

Remote Visualization at JSC (with ParaView)

Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany Algorithms, Tools & Methods Lab Visualization

Herwig Zilken, 2022/05/19

Algorithms, Tools & Methods Lab Visualization

Scientific Visualization

 R&D + support for visualization of scientific data

Virtual/Augmented Reality

 VR visualization based on Unreal Engine, with head mounted displays and tablet computers for data analysis and presentation

Multimedia

 multimedia productions for websites, presentations or on TV

JUWELS: closer look at login nodes

Cluster

4 x Login Nodes with GPU

- juwelsvis.fz-juelich.de
- (juwelsvis00 to juwelsvis03 in round-robin fashion)
- 768 GB RAM each
- 1 GPUs Nvidia Pascal P100 per node
- 12 GB RAM on GPU
- 9 x Login Nodes without GPU
 - juwels-cluster

Booster:

- 4 x Login Nodes without GPU
 - juwels-booster

Keep in mind: software rendering is possible on any node

JURECA-DC: closer look at login nodes

12 x Login Nodes with GPU

- jureca.fz-juelich.de
- (jureca01 to jureca12 in round-robin fashion)
- 1024 GB RAM each
- 2 x Nvidia Quadro RTX8000 per node
- 48 GB RAM on each GPU

Keep in mind: software rendering is possible on any node

General Software Setup

Typical Software Stack for Visualization

Base Software:

X-Server, X-Client (Window-Manager)

Х

OpenGL (libGL.so, libGLU.so, libglx.so), Nvidia or Mesa driver

Middleware:

Xpra

Virtual Network Computing: VNC-Server, VNC-Client

VirtualGL (for remote hardware rendering, if possible)

Parallel and Remote Rendering App, In-Situ Visualization:

ParaView

Other Visualization Packages (more packages on user demand):

Blender, GPicView, VTK, VMD

Remote 3D Visualization

at Jülich Supercomputing Centre

- X forwarding + Indirect Rendering slow, maybe incompatible → bad idea
- "intrinsic remote capable" visualization apps application dependent error-prone setup
- Xpra stream application content with H.264 + VirtualGL easy setup, our recommendation → good idea

Remote 3D Visualization

with X Forwarding + Indirect Rendering

Traditional Approach (X forwarding + Indirect Rendering) ssh –X <USERID>@<SERVER>

- uses GLX extension to X Window System
- X display runs on user workstation
- OpenGL command are encapsulated inside X11 protocol stream
- OpenGL commands are executed on user workstation

disadvantages

- User's workstation requires a running X server.
- User's workstation requires a graphic card capable of the required OpenGL.
- User's workstation defines the quality and speed of the visualization.
- User's workstation requires all data needed to visualize the 3d scene.
- This approach is known to be error prone (OpenGL version mismatch, ...)

Try to **AVOID** for 3D visualization.

Remote 3D Visualization

with Xpra + VirtualGL

- X-applications forwarded by Xpra (or VNC) appear on the local desktop as normal windows
- allows disconnection and reconnection without disrupting the forwarded application
- advantages
 - No X is required on user's workstation (X display on server).
 - No OpenGL is required on user's workstation (only images are send).
 - Quality of visualization does not depend on user's workstation.
 - Data size send is **independent** from data of 3d scene.
 - Disconnection and reconnection possible.
- VirtualGL for hardware accelerated rendering: use vglrun <application>
 - it intercepts the GLX function calls from the application and rewrites them.
 - The corresponding GLX commands are then sent to the X display of the 3d X server, which has a 3D hardware accelerator attached.
- Good solution for any OpenGL application

https://xpra.org/

How to use Xpra @ JSC

How to start an Xpra session:

- Recommended way: from JupyterLab@JSC <u>https://jupyter-jsc.fz-juelich.de</u>
 - See next slides
- Alternative: start Xpra session manually
 - Neither recommended nor necessary
 - Just in case you need it: documentation provided on later slides

Xpra Integration in JupyterLab@JSC

1. Go to <u>https://jupyter-jsc.fz-juelich.de</u> and login

2. Add a new or start an existing JuperLab on JURECA login node or JUWELS vis login node.

Xpra Integration in JupyterLab@JSC

If needed, start a new launcher by menue: File → New Launcher.
 In the launcher: click on the Xpra icon

4. Wait for the HTML desktop of Xpra. Start apps from the menue or

Xpra Integration in JupyterLab@JSC

5. Start ParaView in the Xpra environment in your browser, direct access to data stored on HPC filesystem

ParaView for data visualization

Exercise 1

- Login to jupyter-jsc.fz-juelich.de
- Start Xpra and ParaView
- Load some data, e.g.

/p/scratch/share/zilken1/ParaView_HandsOn/ headsq.vti

Lets have some fun with **filters**, see next slides

Common Filters: Contour

Properties	Information		
Properties			5×
🛛 🗗 Арр	ly 🗍 🕜 <u>R</u> eset	Delete	?
Search (u	ise Esc to clear text)		100
Proper	ties (Contour 1)		3
Contour By	• Temp		•
Compute Compute Compute Generate	Normals Gradients Scalars Triangles s		
Value Rang	e: [293.15, 913.15]		
1 421			
🕂 Display	/ (GeometryRepresentat	tion)	
🕂 View (F	Render View)		

- Extracts the points, curves, or surfaces where a scalar field is equal to a user-defined value.
- This surface is often also called an isosurface

Common Filters: Clip

Beware of data explosion:

Structured data is converted to unstructured!

- Intersects the geometry with a user-defined plane, box or sphere
- Removes all the geometry on one side of this plane (box, sphere)

ICH

Common Filters: Slice

roportio						
operue	- 40					6 4
C	^{II} <u>A</u> ppl	y] 🖉 🛛	eset	🛛 💥 Delete	•	?
Search	1 (u	se Esc to clear te	xt)			101
- F	Propert	ties (Slice 1)				
Slice Ty	pe			Plane		•
🔽 Sho	w Plan	e				
Origin	0,348	030680617293	0.59626	538700 <mark>4</mark> 8398	-0,100	052940254971
Normal	0.473	996659300374	-0,4101	8080111483	0.7791	52666278491
		<u>X</u> Normal		R	eset Bour	nds
		Y Normal				
		Z Normal				
	C	amera Normal		Cen	iter on Bo	ounds
Crin	nkle slic	e				
🔽 Tria	ngulati	e the slice				
4 (Display	(GeometryRepre	sentation)		
4 v	View (R	ender View)				

- Intersects the geometry with a plane, box, sphere or cylinder
- Similar to clipping, except that all that remains is the geometry where the plane is located.

Common Filters: Threshold

Properties	Information		
Properties			8×
Appl	y	t 🛛 🧱 <u>D</u> elete	?
Search (u	se Esc to clear text)		6
Proper	ties (Threshold 1)		
Scalars 0	hardyglobal		•
Minimum	0	3.92407	
Maximum		5.88965	
All Scalars			
Use Conti	nuous Cell Range		
骨 Display	(UnstructuredGridRe	presentation)	
View (F	Rende <mark>r V</mark> iew)		

• Extracts cells that lie within a specified range of a scalar field

Common Filters: Extract Subset

Properties	Information		
Properties			8 ×
P Apply	Reset	🛛 💥 Delete	?
Search (us	e Esc to dear text)		*
📼 Properti	es (ExtractSubset1)		
V OI	0	20	
	0	20	
	0	20	
Sample Rate I	1		
Sample Rate J	1		
Sample Rate K	1		
Include Bou	Indary		
🚽 Display ((GeometryRepresentation	ר)	
🐈 View (Re	ender View)		

 Extracts a subset of a grid by defining a volume of interest and a sampling rate

Exercise 2

Load

/p/scratch/share/zilken1/ParaView_HandsOn/ disk_out_ref2.ex2

 Lets have some fun with filters for vector-data, see next slides

Common Filters: Glyph

Properties	Information		
roperties			₽×
	ly 🛛 🖉 🥘 <u>R</u> eset	🧱 Delete	?
Search (use Esc to clear text)		
Prope	rties (Glyph1)		
Glyph Sour	ce		
Glyph Type		Arrow	•
Active Att	ibutes		
Scalars	Temp		•
Vectors	V		•
Orientation	1		
🔽 Orient			
Scaling			
Scale Mode	off		•
Scale Factor		1.85472	
Masking			
Glyph Mode	Every Nth Point		•
Stride	10		
🕂 Displa	y (GeometryRepresent	ation)	
🕂 View (Render View)		

- Places a glyph, a simple shape, on each point (or subset) in a mesh
- glyphs may be oriented by a vector and scaled by a vector or scalar.

Common Filters: Stream Tracer

roperties						8 >
P Apply) 🖉 🖉 E	<u>R</u> eset	Del	ete		?
Search (use Es	c to clear te	ext)				
📼 Properties (StreamTrace	er 1)				8
Vectors	٧					•
Integration Para	ameters					
Integration Direction	on BOTH					•
Integrator Type	Runge-k	Kutta 4-5	5			•
Streamline Para	meters					
Maximum Streamlin Length	ne ,		20.15	9999847	741211	
Seeds						
Seeds Seed Type			Point Source	e		•
Seeds Seed Type Show Point			Point Sourc	e Center or	n Bound	• s
Seeds Seed Type Show Point Point 0		0	Point Source	e Center or 0.0	n Bound 7999992	s 237060547
Seeds Seed Type Show Point Point 0 Number of Points	100	0	Point Source	e Center or 0.0	n Bound 799999	s 237060547
Seeds Seed Type Show Point Point 0 Number of Points Radius	100 2.01599998	0	Point Source	e Center of 0.0	n Bound 799999	s 237060547
Seeds Seed Type Show Point Point 0 Number of Points Radius Note: Move mou	100 2.01599998 Ise and us	0 8474121 e 'P' ke	Point Source	e Center of 0.0 point p	n Bound 799999: osition	s 237060547
Seeds Seed Type Show Point Point 0 Number of Points Radius Note: Move mou	100 2.01599998 ise and us	0 8474121 e 'P' ke esentatio	Point Source C y to change	e Center of 0.0 point p	n Bound 7999999. osition	s 237060547 \$

 Seeds a vector field with points and then traces those seed points through the (steady state) vector field.

Common Filters: Warp (vector)

Properties	Information		
Properties			8×
🛛 🖻 Арр	ly 🛛 🖉 🥘 <u>R</u> eset	Delete	?
Search (u	use Esc to clear text)		
📼 Proper	ties (WarpByVector 1)		
Vectors	grad		•
Scale Factor	3		
🐈 Display	y (GeometryRepresentat	ion)	
🐈 View (I	Render View)		

• Displaces each point in a mesh by a given vector field.

Calculations within ParaView

Calculator: calculates new attributes based on simple expression

- example: "LANDMASK*(abs(HGT) + 20.0)"
- Can generate vectors from scalars via "iHat*velocity_x + jHat*velocity_y + kHat*velocity_z"
- Can generate new coordinates
- Unflexibel, no "if" statement

PythonCalculator: calculates new attributes based on simple Python expression

- NumPy and SciPy functions can be used
- Can generate vectors from scalars via "make_vector (velocity_x, velocity_y, velocity_z)"
- No "if" statement, but numpy.where works, e.g. "numpy.where(Rain > 20, -1 * Rain, LANDMASK*(numpy.abs(HGT)+20))"

Programmable Source/Filter

- Most flexible
- Needs some deeper knowledge of ParaView conventions and data flow

Properties					8
🛛 🧬 Appl	y] (Reset	💥 Dele	ete	?
Search (u	se Esc to clea	r text)			Ę
Propert	ies (Calculat	or 1)			
Attribute Mod	e Point I	Data			
Result Array 1	Name Result	0			
Clear	(iHat	jHat	kHat
sin	cos	tan	abs	sqrt	+
	acos	atan	ceil	floor	-
asin					(
asin sinh	cosh	tanh	х^у	exp	*
asin sinh v1.v2	cosh mag	tanh norm	x^y In	exp log10	*
asin sinh v1.v2	cosh mag Scalars	tanh norm	x^y In	log10 Vectors	
asin sinh v1.v2	cosh mag Scalars (GeometryR	tanh norm v	x^y In	log10 Vectors	

Properties	Information		
Properties			Ø (
PApply	@Reset	X Delete	?
Search (use	Esc to clear text)		100
💻 Properti	es (PythonCalcul	ator4) 🗊 (6 C 4
Expression	L].PointData['R	AIN_Accumulated']	, 0.0), 100.0)
Array Associati	on Point Data		*
Array Name	result		
✔ Copy Arrays	i		

Filter Menu:

Many more filters in the Filters Menu

Search	Ctrl+Space
Recent	•
AMR	•
СТН	+
Common	•
Data Analysis	•
Material Analysis	•
Quadrature Points	•
Statistics	•
Temporal	•
Alphabetical	•

- lists of all filters available in • ParaView (Alphabetical)
- state of the entries (enabled/disabled) depends on the current data set's type

Histogram							
Integrate Variables							
Plot Data							
Plot Global Variables	Over Time						
Plot On Intersection (Curves						
Plot On Sorted Lines			Extract Selection		ParticlePath		Table To Points
Plot Over Line		۹	Extract Subset Extract Surface		ParticleTracer Pass Arrays		Table To Structured Grid Temporal Cache
Plot Selection Over Ti	ime .		FFT Of Selection Over Time Feature Edges Gaussian Resampling		Plot Data Plot Global Variables Over Time Plot On Intersection Curves		Temporal Interpolator Temporal Particles To Pathline Temporal Shift Scale
Probe Location			Generate Ids Generate Quadrature Points	1	Plot On Sorted Lines Plot Over Line		Temporal Snap-to-Time-Step Temporal Statistics
Programmable Filter	Block Scalarr	0	Generate Quadrature Scheme Dictionary Generate Surface Normals	latte	Plot Selection Over Time Point Data to Cell Data Principal Component Analysis		lensor Glyph Tessellate Tetrabedralize
P To	Calculator Cell Centers Cell Data to Point Data	Ŷ	Glyph With Custom Source Gradient Gradient Of Unstructured DataSet	\$ {}	Protection Process Id Scalars	6	Texture Map to Cylinder Texture Map to Plane Texture Map to Sphere
s L	Clean Cells to Grid Clean to Grid I Clip	69 14	Group Datasets Histogram Image Data To AMR		Python Annotation Python Calculator Quadric Clustering Random Attributes	94	Transform Triangle Strips Triangulate
NK SL	Clip Closed Surface Clip Generic Dataset Compute Derivatives		Image Data to Point Set Integrate Variables Interpolate to Quadrature Points		Random Vectors Rectifinear Data to Point Set Rectifinear Grid Connectivity	-	Tube Warp By Scalar Warp By Vector
Ra	Connectivity Contingency Statistics Contour		Intersect Fragments Iso Volume K Means		Reflect Resample AMR Resample With Dataset		Youngs Material Interface
	Contour Generic Dataset Convert AMR dataset to Multi-block Curvature D3		Level Scalars(Non-Overlapping AMR) Level Scalars(Overlapping AMR) Linear Extrusion Loop Subdivision		Ribbon Rotational Extrusion Scatter Plot Shrink		
G	Decimate Delaunay 2D Delaunay 3D Descriptive Statistics		Mask Points Material Interface Filter Median Merge Blocks		Slice Slice (demand-driven-composite) Slice AMR data Slice Generic Dataset		
	Elevation Extract AMR Blocks Extract Block Extract CTH Parts		Mesh Quality Multicorrelative Statistics Normal Glyphs Octree Depth Limit	(ia))	Smooth StreakLine Stream Tracer Stream Tracer For Generic Datasets		
s on the	Extract Cells By Region Extract Edges Extract Generic Dataset Surface		Octree Depth Scalars Outline Outline Corners		Stream Tracer With Custom Source Subdivide Surface Flow		
۵۵ کې) Extract Level		Outline Curvilinear DataSet		Surface Vectors		

See https://www.paraview.org/Wiki/ParaView/Users_Guide/List_of_filters ٠

Calculator Extract Selection

Histogram

Animating Data

Using The Animation View, ParaView can animate

- Data time steps (if you have time-dependent data)
- Nearly any property of any pipeline object
- The camera, to perform camera flights along a specified path or orbit.
- Use Python scripts to manipulate the scene every time step

Exercise 3

Load

/p/scratch/share/zilken1/ParaView_HandsOn/ can.ex2

Lets have some fun with animations

Questions ... ?

rendered with Blender from a DNS of a diesel injection spray of ITV, RWTH Aachen University

Appendix: How to start Xpra manually

Manual Setup of Xpra

with Xpra + VirtualGL

5. Stop the Xpra session by xpra stop :3

Manual Setup of Xpra

Step 1: login to a (visualization) login node

Linux:

ssh <USERID>@juwelsvis02.fz-juelich.de

• Windows:

connect via a ssh client, e.g. PuTTY. The PuTTY ssh keyagent pageant may be usefull, too.

Step 2: start xpra on HPC node and notice the displaynumber in the output

For example, start an xterm in Xpra:

```
jwvis02> ml Stages/2022 GCCcore/.11.2.0 xpra/4.3.3
jwvis02> xpra start --start=xterm
...
Actual display used: :3
```

• The display-number is needed to connect to the Xpra session

Setup Xpra

Step 3: connect to Xpra session Install Xpra on your local machine. Download from www.xpra.org

Linux: use command

local_machine> xpra attach
ssh://USERNAME@juwelsvis02.fz-juelich.de/3

4	Session Launcher	-		×
c	Connect to xpra server			
Mode: SSH 🔹)			
Server: zilken1	iuwelsvis02.fz-juelich.de	22	: 3	
Server Password:				
	Advanced Options			

Page 33

Setup Xpra

Step 4: start visualization application

After successful connection, an xterm window will show up on your local desktop.

Start your application there, e.g. ParaView 5.10.1:

Step 5: When you are done, stop the session by
jwvis02> xpra stop :3