

Uniform Resource Access Compute and Cloud Resources at JSC

2022-05-17 | Björn Hagemeier | Juelich Supercomputing Centre

Member of the Helmholtz Association

Part I: UNICORE

Member of the Helmholtz Association

Motivation

Differences of systems

Uniform Interface to Computing Resources

Various RMS on systems

- JUQUEEN: IBM LoadLeveler
- JURECA: Slurm
- Different job description languages for specifying # of nodes, memory requirements, wall time, ...
- Different parameters on the command line
- Unify and simplify supercomputer access

Load Leveler

Motivation

Differences of systems

Uniform Interface to Computing Resources

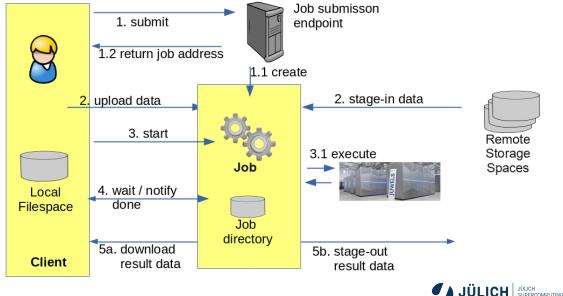
Various RMS on systems

- JUQUEEN: IBM LoadLeveler
- JURECA: Slurm
- Different job description languages for specifying # of nodes, memory requirements, wall time, ...
- Different parameters on the command line
- Unify and simplify supercomputer access

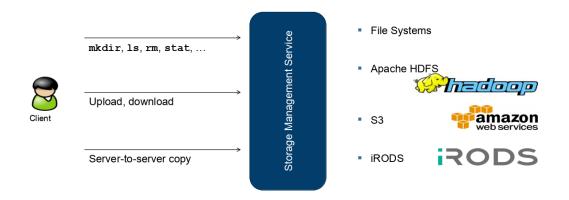
Slurm

Slurm

Why UNICORE


Advantages

- Hide system specific commands
- Create, submit and monitor jobs
 - Seamless, secure, and intuitive access to distributed compute and data resources
- Multiple clients
- Integrated data management
- Federated identities
- Open Source:
 - https://github.com/UNICORE-EU



Job execution model

CENTRE

Data management and file transfer

Efficient file transfer

- Data streaming library and file transfer tool
- Fully integrated into UNICORE
- Standalone (non-UNICORE) client available
- Client to server and server to server data transfers
- Data staging among UFTP-enabled sites
- Efficient synchronization of individual local and remote files using the rsync algorithm
- Optional compression and encryption of data streams

Efficient file transfer

- Data streaming library and file transfer tool
- Fully integrated into UNICORE
- Standalone (non-UNICORE) client available
- Client to server and server to server data transfers
- Data staging among UFTP-enabled sites
- Efficient synchronization of individual local and remote files using the rsync algorithm
- Optional compression and encryption of data streams
- Awarded "best systemic approach" in SC Asia Data Mover Challenge 2020

Source: SC Asia web site

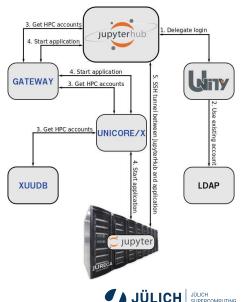
Clients and APIs

Commandline tools

- UNICORE Commandline Client (UCC): https://sourceforge.net/projects/ \unicore/files/Clients/Commandline%20Client/
- UFTP client for high-performance data access: https://sourceforge.net/projects/unicore/files/Clients/UFTP-Client/

RESTful APIs

- curl, Python Requests
- https://sourceforge.net/p/unicore/wiki/REST_API/
- PyUNCIORE client library: https://github.com/HumanBrainProject/pyunicore



Jupyter Hub @JSC

HPC in your web browser

- UNICORE is an integral part of the Jupyter offering at JSC
- Start Jupyter Labs on JUWELS, JURECA-DC, JUSUF, DEEP, HDFML, or a cloud based VM
- https://jupyter-jsc.fz-juelich.de/

Additional information and support

UNICORE

- Project web site: https://www.unicore.eu/ for downloads and documentation
- Product support: unicore-support@lists.sourceforge.net

UNICORE at FZJ

- User support email: ds-support@fz-juelich.de
- Registry: https://fzj-unic.fz-juelich.de: 9112/FZJ/rest/registries/default_registry
- Documentation: https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/ Software/UNICOREProduction/unicore_production_node.html

Part II: HDF Cloud

Member of the Helmholtz Association

Overview

- OpenStack Infrastructure-as-a-Service (laaS) environment
 - Compute, storage, network, orchestration, load balancing
 - Run VMs to provide services linked to LARGEDATA
 - Orchestration using OpenStack Heat
 - Load Balancer as a Service (LBaaS) using OpenStack Octavia
- Phase 1: 16 compute nodes, 768 VCPUs, 6.1TB RAM
- Phase 2: 10 compute nodes, 480 VCPUs, 7.7TB RAM
- Total: 26 compute nodes, 1248 VCPUs, 13.8 TB RAM
- 10GbE storage uplink per node up to 80Gb total
- 40GbE internal links
- Further information and reference: https://go.fzj.de/hdf-cloud

Overview

- OpenStack Infrastructure-as-a-Service (laaS) environment
 - Compute, storage, network, orchestration, load balancing
 - Run VMs to provide services linked to LARGEDATA
 - Orchestration using OpenStack Heat
 - Load Balancer as a Service (LBaaS) using OpenStack Octavia
- Phase 1: 16 compute nodes, 768 VCPUs, 6.1TB RAM
- Phase 2: 10 compute nodes, 480 VCPUs, 7.7TB RAM
- Total: 26 compute nodes, 1248 VCPUs, 13.8 TB RAM
- 10GbE storage uplink per node up to 80Gb total
- 40GbE internal links
- Further information and reference: https://go.fzj.de/hdf-cloud

OpenStack

Software and services

- OpenStack Victoria release
 - released 2020-10-14, maintained until 2022-04-27, extended maintenance thereafter
 - upgrade hindered by a switch of the underlying Linux distribution
- Services
 - Keystone authentication and service registry
 - Horizon dashboard convenient Web UI appropriate for many simple tasks
 - Nova compute virtual machine (VM) service
 - Neutron networking software defined networks
 - Cinder volume virtual block devices
 - Glance images template images for VMs
 - Heat orchestration infrastructure management
 - Octavia load balancing load balancing as a service
 - Neutron VPNaaS cross-site (or project) VPNs
 - Sahara data processing through virtual clusters

Authentication

There are two ways to authenticate

- JSC account
 - username and password
 - usable from both commandline interface and Web UI
- Helmholtz login
 - directly usable only from Web UI
 - commandline access through application credentials
- however: you need a project and allocated resources before using HDF Cloud

HELMHOLTZ Data Federation HDF	
Log in	
Authenticate using	
Keystone Credentials	~
If you are not sure which authentication method to use, contact your administrator.	
Domain	
JuDoor	~
Jser Name	
	Û
Password	
	۲
Sign	i In

Nova manages the lifecycle of virtual machines (VMs) that have

- a number of CPUs
- an amount of main memory
- storage: system, ephemeral, swap
- data storage: volumes
- network ports
- a template image containing an operating system

Nova Virtual machine service

Nova manages the lifecycle of virtual machines (VMs) that have

- a number of CPUs
- an amount of main memory
- storage: **system**, ephemeral, swap
- data storage: volumes
- network ports
- a template image containing an operating system

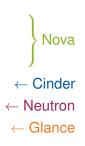
Slide 12

Nova manages the lifecycle of virtual machines (VMs) that have

- a number of CPUs
- an amount of main memory
- storage: **system**, ephemeral, swap
- data storage: volumes
- network ports
- a template image containing an operating system

1

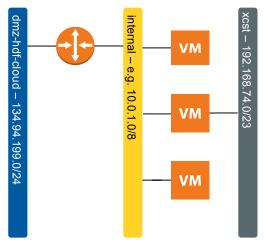
Nova manages the lifecycle of virtual machines (VMs) that have


- a number of CPUs
- an amount of main memory
- storage: **system**, ephemeral, swap
- data storage: volumes
- network ports
- a template image containing an operating system

Nova manages the lifecycle of virtual machines (VMs) that have

- a number of CPUs
- an amount of main memory
- storage: **system**, ephemeral, swap
- data storage: volumes
- network ports
- a template image containing an operating system

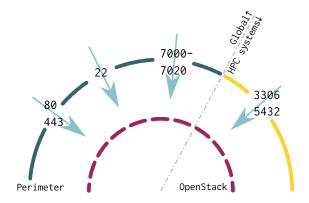
Nova Flavors


- two classes in general:
 - ordinary (10GB root disk) and large-disk (30GB root disk)
- first characters determine amount of memory per VCPU: tiny, small, medium, large, xlarge
- going from 1 VCPU per .5GB to 1 VCPU per 8GB
- Example flavors
 - t1
 - m8.large-disk
 - xl16
- custom flavors are possible

VCPUs RAM	1	2	4	8	16
.5 GB	t1	-	-	-	-
1 GB	s1	t2	-	-	-
2 GB	m1	s2	t4	-	-
4 GB	1	m2	s4	t8	-
8 GB	xl1	12	14	s8	t16
16 GB	-	xl2	m4	m8	s16
32 GB	-	-	xl4	18	m16
64 GB	-	-	-	xl8	116
128 GB	-	-	-	-	xl16

Networking Specific networks at JSC

- floating IPs realized in router as DNAT/SNAT
- VMs without floating IPs not accessible from the outside and SNATed in outbound connections
- all new projects will be equipped with a router and internal network, such that you can immediately start working.
 JSC's DNS servers will be configured in the internal network



Network setup

Security groups and perimater firewall

- OpenStack firewall freely configurable
- Restrictions apply for inbound connections in perimeter firewall
 - Globally available services and ports: HTTP (80), HTTPS (443), SSH (22), 7000–7020
 - Available from HPC systems: MySql (3306), PostgreSQL (5432)
- Outbound connections: anything but MTA (25) aka. SMTP

Commandline interface

Prerequisites

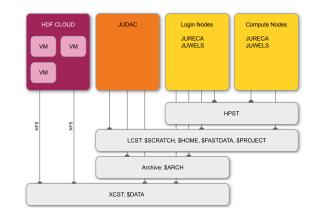
- Python virtual environment
- Download credential files from the web interface (cf. authentication)

Run the following in your shell:

- \$ python3 -m venv openstack
- \$ source openstack/bin/activate
- \$ pip install python-openstackclient

Authentication:

- Option 1: Download and source openrc.sh
- Option 2: Download clouds.yaml, put it in one of
 - current working directory as clouds.yaml or
 - lacksquare \sim /.config/openstack/clouds.yaml



JSC Storage Landscape

Availability of file systems

XCST

- \$DATA on JUDAC and login nodes
- dedicated NFS export to VMs
- Archive
 - \$ARCH on JUDAC and login nodes
- LCST
 - \$SCRATCH, \$HOME,
 \$FASTDATA, \$PROJECT on JUDAC, login and compute nodes
- HPST
 - Login and compute nodes

Data access

VMs and the DATA file system

- Helmholtz Data Federation (HDF) Cloud / OpenStack cluster
 - Hosts virtual machines (VMs) for communities
 - Potentially administered by externals, bound by acceptable use policy
- Enable access to data beyond perimeter of SC facility
 - Web interfaces, databases, post processing, ...
 - Users of service likely unknown to SC directory information service
- Access Method
 - POSIX file systems (\$DATA) accessible in VMs via NFS mount from CES servers
 - Server side UID squashing
 - ensures consistency
 - requires services to manage data accordingly
 - read-write or read-only

a/slfse/ a/slkit/ /p/largedata/slai ta/slmet/xyz /p/largedata/slbig /p/largedata/slchem v/slnpp/... /p/largedata/slcm /p/largedata/slfire /p/largedata/slfse 20 /n/largedata/slkit /p/largedata/simet /p/largedata/slnpp /p/largedata/slns /n/largedata/slpp /p/largedata/slgip /n/largedata/slts

Summary

.....

OpenStack

- Project web site: https://www.openstack.org/
- Documentation: https://docs.openstack.org/

HDF Cloud at JSC:

- User support: ds-support@fz-juelich.de
- Web dashboard: https://hdf-cloud.fz-juelich.de/
- Documentation: https://go.fzj.de/hdf-cloud

JUSUF Cloud:

- User support: sc@fz-juelich.de
- Web dashboard: https://jusuf-cloud.fz-juelich.de/
- Documentation: https://apps.fz-juelich.de/jsc/hps/jusuf/cloud/

