
HPC SOFTWARE – DEBUGGER AND PERFORMANCE 

ANALYSIS TOOLS 

MAY 17, 2022  I  MICHAEL KNOBLOCH 



OUTLINE 

Make it work, 

make it right, 

make it fast. 
 

       Kent Beck 

• Local module setup 

• Compilers  

• Libraries 

Debugger: 
• NVIDIA Tools 

• TotalView  

• DDT 

• MUST 

• Intel Inspector 

Performance Tools: 
• Score-P  

• Scalasca 

• Vampir 

• Intel + AMD Tools 

• ARM Tools 

• TAU 

• NVIDIA Tools 

• Darshan 

• PAPI 

• And several more 



DEBUGGER 



DEBUGGING TOOLS (STATUS: MAY 2022) 
          

• Debugger: 

• CUDA-GDB 

• TotalView      

• ARMForge - DDT 

 

• Memory Analyzer: 

• CUDA-MEMCHECK 

• Intel Inspector 

 

• Correctness Checker: 

• MUST 

 



CUDA-GDB 

• Extension to gdb 

• CLI and GUI (Nsight) 

• Simultaneously debug on the CPU and multiple GPUs 

• Use conditional breakpoints or break automatically on 

every kernel launch 

• Can examine variables, read/write memory and 

registers and inspect the GPU state when the 

application is suspended 

• Identify memory access violations 

• Run CUDA-MEMCHECK in integrated mode to 

detect precise exceptions. 



 TOTALVIEW 

• UNIX Symbolic Debugger for C/C++, Fortran, mixed Python/C++, PGI HPF, assembler programs 

• JSC’s “standard” debugger 

• Advanced features 

• Multi-process and multi-threaded 

• Multi-dimensional array data visualization 

• Support for parallel debugging (MPI: automatic attach, 

message queues, OpenMP, Pthreads) 

• Scripting and batch debugging 

• Advanced memory debugging 

• Reverse debugging 

• CUDA and OpenACC support 

• Remote debugging 

 

• NOTE: JSC license limited to 2048 processes (shared between all users) 

 



TOTALVIEW: MAIN WINDOW 
Toolbar for 

common 

options 

Local 

variables 

for 

selected 

stack frame 

Source code 

window 

Break 

points 

Stack 

trace 

Thread 

control 



 DDT 

• UNIX Graphical Debugger for C/C++, Fortran, and Python programs 
 

• Modern, easy-to-use debugger 
 

• Advanced features 

• Multi-process and multi-threaded 

• Multi-dimesional array data visualization 

• Support for MPI parallel debugging 

(automatic attach, message queues) 

• Support for OpenMP (Version 2.x and later) 

• Support for CUDA and OpenACC 

• Job submission from within debugger 
 

• https://developer.arm.com 

• NOTE: JSC license limited to 64 processes (shared between all users) 

 



DDT:  MAIN WINDOW 

Process 

controls 

Source 

code 

Variables 

Expression 

evaluator 

Stack 

trace 

CUDA 

Thread 

stepping 

GPU Device 

information 

CUDA 

Thread 

control 



 CUDA-MEMCHECK 

• Valgrind for GPUs 

• Monitors hundreds of thousands of threads running concurrently on each 

GPU 

• Reports detailed information about global, local, and shared memory 

access errors (e.g. out-of-bounds, misaligned memory accesses) 

• Reports runtime executions errors (e.g. stack overflows, illegal 

instructions) 

• Reports detailed information about potential race conditions 

• Displays stack back-traces on host and device for errors 

• And much more 

 

• Included in the CUDA Toolkit 

 

 



INTEL INSPECTOR 

• Detects memory and threading errors 

• Memory leaks, corruption and illegal accesses 

• Data races and deadlocks 
 

• Dynamic instrumentation requiring no recompilation 
 

• Supports C/C++ and Fortran as well as third party libraries 
 

• Multi-level analysis to adjust overhead and analysis capabilities 
 

• API to limit analysis range to 

eliminate false positives and 

speed-up analysis  



INTEL INSPECTOR: GUI 



• Next generation MPI correctness and portability checker 

• https://www.i12.rwth-aachen.de/go/id/nrbe 

 

• MUST reports 

 Errors: violations of the MPI-standard 

 Warnings: unusual behavior or possible problems 

 Notes:  harmless but remarkable behavior 

 Potential deadlock detection 

 

• Usage 

 Relink application with mustc, mustcxx, mustf90, … 

 Run application under the control of mustrun (requires (at least) one additional MPI process) 

 Saves output in html report 



MUST DATATYPE MISMATCH 



MUST DEADLOCK DETECTION 



DEBUGGING RECOMMENDATIONS 

• Always debug at the lowest possible scale! 

 

• GPU Applications: 

• Single Node: Use CUDA-MEMCHECK and CUDA-GDB 

• Multi-Node: Use TotalView/DDT 

 

• MPI Applications: 

• Check with MUST at least once 

• Use TotalView/DDT at small scale (if error occurs there), else attach to as few 

processes as neccessary  



PERFORMANCE ANALYSIS TOOLS 



TODAY: THE “FREE LUNCH” IS OVER 

■ Moore's law is still in charge, but 

■ Clock rates no longer increase 

■ Performance gains only through 

increased parallelism 

■ Optimization of applications more difficult 

■ Increasing application complexity 

■ Multi-physics 

■ Multi-scale 

■ Increasing machine complexity 

■ Hierarchical networks / memory 

■ Many-core CPUs and Accelerators 

■ Modular Architecture 

 Every doubling of scale reveals a new bottleneck! 



PERFORMANCE FACTORS 

■ “Sequential” (single core) factors 

■ Computation 

Choose right algorithm, use optimizing compiler 

■ Vectorization 

Choose right algorithm, use optimizing compiler 

■ Cache and memory 

Choose the right data structures and data layout 



PERFORMANCE FACTORS 

■ “Parallel” (multi core/node) factors 

■ Partitioning / decomposition  

 Load balancing 

■ Communication (i.e., message passing) 

■ Multithreading 

■ Core binding / NUMA 

■ Synchronization / locking 

■ I/O 

Often not given enough attention 

Parallel I/O matters  

 

 



TUNING BASICS 

■ Successful performance engineering is a combination of 

■ The right (parallel) algorithms and libraries 

■ Compiler flags and directives 

Thinking !!! 
 

■ Measurement is better than guessing 

■ To determine performance bottlenecks 

■ To compare alternatives 

■ To validate tuning decisions and optimizations 

After each step! 



PERFORMANCE ENGINEERING WORKFLOW 

■ Prepare application (with symbols), 

insert extra code (probes/hooks) 

■ Collection of data relevant to 

execution performance analysis 

■ Calculation of metrics, identification 

of performance metrics 

■ Presentation of results in an intuitive/understandable form 

■ Modifications intended to eliminate/reduce performance 

problems 

Preparation 

Measurement 

Analysis 

Examination 

Optimization 



THE 80/20 RULE 

■ Programs typically spend 80% of their time in 20% of 

the code 

Know what matters! 

 

■ Developers typically spend 20% of their effort to get 

80% of the total speedup possible for the application 

Know when to stop! 

 

■ Don't optimize what does not matter 

Make the common case fast! 



PERFORMANCE MEASUREMENT 

Two dimensions 

 When performance measurement is triggered 

• External trigger (asynchronous) 

• Sampling 

• Trigger:  Timer interrupt   OR 

Hardware counters overflow 

 

• Internal trigger (synchronous) 

• Code instrumentation 

(automatic or manual) 

 

 How performance data is recorded 

• Profile 

• Summation of events over time  

 

• Trace 

• Sequence of events over time 

 

      24 



MEASUREMENT METHODS: PROFILING  

• Recording of aggregated information 

• Time 

• Counts 

• Calls 

• Hardware counters 

• about program and system entities 

• Functions, call sites, loops, basic blocks, … 

• Processes, threads 

• Statistical information 

• Min, max, mean and total number of values 

      25 

Advantages 
+ Works also for 

long-running programs 
 

Disadvantages 
‒ Variations over time 

get lost 



PROFILING:  ISSUES RELATED TO "AVERAGING" 

• Moving bottleneck across processors can "average out" imbalances 

 

 

 

 

• Imbalance changes over time    problem worse for short runs! 

 

 

 

 

 

 

 

 

Iteration N Iteration N+1 Iteration N+2 Iteration N+3 

Iteration N Iteration N+1 Iteration N+2 Iteration N+3 

      26 



MEASUREMENT METHODS: TRACING 

• Recording information about significant 

points (events) during execution of the program 

• Enter/leave a code region (function, loop, …) 

• Send/receive a message ... 

• Save information in event record 

• Timestamp, location ID, event type 

• plus event specific information 

• Event trace    := stream of event records 

   sorted by time 

  Abstract execution model on level of defined events 

 
      27 

Advantages 
+ Can be used to 

reconstruct the 
dynamic behavior 

+ Profiles can be calculated 
out of trace data 
 

Disadvantages 
‒ HUGE trace files 
‒ Can only be used for 

short durations or small 
configurations 



EVENT TRACING 

void foo() { 

   

  ... 

   

  send(B, tag, buf); 

  ... 

   

} 

Process A 

void bar()  { 

   

  ... 

  recv(A, tag, buf); 

   

  ... 

   

} 

Process B 

MONITOR 

MONITOR 

s
y
n

c
h

ro
n

iz
e

(d
) 

void bar() { 

  trc_enter("bar"); 

  ... 

  recv(A, tag, buf); 

  trc_recv(A); 

  ... 

  trc_exit("bar"); 

} 

void foo() { 

  trc_enter("foo"); 

  ... 

  trc_send(B); 

  send(B, tag, buf); 

  ... 

  trc_exit("foo"); 

} 

instrument 

Global trace  

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

merge 

unify 
1 foo 

2 bar 

... 

58 ENTER 1 

62 SEND B 

64 EXIT 1 

... 

... 

Local trace A 

Local trace B 

foo 1 

... 

bar 1 

... 

60 ENTER 1 

68 RECV A 

69 EXIT 1 

... 

... 



EVENT TRACING: “TIMELINE” VISUALIZATION 

1 foo 

2 bar 

3 ... 

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

main 

foo 

bar 

58 60 62 64 66 68 70 

B 

A 

      29 



CRITICAL ISSUES 

■ Accuracy 

■ Intrusion overhead 

■ Measurement takes time and thus lowers performance 

■ Perturbation 

■ Measurement alters program behaviour 

■ E.g., memory access pattern 

■ Accuracy of timers & counters 

■ Granularity 

■ How many measurements? 

■ How much information / processing during each measurement? 

 Tradeoff: Accuracy vs. Expressiveness of data 

 



TYPICAL PERFORMANCE ANALYSIS 

PROCEDURE 

■ Do I have a performance problem at all? 

■ Time / speedup / scalability measurements 

■ What is the key bottleneck (computation / communication)? 

■ MPI / OpenMP / flat profiling 

■ Where is the key bottleneck? 

■ Call-path profiling, detailed basic block profiling 

■ Why is it there? 

■ Hardware counter analysis 

■ Trace selected parts (to keep trace size manageable) 

■ Does the code have scalability problems? 

■ Load imbalance analysis, compare profiles at various 

sizes function-by-function, performance modeling 



REMARK: NO SINGLE SOLUTION IS SUFFICIENT! 

A combination of different methods, tools and techniques 

is typically needed! 

■ Analysis 

■ Statistics, visualization, automatic analysis, data mining, ... 

■ Measurement 

■ Sampling / instrumentation, profiling / tracing, ... 

■ Instrumentation 

■ Source code / binary, manual / automatic, ... 



PERFORMANCE TOOLS (STATUS: MAY 2022) 

• Score-P 

• Scalasca  

• Vampir[Server] 

• ARMForge - Performance Reports 

• Intel Tools 

• VTune Amplifier XE 

• Intel Advisor 

• AMD uProf 

• NVIDIA Tools 

• Nsight Systems 

• Nsight Compute 

• Darshan 

• Extrae 



      34 

• Community-developed 
open-source 

• Replaced tool-specific 
instrumentation and 
measurement components 
of partners 

• http://www.score-p.org 

 
 

http://www.score-p.org/
http://www.score-p.org/
http://www.score-p.org/


                 TOOL ECOSYSTEM 

Scalasca 
parallel trace 

analysis 

CUBE4 
report 

CUBE4 
report 

Instrumented 

target 

application 

Score-P 

PAPI 
OTF2  
traces 

TAU 

ParaProf 

CUBE  

TAU 
PerfExplorer 

Vampir 

Remote   Guidance 

Extra-P  



                  FUNCTIONALITY 

• Provide typical functionality for HPC performance tools 

• Instrumentation (various methods) 

• Multi-process paradigms (MPI, SHMEM) 

• Thread-parallel paradigms (OpenMP, POSIX threads) 

• Accelerator-based paradigms (OpenACC, CUDA, OpenCL. Kokkos) 

• In any combination! 

• Flexible measurement without re-compilation: 

• Basic and advanced profile generation ( CUBE4 format) 

• Event trace recording ( OTF2 format) 

• Highly scalable I/O functionality 

• Support all fundamental concepts of partner’s tools 

 
      36 



                  ARCHITECURE 

      37 

Application 

Vampir Scalasca TAU 

Accelerator-based 

parallelism 
(CUDA, OpenACC, 

OpenCL, Kokkos) 

                       Score-P measurement infrastructure 

Event traces (OTF2) 

Sampling 

interrupts 

(PAPI, PERF) 

Call-path profiles 
(CUBE4, TAU) 

Process-level parallelism 
(MPI, SHMEM) 

Thread-level parallelism 
(OpenMP, Pthreads) 

Source code 

instrumentation 

(Compiler, PDT, User) 

CUBE TAUdb 

Hardware counter 

(PAPI, rusage, PERF, plugins) 

I/O Activity Recording 
(Posix I/O,  

MPI-IO) 

Instrumentation wrapper 

Extra-P 



WHAT IS THE KEY BOTTLENECK? 

• Generate flat MPI profile using Score-P/Scalasca 

• Only requires re-linking 

• Low runtime overhead 

 

• Provides detailed information on MPI usage 

• How much time is spent in which operation? 

• How often is each operation called? 

• How much data was transferred? 

 

• Limitations: 

• Computation on non-master threads and outside 

of MPI_Init/MPI_Finalize scope ignored 



FLAT MPI PROFILE: RECIPE 

1. Prefix your link command with 

 “scorep --nocompiler” 
 

2. Prefix your MPI launch command with 

 “scalasca -analyze” 
 

3. After execution, examine analysis results using 

 “scalasca -examine scorep_<title>” 

 



FLAT MPI PROFILE: EXAMPLE (CONT.) 

Aggregate execution 

time on master threads 

Time spent in a 

particular MPI call 

Time spent in selected 

call as percentage of 

total time 



WHERE IS THE KEY BOTTLENECK? 

• Generate call-path profile using Score-P/Scalasca 

• Requires re-compilation 

• Runtime overhead depends on application characteristics 

• Typically needs some care setting up a good measurement configuration 

• Filtering 

• Selective instrumentation 
 

• Option 1 (recommended for beginners): 

Automatic compiler-based instrumentation 
 

• Option 2 (for in-depth analysis): 

Manual instrumentation of interesting phases, routines, loops 



CALL-PATH PROFILE: RECIPE 

1. Prefix your compile & link commands with 

 “scorep” 

2. Prefix your MPI launch command with 

 “scalasca -analyze” 

3. After execution, compare overall runtime with uninstrumented 

run to determine overhead 

4. If overhead is too high 

1. Score measurement using 

“scalasca -examine -s scorep_<title>” 

2. Prepare filter file 

3. Re-run measurement with filter applied using prefix 

“scalasca –analyze –f <filter_file>” 

5. After execution, examine analysis results using 

 “scalasca -examine scorep_<title>” 



CALL-PATH PROFILE: EXAMPLE (CONT.) 

• Estimates trace buffer requirements 

• Allows to identify canditate functions for filtering 

Computational routines with high visit count 

and low time-per-visit ratio 

• Region/call-path classification 

• MPI (pure MPI library functions) 

• OMP (pure OpenMP functions/regions) 

• USR (user-level source local computation 

• COM (“combined” USR + OpeMP/MPI) 

• ANY/ALL (aggregate of all region types) 

% scalasca -examine -s epik_myprog_Ppnxt_sum 
scorep-score -r ./epik_myprog_Ppnxt_sum/profile.cubex 
INFO: Score report written to ./scorep_myprog_Ppnxt_sum/scorep.score 

USR 

USR 

COM 

COM USR 

USR MPI OMP 



CALL-PATH PROFILE: EXAMPLE (CONT.) 

% less scorep_myprog_Ppnxt_sum/scorep.score 
Estimated aggregate size of event trace:                   162GB 
Estimated requirements for largest trace buffer (max_buf): 2758MB 
Estimated memory requirements (SCOREP_TOTAL_MEMORY):       2822MB 
(hint: When tracing set SCOREP_TOTAL_MEMORY=2822MB to avoid 
 intermediate flushes or reduce requirements using USR regions 
 filters.) 
 
flt type    max_buf[B]        visits  time[s] time[%] time/     region 
                                                      visit[us] 
     ALL 2,891,417,902 6,662,521,083 36581.51   100.0      5.49  ALL 
     USR 2,858,189,854 6,574,882,113 13618.14    37.2      2.07  USR 
     OMP    54,327,600    86,353,920 22719.78    62.1    263.10  OMP 
     MPI       676,342       550,010   208.98     0.6    379.96  MPI 
     COM       371,930       735,040    34.61     0.1     47.09  COM 
 
     USR   921,918,660 2,110,313,472  3290.11     9.0      1.56  matmul_sub 
     USR   921,918,660 2,110,313,472  5914.98    16.2      2.80  binvcrhs 
     USR   921,918,660 2,110,313,472  3822.64    10.4      1.81  matvec_sub 
     USR    41,071,134    87,475,200   358.56     1.0      4.10  lhsinit 
     USR    41,071,134    87,475,200   145.42     0.4      1.66  binvrhs 
     USR    29,194,256    68,892,672    86.15     0.2      1.25  exact_solution 
     OMP     3,280,320     3,293,184    15.81     0.0      4.80  !$omp parallel 
     [...] 

 



CALL-PATH PROFILE: FILTERING 

• In this example, the 6 most fequently called routines are 

of type USR 

• These routines contribute around 35% of total time 

• However, much of that is most likely measurement overhead 

• Frequently executed 

• Time-per-visit ratio in the order of a few microseconds 

 

Avoid measurements to reduce the overhead 

List routines to be filtered in simple text file 



FILTERING: EXAMPLE 

• Score-P filtering files support 

• Wildcards (shell globs) 

• Blacklisting 

• Whitelisting 

• Filtering based on filenames 

% cat filter.txt 
SCOREP_REGION_NAMES_BEGIN 
    EXCLUDE 
        binvcrhs 
        matmul_sub 
        matvec_sub 
        binvrhs 
        lhsinit 
        exact_solution 
SCOREP_REGION_NAMES_END 
 



CALL-PATH PROFILE: EXAMPLE (CONT.) 



CALL-PATH PROFILE: EXAMPLE (CONT.) 

Distribution of selected 

metric across call tree 

 

When expanding, value 

changes from inclusive to 

exclusive 

Selection updates columns 

to the right 

Box plot view shows 

distribution across 

processes/threads 



CALL-PATH PROFILE: EXAMPLE (CONT.) 

Split base metrics into 

more specific metrics 



SCORE-P: ADVANCED FEATURES 

• Measurement can be extensively configured via 

environment variables 

• Check output of “scorep-info config-vars” 

for details 

• Allows for targeted measurements: 

• Selective recording 

• Phase profiling 

• Parameter-based profiling 

• … 

• Please ask us or see the user manual for details 



SCORE-P GPU MEASUREMENTS 

• OpenACC 

• Prefix compiler and linker command with scorep --openacc 

• export  ACC_PROFLIB=$SCOREP_ROOT/lib/libscorep_adapter_openacc_event.so 

• export  SCOREP_OPENACC_ENABLE=yes 

• yes refers to: regions, wait, enqueue  

•  Full list of options in User Guide 

• CUDA 

• Prefix compiler and linker command with scorep --cuda 

• export  SCOREP_CUDA_ENABLE=yes 

• yes refers to: runtime,  kernel, memcpy 

• Full list of options in User Guide 

 

• OpenCL similar (use SCOREP_OPENCL_ENABLE=yes) 

 

 



WHY IS THE BOTTLENECK THERE? 

• This is highly application dependent! 

• Might require additional measurements 

• Hardware-counter analysis 

• CPU utilization 

• Cache behavior 

• Selective instrumentation 

• Automatic/manual event trace analysis 



HARDWARE COUNTERS 

• Counters: set of registers that count processor events, e.g. floating point operations or cycles 

• Number of registers, counters and simultaneously measurable events vary between platforms 

•  Can be measured by: 

• perf:  

• Integrated in Linux since Kernel 2.6.31 

• Library and CLI 

• LIKWID: 

• Direct access to MSRs (requires Kernel module) 

• Consists of multiple tools and an API 

• PAPI (Performance API) 



PAPI 

• Portable API: Uses the same routines to access counters across all supported architectures 

• Used by most performance analysis tools 

 

• High-level interface: 

• Predefined standard events, e.g. PAPI_FP_OPS 

• Availability and definition of events varies between platforms 

• List of available counters: papi_avail (-d) 

• Low-level interface: 

• Provides access to all machine specific counters 

• Non-portable 

• More flexible 

• List of available counters: papi_native_avail 

 



SCALASCA 

• Scalable Analysis of Large Scale Applications 

• Approach 

• Instrument C, C++, and Fortran parallel applications (with Score-P) 

• Option 1: scalable call-path profiling 

• Option 2: scalable event trace analysis 

• Collect event traces  

• Process trace in parallel 

• Wait-state analysis 

• Delay and root-cause analysis 

• Critical path analysis 

• Categorize and rank results 

http://www.scalasca.org/ 

      55 



AUTOMATIC TRACE ANALYSIS 

      56 

• Automatic search for patterns of inefficient behaviour 

• Classification of behaviour & quantification of significance 

• Identification of delays as root causes of inefficiencies 

 

 

 

 

 

• Guaranteed to cover the entire event trace 

• Quicker than manual/visual trace analysis 

• Parallel replay analysis exploits available memory & processors to deliver scalability 

Call 

path 

P
ro

p
e
rt

y
 

Location 

Low-level 

event trace 

High-level 

result 
Analysis  



EXAMPLE MPI WAIT STATES 

time 

p
ro

c
e

s
s
 

(a) Late Sender 
time 

p
ro

c
e

s
s
 

(b) Late Receiver 

time 

p
ro

c
e

s
s
 

(d) Wait at N x N 
time 

p
ro

c
e

s
s
 

(c) Late Sender / Wrong Order 

     ENTER           EXIT           SEND           RECV           COLLEXIT 

       57 



SCALASCA ROOT CAUSE ANALYSIS 
• Root-cause analysis 

• Wait states typically caused by load or 

communication imbalances earlier in 

the program 

• Waiting time can also propagate (e.g., 

indirect waiting time) 

• Enhanced performance analysis to find 

the root cause of wait states 

• Approach 

• Distinguish between direct and 

indirect waiting time 

• Identify call path/process 

combinations delaying other 

processes and causing first order 

waiting time 

• Identify original delay 

time 

     Recv 

           Send 

             Send 

     foo 

     foo 

     foo 

     bar 

     bar      Recv 

A 

B 

C 

cause 

     Recv 

     Recv 

Direct wait Indirect wait 

     Recv 

     bar DELAY 



TRACE GENERATION & ANALYSIS W/ SCALASCA 

• Enable trace collection & analysis using “-t” option of “scalasca -analyze”: 

 

 

 

 

 

 

 

 

 

• ATTENTION: 

• Traces can quickly become extremely large! 

• Remember to use proper filtering, selective instrumentation, and Score-P memory specification 

• Before flooding the file system, ask us for assistance! 

########################## 
##  In the job script:  ## 
########################## 
 
module load ENV Score-P Scalasca 
export SCOREP_TOTAL_MEMORY=120MB   # Consult score report 
scalasca -analyze -f filter.txt -t \ 
    runjob --ranks-per-node P --np n [...] --exe ./myprog 
 



SCALASCA TRACE ANALYSIS EXAMPLE 

Additional wait-state metrics 

from the trace analysis 

Delay / root-cause metrics 

Critical-path profile 



VAMPIR EVENT TRACE VISUALIZER 

• Offline trace visualization for Score-Ps OTF2 trace files 

• Visualization of MPI, OpenMP and application events: 

• All diagrams highly customizable (through context menus) 

• Large variety of displays for ANY part of the trace 

• http://www.vampir.eu 

 

• Advantage: 

• Detailed view of dynamic application behavior 

• Disadvantage: 

• Completely manual analysis 

• Too many details can hide the relevant parts 



EVENT TRACE VISUALIZATION WITH VAMPIR 

      62 

• Visualization of dynamic runtime behaviour at any level of 

detail along with statistics and performance metrics 

• Alternative and supplement to automatic analysis 

 

• Typical questions that Vampir helps to answer 

• What happens in my application execution during a 

given time in a given process or thread? 

• How do the communication patterns of my application 

execute on a real system? 

• Are there any imbalances in computation, I/O or 

memory usage and how do they affect the parallel 

execution of my application? 

 

 

 Timeline charts 

 Application activities and  

   communication along a time axis 

 

 

 

 

 Summary charts 

 Quantitative results for the currently 

selected time interval 

 



VAMPIR PERFORMANCE CHARTS 

      63 

Timeline Charts 

        Master Timeline all threads’ activities 

 Process Timeline single thread’s activities 

 Summary Timeline all threads’ function call statistics 

        Performance Radar all threads’ performance metrics 

        Counter Data Timeline single threads’ performance metrics 

 I/O Timeline all threads’ I/O activities 

 

Summary Charts 

        Function Summary 

        Message Summary 

 I/O Summary 

Process Summary 

Communication Matrix View 

Call Tree 



VAMPIR DISPLAYS 



ARM PERFORMANCE REPORTS 

• Single page report provides quick overview of performance issues 

• Works on unmodified, optimized executables 

• Shows CPU, memory, network and I/O utilization 

 

• Supports MPI, multi-threading and accelerators 

• Saves data in HTML, CVS or text form 

 

• https://www.arm.com/products/development-tools/server-and-hpc/performance-reports 

• Note: License limited to 512 processes (with unlimited number of threads) 

https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports
https://www.arm.com/products/development-tools/server-and-hpc/performance-reports


EXAMPLE PERFORMANCE REPORTS 



NVIDIA TOOLS -- LEGACY TRANSITION 



NSIGHT SYSTEM 

•System-wide application tuning 

•Locate optimization opportunities 

•Visualize millions of events on a timeline 

•See gaps of unused CPU and GPU time 

•Balance workloads across multiple CPUs  

  and GPUs 

•CPU utilization and thread state 

•GPU streams, kernels, memory transfers, etc. 

•Multi-platform support 

•Linux, Windows and Mac OS X (host-only) 

•x86-64, Power9, ARM server, Tegra (Linux & QNX) 
Seite 68 



GPU METRIC SAMPLING 

Seite 69 



MULTI NODE SUPPORT – SHMEM, MPI, UCX, AND NCCL 

Seite 70 



OPENMP 

Seite 71 

OMPT-capable OpenMP runtime required 



EXPERT SYSTEM 

Seite 72 



NSIGHT COMPUTE 

• Interactive CUDA kernel profiler 

•Targeted metric sections for various performance aspects 

•Customizable data collection and presentation (tables, charts, ...) 

•GUI and CLI 

•Python-based API for guided analysis 

  and post-processing 

•Support for remote profiling across  

  machines and platforms 

Seite 73 



PROFILER REPORT 

Seite 74 



DATA TRANSFER ANALYSIS 

 

• Detailed memory workload  

   analysis chart and tables 

• Shows transferred data or 

   throughputs 

• Tooltips provide metric 

   names, calculation formulas 

   and detailed background info 

 

Seite 75 



BASELINE COMPARISON 

 

• Comparison of results directly 

   within the tool with "Baselines“ 

• Supported across kernels, 

   reports, and GPU architectures 

Seite 76 



ROOFLINE ANALYSIS 

 

• Determine whether the 

   application is memory  

   bound or compute bound 

• Guided analysis points 

   to detailed analysis of  

   the most  severe problem 

Seite 77 



DARSHAN 

• I/O characterization tool logging parallel application file access 

• Summary report provides quick overview of performance issues 

• Works on unmodified, optimized executables 

• Shows counts of file access operations, times for key operations, histograms of accesses, etc. 

 

• Supports POSIX, MPI-IO, HDF5, PnetCDF, … 

• Binary log file written at exit post-processed into PDF report 

 

• http://www.mcs.anl.gov/research/projects/darshan/ 

• Open Source: installed on many HPC systems 



EXAMPLE DARSHAN REPORT EXTRACT 



VTUNE AMPLIFIER XE 

• Feature-rich profiler for Intel platforms 

• Supports Python, C/C++ and Fortran 

• MPI support continuously improving 

 

• Lock and Wait analysis for OpenMP and TBB 

• HPC analysis for quick overview 

 

• Bandwidth and memory analysis 

• I/O analysis 

 

• OpenCL and GPU profiling  

(no CUDA, Intel iGPU only) 

 



INTEL VTUNE AMPLIFIER GUI 



INTEL ADVISOR 

• Vectorization Advisor 

• Loops-based analysis to identify vectorization candidates 

• Finds save spots to enforce compiler vectorization 

• Roofline analysis to explore performance headroom and co-optimize memory and computation 

 

• Threading Advisor 

• Identify issues before parallelization 

• Prototype performance impact of different threading designs 

• Find and eliminate data-sharing issues 

 

• Flow-Graph Analysis 

• Speed up algorithm design and express parallelism efficiently 

• Plan, validate, and model application design  

 

• C/C++ and Fortran with OpenMP and Intel TBB 



INTEL ADVISOR GUI 



INTEL ADVISOR – ROOFLINE  



PERFORMANCE ANALYSIS RECOMMENDATIONS 

• Measure and analyze at the desired scale (once you have a reasonable measurement setup) 

 

• Get performance overview with Performance Reports or HPC Snapshot 

• CPU Issues: Use Vtune (on Intel nodes) or uProf (on AMD nodes) 

• MPI Issues: Use Scalasca/Vampir 

• GPU Issues: Use NVIDIA tools 

• I/O Issues: Use DARSHAN 

 

• OR: Do it all with Score-P/Scalasca/Vampir 



NEED HELP? 

■ Talk to the experts 

■ Use local 1st-level support, e.g. SimLab  

■ Use mailing lists 

■ JSC/NVIDIA Application Lab 

■ ATML Parallel Performance 

■ ATML Application Optimization and User Service Tools 

■ Apply for a POP audit 

 

Successful performance engineering often is a collaborative effort 

 



QUESTIONS 


