every process except for the one with rank 0 receives a partial result from the process with

the next lower rank number

2. Add the local x to the partial result

3. Send the partial result to the process with the next higher rank number (except on the

process with the highest rank number)

4. Return the partial result in y

The file contains a small main() function / program that can be used to test whether your

implementation works.

Use: MPI_Send, MPI_Recv

Process 0 1 2 3 4

x 3 1 7 4 9

tmp 4

11

15

24

y 3 4 11 15 24

+

+

+

+

PART IV

NONBLOCKING POINT-TO-POINT

COMMUNICATION

19 INTRODUCTION

RATIONALE [MPI-4.0, 3.7]

Premise

Communication operations are split into start and completion. The start routine produces a

request handle that represents the in-flight operation and is used in the completion routine. The

user promises to refrain from accessing the contents of message buffers while the operation is in

flight.

Benefit

A single process can have multiple nonblocking operations in flight at the same time. This enables

communication patterns that would lead to deadlock if programmed using blocking variants of the

same operations. Also, the additional leeway given to the MPI librarymay be utilized to, e.g.:

• overlap computation and communication

• overlap communication

• pipeline communication

• elide usage of buffers

14

20 START

INITIATION ROUTINES [MPI-4.0, 3.7.2]

Send

Synchronous MPI_Issend

Standard MPI_Isend

Buffered MPI_Ibsend

Ready MPI_Irsend

Receive

MPI_Irecv

Probe

MPI_Iprobe

• “I” is for immediate.

• Signature is similar to blocking counterparts with additional request object.

• Initiate operations and relinquish access rights to any buffer involved.

NONBLOCKING SEND [MPI-4.0, 3.7.2]

* MPI_Isend(<buffer>, <destination>) -> <request>

C

int MPI_Isend(const void* buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm, MPI_Request

*request)

↪

↪

F
0
8

MPI_Isend(buf, count, datatype, dest, tag, comm, request,

ierror)↪

type(*), dimension(..), intent(in), asynchronous :: buf

integer, intent(in) :: count, dest, tag

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

type(MPI_Request), intent(out) :: request

integer, optional, intent(out) :: ierror

NONBLOCKING RECEIVE [MPI-4.0, 3.7.2]

* MPI_Irecv(<buffer>, <source>) -> <request>

C

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int

source, int tag, MPI_Comm comm, MPI_Request *request)↪

F
0
8

MPI_Irecv(buf, count, datatype, source, tag, comm, request,

ierror)↪

type(*), dimension(..), asynchronous :: buf

integer, intent(in) :: count, source, tag

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

type(MPI_Request), intent(out) :: request

integer, optional, intent(out) :: ierror

NONBLOCKING PROBE [MPI-4.0, 3.8.1]

* MPI_Iprobe(<source>) -> <status>?

C

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,

MPI_Status *status)↪

F
0
8

MPI_Iprobe(source, tag, comm, flag, status, ierror)

integer, intent(in) :: source, tag

type(MPI_Comm), intent(in) :: comm

logical, intent(out) :: flag

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Does not follow start/completion model.

• Uses true/false flag to indicate availability of a message.

21 COMPLETION

WAIT [MPI-4.0, 3.7.3]
* MPI_Wait(<request>) -> <status>

C int MPI_Wait(MPI_Request *request, MPI_Status *status)

15

F
0
8

MPI_Wait(request, status, ierror)

type(MPI_Request), intent(inout) :: request

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Blocks until operation associated with request is completed

• To wait for the completion of several pending operations

MPI_Waitall All events complete

MPI_Waitsome At least one event completes

MPI_Waitany Exactly one event completes

TEST [MPI-4.0, 3.7.3]

* MPI_Test(<request>) -> <status>?

C

int MPI_Test(MPI_Request *request, int *flag, MPI_Status

*status)↪

F
0
8

MPI_Test(request, flag, status, ierror)

type(MPI_Request), intent(inout) :: request

logical, intent(out) :: flag

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Does not block

• flag indicates whether the associated operation has completed

• Test for the completion of several pending operations

MPI_Testall All events complete

MPI_Testsome At least one event completes

MPI_Testany Exactly one event completes

FREE [MPI-4.0, 3.7.3]

* MPI_Request_free(<request>)

C int MPI_Request_free(MPI_Request *request)

F
0
8

MPI_Request_free(request, ierror)

type(MPI_Request), intent(inout) :: request

integer, optional, intent(out) :: ierror

• Marks the request for deallocation

• Invalidates the request handle

• Operation is allowed to complete

• Completion cannot be checked for

CANCEL [MPI-4.0, 3.8.4]

* MPI_Cancel(<request>)

C int MPI_Cancel(MPI_Request *request)

F
0
8

MPI_Cancel(request, ierror)

type(MPI_Request), intent(in) :: request

integer, optional, intent(out) :: ierror

• Marks an operation for cancellation

• Request still has to be completed via MPI_Wait, MPI_Test or MPI_Request_free

• Operation is either cancelled completely or succeeds (indicated in status value)

22 REMARKS

BLOCKING VS. NONBLOCKING OPERATIONS

• A blocking send can be paired with a nonblocking receive and vice versa

• Nonblocking sends can use any mode, just like the blocking counterparts

– Synchronization of MPI_Issend is enforced at completion (wait or test)

– Asserted readiness of MPI_Irsendmust hold at start of operation

• A nonblocking operation immediately followed by amatching wait is equivalent to the

blocking operation

16

The Fortran Language Bindings and nonblocking operations

• Arrays with subscript triplets (e.g. a(1:100:5)) can only be reliably used as buffers if the

compile time constant MPI_SUBARRAYS_SUPPORTED equals .true. [MPI-4.0, 19.1.12]

• Arrays with vector subscripts must not be used as buffers [MPI-4.0, 19.1.13]

• Fortran compilers may optimize your program beyond the point of being correct.

Communication buffers should be protected by the asynchronous attribute (make sure

MPI_ASYNC_PROTECTS_NONBLOCKING is .true.) [MPI-4.0, 19.1.16–19.1.20]

OVERLAPPING COMMUNICATION

• Main benefit is overlap of communicationwith communication

• Overlap with computation

– Progress may only be done inside of MPI routines

– Not all platforms perform significantly better than well placed blocking

communication

– If hardware support is present, application performancemay significantly improve

due to overlap

• General recommendation

– Initiation of operations should be placed as early as possible

– Completion should be placed as late as possible

23 EXERCISES

Exercise 3 – Nonblocking P2P Communication

3.1 Global Summation – Tree

In the file global_sum.{c|cxx|f90|py}, implement a function/subroutine

global_sum_tree(x, y, root, comm) that performs the same operation as the solution

to exercise 2.3.

Use the following strategy:

1. On all processes, initialize the partial result for the sum to the local value of x.

2. Now proceed in rounds until only a single process remains:

(a) Group processes into pairs – let us call them the left and the right process.

(b) The right process sends its partial result to the left process.

(c) The left process receives the partial result and adds it to its own one.

(d) The left process continues on into the next round, the right one does not.

3. The process that made it to the last round now has the global result which it sends to the

process with rank root.

4. The root process receives the global result and returns it in y.

Modify the main() function / program so that the new function/subroutine

global_sum_tree() is also tested and check your implementation.

Use: MPI_Irecv, MPI_Wait

Process 0 1 2 3 4

root 2 2 2 2 2

x 3 1 7 4 9

tmp 4 11 9

15 9

24

y - - 24 - -

+ +

+

+

Bonus

In the file global_prefix_sum.{c|cxx|f90|py}, implement a function/subroutine

global_prefix_sum_tree(x, y, comm) that performs the same operation as

global_prefix_sum_ring.

Use the following strategy:

1. On all processes, initialize the partial result for the sum to the local value of x.

2. Repeat the following steps with distance d starting at 1

(a) Send partial results to the process r + d if that process exists (r is rank number)

(b) Receive partial result from process r - d if that process exists and add it to the local

partial result

(c) If either process exists increase d by a factor of two and continue, otherwise return the

partial result in y

Modify the main() function / program so that the new function/subroutine

global_prefix_sum_tree() is also tested and check your implementation.

Use: MPI_Sendrecv

17

Process 0 1 2 3 4

x 3 1 7 4 9

tmp 3 4 8 11 13

3 4 11 15 21

3 4 11 15 24

y 3 4 11 15 24

+ +

+

+

+

+

+

+

PART V

COLLECTIVE COMMUNICATION

24 INTRODUCTION

COLLECTIVE [MPI-4.0, 2.4, 6.1]

Terminology: Collective

A procedure is collective if all processes in a group need to invoke the procedure.

• Collective communication implements certain communication patterns that involve all

processes in a group

• Synchronization may or may not occur (except for MPI_Barrier)

• No tags are used

• No MPI_Status values are returned

• Receive buffer size must match the total amount of data sent (c.f. point-to-point

communication where receive buffer capacity is allowed to exceed the message size)

• Point-to-point and collective communication do not interfere

CLASSIFICATION [MPI-4.0, 6.2.2]

One-to-all

MPI_Bcast, MPI_Scatter, MPI_Scatterv

All-to-one

MPI_Gather, MPI_Gatherv, MPI_Reduce

All-to-all

MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Alltoallv,

MPI_Alltoallw, MPI_Allreduce, MPI_Reduce_scatter, MPI_Barrier

Other

MPI_Scan, MPI_Exscan

25 REDUCTIONS

GLOBAL REDUCTION OPERATIONS [MPI-4.0, 6.9]

Associative operations over distributed data

𝑑0 ⊕ 𝑑1 ⊕ 𝑑2 ⊕ … ⊕ 𝑑𝑛−1,where
𝑑𝑖, data of process with rank 𝑖
⊕, associative operation

Examples for ⊕:

• Sum + and product ×

• Maximummax andminimummin

• User-defined operations

Caution: Order of application is not defined, watch out for floating point rounding.

REDUCE [MPI-4.0, 6.9.1]

b
e
fo
re

a
ft
e
r

1 2 3 4 5 6
7 8 9

10 11 12

1 2 3 4 5 6
7 8 9

22 26 30
10 11 12

+ + +

18

*
MPI_Reduce(<send buffer>, <receive buffer>, <operation>,

<root>)↪
C

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)↪

F
0
8

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm,

ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: count, root

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Op), intent(in) :: op

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

EXCLUSIVE SCAN [MPI-4.0, 6.11.2]

b
e
fo
re

a
ft
e
r

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

1 2 3

7 8 9

5 7 9

10 11 12

12 15 18

+ + +

*

MPI_Exscan(<send buffer>, <receive buffer>, <operation>,

<communicator>)↪

C

int MPI_Exscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)↪

F
0
8

MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm,

ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Op), intent(in) :: op

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

PREDEFINED OPERATIONS [MPI-4.0, 6.9.2]

Name Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and the first rank that holds it [MPI-4.0, 6.9.4]

MPI_MINLOC Minimum and the first rank that holds it [MPI-4.0, 6.9.4]

26 REDUCTION VARIANTS

REDUCTION VARIANTS [MPI-4.0, 6.9 -- 6.11]

Routines with extended or combined functionality:

• MPI_Allreduce: perform a global reduction and replicate the result onto all ranks

• MPI_Reduce_scatter: perform a global reduction then scatter the result onto all ranks

• MPI_Scan: perform a global prefix reduction, include own data in result

19

27 EXERCISES

Exercise 4 – Collective Communication

4.1 Global Summation – MPI_Reduce

In the file global_sum.{c|cxx|f90|py} implement the function/subroutine

global_sum_reduce(x, y, root, comm) that performs the same operation as the

solution to exercise 2.3.

Since global_sum_... is a specialization of MPI_Reduce, it can be implemented by calling

MPI_Reduce, passing on the function arguments in the correct way and selecting the correct MPI

datatype and reduction operation.

Use: MPI_Reduce

Bonus

In the file global_prefix_sum.{c|cxx|f90|py} implement the function/subroutine

global_prefix_sum_scan(x, y, comm) that performs the same operation as

global_prefix_sum_ring.

Since global_prefix_sum_... is a specialization of MPI_Scan, it can be implemented by

calling MPI_Scan, passing on the function arguments in the correct way and selecting the correct

MPI datatype and reduction operation.

Use: MPI_Scan

28 DATA MOVEMENT

BROADCAST [MPI-4.0, 6.4]

b
e
fo
re

a
ft
e
r

𝜋

𝜋 𝜋 𝜋 𝜋

C

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)↪

F
0
8

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

type(*), dimension(..) :: buffer

integer, intent(in) :: count, root

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

SCATTER [MPI-4.0, 6.6]

b
e
fo
re

a
ft
e
r

A B C D

A B C D

B
A C D

C

int MPI_Scatter(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

↪

↪

F
0
8

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, root, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: sendcount, recvcount, root

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

GATHER [MPI-4.0, 6.5]

20

b
e
fo
re

a
ft
e
r

B
A C D

B

A B C D
A C D

C

int MPI_Gather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

↪

↪

F
0
8

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, root, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: sendcount, recvcount, root

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

GATHER-TO-ALL [MPI-4.0, 6.7]

b
e
fo
re

a
ft
e
r

A B C D

A

A B C D

B

A B C D

C

A B C D

D

A B C D

C

int MPI_Allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

↪

↪

F
0
8

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: sendcount, recvcount

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

ALL-TO-ALL SCATTER/GATHER [MPI-4.0, 6.8]

b
e
fo
re

a
ft
e
r

A B C D E F G H I J K L M N O P

A B C D

A E I M

E F G H

B F J N

I J K L

C G K O

M N O P

D H L P

C

int MPI_Alltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

↪

↪

F
0
8

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: sendcount, recvcount

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

DATA MOVEMENT SIGNATURES

21

*
MPI_Collective(<send buffer>, <receive buffer>, <root or

communicator>)↪

• Both send buffer and receive buffer are address, count, datatype

• In One-to-all / All-to-one pattern

– Specify root process by rank number

– send buffer / receive buffer is only read / written on root process

• Buffers hold either one or 𝑛 messages, where 𝑛 is the number of processes

• If multiple messages are sent from / received into a buffer, associated count specifies the

number of elements in a single message

MESSAGE ASSEMBLY

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 0 1 2 3

Message 4 5 6 7

Buffer 0 1 2 3 ? ? ? ? ? ? ...

Buffer 4 5 6 7 ? ? ? ? ? ? ...

MPI_Scatter(sendbuffer, 4, MPI_INT, ...)

MPI_Scatter(..., receivebuffer, 4, MPI_INT, ...)

29 DATA MOVEMENT VARIANTS

DATA MOVEMENT VARIANTS [MPI-4.0, 6.5 -- 6.8]

Routines with variable counts (and datatypes):

• MPI_Scatterv: scatter into parts of variable length

• MPI_Gatherv: gather parts of variable length

• MPI_Allgatherv: gather parts of variable length onto all processes

• MPI_Alltoallv: exchange parts of variable length between all processes

• MPI_Alltoallw: exchange parts of variable length and datatype between all processes

DATA MOVEMENT SIGNATURES

*

MPI_Collectivev(<send buffer>, <receive buffer>, <root or

communicator>)↪

• Same high-level pattern as before

• Difference: for buffers holding 𝑛 messages, can specify, for every message

– An individual count of message elements

– A displacement (in units of message elements) from the beginning of the buffer at

which to start taking elements

Caution: The blocks for different messages in send buffers can overlap. In receive buffers, they

must not.

MESSAGE ASSEMBLY

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 1 2 3

Message 5 6

Buffer 1 2 3 ? ? ? ? ? ? ? ...

Buffer 5 6 ? ? ? ? ? ? ? ? ...

MPI_Scatterv(sendbuffer, { 3, 2 }, { 1, 5 }, MPI_INT, ...)

MPI_Scatterv(..., receivebuffer, (3 | 2), MPI_INT, ...)

30 EXERCISES

4.2 Redistribution of Points with Collectives

In the file redistribute.{c|cxx|f90|py} implement the function redistributewhich

should work as follows:

1. All processes call the function collectively and pass in an array of random numbers – the

points – from a uniform random distribution on [0, 1).

2. Partition [0, 1) among the nranks processes: process 𝑖 gets partition
[𝑖/𝑛𝑟𝑎𝑛𝑘𝑠, (𝑖 + 1)/𝑛𝑟𝑎𝑛𝑘𝑠).

22

3. Redistribute the points, so that every process is left with only those points that lie inside its

partition and return them from the function.

Guidelines:

• Use collectives, either MPI_Gather and MPI_Scatter or MPI_Alltoall(v) (see

below)

• It helps to partition the points so that consecutive blocks can be sent to other processes

• MPI_Alltoall can be used to distribute the information that is needed to call

MPI_Alltoallv

• Dynamic memory management could be necessary

The file contains tests that will check your implementation.

Use: MPI_Alltoall, MPI_Alltoallv

ALL-TO-ALL WITH VARYING COUNTS

C

MPI_Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[], MPI_Datatype

recvtype, MPI_Comm comm)

↪

↪

↪

F
0
8

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

type(*), dimension(..) :: recvbuf

integer, intent(in) :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)↪

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

31 IN PLACE MODE

IN PLACE MODE

• Collectives can be used in in place modewith only one buffer to conserve memory

• The special value MPI_IN_PLACE is used in place of either the send or receive buffer

address

• count and datatype of that buffer are ignored

IN PLACE SCATTER

b
e
fo
re

a
ft
e
r

A B C D

A B C DA C D

If MPI_IN_PLACE is used for recvbuf on the root process, recvcount and recvtype are

ignored and the root process does not send data to itself

IN PLACE GATHER

b
e
fo
re

a
ft
e
r

BA C D

A B C DA C D

If MPI_IN_PLACE is used for sendbuf on the root process, sendcount and sendtype are

ignored on the root process and the root process will not send data to itself.

IN PLACE GATHER-TO-ALL

23

b
e
fo
re

a
ft
e
r

A B C D

A B C D A B C D A B C D A B C D

If MPI_IN_PLACE is used for sendbuf on all processes, sendcount and sendtype are

ignored and the input data is assumed to already be in the correct position in recvbuf.

IN PLACE ALL-TO-ALL SCATTER/GATHER

b
e
fo
re

a
ft
e
r

A B C D E F G H I J K L M N O P

A E I M B F J N C G K O D H L P

If MPI_IN_PLACE is used for sendbuf on all processes, sendcount and sendtype are

ignored and the input data is assumed to already be in the correct position in recvbuf.

IN PLACE REDUCE

b
e
fo
re

a
ft
e
r

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 22 26 30 10 11 12

+ + +

If MPI_IN_PLACE is used for sendbuf on the root process, the input data for the root process is

taken from recvbuf.

IN PLACE EXCLUSIVE SCAN

b
e
fo
re

a
ft
e
r

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 1 2 3 5 7 9 12 15 18

+ + +

If MPI_IN_PLACE is used for sendbuf on all the processes, the input data is taken from

recvbuf and replaced by the results.

32 SYNCHRONIZATION

BARRIER [MPI-4.0, 6.3]

C int MPI_Barrier(MPI_Comm comm)

F
0
8

MPI_Barrier(comm, ierror)

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

24

Explicitly synchronizes all processes in the group of a communicator by blocking until all processes

have entered the procedure.

33 LARGE NUMBERS

LARGE COUNT EXAMPLE

C

int MPI_Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], MPI_Datatype sendtype, void* recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm

comm)

↪

↪

↪

int MPI_Scatterv_c(const void* sendbuf, const MPI_Count

sendcounts[], const MPI_Aint displs[], MPI_Datatype

sendtype, void* recvbuf, MPI_Count recvcount, MPI_Datatype

recvtype, int root, MPI_Comm comm)

↪

↪

↪

F
0
8

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf,

recvcount, recvtype, root, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

integer, intent(in) :: sendcounts(*), displs(*), recvcount,

root↪

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(*), dimension(..) :: recvbuf

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

F
0
8

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf,

recvcount, recvtype, root, comm, ierror)↪

type(*), dimension(..), intent(in) :: sendbuf

integer(MPI_COUNT_KIND), intent(in) :: sendcounts(*),

recvcount↪

integer(MPI_ADDRESS_KIND), intent(in) :: displs(*)

type(MPI_Datatype), intent(in) :: sendtype, recvtype

type(*), dimension(..) :: recvbuf

integer, intent(in) :: root

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

34 NONBLOCKING COLLECTIVE COMMUNICATION

PROPERTIES

Properties similar to nonblocking point-to-point communication

1. Initiate communication

• Routine names: MPI_I... (I for immediate)

• Nonblocking routines return before the operation has completed.

• Nonblocking routines have the same arguments as their blocking counterparts plus

an extra request argument.

2. User-application proceeds with something else

3. Complete operation

• Same completion routines (MPI_Test, MPI_Wait, …)

Caution: Nonblocking collective operations cannot bematched with blocking collective

operations.

Nonblocking Barrier

Barrier is entered through MPI_Ibarrier (which returns immediately). Completion (e.g.

MPI_Wait) blocks until all processes have entered.

NONBLOCKING BROADCAST [MPI-4.0, 6.12.2]

Blocking operation

C

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)↪

Nonblocking operation

C

int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm, MPI_Request* request)↪

F
0
8

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

type(*), dimension(..) :: buffer

integer, intent(in) :: count, root

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

integer, optional, intent(out) :: ierror

25

F
0
8

MPI_Ibcast(buffer, count, datatype, root, comm, request,

ierror)↪

type(*), dimension(..), asynchronous :: buffer

integer, intent(in) :: count, root

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Comm), intent(in) :: comm

type(MPI_Request), intent(out) :: request

integer, optional, intent(out) :: ierror

PART VI

DERIVED DATATYPES

35 INTRODUCTION

MOTIVATION [MPI-4.0, 5.1]

Reminder: Buffer

• Message buffers are defined by a triple (address, count, datatype).

• Basic data types restrict buffers to homogeneous, contiguous sequences of values in

memory.

Scenario A

Problem: Want to communicate data describing particles that consists of a position (3 double)

and a particle species (encoded as an int).

Solution(?): Communicate positions and species in two separate operations.

Scenario B

Problem: Have an array real :: a(:), want to communicate only every second entry

a(1:n:2).

Solution(?): Copy data to a temporary array.

Derived datatypes are a mechanism for describing arrangements of data in buffers. Gives the MPI

library the opportunity to employ the optimal solution.

TYPE MAP & TYPE SIGNATURE [MPI-4.0, 5.1]

Terminology: Type map

A general datatype is described by its type map, a sequence of pairs of basic datatype

and displacement:

Typemap = {(type0, disp0), … , (type𝑛−1, disp𝑛−1)}

Terminology: Type signature

A type signature describes the contents of a message read from a buffer with a

general datatype:

Typesig = {type0, … , type𝑛−1}

Type matching is done based on type signatures alone.

EXAMPLE

C

struct heterogeneous {

int i[4];

double d[5];

}

F
0
8

type, bind(C) :: heterogeneous

integer :: i(4)

real(real64) :: d(5)

end type

Basic Datatype

0 MPI_INT MPI_INTEGER

4 MPI_INT MPI_INTEGER

8 MPI_INT MPI_INTEGER

12 MPI_INT MPI_INTEGER

16 MPI_DOUBLE MPI_REAL8

24 MPI_DOUBLE MPI_REAL8

32 MPI_DOUBLE MPI_REAL8

40 MPI_DOUBLE MPI_REAL8

48 MPI_DOUBLE MPI_REAL8

0 4 8 12 16 24 32 40 48

26

36 CONSTRUCTORS

TYPE CONSTRUCTORS [MPI-4.0, 5.1]

A new derived type is constructed from an existing type oldtype (basic or derived) using type

constructors. In order of increasing generality/complexity:

1. MPI_Type_contiguous 𝑛 consecutive instances of oldtype

2. MPI_Type_vector 𝑛 blocks of 𝑚 instances of oldtypewith stride 𝑠

3. MPI_Type_indexed_block 𝑛 blocks of 𝑚 instances of oldtypewith displacement 𝑑𝑖
for each 𝑖 = 1, … , 𝑛

4. MPI_Type_indexed 𝑛 blocks of 𝑚𝑖 instances of oldtypewith displacement 𝑑𝑖 for each
𝑖 = 1, … , 𝑛

5. MPI_Type_create_struct 𝑛 blocks of 𝑚𝑖 instances of oldtype𝑖 with displacement

𝑑𝑖 for each 𝑖 = 1, … , 𝑛

6. MPI_Type_create_subarray 𝑛 dimensional subarray out of an array with elements of

type oldtype

7. MPI_Type_create_darray distributed array with elements of type oldtype

CONTIGUOUS DATA [MPI-4.0, 5.1.2]

C

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,

MPI_Datatype* newtype)↪

F
0
8

MPI_Type_contiguous(count, oldtype, newtype, ierror)

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: oldtype

type(MPI_Datatype), intent(out) :: newtype

integer, optional, intent(out) :: ierror

• Simple concatenation of oldtype

• Results in the same access pattern as using oldtype and specifying a buffer with count

greater than one.

oldtype

count = 9

STRUCT DATA [MPI-4.0, 5.1.2]

C

int MPI_Type_create_struct(int count, const int

array_of_blocklengths[], const MPI_Aint

array_of_displacements[], const MPI_Datatype

array_of_types[], MPI_Datatype* newtype)

↪

↪

↪

F
0
8

MPI_Type_create_struct(count, array_of_blocklengths,

array_of_displacements, array_of_types, newtype, ierror)↪

integer, intent(in) :: count, array_of_blocklengths(count)

integer(kind=MPI_ADDRESS_KIND), intent(in) ::

array_of_displacements(count)↪

type(MPI_Datatype), intent(in) :: array_of_types(count)

type(MPI_Datatype), intent(out) :: newtype

integer, optional, intent(out) :: ierror

Caution: Fortran derived data types must be declared sequence or bind(C), see [MPI-4.0,

19.1.15].

EXAMPLE

C

struct heterogeneous {

int i[4];

double d[5];

}

count = 2;

array_of_blocklengths[0] = 4;

array_of_displacements[0] = 0;

array_of_types[0] = MPI_INT;

array_of_blocklengths[1] = 5;

array_of_displacements[1] = 16;

array_of_types[1] = MPI_DOUBLE;

27

F
0
8

type, bind(C) :: heterogeneous

integer :: i(4)

real(real64) :: d(5)

end type

count = 2;

array_of_blocklengths(1) = 4

array_of_displacements(1) = 0

array_of_types(1) = MPI_INTEGER

array_of_blocklengths(2) = 5

array_of_displacements(2) = 16

array_of_types(2) = MPI_REAL8

0 4 8 12 16 24 32 40 48

SUBARRAY DATA [MPI-4.0, 5.1.3]

C

int MPI_Type_create_subarray(int ndims, const int

array_of_sizes[], const int array_of_subsizes[], const int

array_of_starts[], int order, MPI_Datatype oldtype,

MPI_Datatype* newtype)

↪

↪

↪

F
0
8

MPI_Type_create_subarray(ndims, array_of_sizes,

array_of_subsizes, array_of_starts, order, oldtype,

newtype, ierror)

↪

↪

integer, intent(in) :: ndims, array_of_sizes(ndims),

array_of_subsizes(ndims), array_of_starts(ndims), order↪

type(MPI_Datatype), intent(in) :: oldtype

type(MPI_Datatype), intent(out) :: newtype

integer, optional, intent(out) :: ierror

EXAMPLE

C

ndims = 2;

array_of_sizes[] = { 4, 9 };

array_of_subsizes[] = { 2, 3 };

array_of_starts[] = { 0, 3 };

order = MPI_ORDER_C;

oldtype = MPI_INT;

F
0
8

ndims = 2

array_of_sizes(:) = (/ 4, 9 /)

array_of_subsizes(:) = (/ 2, 3 /)

array_of_starts(:) = (/ 0, 3 /)

order = MPI_ORDER_FORTRAN

oldtype = MPI_INTEGER

An array with global size 4 × 9 containing a subarray of size 2 × 3 at offsets 0, 3:

COMMIT & FREE [MPI-4.0, 5.1.9]

Before using a derived datatype in communication it needs to be committed

C int MPI_Type_commit(MPI_Datatype* datatype)

F
0
8

MPI_Type_commit(datatype, ierror)

type(MPI_Datatype), intent(inout) :: datatype

integer, optional, intent(out) :: ierror

Marking derived datatypes for deallocation

C int MPI_Type_free(MPI_Datatype *datatype)

F
0
8

MPI_Type_free(datatype, ierror)

type(MPI_Datatype), intent(inout) :: datatype

integer, optional, intent(out) :: ierror

37 EXERCISES

Exercise 5 – Derived Datatypes

5.1 Matrix Access – Diagonal

In the file matrix_access.{c|cxx|f90|py} implement the function/subroutine

get_diagonal that extracts the elements on the diagonal of an 𝑁 × 𝑁 matrix into a vector:

vector𝑖 = matrix𝑖,𝑖, 𝑖 = 1 … 𝑁.

28

Do not access the elements of either the matrix or the vector directly. Rather, use MPI datatypes for

accessing your data. Assume that thematrix elements are stored in row-major order in C (all

elements of the first row, followed by all elements of the second row, etc.), column-major order in

Fortran.

Hint: MPI_Sendrecv on the MPI_COMM_SELF communicator can be used for copying the

data.

Use: MPI_Type_vector

5.2 Matrix Access – Upper Triangle

In the file matrix_access.{c|cxx|f90|py} implement the function/subroutine

get_upper that copies all elements on or above the diagonal of an 𝑁 × 𝑁 matrix to a second

matrix and leaves all other elements untouched.

upper𝑖,𝑗 = matrix𝑖,𝑗, 𝑖 = 1 … 𝑁, 𝑗 = 𝑖 … 𝑁

As in the previous exercise, do not access thematrix elements directly and assume row-major

layout of the matrices in C, column-major order in Fortran. Make sure to un-comment the call to

test_get_upper() to have your solution tested.

Hint: MPI_Sendrecv on the MPI_COMM_SELF communicator can be used for copying the

data.

Use: MPI_Type_indexed

38 ADDRESS CALCULATION

ALIGNMENT & PADDING

C

struct heterogeneous {

int i[3];

double d[5];

}

count = 2;

array_of_blocklengths[0] = 3;

array_of_displacements[0] = 0;

array_of_types[0] = MPI_INT;

array_of_blocklengths[1] = 5;

array_of_displacements[1] = 16;

array_of_types[1] = MPI_DOUBLE;

F
0
8

type, bind(C) :: heterogeneous

integer :: i(3)

real(real64) :: d(5)

end type

count = 2;

array_of_blocklengths(1) = 3

array_of_displacements(1) = 0

array_of_types(1) = MPI_INTEGER

array_of_blocklengths(2) = 5

array_of_displacements(2) = 16

array_of_types(2) = MPI_REAL8

0 4 8 12 16 24 32 40 48

ADDRESS CALCULATION [MPI-4.0, 5.1.5]

Displacements are calculated as the difference between the addresses at the start of a buffer and

at a particular piece of data in the buffer. The address of a location in memory is found using:

C int MPI_Get_address(const void* location, MPI_Aint* address)

F
0
8

MPI_Get_address(location, address, ierror)

type(*), dimension(..), asynchronous :: location

integer(kind=MPI_ADDRESS_KIND), intent(out) :: address

integer, optional, intent(out) :: ierror

Using the C operator & to determine addresses is discouraged, since it returns a pointer which is

not necessarily the same as an address.

ADDRESS ARITHMETIC [MPI-4.0, 5.1.5]

Addition
C MPI_Aint MPI_Aint_add(MPI_Aint a, MPI_Aint b)

F
0
8

integer(kind=MPI_ADDRESS_KIND) MPI_Aint_add(a, b)

integer(kind=MPI_ADDRESS_KIND), intent(in) :: a, b

Subtraction

29

C MPI_Aint MPI_Aint_diff(MPI_Aint a, MPI_Aint b)
F
0
8

integer(kind=MPI_ADDRESS_KIND) MPI_Aint_diff(a, b)

integer(kind=MPI_ADDRESS_KIND), intent(in) :: a, b

EXAMPLE

C

struct heterogeneous h;

MPI_Aint base, displ[2];

MPI_Datatype newtype;

MPI_Datatype types[2] = { MPI_INT, MPI_DOUBLE };

int blocklen[2] = { 3, 5 };

MPI_Get_address(&h, &base);

MPI_Get_address(&h.i, &displ[0]);

displ[0] = MPI_Aint_diff(displ[0], base);

MPI_Get_address(&h.d, &displ[1]);

displ[1] = MPI_Aint_diff(displ[1], base);

MPI_Type_create_struct(2, blocklen, displ, types, &newtype);

MPI_Type_commit(&newtype);

F
0
8

type(heterogeneous) :: h

integer(kind=MPI_ADDRESS_KIND) :: base, displ(2)

type(MPI_Datatype) :: types(2), newtype

integer :: blocklen(2)

types = (/ MPI_INTEGER, MPI_REAL8 /)

blocklen = (/ 3, 5 /)

call MPI_Get_address(h, base)

call MPI_Get_address(h%i, displ(1))

displ(1) = MPI_Aint_diff(displ(1), base)

call MPI_Get_address(h%d, displ(2))

displ(2) = MPI_Aint_diff(displ(2), base)

call MPI_Type_create_struct(2, blocklen, displ, types,

newtype)↪

call MPI_Type_commit(newtype)

39 PADDING

TYPE EXTENT [MPI-4.0, 5.1]

Terminology: Extent

The extent of a type is determined from its lower bounds and upper bounds:

Typemap = {(type0, disp0), … , (type𝑛−1, disp𝑛−1)}
lb Typemap = min

𝑗
disp𝑗

ub Typemap = max
𝑗

(disp𝑗 + sizeof type𝑗) + 𝜖

extent Typemap = ub Typemap − lb Typemap

Extent and spacing

Let t be a type with type map {(MPI_CHAR, 1)} and b an array of char, b = { 'a', 'b',

'c', 'd', 'e', 'f' }, then MPI_Send(b, 3, t, ...)will result in a message {'b',

'c', 'd'} and not {'b', 'd', 'f'}.

Explicit padding can be added by resizing the type.

RESIZE [MPI-4.0, 5.1.7]

C

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb,

MPI_Aint extent, MPI_Datatype* newtype)↪

F
0
8

MPI_Type_create_resized(oldtype, lb, extent, newtype, ierror)

integer(kind=MPI_ADDRESS_KIND), intent(in) :: lb, extent

type(MPI_Datatype), intent(in) :: oldtype

type(MPI_Datatype), intent(out) :: newtype

integer, optional, intent(out) :: ierror

Creates a new derived type newtypewith the same typemap as oldtype but explicit lower

bound lb and explicit upper bound lb + extent.

Extent and true extent of a type can be queried using MPI_Type_get_extent and

MPI_Type_get_true_extent. The size of resulting messages can be queried with

MPI_Type_size.

MESSAGE ASSEMBLY

30

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 0 2 4 6

Buffer ? 0 ? 2 ? 4 ? 6 ? ? ...

MPI_Send(buffer, 4, {(MPI_INT, 0), (ub, 8)}, ...)

MPI_Recv(buffer, 4, {(lb, 0), (MPI_INT, 4)}, ...)

40 LARGE NUMBERS

LARGE COUNT EXAMPLE

C

int MPI_Type_create_hvector(int count, int blocklength,

MPI_Aint stride, MPI_Datatype oldtype, MPI_Datatype*

newtype)

↪

↪

int MPI_Type_create_hvector_c(MPI_Count count, MPI_Count

blocklength, MPI_Count stride, MPI_Datatype oldtype,

MPI_Datatype* newtype)

↪

↪

F
0
8

MPI_Type_create_hvector(count, blocklength, stride, oldtype,

newtype, ierror)↪

integer, intent(in) :: count, blocklength

integer(KIND=MPI_ADDRESS_KIND), intent(in) :: stride

type(MPI_Datatype), intent(in) :: oldtype

type(MPI_Datatype), intent(out) :: newtype

integer, optional, intent(out) :: ierror

MPI_Type_create_hvector(count, blocklength, stride, oldtype,

newtype, ierror)↪

integer(KinD=MPI_COUNT_KIND), intent(in) :: count, blocklength,

stride↪

type(MPI_Datatype), intent(in) :: oldtype

type(MPI_Datatype), intent(out) :: newtype

integer, optional, intent(out) :: ierror

41 EXERCISES

5.3 Structs

Given a definition of a datatype that represents a point in three-dimensional space with additional

properties:

• 3 color values (rgb, integers)

• 3 coordinates (xyz, double precision)

• 1 tag (1 character)

write a function point_datatype in struct.{c|cxx|f90} or struct_.py that returns a

committed MPI Datatype that describes the data layout. Your function will be tested by using the

datatype you construct for copying an instance of the point type.

Modification: Change the order of the components of the point structure. Does your program still

produce correct results?

Use: MPI_Get_address, MPI_Aint_diff, MPI_Type_create_struct,

MPI_Type_commit

PART VII

INPUT/OUTPUT

42 INTRODUCTION

MOTIVATION

I/O on HPC Systems

• “This is not your parents’ I/O subsystem”

• File system is a shared resource

– Modification of metadata might happen sequentially

– File system blocks might be shared among processes

• File system access might not be uniform across all processes

• Interoperability of data originating on different platforms

MPI I/O

• MPI already defines a language that describes data layout andmovement

• Extend this language by I/O capabilities

31

• More expressive/precise API than POSIX I/O affords better chances for optimization

COMMON I/O STRATEGIES

Funnelled I/O

+ Simple to implement

- I/O bandwidth is limited to the rate of this single process

- Additional communication might be necessary

- Other processes may idle and waste resources during I/O operations

All or several processes use one file

+ Number of files is independent of number of processes

+ File is in canonical representation (no post-processing)

- Uncoordinated client requests might induce time penalties

- File layout may induce false sharing of file system blocks

Task-Local Files

+ Simple to implement

+ No explicit coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to bemerged to create a canonical dataset (post-processing)

- File systemmight introduce implicit coordination (metadata modification)

SEQUENTIAL ACCESS TO METADATA

215 216 217 218 219 220 221101

102

103

24.8 26.9 34.7

73.8

240.6
410.2

777.8

Number of files

T
im

e
(𝑠

−
1)

Juqueen, IBM Blue Gene/Q, GPFS, filesystem /work using fopen()

parallel creation of task-local files

43 FILE MANIPULATION

FILE, FILE POINTER & HANDLE [MPI-4.0, 14.1]

Terminology: File

An MPI file is an ordered collection of typed data items.

Terminology: File Pointer

A file pointer is an implicit offset into a file maintained by MPI.

Terminology: File Handle

An opaque MPI object. All operations on an open file reference the file through the

file handle.

OPENING A FILE [MPI-4.0, 14.2.1]

C
int MPI_File_open(MPI_Comm comm, const char* filename, int

amode, MPI_Info info, MPI_File* fh)↪
F
0
8

MPI_File_open(comm, filename, amode, info, fh, ierror)

type(MPI_Comm), intent(in) :: comm

character(len=*), intent(in) :: filename

integer, intent(in) :: amode

type(MPI_Info), intent(in) :: info

type(MPI_File), intent(out) :: fh

integer, optional, intent(out) :: ierror

32

• Collective operation on communicator comm

• Filenamemust reference the same file on all processes

• Process-local files can be opened using MPI_COMM_SELF

• info object specifies additional information (MPI_INFO_NULL for empty)

ACCESS MODE [MPI-4.0, 14.2.1]

amode denotes the access mode of the file andmust be the same on all processes. Itmust contain

exactly one of the following:

MPI_MODE_RDONLY read only access

MPI_MODE_RDWR read and write access

MPI_MODE_WRONLY write only access

andmay contain some of the following:

MPI_MODE_CREATE create the file if it does not exist

MPI_MODE_EXCL error if creating file that already exists

MPI_MODE_DELETE_ON_CLOSE delete file on close

MPI_MODE_UNIQUE_OPEN file is not opened elsewhere

MPI_MODE_SEQUENTIAL access to the file is sequential

MPI_MODE_APPEND file pointers are set to the end of the file

Combine using bit-wise or (| operator in C, ior intrinsic in Fortran).

CLOSING A FILE [MPI-4.0, 14.2.2]

C int MPI_File_close(MPI_File* fh)

F
0
8

MPI_File_close(fh, ierror)

type(MPI_File), intent(out) :: fh

integer, optional, intent(out) :: ierror

• Collective operation

• User must ensure that all outstanding nonblocking and split collective operations

associated with the file have completed

DELETING A FILE [MPI-4.0, 14.2.3]

C int MPI_File_delete(const char* filename, MPI_Info info)

F
0
8

MPI_File_delete(filename, info, ierror)

character(len=*), intent(in) :: filename

type(MPI_Info), intent(in) :: info

integer, optional, intent(out) :: ierror

• Deletes the file identified by filename

• File deletion is a local operation and should be performed by a single process

• If the file does not exist an error is raised

• If the file is opened by any process

– all further and outstanding access to the file is implementation dependent

– it is implementation dependent whether the file is deleted; if it is not, an error is

raised

FILE PARAMETERS

Setting File Parameters

MPI_File_set_size Set the size of a file [MPI-4.0, 14.2.4]

MPI_File_preallocate Preallocate disk space [MPI-4.0, 14.2.5]

MPI_File_set_info Supply additional information [MPI-4.0, 14.2.8]

Inspecting File Parameters

MPI_File_get_size Size of a file [MPI-4.0, 14.2.6]

MPI_File_get_amode Acess mode [MPI-4.0, 14.2.7]

MPI_File_get_group Group of processes that opened the file [MPI-4.0, 14.2.7]

MPI_File_get_info Additional information associated with the file [MPI-4.0, 14.2.8]

I/O ERROR HANDLING [MPI-4.0, 9.3, 14.7]

Caution: Communication, by default, aborts the programwhen an error is encountered. I/O

operations, by default, return an error code.

C

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler

errhandler)↪

33

F
0
8

MPI_File_set_errhandler(file, errhandler, ierror)

type(MPI_File), intent(in) :: file

type(MPI_Errhandler), intent(in) :: errhandler

integer, optional, intent(out) :: ierror

• The default error handler for files is MPI_ERRORS_RETURN

• Success is indicated by a return value of MPI_SUCCESS

• MPI_ERRORS_ARE_FATAL aborts the program

• Can be set for each file individually or for all files by using MPI_File_set_errhandler

on a special file handle, MPI_FILE_NULL

44 FILE VIEWS

FILE VIEW [MPI-4.0, 14.3]

Terminology: File View

A file view determines what part of the contents of a file is visible to a process. It is

defined by a displacement (given in bytes) from the beginning of the file, an

elementary datatype and a file type. The view into a file can be changedmultiple

times between opening and closing.

File Types and Elementary Types are Data Types

• Can be predefined or derived

• The usual constructors can be used to create derived file types and elementary types, e.g.

– MPI_Type_indexed,

– MPI_Type_create_struct,

– MPI_Type_create_subarray

• Displacements in their typemapmust be non-negative andmonotonically nondecreasing

• Have to be committed before use

DEFAULT FILE VIEW [MPI-4.0, 14.3]

When newly opened, files are assigned a default view that is the same on all processes:

• Zero displacement

• File contains a contiguous sequence of bytes

• All processes have access to the entire file

File 0: byte 1: byte 2: byte 3: byte ...

Process 0 0: byte 1: byte 2: byte 3: byte ...

Process 1 0: byte 1: byte 2: byte 3: byte ...

... 0: byte 1: byte 2: byte 3: byte ...

ELEMENTARY TYPE [MPI-4.0, 14.3]

Terminology: Elementary Type

An elementary type (or etype) is the unit of data contained in a file. Offsets are

expressed in multiples of etypes, file pointers point to the beginning of etypes.

Etypes can be basic or derived.

Changing the Elementary Type

E.g. etype = MPI_INT:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int 2: int 3: int ...

Process 1 0: int 1: int 2: int 3: int ...

... 0: int 1: int 2: int 3: int ...

FILE TYPE [MPI-4.0, 14.3]

Terminology: File Type

A file type describes an access pattern. It can contain either instances of the etype or

holes with an extent that is divisible by the extent of the etype.

Changing the File Type

E.g. Filetype0 = {(int, 0), (hole, 4), (hole, 8)}, Filetype1 = {(hole, 0), (int, 4), (hole, 8)}, …:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int ...

Process 1 0: int ...

... 0: int ...

CHANGING THE FILE VIEW [MPI-4.0, 14.3]

34

C
int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype, const char*

datarep, MPI_Info info)

↪

↪

F
0
8

MPI_File_set_view(fh, disp, etype, filetype, datarep, info,

ierror)↪

type(MPI_File), intent(in) :: fh

integer(kind=MPI_OFFSET_KIND), intent(in) :: disp

type(MPI_Datatype), intent(in) :: etype, filetype

character(len=*), intent(in) :: datarep

type(MPI_Info), intent(in) :: info

integer, optional, intent(out) :: ierror

• Collective operation

• datarep and extent of etypemust match

• disp, filetype and info can be distinct

• File pointers are reset to zero

• May not overlap with nonblocking or split collective operations

DATA REPRESENTATION [MPI-4.0, 14.5]

• Determines the conversion of data in memory to data on disk

• Influences the interoperability of I/O between heterogeneous parts of a system or different

systems

"native"

Data is stored in the file exactly as it is in memory

+ No loss of precision

+ No overhead

- On heterogeneous systems loss of transparent interoperability

"internal"

Data is stored in implementation-specific format

+ Can be used in a homogeneous and heterogeneous environment

+ Implementation will perform conversions if necessary

- Can incur overhead

- Not necessarily compatible between different implementations

"external32"

Data is stored in standardized data representation (big-endian IEEE)

+ Can be read/written also by non-MPI programs

- Precision and I/O performancemay be lost due to type conversions between native and

external32 representations

- Not available in all implementations

45 DATA ACCESS

Three orthogonal aspects

1. Synchronism

(a) Blocking

(b) Nonblocking

(c) Split collective

2. Coordination

(a) Noncollective

(b) Collective

3. Positioning

(a) Explicit offsets

(b) Individual file pointers

(c) Shared file pointers

POSIX read() and write()

These are blocking, noncollective operations with individual file pointers.

SYNCHRONISM

Blocking I/O

Blocking I/O routines do not return before the operation is completed.

Nonblocking I/O

• Nonblocking I/O routines do not wait for the operation to finish

• A separate completion routine is necessary [MPI-4.0, 3.7.3, 3.7.5]

• The associated buffers must not be used while the operation is in flight

35

Split Collective

• “Restricted” form of nonblocking collective

• Buffers must not be used while in flight

• Does not allow other collective accesses to the file while in flight

• begin and endmust be used from the same thread

COORDINATION

Noncollective

The completion depends only on the activity of the calling process.

Collective

• Completion may depend on activity of other processes

• Opens opportunities for optimization

POSITIONING [MPI-4.0, 14.4.1 -- 14.4.4]

Explicit Offset

• No file pointer is used

• File position for access is given directly as function argument

Individual File Pointers

• Each process has its own file pointer

• After access, pointer is moved to first etype after the last one accessed

Shared File Pointers

• All processes share a single file pointer

• All processes must use the same file view

• Individual accesses appear as if serialized (with an unspecified order)

• Collective accesses are performed in order of ascending rank

Combine the prefix MPI_File_with any of the following suffixes:

coordination

positioning synchronism noncollective collective

explicit offsets

blocking read_at, write_at read_at_all,

write_at_all

nonblocking iread_at, iwrite_at iread_at_all,

iwrite_at_all

split collective N/A read_at_all_begin,

read_at_all_end,

write_at_all_begin,

write_at_all_end

individual file

pointers

blocking read, write read_all, write_all

nonblocking iread, iwrite iread_all, iwrite_all

split collective N/A read_all_begin,

read_all_end,

write_all_begin,

write_all_end

shared file

pointers

blocking read_shared,

write_shared

read_ordered,

write_ordered

nonblocking iread_shared,

iwrite_shared

N/A

split collective N/A read_ordered_begin,

read_ordered_end,

write_ordered_begin,

write_ordered_end

WRITING

blocking, noncollective, explicit offset [MPI-4.0, 14.4.2]

C

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const

void* buf, int count, MPI_Datatype datatype, MPI_Status

*status)

↪

↪

F
0
8

MPI_File_write_at(fh, offset, buf, count, datatype, status,

ierror)↪

type(MPI_File), intent(in) :: fh

integer(kind=MPI_OFFSET_KIND), intent(in) :: offset

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

integer, optional, intent(out) :: ierror

• Starting offset for access is explicitly given

36

• No file pointer is updated

• Writes count elements of datatype frommemory starting at buf

• Typesig datatype = Typesig etype… Typesig etype

• Writing past end of file increases the file size

EXAMPLE

blocking, noncollective, explicit offset [MPI-4.0, 14.4.2]

Process 0 calls MPI_File_write_at(offset = 1, count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

WRITING

blocking, noncollective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_write(MPI_File fh, const void* buf, int count,

MPI_Datatype datatype, MPI_Status* status)↪

F
0
8

MPI_File_write(fh, buf, count, datatype, status, ierror)

type(MPI_File), intent(in) :: fh

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Starts writing at the current position of the individual file pointer

• Moves the individual file pointer by the count of etypeswritten

EXAMPLE

blocking, noncollective, individual [MPI-4.0, 14.4.3]

With its file pointer at element 1, process 1 calls MPI_File_write(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

WRITING

nonblocking, noncollective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_iwrite(MPI_File fh, const void* buf, int count,

MPI_Datatype datatype, MPI_Request* request)↪

F
0
8

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)

type(MPI_File), intent(in) :: fh

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Request), intent(out) :: request

integer, optional, intent(out) :: ierror

• Starts the same operation as MPI_File_write but does not wait for completion

• Returns a request object that is used to complete the operation

WRITING

blocking, collective, individual [MPI-4.0, 14.4.3]

C
int MPI_File_write_all(MPI_File fh, const void* buf, int count,

MPI_Datatype datatype, MPI_Status* status)↪

37

F
0
8

MPI_File_write_all(fh, buf, count, datatype, status, ierror)

type(MPI_File), intent(in) :: fh

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Same signature as MPI_File_write, but collective coordination

• Each process uses its individual file pointer

• MPI can use communication between processes to funnel I/O

EXAMPLE

blocking, collective, individual [MPI-4.0, 14.4.3]

• With its file pointer at element 1, process 0 calls MPI_File_write_all(count = 1),

• With its file pointer at element 0, process 1 calls MPI_File_write_all(count = 2),

• With its file pointer at element 2, process 2 calls MPI_File_write_all(count = 0):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

WRITING

split-collective, individual [MPI-4.0, 14.4.5]

C

int MPI_File_write_all_begin(MPI_File fh, const void* buf, int

count, MPI_Datatype datatype)↪

F
0
8

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)

type(MPI_File), intent(in) :: fh

type(*), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

integer, optional, intent(out) :: ierror

• Same operation as MPI_File_write_all, but split-collective

• status is returned by the corresponding end routine

WRITING

split-collective, individual [MPI-4.0, 14.4.5]

C

int MPI_File_write_all_end(MPI_File fh, const void* buf,

MPI_Status* status)↪

F
0
8

MPI_File_write_all_end(fh, buf, status, ierror)

type(MPI_File), intent(in) :: fh

type(*), dimension(..), intent(in) :: buf

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• buf argument must match corresponding begin routine

EXAMPLE

blocking, noncollective, shared [MPI-4.0, 14.4.4]

With the shared pointer at element 2,

• process 0 calls MPI_File_write_shared(count = 3),

• process 2 calls MPI_File_write_shared(count = 2):

Scenario 1:

38

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

Scenario 2:

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

EXAMPLE

blocking, collective, shared [MPI-4.0, 14.4.4]

With the shared pointer at element 2,

• process 0 calls MPI_File_write_ordered(count = 1),

• process 1 calls MPI_File_write_ordered(count = 2),

• process 2 calls MPI_File_write_ordered(count = 3):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

READING

blocking, noncollective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_read(MPI_File fh, void* buf, int count,

MPI_Datatype datatype, MPI_Status* status)↪

F
0
8

MPI_File_read(fh, buf, count, datatype, status, ierror)

type(MPI_File), intent(in) :: fh

type(*), dimension(..) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Starts reading at the current position of the individual file pointer

• Reads up to count elements of datatype into the memory starting at buf

• status indicates howmany elements have been read

• If status indicates less than count elements read, the end of file has been reached

FILE POINTER POSITION [MPI-4.0, 14.4.3]
C int MPI_File_get_position(MPI_File fh, MPI_Offset* offset)

F
0
8

MPI_File_get_position(fh, offset, ierror)

type(MPI_File), intent(in) :: fh

integer(kind=MPI_OFFSET_KIND), intent(out) :: offset

integer, optional, intent(out) :: ierror

39

• Returns the current position of the individual file pointer in units of etype

• Value can be used for e.g.

– return to this position (via seek)

– calculate a displacement

• MPI_File_get_position_shared queries the position of the shared file pointer

SEEKING TO A FILE POSITION [MPI-4.0, 14.4.3]

C int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

F
0
8

MPI_File_seek(fh, offset, whence, ierror)

type(MPI_File), intent(in) :: fh

integer(kind=MPI_OFFSET_KIND), intent(in) :: offset

integer, intent(in) :: whence

integer, optional, intent(out) :: ierror

• whence controls how the file pointer is moved:

MPI_SEEK_SET sets the file pointer to offset

MPI_SEEK_CUR offset is relative to the current value of the pointer

MPI_SEEK_END offset is relative to the end of the file

• offset can be negative but the resulting position may not lie before the beginning of the

file

• MPI_File_seek_sharedmanipulates the shared file pointer

EXAMPLE

Process 0 calls MPI_File_seek(offset = 2, whence = MPI_SEEK_SET):

File 0 1 2 3 4 5 6 7 8 9

Process 0 0 1 2 3

Process 1 0 1 2

Process 2 0 1 2

Process 1 calls MPI_File_seek(offset = -1, whence = MPI_SEEK_CUR):

File 0 1 2 3 4 5 6 7 8 9

Process 0 0 1 2 3

Process 1 0 1 2

Process 2 0 1 2

Process 2 calls MPI_File_seek(offset = -1, whence = MPI_SEEK_END):

File 0 1 2 3 4 5 6 7 8 9

Process 0 0 1 2 3

Process 1 0 1 2

Process 2 0 1 2

CONVERTING OFFSETS [MPI-4.0, 14.4.3]

C

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset* disp)↪

F
0
8

MPI_File_get_byte_offset(fh, offset, disp, ierror)

type(MPI_File), intent(in) :: fh

integer(kind=MPI_OFFSET_KIND), intent(in) :: offset

integer(kind=MPI_OFFSET_KIND), intent(out) :: disp

integer, optional, intent(out) :: ierror

• Converts a view relative offset (in units of etype) into a displacement in bytes from the

beginning of the file

40

46 CONSISTENCY

CONSISTENCY [MPI-4.0, 14.6.1]

Terminology: Sequential Consistency

If a set of operations is sequentially consistent, they behave as if executed in some

serial order. The exact order is unspecified.

• To guarantee sequential consistency, certain requirements must be met

• Requirements depend on access path and file atomicity

Caution: Result of operations that are not sequentially consistent is implementation dependent.

ATOMIC MODE [MPI-4.0, 14.6.1]

Requirements for sequential consistency

Same file handle: always sequentially consistent

File handles from same open: always sequentially consistent

File handles from different open: not influenced by atomicity, see nonatomic mode

• Atomic mode is not the default setting

• Can lead to overhead, because MPI library has to uphold guarantees in general case

C int MPI_File_set_atomicity(MPI_File fh, int flag)

F
0
8

MPI_File_set_atomicity(fh, flag, ierror)

type(MPI_File), intent(in) :: fh

logical, intent(in) :: flag

integer, optional, intent(out) :: ierror

NONATOMIC MODE [MPI-4.0, 14.6.1]

Requirements for sequential consistency

Same file handle: operations must be either nonconcurrent, nonconflicting, or both

File handles from same open: nonconflicting accesses are sequentially consistent, conflicting

accesses have to be protected using MPI_File_sync

File handles from different open: all accesses must be protected using MPI_File_sync

Terminology: Conflicting Accesses

Two accesses are conflicting if they touch overlapping parts of a file and at least one

is writing.

C int MPI_File_sync(MPI_File fh)

F
0
8

MPI_File_sync(fh, ierror)

type(MPI_File), intent(in) :: fh

integer, optional, intent(out) :: ierror

The Sync-Barrier-Sync construct

C

// writing access sequence through one file handle

MPI_File_sync(fh0);

MPI_Barrier(MPI_COMM_WORLD);

MPI_File_sync(fh0);

// ...

C

// ...

MPI_File_sync(fh1);

MPI_Barrier(MPI_COMM_WORLD);

MPI_File_sync(fh1);

// access sequence to the same file through a different file

handle↪

• MPI_File_sync is used to delimit sequences of accesses through different file handles

• Sequences that contain a write access may not be concurrent with any other access

sequence

47 LARGE NUMBERS

LARGE COUNT EXAMPLE

C

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void* buf,

int count, MPI_Datatype datatype, MPI_Status* status)↪

int MPI_File_read_at_c(MPI_File fh, MPI_Offset offset, void*

buf, MPI_Count count, MPI_Datatype datatype, MPI_Status*

status)

↪

↪

41

F
0
8

MPI_File_read_at(fh, offset, buf, count, datatype, status,

ierror)↪

type(MPI_File), intent(in) :: fh

integer(KIND=MPI_OFFSET_KIND), intent(in) :: offset

type(*), dimension(..) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

F
0
8

MPI_File_read_at(fh, offset, buf, count, datatype, status,

ierror)↪

type(MPI_File), intent(in) :: fh

integer(KIND=MPI_OFFSET_KIND), intent(in) :: offset

type(*), dimension(..) :: buf

integer(KIND=MPI_COUNT_KIND), intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

48 EXERCISES

Exercise 6 – Data Access

6.1 Writing Data

In the file rank_io.{c|cxx|f90|py}write a function write_rank that takes a

communicator as its only argument and does the following:

• Each process writes its own rank in the communicator to a common file rank.dat using

"native" data representation.

• The ranks should be in order in the file: 0 … 𝑛 − 1.

Use: MPI_File_open, MPI_File_set_errhandler, MPI_File_set_view,

MPI_File_write_ordered, MPI_File_close

6.2 Reading Data

In the file rank_io.{c|cxx|f90|py}write a function read_rank that takes a

communicator as its only argument and does the following:

• The processes read the integers in the file in reverse order, i.e. process 0 reads the last entry,

process 1 reads the one before, etc.

• Each process returns the rank number it has read from the function.

Careful: This functionmight be run on a communicator with a different number of processes. If

there are more processes than entries in the file, processes with ranks larger than or equal to the

number of file entries should return MPI_PROC_NULL.

Use: MPI_File_seek, MPI_File_get_position, MPI_File_read

6.3 Phone Book

The file phonebook.dat contains several records of the following form:

C

struct dbentry {

int key;

int room_number;

int phone_number;

char name[200];

}

F
0
8

type :: dbentry

integer :: key

integer :: room_number

integer :: phone_number

character(len=200) :: name

end type

In the file phonebook.{c|cxx|f90|py}write a function look_up_by_room_number that

uses MPI I/O to find an entry by room number. Assume the file was written using "native" data

representation. Use MPI_COMM_SELF to open the file. Return a bool or logical to indicate

whether an entry has been found and fill an entry via pointer/intent out argument.

PART VIII

TOOLS

49 MUST

MUST

Marmot Umpire Scalable Tool

https://itc.rwth-aachen.de/must/

42

https://itc.rwth-aachen.de/must/

MUST checks for correct usage of MPI. It includes checks for the following classes of mistakes:

• Constants and integer values

• Communicator usage

• Datatype usage

• Group usage

• Operation usage

• Request usage

• Leak checks (MPI resources not freed before calling MPI_Finalize)

• Type mismatches

• Overlapping buffers passed to MPI

• Deadlocks resulting fromMPI calls

• Basic checks for thread level usage (MPI_Init_thread)

MUST USAGE

Build your application:

$ mpicc -o application.x application.c

$ # or

$ mpif90 -o application.x application.f90

Replace the MPI starter (e.g. srun) with MUST’s own mustrun:

$ mustrun -n 4 --must:mpiexec srun --must:np -n ./application.x

Different modes of operation (for improved scalability or graceful handling of application crashes)

are available via command line switches.

Caution: MUST is not compatible with MPI’s Fortran 2008 interface.

50 EXERCISES

Exercise 7 – MPI Tools

7.1 Must

Have a look at the file must.{c|c++|f90}. It contains a variation of the solution to exercise 2.3

– it should calculate the sum of all ranks andmake the result available on all processes.

1. Compile the program and try to run it.

2. Use MUST to discover what is wrong with the program.

3. If any mistakes were found, fix them and go back to 1.

Note: must.f90 uses the MPI Fortran 90 interface.

PART IX

COMMUNICATORS

51 INTRODUCTION

MOTIVATION

Communicators are a scope for communication within or between groups of processes. New

communicators with different scope or topological properties can be used to accommodate certain

needs.

• Separation of communication spaces: A software library that uses MPI underneath is used

in an application that directly uses MPI itself. Communication due to the library should not

conflict with communication due to the application.

• Partitioning of process groups: Parts of your software exhibit a collective communication

pattern, but only across a subset of processes.

• Exploiting inherent topology: Your application uses a regular cartesian grid to discretize

the problem and this translates into certain nearest neighbor communication patterns.

52 CONSTRUCTORS

DUPLICATE [MPI-4.0, 7.4.2]

C int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

F
0
8

MPI_Comm_dup(comm, newcomm, ierror)

type(MPI_Comm), intent(in) :: comm

type(MPI_Comm), intent(out) :: newcomm

integer, optional, intent(out) :: ierror

• Duplicates an existing communicator comm

• New communicator has the same properties but a new context

43

SPLIT [MPI-4.0, 7.4.2]
C

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm

*newcomm)↪

F
0
8

MPI_Comm_split(comm, color, key, newcomm, ierror)

type(MPI_Comm), intent(in) :: comm

integer, intent(in) :: color, key

type(MPI_Comm), intent(out) :: newcomm

integer, optional, intent(out) :: ierror

• Splits the processes in a communicator into disjoint subgroups

• Processes are grouped by color, one new communicator per distinct value

• Special color value MPI_UNDEFINED does not create a new communicator

(MPI_COMM_NULL is returned in newcomm)

• Processes are ordered by ascending value of key in new communicator

0

c: 0, k: 0

1

c: 1, k: 1

2

c: 0, k: 1

3

c: 1, k: 0

4

c: 0, k: 1

5

c: –, k: 0

0

c: 0, k: 0

1

c: 0, k: 1

2

c: 0, k: 1

0

c: 1, k: 0

1

c: 1, k: 1

–

c: –, k: 0

CARTESIAN TOPOLOGY [MPI-4.0, 8.5.1]

C

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int

dims[], const int periods[], int reorder, MPI_Comm

*comm_cart)

↪

↪

F
0
8

MPI_Cart_create(comm_old, ndims, dims, periods, reorder,

comm_cart, ierror)↪

type(MPI_Comm), intent(in) :: comm_old

integer, intent(in) :: ndims, dims(ndims)

logical, intent(in) :: periods(ndims), reorder

type(MPI_Comm), intent(out) :: comm_cart

integer, optional, intent(out) :: ierror

• Creates a new communicator with processes arranged on a (possibly periodic) Cartesian

grid

• The grid has ndims dimensions and dims[i] points in dimension i

• If reorder is true, MPI is free to assign new ranks to processes

Input:

comm_old contains 12 processes (or more)

ndims = 2, dims = [4, 3], periods = [.false., .false.] reorder =

.false.

Output:

process 0–11: new communicator with topology as shown

process 12–: MPI_COMM_NULL

0 1 2 3

0

1

2

0

(0, 0)

3

(1, 0)

6

(2, 0)

9

(3, 0)

1

(0, 1)

4

(1, 1)

7

(2, 1)

10

(3, 1)

2

(0, 2)

5

(1, 2)

8

(2, 2)

11

(3, 2)

53 ACCESSORS

RANK TO COORDINATE [MPI-4.0, 8.5.5]

C

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int

coords[])↪

44

F
0
8

MPI_Cart_coords(comm, rank, maxdims, coords, ierror)

type(MPI_Comm), intent(in) :: comm

integer, intent(in) :: rank, maxdims

integer, intent(out) :: coords(maxdims)

integer, optional, intent(out) :: ierror

Translates the rank of a process into its coordinate on the Cartesian grid.

COORDINATE TO RANK [MPI-4.0, 8.5.5]

C

int MPI_Cart_rank(MPI_Comm comm, const int coords[], int

*rank)↪

F
0
8

MPI_Cart_rank(comm, coords, rank, ierror)

type(MPI_Comm), intent(in) :: comm

integer, intent(in) :: coords(*)

integer, intent(out) :: rank

integer, optional, intent(out) :: ierror

Translates the coordinate on the Cartesian grid of a process into its rank.

CARTESIAN SHIFT [MPI-4.0, 8.5.6]

C

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int

*rank_source, int *rank_dest)↪

F
0
8

MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest,

ierror)↪

type(MPI_Comm), intent(in) :: comm

integer, intent(in) :: direction, disp

integer, intent(out) :: rank_source, rank_dest

integer, optional, intent(out) :: ierror

• Calculates the ranks of source and destination processes in a shift operation on a Cartesian

grid

• direction gives the number of the axis (starting at 0)

• disp gives the displacement

Input: direction = 0, disp = 1, not periodic

Output:

process 0: rank_source = MPI_PROC_NULL, rank_dest = 3

…

process 3: rank_source = 0, rank_dest = 6

…

process 9: rank_source = 6, rank_dest = MPI_PROC_NULL

…

0 3 6 9

1 4 7 10

2 5 8 11

Input: direction = 0, disp = 1, periodic

Output:

process 0: rank_source = 9, rank_dest = 3

…

process 3: rank_source = 0, rank_dest = 6

…

process 9: rank_source = 6, rank_dest = 0

…

0 3 6 9

1 4 7 10

2 5 8 11

Input: direction = 1, disp = 2, not periodic

Output:

45

process 0: rank_source = MPI_PROC_NULL, rank_dest = 2

process 1: rank_source = MPI_PROC_NULL, rank_dest = MPI_PROC_NULL

process 2: rank_source = 0, rank_dest = MPI_PROC_NULL

…

0 3 6 9

1 4 7 10

2 5 8 11

NULL PROCESSES [MPI-4.0, 3.10]

C int MPI_PROC_NULL = /* implementation defined */

F
0
8

integer, parameter :: MPI_PROC_NULL = ! implementation defined

• Can be used as source or destination for point-to-point communication

• Communication with MPI_PROC_NULL has no effect

• May simplify code structure (communication with special source/destination instead of

branch)

• MPI_Cart_shift returns MPI_PROC_NULL for out of range shifts

COMPARISON [MPI-4.0, 7.4.1]

C

int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int

*result)↪

F
0
8

MPI_Comm_compare(comm1, comm2, result, ierror)

type(MPI_Comm), intent(in) :: comm1, comm2

integer, intent(out) :: result

integer, optional, intent(out) :: ierror

Compares two communicators. The result is one of:

MPI_IDENT The two communicators are the same.

MPI_CONGRUENT The two communicators consist of the same processes in the same order but

communicate in different contexts.

MPI_SIMILAR The two communicators consist of the same processes in a different order.

MPI_UNEQUAL Otherwise.

54 DESTRUCTORS

FREE [MPI-4.0, 7.4.3]

C int MPI_Comm_free(MPI_Comm *comm)

F
0
8

MPI_Comm_free(comm, ierror)

type(MPI_Comm), intent(inout) :: comm

integer, optional, intent(out) :: ierror

Marks a communicator for deallocation.

55 EXERCISES

Exercise 8 – Communicators

8.1 Cartesian Topology

In global_sum_with_communicators.{c|cxx|f90|py}, redo exercise 2.3 using a

Cartesian communicator.

Use: MPI_Cart_create, MPI_Cart_shift, MPI_Comm_free

8.2 Split

In global_sum_with_communicators.{c|cxx|f90|py}, redo exercise 3.1 using a new

split communicator per communication round.

Use: MPI_Comm_split

PART X

THREAD COMPLIANCE

46

56 INTRODUCTION

THREAD COMPLIANCE [MPI-4.0, 11.6]

• An MPI library is thread compliant if

1. Concurrent threads canmake use of MPI routines and the result will be as if they were

executed in some order.

2. Blocking routines will only block the executing thread, allowing other threads to make

progress.

• MPI libraries are not required to be thread compliant

• Alternative initialization routines to request certain levels of thread compliance

• These functions are always safe to use in amultithreaded setting:

MPI_Initialized, MPI_Finalized, MPI_Query_thread,

MPI_Is_thread_main, MPI_Get_version,

MPI_Get_library_version

57 ENABLING THREAD SUPPORT

THREAD SUPPORT LEVELS [MPI-4.0, 11.2.1]

The following predefined values are used to express all possible levels of thread support:

MPI_THREAD_SINGLE program is single threaded

MPI_THREAD_FUNNELED MPI routines are only used by themain thread

MPI_THREAD_SERIALIZED MPI routines are used by multiple threads, but not concurrently

MPI_THREAD_MULTIPLE MPI is thread compliant, no restrictions

MPI_THREAD_SINGLE< MPI_THREAD_FUNNELED< MPI_THREAD_SERIALIZED<
MPI_THREAD_MULTIPLE

INITIALIZATION [MPI-4.0, 11.2.1]

C

int MPI_Init_thread(int* argc, char*** argv, int required,

int* provided)↪

F
0
8

MPI_Init_thread(required, provided, ierror)

integer, intent(in) :: required

integer, intent(out) :: provided

integer, optional, intent(out) :: ierror

• required and provided specify thread support levels

• If possible, provided = required

• Otherwise, if possible, provided > required

• Otherwise, provided < required

• MPI_Init is equivalent to required = MPI_THREAD_SINGLE

INQUIRY FUNCTIONS [MPI-4.0, 11.2.1]

Query level of thread support:

C int MPI_Query_thread(int *provided)

F
0
8

MPI_Query_thread(provided, ierror)

integer, intent(out) :: provided

integer, optional, intent(out) :: ierror

Check whether the calling thread is themain thread:

C int MPI_Is_thread_main(int* flag)

F
0
8

MPI_Is_thread_main(flag, ierror)

logical, intent(out) :: flag

integer, optional, intent(out) :: ierror

58 MATCHING PROBE AND RECEIVE

MATCHING PROBE [MPI-4.0, 3.8.2]

C

int MPI_Mprobe(int source, int tag, MPI_Comm comm,

MPI_Message* message, MPI_Status* status)↪

F
0
8

MPI_Mprobe(source, tag, comm, message, status, ierror)

integer, intent(in) :: source, tag

type(MPI_Comm), intent(in) :: comm

type(MPI_Message), intent(out) :: message

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Works like MPI_Probe, except for the returned MPI_Message value whichmay be used

to receive exactly the probedmessage

47

• Nonblocking variant MPI_Improbe exists

MATCHED RECEIVE [MPI-4.0, 3.8.3]

C

int MPI_Mrecv(void* buf, int count, MPI_Datatype datatype,

MPI_Message* message, MPI_Status* status)↪

F
0
8

MPI_Mrecv(buf, count, datatype, message, status, ierror)

type(*), dimension(..) :: buf

integer, intent(in) :: count

type(MPI_Datatype), intent(in) :: datatype

type(MPI_Message), intent(inout) :: message

type(MPI_Status) :: status

integer, optional, intent(out) :: ierror

• Receives the previously probedmessage message

• Sets the message handle to MPI_MESSAGE_NULL

• Nonblocking variant MPI_Imrecv exists

59 REMARKS

CLARIFICATIONS [MPI-4.0, 11.6.2]

Initialization and Finalization

Initialization and finalization of MPI should occur on the same thread, themain thread.

Request Completion

Multiple threads must not try to complete the same request (e.g. MPI_Wait).

Probe

In multithreaded settings, MPI_Probemight match a different message as a subsequent

MPI_Recv.

PART XI

FIRST STEPS WITH OPENMP

60 WHAT IS OPENMP?

OpenMP is a specification for a set of compiler directives, library routines, and

environment variables that can be used to specify high-level parallelism in Fortran

and C/C++ programs. (OpenMP FAQ4)

• Initially targeted SMP systems, now also DSPs, accelerators, etc.

• Provides specifications (not implementations)

• Portable across different platforms

Current version of the specification: 5.1 (November 2020)

BRIEF HISTORY

1997 FORTRAN version 1.0

1998 C/C++ version 1.0

1999 FORTRAN version 1.1

2000 FORTRAN version 2.0

2002 C/C++ version 2.0

2005 First combined version 2.5, memory model, internal control variables, clarifications

2008 Version 3.0, tasks

2011 Version 3.1, extended task facilities

2013 Version 4.0, thread affinity, SIMD, devices, tasks (dependencies, groups, and cancellation),

improved Fortran 2003 compatibility

2015 Version 4.5, extended SIMD and devices facilities, task priorities

2018 Version 5.0, memory model, base language compatibility, allocators, extended task and

devices facilities

2020 Version 5.1, support for newer base languages, loop transformations, compare-and-swap,

extended devices facilities

2021 Version 5.2, reorganization of the specification and improved consistency

COVERAGE

• Overview of the OpenMP API (✓)

• Internal Control Variables (✓)

• Directive and Construct Syntax (✓)

• Base Language Formats and Restrictions (✓)

• Data Environment (✓)

4Matthijs van Waveren et al. OpenMP FAQ. version 3.0. June 6, 2018. URL:

https://www.openmp.org/about/openmp-faq/ (visited on 01/30/2019).

48

https://www.openmp.org/about/openmp-faq/

• Memory Management

• Variant Directives

• Informational and Utility Directives

• Loop Transformation Constructs

• Parallelism Generation and Control (✓)

• Work-Distribution Constructs (✓)

• Tasking Constructs (✓)

• Device Directives and Clauses

• Interoperability

• Synchronization Constructs and Clauses (✓)

• Cancellation Constructs

• Composition of Contstructs (✓)

• Runtime Library Routines (✓)

• OMPT Interface

• OMPD Interface

• Environment Variables (✓)

LITERATURE

Official Resources

• OpenMP Architecture Review Board. OpenMP Application Programming

Interface. Version 5.2. Nov. 2021. URL: https://www.openmp.org/wp-

content/uploads/OpenMP-API-Specification-5-2.pdf

• OpenMP Architecture Review Board. OpenMP Application Programming Interface.

Examples. Version 5.1. Aug. 2021. URL: https://www.openmp.org/wp-

content/uploads/openmp-examples-5.1.pdf

• https://www.openmp.org

Recommended by https://www.openmp.org/resources/openmp-books/

• Michael Klemm and Jim Cownie. High Performance Parallel Runtimes. De Gruyter

Oldenbourg, 2021. ISBN: 9783110632729. DOI: doi:10.1515/9783110632729

• Timothy G. Mattson, Yun He, and Alice E. Koniges. The OpenMP Common Core. Making

OpenMP Simple Again. 1st ed. The MIT Press, Nov. 19, 2019. 320 pp. ISBN: 9780262538862

• Ruud van der Pas, Eric Stotzer, and Christian Terboven. Using OpenMP—The Next Step.

Affinity, Accelerators, Tasking, and SIMD. 1st ed. The MIT Press, Oct. 13, 2017. 392 pp. ISBN:

9780262534789

Additional Literature

• Michael McCool, James Reinders, and Arch Robison. Structured Parallel Programming.

Patterns for Efficient Computation. 1st ed. Morgan Kaufmann, July 31, 2012. 432 pp. ISBN:

9780124159938

Older Works (https://www.openmp.org/resources/openmp-books/)

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP. Portable Shared

Memory Parallel Programming. 1st ed. Scientific and Engineering Computation. The MIT

Press, Oct. 12, 2007. 384 pp. ISBN: 9780262533027

• Rohit Chandra et al. Parallel Programming in OpenMP. 1st ed. Morgan Kaufmann, Oct. 11,

2000. 231 pp. ISBN: 9781558606715

• Michael Quinn. Parallel Programming in C with MPI and OpenMP. 1st ed. McGraw-Hill, June 5,

2003. 544 pp. ISBN: 9780072822564

• Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns for Parallel

Programming. 1st ed. Software Patterns. Sept. 15, 2004. 384 pp. ISBN: 9780321228116

61 TERMINOLOGY

THREADS & TASKS

Terminology: Thread

An execution entity with a stack and associated static memory, called threadprivate

memory.

Terminology: OpenMP Thread

A thread that is managed by the OpenMP runtime system.

Terminology: Team

A set of one or more threads participating in the execution of a parallel region.

Terminology: Task

A specific instance of executable code and its data environment that the OpenMP

imlementation can schedule for execution by threads.

LANGUAGE

49

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org
https://www.openmp.org/resources/openmp-books/
https://doi.org/doi:10.1515/9783110632729
https://www.openmp.org/resources/openmp-books/

Terminology: Base Language

A programming language that serves as the foundation of the OpenMP specification.

The following base languages are given in [OpenMP-5.1, 1.7]: C90, C99, C11, C18, C++98, C++11,

C++14, C++17, C++20, Fortran 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008, and a subset of

Fortran 2018

Terminology: Base Program

A programwritten in the base language.

Terminology: OpenMP Program

A program that consists of a base program that is annotated with OpenMP directives

or that calls OpenMP API runtime library routines.

Terminology: Directive

In C/C++, a #pragma, and in Fortran, a comment, that specifies OpenMP program

behavior.

62 INFRASTRUCTURE

COMPILING & LINKING

Compilers that conform to the OpenMP specification usually accept a command line argument that

turns on OpenMP support, e.g.:

Intel C Compiler OpenMP Command Line Switch

$ icc -qopenmp ...

GNU Fortran Compiler OpenMP Command Line Switch

$ gfortran -fopenmp ...

The name of this command line argument is not mandated by the specification and differs from

one compiler to another.

Naturally, these arguments are then also accepted by the MPI compiler wrappers:

Compiling Programs with Hybrid Parallelization

$ mpicc -qopenmp ...

RUNTIME LIBRARY DEFINITIONS [OpenMP-5.1, 18.1]

C/C++ Runtime Library Definitions

Runtime library routines and associated types are defined in the omp.h header file.

C #include <omp.h>

Fortran Runtime Library Definitions

Runtime library routines and associated types are defined in either a Fortran include file

F
7
7

include "omp_lib.h"

or a Fortran 90 module

F
0
8

use omp_lib

63 BASIC PROGRAM STRUCTURE

WORLD ORDER IN OPENMP

• Program starts as one single-threaded process.

• Forks into teams of multiple threads when

appropriate.

• Stream of instructions might be different for each

thread.

• Information is exchanged via shared parts of

memory.

• OpenMP threads may be nested inside MPI

processes.

𝑡0 𝑡1 𝑡2 …

C AND C++ DIRECTIVE FORMAT [OpenMP-5.1, 3.1]

In C and C++, OpenMP directives are written using the #pragmamethod:

C #pragma omp directive-name [clause[[,] clause]...]

• Directives are case-sensitive

• Applies to the next statement which must be a structured block

50

Terminology: Structured Block

An executable statement, possibly compound, with a single entry at the top and a

single exit at the bottom, or an OpenMP construct.

FORTRAN DIRECTIVE FORMAT [OpenMP-5.1, 3.1.1, 3.1.2]

F
0
8

sentinel directive-name [clause[[,] clause]...]

• Directives are case-insensitive

Fixed Form Sentinels

F
0
8

sentinel = !$omp | c$omp | *$omp

• Must start in column 1

• The usual line length, white space, continuation and column rules apply

• Column 6 is blank for first line of directive, non-blank and non-zero for continuation

Free Form Sentinel

F
0
8

sentinel = !$omp

• The usual line length, white space and continuation rules apply

CONDITIONAL COMPILATION [OpenMP-5.1, 3.3]

C Preprocessor Macro

C #define _OPENMP yyyymm

yyyy and mm are the year andmonth the OpenMP specification supported by the compiler was

published.

Fortran Fixed Form Sentinels

F
0
8

!$ | *$ | c$

• Must start in column 1

• Only numbers or white space in columns 3–5

• Column 6marks continuation lines

Fortran Free Form Sentinel

F
0
8

!$

• Must only be preceded by white space

• Can be continued with ampersand

THE PARALLEL CONSTRUCT [OpenMP-5.1, 10.1]

C

#pragma omp parallel [clause[[,] clause]...]

structured-block

F
0
8

!$omp parallel [clause[[,] clause]...]

structured-block

!$omp end parallel

• Creates a team of threads to execute the parallel region

• Each thread executes the code contained in the structured block

• Inside the region threads are identified by consecutive numbers starting at zero

• Optional clauses (explained later) can be used to modify behavior and data environment of

the parallel region

THREAD COORDINATES [OpenMP-5.1, 18.2.2, 18.2.4]

Team size

C int omp_get_num_threads(void);

F
0
8

integer function omp_get_num_threads()

Returns the number of threads in the current team

Thread number

C int omp_get_thread_num(void);

F
0
8

integer function omp_get_thread_num()

Returns the number that identifies the calling thread within the current team (between zero and

omp_get_num_threads())

A FIRST OPENMP PROGRAM

51

C
#include <stdio.h>

#include <omp.h>

int main(void) {

printf("Hello from your main thread.\n");

#pragma omp parallel

printf("Hello from thread %d of %d.\n",

omp_get_thread_num(), omp_get_num_threads());↪

printf("Hello again from your main thread.\n");

}

Program Output

$ gcc -fopenmp -o hello_openmp.x hello_openmp.c

$./hello_openmp.x

Hello from your main thread.

Hello from thread 1 of 8.

Hello from thread 0 of 8.

Hello from thread 3 of 8.

Hello from thread 4 of 8.

Hello from thread 6 of 8.

Hello from thread 7 of 8.

Hello from thread 2 of 8.

Hello from thread 5 of 8.

Hello again from your main thread.

F
0
8

program hello_openmp

use omp_lib

implicit none

print *, "Hello from your main thread."

!$omp parallel

print *, "Hello from thread ", omp_get_thread_num(), " of ",

omp_get_num_threads(), "."↪

!$omp end parallel

print *, "Hello again from your main thread."

end program

64 EXERCISES

Exercise 9 – Warm Up

9.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90}, fill in the missing body of the function/subroutine

axpy_serial(a, x, y, z[, n]) so that it implements the generalized vector addition (in

serial, without making use of OpenMP):

𝐳 = 𝑎𝐱 + 𝐲.

Compile the file into a program and run it to test your implementation.

9.2 Dot Product

In the file dot.{c|c++|f90}, fill in the missing body of the function/subroutine

dot_serial(x, y[, n]) so that it implements the dot product (in serial, without making

use of OpenMP):

dot(𝐱, 𝐲) = ∑
𝑖

𝑥𝑖𝑦𝑖.

Compile the file into a program and run it to test your implementation.

PART XII

LOW-LEVEL OPENMP CONCEPTS

65 INTRODUCTION

MAGIC

Any sufficiently advanced technology is indistinguishable frommagic.

(Arthur C. Clarke5)

INTERNAL CONTROL VARIABLES [OpenMP-5.1, 2]

Terminology: Internal Control Variable (ICV)

A conceptual variable that specifies runtime behavior of a set of threads or tasks in an

OpenMP program.

• Set to an initial value by the OpenMP implementation

5Arthur C. Clarke. Profiles of the future : an inquiry into the limits of the possible. London: Pan Books, 1973. ISBN:

9780330236195.

52

• Some can bemodified through either environment variables (e.g. OMP_NUM_THREADS) or

API routines (e.g. omp_set_num_threads())

• Some can be read through API routines (e.g. omp_get_max_threads())

• Some are inaccessible to the user

• Might have different values in different scopes (e.g. data environment, device, global)

• Some can be overridden by clauses (e.g. the num_threads() clause)

• Export OMP_DISPLAY_ENV=TRUE or call omp_display_env(1) to inspect the value

of ICVs that correspond to environment variables [OpenMP-5.1, 18.15, 21.7]

PARALLELISM CLAUSES [OpenMP-5.1, 3.4, 10.1.2]

if Clause

C if([parallel :] scalar-expression)

F
0
8

if([parallel :] scalar-logical-expression)

If false, the region is executed only by the encountering thread(s) and no additional threads are

forked.

num_threads Clause

C num_threads(integer-expression)

F
0
8

num_threads(scalar-integer-expression)

Requests a team size equal to the value of the expression (overrides the nthreads-var ICV)

EXAMPLE

A parallel directive with an if clause and associated structured block in C:

C

#pragma omp parallel if(length > threshold)

{

statement0;

statement1;

statement2;

}

A parallel directive with a num_threads clause and associated structured block in Fortran:

F
0
8

!$omp parallel num_threads(64)

statement1

statement2

statement3

!$omp end parallel

CONTROLLING THE nthreads-var ICV

omp_set_num_threads API Routine [OpenMP-5.1, 18.2.1]

C void omp_set_num_threads(int num_threads);

F
0
8

subroutine omp_set_num_threads(num_threads)

integer num_threads

Sets the ICV that controls the number of threads to fork for parallel regions (without

num_threads clause) encountered subsequently.

omp_get_max_threads API Routine [OpenMP-5.1, 18.2.3]

C int omp_get_max_threads(void);

F
0
8

integer function omp_get_max_threads()

Queries the ICV that controls the number of threads to fork.

THREAD LIMIT & DYNAMIC ADJUSTMENT

omp_get_thread_limit API Routine [OpenMP-5.1, 18.2.13]

C int omp_get_thread_limit(void);

F
0
8

integer function omp_get_thread_limit()

Upper bound on the number of threads used in a program.

omp_get_dynamic and omp_set_dynamic API Routines [OpenMP-5.1, 18.2.6, 18.2.7]

C

int omp_get_dynamic(void);

void omp_set_dynamic(int dynamic);

53

F
0
8

logical function omp_get_dynamic()

subroutine omp_set_dynamic(dynamic)

logical dynamic

Enable or disable dynamic adjustment of the number of threads.

INSIDE OF A PARALLEL REGION?

omp_in_parallel API Routine [OpenMP-5.1, 18.2.5]

C int omp_in_parallel(void);

F
0
8

logical function omp_in_parallel()

Is this code being executed as part of a parallel region?

66 EXERCISES

Exercise 10 – Controlling parallel

10.1 Controlling the Number of Threads

Use hello_openmp.{c|c++|f90} to play around with the various ways to set the number of

threads forked for a parallel region:

• The OMP_NUM_THREADS environment variable

• The omp_set_num_threads API routine

• The num_threads clause

• The if clause

Inspect the number of threads that are actually forked using omp_get_num_threads.

10.2 Limits of the OpenMP Implementation

Determine the maximum number of threads allowed by the OpenMP implementation you are using

and check whether it supports dynamic adjustment of the number of threads.

67 DATA ENVIRONMENT

DATA-SHARING ATTRIBUTES [OpenMP-5.1, 5.1]

Terminology: Variable

A named data storage block, for which the value can be defined and redefined during

the execution of a program.

Terminology: Private Variable

With respect to a given set of task regions that bind to the same parallel region, a

variable for which the name provides access to a different block of storage for each

task region.

Terminology: Shared Variable

With respect to a given set of task regions that bind to the same parallel region, a

variable for which the name provides access to the same block of storage for each

task region.

CONSTRUCTS & REGIONS

Terminology: Construct

An OpenMP executable directive (and for Fortran, the paired end directive, if any) and

the associated statement, loop or structured block, if any, not including the code in

any called routines. That is, the lexical extent of an executable directive.

Terminology: Region

All code encountered during a specific instance of the execution of a given construct

or of an OpenMP library routine.

Terminology: Executable Directive

An OpenMP directive that is not declarative. That is, it may be placed in an executable

context.

DATA-SHARING ATTRIBUTE RULES I [OpenMP-5.1, 5.1.1]

The rules that determine the data-sharing attributes of variables referenced from the inside of a

construct fall into one of the following categories:

Pre-determined

• Variables with automatic storage duration declared inside the construct are private (C and

C++)

• Objects with dynamic storage duration are shared (C and C++)

• Variables with static storage duration declared in the construct are shared (C and C++)

• Static data members are shared (C++)

• Loop iteration variables are private (Fortran)

• Implied-do indices and forall indices are private (Fortran)

• Assumed-size arrays are shared (Fortran)

54

Explicit

Data-sharing attributes are determined by explicit clauses on the respective constructs.

Implicit

If the data-sharing attributes are neither pre-determined nor explicitly determined, they fall back

to the attribute determined by the default clause, or shared if no default clause is present.

DATA-SHARING ATTRIBUTE RULES II [OpenMP-5.1, 5.1.2]

The data-sharing attributes of variables inside regions, not constructs, are governed by simpler

rules:

• Static variables (C and C++) and variables with the save attribute (Fortran) are shared

• File-scope (C and C++) or namespace-scope (C++) variables and common blocks or variables

accessed through use or host association (Fortran) are shared

• Objects with dynamic storage duration are shared (C and C++)

• Static data members are shared (C++)

• Arguments passed by reference have the same data-sharing attributes as the variable they

are referencing (C++ and Fortran)

• Implied-do indices, forall indices are private (Fortran)

• Local variables are private

THE SHARED CLAUSE [OpenMP-5.1, 5.4.2]

* shared(list)

• Declares the listed variables to be shared.

• The programmer must ensure that shared variables are alive while they are shared.

• Shared variables must not be part of another variable (i.e. array or structure elements).

THE PRIVATE CLAUSE [OpenMP-5.1, 5.4.3]

* private(list)

• Declares the listed variables to be private.

• All threads have their own new versions of these variables.

• Private variables must not be part of another variable.

• If private variables are of class type, a default constructor must be accessible. (C++)

• The type of a private variable must not be const-qualified, incomplete or reference to

incomplete. (C and C++)

• Private variables must either be definable or allocatable. (Fortran)

• Private variables must not appear in namelist statements, variable format expressions or

expressions for statement function definitions. (Fortran)

• Private variables must not be pointers with intent(in). (Fortran)

FIRSTPRIVATE CLAUSE [OpenMP-5.1, 5.4.4]

* firstprivate(list)

Like private, but initialize the new versions of the variables to have the same value as the variable

that exists before the construct.

• Non-array variables are initialized by copy assignment (C and C++)

• Arrays are initialize by element-wise assignment (C and C++)

• Copy constructors are invoked if present (C++)

• Non-pointer variables are initialized by assignment or not associated if the original

variable is not associated (Fortran)

• pointer variables are initialized by pointer assignment (Fortran)

DEFAULT CLAUSE [OpenMP-5.1, 5.4.1]

C and C++

C default(shared | none)

Fortran

F
0
8

default(private | firstprivate | shared | none)

Determines the data-sharing attributes for all variables referenced from inside of a region that have

neither pre-determined nor explicit data-sharing attributes.

Caution: default(none) forces the programmer tomake data-sharing attributes explicit if

they are not pre-determined. This can help clarify the programmer’s intentions to someone who

does not have the implicit data-sharing rules in mind.

55

REDUCTION CLAUSE [OpenMP-5.1, 5.5.8]
* reduction(reduction-identifier : list)

• Listed variables are declared private.

• At the end of the construct, the original variable is updated by combining the private copies

using the operation given by reduction-identifier.

• reduction-identifiermay be +, -, *, &, |, ^, &&, ||, min or max (C and C++) or an

identifier (C) or an id-expression (C++)

• reduction-identifiermay be a base language identifier, a user-defined operator, or

one of +, -, *, .and., .or., .eqv., .neqv., max, min, iand, ior or ieor (Fortran)

• Private versions of the variable are initialized with appropriate values

68 EXERCISES

Exercise 11 – Data-sharing Attributes

11.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90} add a new function/subroutine axpy_parallel(a, x, y,

z[, n]) that uses multiple threads to perform a generalized vector addition. Modify the main

part of the program to have your function/subroutine tested.

Hints:

• Use the parallel construct and the necessary clauses to define an appropriate data

environment.

• Use omp_get_thread_num() and omp_get_num_threads() to decompose the

work.

69 THREAD SYNCHRONIZATION

• In MPI, exchange of data between processes implies synchronization through the message

metaphor.

• In OpenMP, threads exchange data through shared parts of memory.

• Explicit synchronization is needed to coordinate access to sharedmemory.

Terminology: Data Race

A data race occurs when

• multiple threads write to the samememory unit without synchronization or

• at least one thread writes to and at least one thread reads from the same

memory unit without synchronization.

• Data races result in unspecified program behavior.

• OpenMP offers several synchronization mechanismwhich range from high-level/general to

low-level/specialized.

THE BARRIER CONSTRUCT [OpenMP-5.1, 15.3.1]

C #pragma omp barrier

F
0
8

!$omp barrier

• Threads are only allowed to continue execution of code after the barrier once all threads

in the current team have reached the barrier.

• A barrier region must be executed by all threads in the current team or none.

THE CRITICAL CONSTRUCT [OpenMP-5.1, 15.2]

C

#pragma omp critical [(name)]

structured-block

F
0
8

!$omp critical [(name)]

structured-block

!$omp end critical [(name)]

• Execution of critical regions with the same name are restricted to one thread at a time.

• name is a compile time constant.

• In C, names live in their own name space.

• In Fortran, names of critical regions can collide with other identifiers.

LOCK ROUTINES [OpenMP-5.1, 18.9]
C

void omp_init_lock(omp_lock_t* lock);

void omp_destroy_lock(omp_lock_t* lock);

void omp_set_lock(omp_lock_t* lock);

void omp_unset_lock(omp_lock_t* lock);

56

F
0
8

subroutine omp_init_lock(svar)

subroutine omp_destroy_lock(svar)

subroutine omp_set_lock(svar)

subroutine omp_unset_lock(svar)

integer(kind = omp_lock_kind) :: svar

• Like critical sections, but identified by runtime value rather than global name

• Locks must be shared between threads

• Initialize a lock before first use

• Destroy a lock when it is no longer needed

• Lock and unlock using the set and unset routines

• set blocks if lock is already set

THE ATOMIC AND FLUSH CONSTRUCTS [OpenMP-5.1, 15.8.4, 15.8.5]

• barrier, critical, and locks implement synchronization between general blocks of

code

• If blocks become very small, synchronization overhead could become an issue

• The atomic and flush constructs implement low-level, fine grained synchronization for

certain limited operations on scalar variables:

– read

– write

– update, writing a new value based on the old value

– capture, like update and the old or new value is available in the subsequent code

• Correct use requires knowledge of the OpenMP Memory Model [OpenMP-5.1, 1.4]

• See also: C11 and C++11 Memory Models

70 EXERCISES

Exercise 12 – Thread Synchronization

12.1 Dot Product

In the file dot.{c|c++|f90} add a new function/subroutine dot_parallel(x, y[, n])

that uses multiple threads to perform the dot product. Do not use the reduction clause. Modify

the main part of the program to have your function/subroutine tested.

Hint:

• Decomposition of the work load should be similar to the last exercise

• Partial results of different threads should be combined in a shared variable

• Use a suitable synchronization mechanism to coordinate access

Bonus

Use the reduction clause to simplify your program.

PART XIII

WORKSHARING

71 INTRODUCTION

WORKSHARING CONSTRUCTS

• Decompose work for concurrent execution by multiple threads

• Used inside parallel regions

• Available worksharing constructs:

– single and sections construct

– loop construct

– workshare construct

– taskworksharing

72 THE SINGLE CONSTRUCT

THE SINGLE CONSTRUCT [OpenMP-5.1, 11.1]

C

#pragma omp single [clause[[,] clause]...]

structured-block

F
0
8

!$omp single [clause[[,] clause]...]

structured-block

!$omp end single [end_clause[[,] end_clause]...]

• The structured block is executed by a single thread in the encountering team.

• Permissible clauses are firstprivate, private, copyprivate and nowait.

• nowait and copyprivate are end_clauses in Fortran.

57

73 SINGLE CLAUSES

IMPLICIT BARRIERS & THE NOWAIT CLAUSE [OpenMP-5.1, 15.3.2, 15.6]

• Worksharing constructs (and the parallel construct) contain an implied barrier at their

exit.

• The nowait clause can be used on worksharing constructs to disable this implicit barrier.

THE COPYPRIVATE CLAUSE [OpenMP-5.1, 5.7.2]

* copyprivate(list)

• list contains variables that are private in the enclosing parallel region.

• At the end of the single construct, the values of all list items on the single thread are

copied to all other threads.

• E.g. serial initialization

• copyprivate cannot be combined with nowait.

74 THE LOOP CONSTRUCT

WORKSHARING-LOOP CONSTRUCT [OpenMP-5.1, 11.5]

C

#pragma omp for [clause[[,] clause]...]

for-loops

F
0
8

!$omp do [clause[[,] clause]...]

do-loops

[!$omp end do [nowait]]

Declares the iterations of a loop to be suitable for concurrent execution onmultiple threads.

Data-environment clauses

• private

• firstprivate

• lastprivate

• reduction

Worksharing-Loop-specific clauses

• schedule

• collapse

CANONICAL NEST LOOP FORM [OpenMP-5.1, 4.4.1]

In C and C++ the for-loopsmust have the following form:

C

for ([type] var = lb; var relational-op b; incr-expr)

structured-block↪

C
+
+

for (range-decl: range-expr) structured-block

• var can be an integer, a pointer, or a random access iterator

• incr-expr increments (or decrements) var, e.g. var = var + incr

• The increment incrmust not change during execution of the loop

• For nested loops, the bounds of an inner loop (b and lb) may depend at most linearly on

the iteration variable of an outer loop, i.e. a0 + a1 * var-outer

• varmust not be modified by the loop body

• The beginning of the range has to be a random access iterator

• The number of iterations of the loopmust be known beforehand

In Fortran the do-loopsmust have the following form:

F
0
8

do [label] var = lb, b[, incr]

• varmust be of integer type

• incrmust be invariant with respect to the outermost loop

• The loop bounds b and lb of an inner loopmay depend at most linearly on the iteration

variable of an outer loop, i.e. a0 + a1 * var-outer

• The number of iterations of the loopmust be known beforehand

75 LOOP CLAUSES

THE COLLAPSE CLAUSE [OpenMP-5.1, 4.4.3]

* collapse(n)

58

• The loop directive applies to the outermost loop of a set of nested loops, by default

• collapse(n) extends the scope of the loop directive to the n outer loops

• All associated loops must be perfectly nested, i.e.:
C

for (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {

// ...

}

}

THE SCHEDULE CLAUSE [OpenMP-5.1, 11.5.3]

* schedule(kind[, chunk_size])

Determines how the iteration space is divided into chunks and how these chunks are distributed

among threads.

static Divide iteration space into chunks of chunk_size iterations and distribute them in a

round-robin fashion among threads. If chunk_size is not specified, chunk size is chosen

such that each thread gets at most one chunk.

dynamic Divide into chunks of size chunk_size (defaults to 1). When a thread is done

processing a chunk it acquires a new one.

guided Like dynamic but chunk size is adjusted, starting with large sizes for the first chunks and

decreasing to chunk_size (default 1).

auto Let the compiler and runtime decide.

runtime Schedule is chosen based on ICV run-sched-var.

If no schedule clause is present, the default schedule is implementation defined.

76 EXERCISES

Exercise 13 – Loop Worksharing

13.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90} add a new function/subroutine axpy_parallel_for(a, x,

y, z[, n]) that uses loop worksharing to perform the generalised vector addition.

13.2 Dot Product

In the file dot.{c|c++|f90} add a new function/subroutine dot_parallel_for(x, y[,

n]) that uses loop worksharing to perform the dot product.

Caveat: Make sure to correctly synchronize access to the accumulator variable.

77 WORKSHARE CONSTRUCT

WORKSHARE (FORTRAN ONLY) [OpenMP-5.1, 11.4]

F
0
8

!$omp workshare

structured-block

!$omp end workshare [nowait]

The structured block may contain:

• array assignments

• scalar assignments

• forall constructs

• where statements and constructs

• atomic, critical and parallel constructs

Where possible, these are decomposed into independent units of work and executed in parallel.

78 EXERCISES

Exercise 14 – workshare Construct

14.1 Generalized Vector Addition (axpy)

In the file axpy.f90 add a new subroutine axpy_parallel_workshare(a, x, y, z)

that uses the workshare construct to perform the generalized vector addition.

14.2 Dot Product

In the file dot.f90 add a new function dot_parallel_workshare(x, y) that uses the

workshare construct to perform the dot product.

Caveat: Make sure to correctly synchronize access to the accumulator variable.

79 COMBINED CONSTRUCTS

COMBINED CONSTRUCTS [OpenMP-5.1, 17]

Some constructs that often appear as nested pairs can be combined into one construct, e.g.

C

#pragma omp parallel

#pragma omp for

for (...; ...; ...) {

...

}

59

can be turned into
C

#pragma omp parallel for

for (...; ...; ...) {

...

}

Similarly, parallel and workshare can be combined.

Combined constructs usually accept the clauses of either of the base constructs.

PART XIV

TASK WORKSHARING

80 INTRODUCTION

TASK TERMINOLOGY

Terminology: Task

A specific instance of executable code and its data environment, generated when a

thread encounters a task, taskloop, parallel, target or teams construct.

Terminology: Child Task

A task is a child task of its generating task region. A child task region is not part of its

generating task region.

Terminology: Descendent Task

A task that is the child task of a task region or of one of its descendent task regions.

Terminology: Sibling Task

Tasks that are child tasks of the same task region.

TASK LIFE-CYCLE

• Execution of tasks can be deferred and suspended

• Scheduling is done by the OpenMP runtime system at scheduling points

• Scheduling decisions can be influenced by e.g. task dependencies and task priorities

created

deferred

running

suspended

completed

81 THE TASK CONSTRUCT

THE TASK CONSTRUCT [OpenMP-5.1, 12.5]

C

#pragma omp task [clause[[,] clause]...]

structured-block

F
0
8

!$omp task [clause[[,] clause]...]

structured-block

!$omp end task

Creates a task. Execution of the task may commence immediately or be deferred.

Data-environment clauses

• private

• firstprivate

• shared

Task-specific clauses

• if

• final

• untied

• mergeable

• depend

• priority

60

TASK DATA-ENVIRONMENT [OpenMP-5.1, 5.1.1]

The rules for implicitly determined data-sharing attributes of variables referenced in task

generating constructs are slightly different from other constructs:

If no default clause is present and

• the variable is shared by all implicit tasks in the enclosing context, it is also shared by

the generated task,

• otherwise, the variable is firstprivate.

82 TASK CLAUSES

THE IF CLAUSE [OpenMP-5.1, 3.4, 12.5]

* if([task:] scalar-expression)

If the scalar expression evaluates to false:

• Execution of the current task

– is suspended and

– may only be resumed once the generated task is complete

• Execution of the generated task may commence immediately

Terminology: Undeferred Task

A task for which execution is not deferred with respect to its generating task region.

That is, its generating task region is suspended until execution of the undeferred task

is completed.

THE FINAL CLAUSE [OpenMP-5.1, 12.3]

* final(scalar-expression)

If the scalar expression evaluates to true all descendent tasks of the generated task are

• undeferred and

• executed immediately.

Terminology: Final Task

A task that forces all of its child tasks to become final and included tasks.

Terminology: Included Task

A task for which execution is sequentially included in the generating task region. That

is, an included task is undeferred and executed immediately by the encountering

thread.

THE UNTIED CLAUSE [OpenMP-5.1, 12.1]

* untied

• The generated task is untiedmeaning it can be suspended by one thread and resume

execution on another.

• By default, tasks are generated as tied tasks.

Terminology: Untied Task

A task that, when its task region is suspended, can be resumed by any thread in the

team. That is, the task is not tied to any thread.

Terminology: Tied Task

A task that, when its task region is suspended, can be resumed only by the same

thread that suspended it. That is, the task is tied to that thread.

THE PRIORITY CLAUSE [OpenMP-5.1, 12.4]

* priority(priority-value)

• priority-value is a scalar non-negative numerical value

• Priority influences the order of task execution

• Among tasks that are ready for execution, those with a higher priority are more likely to be

executed next

THE DEPEND CLAUSE [OpenMP-5.1, 15.9.5]

*
depend(in: list)

depend(out: list)

depend(inout: list)

• list contains storage locations

• A task with a dependence on x, depend(in: x), has to wait for completion of previously

generated sibling taskswith depend(out: x) or depend(inout: x)

61

• A task with a dependence depend(out: x) or depend(inout: x) has to wait for

completion of previously generated sibling taskswith any kind of dependence on x

• in, out and inout correspond to intended read and/or write operations to the listed

variables.

Terminology: Dependent Task

A task that because of a task dependence cannot be executed until its predecessor

tasks have completed.

83 TASK SCHEDULING

TASK SCHEDULING POLICY [OpenMP-5.1, 12.9]

The task scheduler of the OpenMP runtime environment becomes active at task scheduling points.

It may then

• begin execution of a task or

• resume execution of untied tasks or tasks tied to the current thread.

Task scheduling points

• generation of an explicit task

• task completion

• taskyield regions

• taskwait regions

• the end of taskgroup regions

• implicit and explicit barrier regions

THE TASKYIELD CONSTRUCT [OpenMP-5.1, 12.7]

C #pragma omp taskyield

F
0
8

!$omp taskyield

• Notifies the scheduler that execution of the current task may be suspended at this point in

favor of another task

• Inserts an explicit scheduling point

84 TASK SYNCHRONIZATION

THE TASKWAIT& TASKGROUP CONSTRUCTS [OpenMP-5.1, 15.4, 15.5]

C #pragma omp taskwait

F
0
8

!$omp taskwait

Suspends the current task until all child tasks are completed.

C

#pragma omp taskgroup

structured-block

F
0
8

!$omp taskgroup

structured-block

!$omp end taskgroup

The current task is suspended at the end of the taskgroup region until all descendent tasks

generated within the region are completed.

85 EXERCISES

Exercise 15 – Task worksharing

15.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90} add a new function/subroutine axpy_parallel_task(a,

x, y, z[, n]) that uses task worksharing to perform the generalized vector addition.

15.2 Dot Product

In the file dot.{c|c++|f90} add a new function/subroutine dot_parallel_task(x, y[,

n]) that uses task worksharing to perform the dot product.

Caveat: Make sure to correctly synchronize access to the accumulator variable.

15.3 Bitonic Sort

The file bsort.{c|c++|f90} contains a serial implementation of the bitonic sort algorithm.

Use OpenMP task worksharing to parallelize it.

PART XV

62

WRAP-UP

ALTERNATIVES

Horizontal Alternatives

Parallel languages Fortran Coarrays, UPC; Chapel, X10

Parallel frameworks Charm++, HPX, StarPU

Sharedmemory tasking Cilk, TBB

Accelerators CUDA, OpenCL, OpenACC, SYCL

Platform solutions PLINQ, GCD, java.util.concurrent

Vertical Alternatives

Applications Gromacs, CP2K, ANSYS, OpenFOAM

Numerics libraries PETSc, Trilinos, DUNE, FEniCS

Machine Learning Tensorflow, Keras, PyTorch

JSC COURSE PROGRAMME

• Directive-based GPU programming with OpenACC, 27 – 29 October

• Introduction to the usage and programming of supercomputer resources in Jülich, 22 – 25

November

• (Using the supercomputers at JSC – a hands-on tutorial)

• Advanced Parallel Programming with MPI and OpenMP, 29 November – 01 December

• Andmore, see https://www.fz-juelich.de/ias/jsc/courses

PART XVI

TUTORIAL

N-BODY SIMULATIONS

Dynamics of the N-body problem:

𝐚𝑖,𝑗 =
𝑞𝑖𝑞𝑗

√(𝐱𝑖 − 𝐱𝑗) ⋅ (𝐱𝑖 − 𝐱𝑗)
3 (𝐱𝑖 − 𝐱𝑗)

̈𝐱𝑖 = 𝐚𝑖 = ∑
𝑗≠𝑖

𝐚𝑖,𝑗

Velocity Verlet integration:

𝐯∗ (𝑡 +
Δ𝑡
2) = 𝐯 (𝑡) +

Δ𝑡
2 𝐚 (𝑡)

𝐱 (𝑡 + Δ𝑡) = 𝐱(𝑡) + 𝐯∗ (𝑡 +
Δ𝑡
2) Δ𝑡

𝐯 (𝑡 + Δ𝑡) = 𝐯∗ (𝑡 +
Δ𝑡
2) +

Δ𝑡
2 𝐚 (𝑡 + Δ𝑡)

Program structure:

*

read initial state from file

calculate accelerations

for number of time steps:

write state to file

calculate helper velocities v*

calculate new positions

calculate new accelerations

calculate new velocities

write final state to file

A SERIAL N-BODY SIMULATION PROGRAM

Compiling nbody

$ cmake -B build

$ cmake --build build

...

Invoking nbody

$./build/nbody

Usage: nbody <input file>

$./build/nbody ../input/kaplan_10000.bin

Working on step 1...

63

https://www.fz-juelich.de/ias/jsc/courses

Visualizing the results

$ paraview --state=kaplan.pvsm

Initial conditions based on: A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov. “Shock Shells in

Coulomb Explosions of Nanoclusters.” In: Physical Review Letters 91 (14 Oct. 3, 2003), p. 143401.

DOI: 10.1103/PhysRevLett.91.143401

SOME SUGGESTIONS

Distribution of work

Look for loops with a number of iterations that scales with the problem size N. If the individual

loop iterations are independent, they can be run in parallel. Try to distribute iterations evenly

among the threads / processes.

Distribution of data

What data needs to be available to which process at what time? Having the entire problem in the

memory of every process will not scale. Think of particles as having two roles: targets (𝑖 index) that
experience acceleration due to sources (𝑗 index). Make every process responsible for a group of

either target particles or source particles and communicate the same particles in the other role to

other processes. What particle properties are important for targets and sources?

Input / Output

You have heard about different I/O strategies during the MPI I/O part of the course. Possible

solutions include:

• Funneled I/O: one process reads then scatters or gathers then writes

• MPI I/O: every process reads or writes the particles it is responsible for

Scalability

Keep an eye on resource consumption. Ideally, the time it takes for your program to finish should

be inversely proportional to the number of threads or processes running it 𝒪 (𝑁2/𝑝). Similarly,

the amount of memory consumed by your program should be independent of the number of

processes 𝒪 (𝑁).

EXERCISES

Exercise 16 – N-body simulation program

16.1 OpenMP parallel version

Write a version of nbody that is parallelized using OpenMP. Look for suitable parts of the program

to annotate with OpenMP directives.

16.2 MPI parallel version

Write a version of nbody that is parallelized using MPI. The distribution of work might be similar to

the previous exercise. Ideally, the entire system state is not stored on every process, thus particle

data has to be communicated. Communication could be point-to-point or collective. Input and

output functions might have to be adapted as well.

16.3 Hybrid parallel version

Write a version of nbody that is parallelized using both MPI and OpenMP. This might just be a

combination of the previous two versions.

Bonus

A clever solution is described in: M. Driscoll et al. “A Communication-Optimal N-Body Algorithm for

Direct Interactions.” In: 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing. 2013, pp. 1075–1084. DOI: 10.1109/IPDPS.2013.108. Implement Algorithm 1

from the paper.

COLOPHON

This document was typeset using

• LuaLATEX and a host of macro packages,

• Adobe Source Sans Pro for body text and headings,

• Adobe Source Code Pro for listings,

• TeX Gyre Pagella Math for mathematical formulae,

• icons from Font AwesomeFont-Awesome.

64

https://doi.org/10.1103/PhysRevLett.91.143401
https://doi.org/10.1109/IPDPS.2013.108

	I Fundamentals of Parallel Computing
	1 Motivation
	2 Hardware
	3 Software

	II First Steps with MPI
	4 What is MPI?
	5 Terminology
	6 Infrastructure
	7 Basic Program Structure
	8 Exercises

	III Blocking Point-to-Point Communication
	9 Introduction
	10 Sending
	11 Exercises
	12 Receiving
	13 Exercises
	14 Communication Modes
	15 Large Numbers
	16 Semantics
	17 Pitfalls
	18 Exercises

	IV Nonblocking Point-to-Point Communication
	19 Introduction
	20 Start
	21 Completion
	22 Remarks
	23 Exercises

	V Collective Communication
	24 Introduction
	25 Reductions
	26 Reduction Variants
	27 Exercises
	28 Data Movement
	29 Data Movement Variants
	30 Exercises
	31 In Place Mode
	32 Synchronization
	33 Large Numbers
	34 Nonblocking Collective Communication

	VI Derived Datatypes
	35 Introduction
	36 Constructors
	37 Exercises
	38 Address Calculation
	39 Padding
	40 Large Numbers
	41 Exercises

	VII Input/Output
	42 Introduction
	43 File Manipulation
	44 File Views
	45 Data Access
	46 Consistency
	47 Large Numbers
	48 Exercises

	VIII Tools
	49 MUST
	50 Exercises

	IX Communicators
	51 Introduction
	52 Constructors
	53 Accessors
	54 Destructors
	55 Exercises

	X Thread Compliance
	56 Introduction
	57 Enabling Thread Support
	58 Matching Probe and Receive
	59 Remarks

	XI First Steps with OpenMP
	60 What is OpenMP?
	61 Terminology
	62 Infrastructure
	63 Basic Program Structure
	64 Exercises

	XII Low-Level OpenMP Concepts
	65 Introduction
	66 Exercises
	67 Data Environment
	68 Exercises
	69 Thread Synchronization
	70 Exercises

	XIII Worksharing
	71 Introduction
	72 The single construct
	73 single Clauses
	74 The loop construct
	75 loop Clauses
	76 Exercises
	77 workshare Construct
	78 Exercises
	79 Combined Constructs

	XIV Task Worksharing
	80 Introduction
	81 The task Construct
	82 task Clauses
	83 Task Scheduling
	84 Task Synchronization
	85 Exercises

	XV Wrap-up
	XVI Tutorial

