
PARALLEL I/O AND PORTABLE DATA FORMATS

23.02.2022 I SEBASTIAN LÜHRS (S.LUEHRS@FZ-JUELICH.DE)

OPTIMIZATION AND PROFILING

I/O patterns

continuous

• Large continuous data blocks for each

individual process

striped

• Pattern often found while handling

multi dimensional arrays

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

256MiB

128kiB

2

I/O pattern bandwidth

3

continuous striped

read

bandwidth

write

bandwidth

Measurements on JURECA at JSC

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

Performance hints

• Contiguous datasets are stored in a single block in the file, chunked datasets are split

into multiple chunks which are all stored separately in the file.

• Additional chunk cache is possible

Chunking

4

https://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/

Performance hints

• In-transit compression can help to lower the overall datasize:

• HDF5 (and NetCDF4) allows compression within a parallel, collective write commands for

chunked datasets

• Gzip (deflate) compression available by default (szip can be added on demand)

• Other compression techniques are available by using filters and external plugins:

https://support.hdfgroup.org/services/filters.html

• ZFP compression example:

Compression

5

C

H5Pset_zfp_reversible_cdata(cd_nelmts, cd_values);

nc_def_var_filter(nc_file_id,nc_variable,H5Z_FILTER_ZFP,

cd_nelmts,cd_values);

https://support.hdfgroup.org/services/filters.html

Performance hints
Compression

6

In-transit data compression:
• HDF5 parallel compression (deflate) capabilities underneath of NetCDF4 were utilized to allow in-transit

compression in ParFlow

0

50

100

150

200

250

300

350

400

192 384 768 1536 3072

[s
]

#Tasks

Weak scaling ParFlow, overall benchmark runtime

Compression No compression

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

192 384 768 1536 3072

[k
B

]

#Tasks

Weak scaling ParFlow, overall data size

Compression No Compression

This work was supported by the Energy oriented Centre of Excellence (EoCoE-II),

grant agreement number 824158,

funded within the Horizon2020 framework of the European Union.

Measurements on JUWELS at JSC

Collective buffering
• Collective I/O operations not always speed up the general I/O, as more data might be

processed than needed

7

0

1000

2000

3000

4000

5000

6000

independent collective

B
a

n
d

w
id

th
 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes,
128kiB transfer size, strided data layout

Read bandwidth Write bandwidth

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

independent collective

B
a

n
d

w
id

th
 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes,
4MiB transfer size, basic data layout

Read bandwidth Write bandwidth

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

MPI-IO hints
• romio_cb_read: Enable collective buffering (reading)

• romio_cb_write: Enable collective buffering (writing)

• cb_buffer_size: Collective buffering, buffer size

• cb_nodes: Aggregator nodes

• romio_ds_read: Enable data sieving (reading)

• romio_ds_write: Enable collective buffering (writing)

export ROMIO_HINTS=romio_hints_file

8

Filesystem specific options

• On Lustre filesystems the user can influence the striping size and the

number of involved object storage targets

9

Default number of OSTs (12) and

default strip-size setting (1MiB)

Increased number of OSTs (126) Increased stripe size to align

with the individual amount of

data per process (256MiB)

Measurements on Eagle at PSNC

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

Profiling with Darshan
• I/O profiling tool for parallel applications

• http://www.mcs.anl.gov/research/projects/darshan/

• Integration by using LD_PRELOAD:

• LD_PRELOAD=.../lib/libdarshan.so

• On JUWELS: DARSHAN_LOG_PATH points to target log directory

• DXT_ENABLE_IO_TRACE=1 allows task specific tracing

• Analyse tools:

• darshan-parser: command line access

• darshan-dxt-parser: trace data access

• darshan-job-summary.pl: PDF report

• More details: https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-

runtime.html

10

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html

Profiling with Darshan

11

Profiling with Darshan

12

Profiling with Darshan

13

Darshan: Usage example on JUWELS
• Load module

• module load darshan-runtime

• Tell srun to use Darshan (in submit script)

• LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \ DARSHAN_LOG_PATH=/path/to/your/logdir \

srun … ./executable

• Analyse output

• module load darshan-util

• darshan-job-summary.pl <logfile>.darshan

14

