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I/O pattern bandwidth
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Performance hints

• Contiguous datasets are stored in a single block in the file, chunked datasets are split 

into multiple chunks which are all stored separately in the file.

• Additional chunk cache is possible 

Chunking
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https://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/



Performance hints

• In-transit compression can help to lower the overall datasize:

• HDF5 (and NetCDF4) allows compression within a parallel, collective write commands for 

chunked datasets

• Gzip (deflate) compression available by default (szip can be added on demand)

• Other compression techniques are available by using filters and external plugins: 

https://support.hdfgroup.org/services/filters.html

• ZFP compression example:

Compression
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C

H5Pset_zfp_reversible_cdata(cd_nelmts, cd_values);

nc_def_var_filter(nc_file_id,nc_variable,H5Z_FILTER_ZFP,

cd_nelmts,cd_values);

https://support.hdfgroup.org/services/filters.html


Performance hints
Compression
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In-transit data compression:
• HDF5 parallel compression (deflate) capabilities underneath of NetCDF4 were utilized to allow in-transit 

compression in ParFlow
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Measurements on JUWELS at JSC



Collective buffering
• Collective I/O operations not always speed up the general I/O, as more data might be 

processed than needed
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MPI-IO hints
• romio_cb_read: Enable collective buffering (reading)

• romio_cb_write: Enable collective buffering (writing)

• cb_buffer_size: Collective buffering, buffer size

• cb_nodes: Aggregator nodes

• romio_ds_read: Enable data sieving (reading)

• romio_ds_write: Enable collective buffering (writing)

export ROMIO_HINTS=romio_hints_file
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Filesystem specific options

• On Lustre filesystems the user can influence the striping size and the 

number of involved object storage targets
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Default number of OSTs (12) and

default strip-size setting (1MiB)

Increased number of OSTs (126) Increased stripe size to align

with the individual amount of

data per process (256MiB)
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Profiling with Darshan
• I/O profiling tool for parallel applications

• http://www.mcs.anl.gov/research/projects/darshan/

• Integration by using LD_PRELOAD:

• LD_PRELOAD=.../lib/libdarshan.so

• On JUWELS: DARSHAN_LOG_PATH points to target log directory

• DXT_ENABLE_IO_TRACE=1 allows task specific tracing

• Analyse tools:

• darshan-parser: command line access

• darshan-dxt-parser: trace data access

• darshan-job-summary.pl: PDF report

• More details: https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-

runtime.html
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https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html


Profiling with Darshan
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Profiling with Darshan
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Profiling with Darshan
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Darshan: Usage example on JUWELS
• Load module

• module load darshan-runtime

• Tell srun to use Darshan (in submit script)

• LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \ DARSHAN_LOG_PATH=/path/to/your/logdir \

srun … ./executable

• Analyse output

• module load darshan-util

• darshan-job-summary.pl <logfile>.darshan
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