
PARALLEL I/O AND PORTABLE DATA FORMATS

22.02.2022 I SEBASTIAN LÜHRS (S.LUEHRS@FZ-JUELICH.DE)

INTRODUCTION AND PARALLEL I/O STRATEGIES

Parallel I/O Strategies
One process performs I/O

2

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

- I/O bandwidth is limited to the rate of this single process

- Additional communication might be necessary

- Other processes may idle and waste computing resources during I/O time

One process performs I/O

3

Parallel I/O Pitfalls
Frequent flushing on small blocks

4

•Modern file systems in HPC have large file system blocks (e.g. 16MB)

•A flush on a file handle forces the file system to perform all pending write operations

• If application writes in small data blocks, the same file system block it has to be read and

written multiple times

•Performance degradation due to the inability to combine several write calls

Parallel I/O Strategies
Task-local files

5

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

+ No coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to be merged to create a canonical dataset

- File system might serialize meta data modification

Task-local files

6

Parallel I/O Pitfalls
Serialization of meta data modification

7

Example: Creating files in parallel in the same directory

The creation of 2.097.152 files costs 113.595 core hours on JUQUEEN!

Parallel file creation on JUQUEEN

0.5-28 racks, 64 tasks/node
W. Frings

• Meta-data wall on file level

• File changes by multiple processes can

cause serialization

• File meta-data management

• Locking

file i-node
indirect

blocksI/O-

client

FS blocks

Parallel I/O Strategies
Shared files

8

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O Strategies

+ Number of files is independent of number of processes

+ File can be in canonical representation (no post-processing)

- Uncoordinated client requests might induce time penalties

- File layout may induce false sharing of file system blocks

Shared files

9

Parallel I/O Pitfalls
False sharing of file system blocks

10

• Data blocks of individual processes do not fill up a complete file system block

• Several processes share a file system block

• Exclusive access (e.g. write) must be serialized

• The more processes have to synchronize the more waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data

task 1

data

task 2
… …

lock

t1 t2

lock

I/O Workflow

11

• Post processing can be very time-consuming (> data creation)

• Widely used portable data formats avoid post processing

• Data transportation time can be long:

• Use shared file system for file access, avoid raw data transport

• Avoid renaming/moving of big files (can block backup)

data creation

data post processing

(merge files, switch to

different file format) visualization

Parallel I/O Pitfalls

•Endianness (byte order) of binary data

•Conversion of files might be necessary and expensive

Portability

12

2,712,847,316

=

10100001 10110010 11000011 11010100

Address Little Endian Big Endian

1000 11010100 10100001

1001 11000011 10110010

1002 10110010 11000011

1003 10100001 11010100

Parallel I/O Pitfalls

•Memory order depends on programming language

•Transpose of array might be necessary when using different programming languages in

the same workflow

•Solution: Choosing a portable data format (HDF5, NetCDF)

Portability

13

Address row-major order

(e.g. C/C++)

column-major order

(e.g. Fortran)

1000 1 1

1001 2 4

1002 3 7

1003 4 2

1004 5 5

… … …

1 2 3

4 5 6

7 8 9

Storage Tiers
Different storage tiers with different optimization targets

14

$ARCHIVE

$DATA

$FASTDATA

$SCRATCH

HPST

D
a
ta

 s
ta

g
in

g
a
t
J
S

C

Tape Library
JUST 5

SAN

IBM Spectrum Protect
(TSM)

JUSTTSM

JUSTGSS

XCST

CES

IBM Spectrum Scale
(GPFS)

IBM Spectrum Scale
(GPFS)

IBM Spectrum Scale
(GPFS)

JUST

JuNet

N
F

S

B
a
c
k
u

p

R
e
s
to

re

Backup

HSM

$DATA

$SCRATCH
$FASTDATA
$PROJECT
$ARCHIVE

$HOME

System overview
JUST – 5th generation

15

System overview
JUST – 5th generation

●●●

21 x DSS240 + 1 x DSS260 → 44 x NSD Server, 90 x Enclosure → +7.500 10TB disks

3 x 100 GE

8

TSM Server

Power 8

2

Cluster Management

Monitoring

5

GPFS

Manager

2

Cluster Export

Server (NFS)

2 x 200 GE 1 x 100 GE

16

System overview
File I/O to GPFS

17

System overview
HPST

• Low latency - high bandwidth storage layer

• Funded partly by the ICEI project and being part of the Fenix Research

Infrastructure

• Based on DataDirect Network (DDN) storage appliances

• Consists of a total of 110 servers with an accumulated capacity of

~ 2 PBytes and a nominal bandwidth of more than 2 TBytes/s

• Directly integrated into the high-speed InfiniBand-based interconnects of

the client systems

• Each cluster has it’s own “slice” of the HPST, but

one global namespace (each cluster has access

to data on “foreign slice”)

https://fenix-ri.eu/

18

System overview
Computational vs I/O performance

19

10

100

1000

10000

100000

J
u
n

 2
0

0
7

D
e
c
 2

0
0
7

J
u
n

 2
0

0
8

D
e
c
 2

0
0
8

J
u
n

 2
0

0
9

D
e
c
 2

0
0
9

J
u
n

 2
0

1
0

D
e

c
 2

0
1
0

J
u
n

 2
0

1
1

D
e
c
 2

0
1
1

J
u
n

 2
0

1
2

D
e
c
 2

0
1
2

J
u
n

 2
0

1
3

D
e
c
 2

0
1
3

J
u
n

 2
0

1
4

D
e
c
 2

0
1
4

J
u
n

 2
0

1
5

D
e
c
 2

0
1
5

J
u
n

 2
0

1
6

D
e
c
 2

0
1
6

J
u
n

 2
0

1
7

D
e
c
 2

0
1
7

J
u
n

 2
0

1
8

D
e
c
 2

0
1
8

J
u
n

 2
0

1
9

D
e

c
 2

0
1
9

J
u
n

 2
0

2
0

D
e
c
 2

0
2
0

J
u
n

 2
0

2
1

T
F

lo
p
/s

JSC T-0 system Rmax

Parallel I/O Software Stack

20

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF …

…

S
h

a
re

d

fi
le

Task-

local

files

…

NetCDF-4

SIONlib

data stored in global view in local view

