@, . .
o e Scaling Innovation

£Q ParTec

.... Modular Supercomputing

JUWELS & JURECA
Tuning for the platform

Usage of ParaStation MPI

May 19t 2022

Patrick Kuven
ParTec AG

yote .
tQParTec Outline

upercomputing

= ParaStation MPI

= Compiling your program
= Running your program

= Tuning parameters

= Resources

o . .
8.Q.ParTec ParaStation History

= 1995: University project (— University of Karlsruhe)
= 2005: Open source (— ParaStation Consort|um

= since 2004: Cooperation with JSC | :
= various precursor clusters

= DEEP-System (MSA Prototype)
= JUROPA3 (J3)

= JUAMS

= JURECA (Cluster/Booster)

fé')‘:»

ParTec ParaStation MPI

Modular Supe ng

= Based on MPICH (3.4.3)
= supports all MPICH tools (tracing, debugging, ...)
= Proven to scale up to 3,300 nodes and 136,800 procs per job running
ParaStation MPI
= JUWELS: No. 77 (Top500 Nov 2021)
= JURECA DC: No. 52 (Top500 Nov 2021)
= JUWELS Booster: No. 8 (Top500 Nov 2021)
= Supports a wide range of interconnects, even in parallel
= [nfiniBand on JURECA Cluster and JUWELS
= Omni-Path on JURECA Booster
= Extoll on DEEP projects research systems

= Tight integration with Cluster Management (e.g. healthcheck)
= MPI libraries for several compilers
= especially for GCC and Intel

percomputing

@ggsurTec ParaStation MPI: Modularity

= 2 or more different modules with different hardware
= a job can execute dynamically on all modules
= you can pick the best out of all the worlds in a single job

e.g. JURECA:
= DC: AMD EPYC + NVidia A100 + Infiniband
= Booster: Intel KNL + Omni-Path

How do these modules communicate with each other?

x@ ’arTec ParaStation MPI: pscom

MPI Applications

MPI Interface

MPIR
(hardware-independent)

pscom Interface

pscom

ADI3 pscom Plugin Interface

MPID
; (hardware-dependent) UCX i PSGW

Hardware Interfaces

Hardware

MPICH
Architectu re

= Low-level communication layer supporting various transports and
protocols

= Applications may use multiple transports at the same time

Application Application Application Application

psmpi psmpi psmpi psmpi

| | | |

pscom pscom pscapm pscom pscom
psgw %) psgw i ik%‘-'psgw‘-'psm psm psgw psIm psgw

Fabric

= For the JURECA DC-Booster System, the ParaStation MPI Gateway Protocol bridges
between Mellanox IB and Intel Omni-Path

= In general, the ParaStation MPI Gateway Protocol can connect any two low-level networks
supported by pscom
= Implemented using the psgw plugin to pscom, working together with instances of the psgwd

oo

:,Q.P rfec ParaStation MPI: Modular Jobs

= Two processes communicate through a gateway, if they are not directly
connected by a high-speed network (e.g. IB or OPA)

= Static routing to choose a common gateway
= High-speed connections between processes and gateway daemons

= Virtual connection between both processes through the gateway,
transparent for the application

= Virtual connections are multiplexed through gateway connections
= Further information: apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

Modular Supercomputing

:@ arTec ParaStation MPIl: CUDA awareness
« C

UDA awareness supported by the following MPI APIs
= Point-to-point (e.g., MPI Send, MPI Recv, ...)
= Collectives (e.g., MPT Allgather, MPI Reducse, ...)
= One-sided (e.g., MPT Put, MPI Get, ...)
= Atomics (e.g., MPI Fetch and op, MPI Accumulate, ...)

= CUDA awareness for all transports via staging
= CUDA optimization: UCX
= Ability to query CUDA awareness at compile- and runtime

@ParTec ParaStation MPIl: CUDA awareness

r Supercomputing

= activate CUDA-awareness by meta modules
= default configurations

= query CUDA-awareness:

oo

Lo ParTec Compiling on JUWELS

= Currently MPI-3.3 version (5.4.11-1) available
= single thread tasks
= module load Intel ParaStationMPI

= module load GCC ParaStationMPI
= multi-thread tasks (mt)
= module load Intel ParaStationMPI/5.4.11-1-mt
= no multi-thread GCC version available
= ChangelLog available with
= less $(dirname $ (which mpicc))/../Changelog
= Gnu and Intel compilers available
= module spider for getting current versions
= see also the previous talk JUWELS - Introduction

upercomputing

g
Lo ParTec Wrapper

= Wrappers
=« mpicc (C)

= mpicxx (C++)
= mpif9o0 (Fortran 90)
= mpif77 (Fortran 77)

= When using OpenMP and the need to use the “mt” version, add
= —fopenmp (GNU)

= —gopenmp (Intel)

@ParTec Did | use the wrapper correctly?

Modular Supercomputing

= Libraries are linked at runtime according to LD_LIBRARY_PATH
= 1dd shows the libraries attached to your binary
= Look for ParaStation libraries

‘}

Lo ParTec JUWELS: start via srun

= Use srun to start MPI processes
= srun -N <nodes> -n <tasks> spawns task
= directly (-A <account>)
= via salloc
= from batch script via sbatch
Exports full environment
Stop interactive run with (consecutive) AC
= passed to all tasks
No manual clean-up needed
= You can log into nodes which have an allocation/running job step
1) squeue -u <user>
2) sgoto <jobid> <nodenumber>
= e.g. sgoto 2691804 0

e
Q
m_
9O
[%)
L
~
R 2
of
(o
&

g% . .
L ParTec Running on JUWELS (Intel chain)

Modular Sup mputing

= module load Intel

= module load ParaStationMPI

=mpicc -O03 -o hello mpi hello mpi.c

= Interactive:

= salloc -N 2 -A partec # get an allocation
= srun —n 2 ./hello mpi

Hello world from process 0 of 2 on jwc08n188.juwels
Hello world from process 1 of 2 on jwc08n194.juwels

= Batch:
= sbatch ./hello mpi.sh

= Increase verbosity:
= PSP DEBUG=[1,2,3,...] srun -n 2 ./hello mpi

oo

Lo ParTec Process Placement

ParaStation process pinning:
= Avoid task switching
= Make better use of CPU cache and memory bandwidth
JUWELS is pinning by default:
= SO --cpu-bind=threads may be omitted
Manipulate pinning:
= e.g. for “large memory / few task” applications
Manipulate via
= ——cpu-bind=threads|sockets|cores|

mask cpu:<maskl>,<mask2>,..

= CPU masks are always interpreted as hexadecimal values
= ——distribution=*|block|cyclic|arbitrary|plane=<options>
[:*|block|cyclic|fcyclic[:*|block]|cyclic|fcyclic]] [, Pack]|NoPack]

= Further information: https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

XQ ParTec Process Placement

uuuuuuuuuuuuuuuuuuuu

= Example:
= ——ntasks-per—-node=4
= ——Ccpus-per—-task=3

» ——cpu-bind=threads

T
3

» ——cpu-bind=mask cpu:0x7,0x700,0xE0, O0xEQ000

oo

Lo ParTec Process Placement

Best practice depends not only on topology, but also on characteristics of
application:

= Putting threads far apart is
= improving the aggregated memory bandwidth available to your application

= improving the combined cache size available to your application
= decreasing the performance of synchronization constructs

= Putting threads close together is
= improving the performance of synchronization constructs
= decreasing the available memory bandwidth and cache size

{0 ParTec Hybrid MPI/OpenMP

.. Modular Supercomputing

#include <stdio.h>
#include <mpi.h>
#include <omp.h>

int main(int argc, char *argv[]) {
int numprocs, rank, namelen;
char processor_name[MPI_MAX PROCESSOR_NAME] ;

int iam = 0, np = 1;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, é&rank);
#fpragma omp parallel default (shared) private (iam,

np = omp_get_num_threads () ;
iam = omp_get_thread_num() ;

}

MPI_Finalize();
}

MPI_Get_processor_name (processor_name, &namelen);

np)

Example:

2 Nodes, 2x2 Procs,
2x2x24 Threads

Node x

Node y

printf ("Hello from thread %02d out of %d from process %d out of %d on %s\n",
iam, np, rank, numprocs, processor_name);

May 19th, 2022 Tuning for the platform - Patrick Kiiven, ParTec AG

20

£Q ParTec On JUWELS

.... Modular Supercomputing

module load Intel ParaStationMPI/5.4.11-1-mt
mpicc -03 —-gopenmp -0 hello hybrid hello hybrid.c
salloc -N 2 -A partec —--cpus-per-task=24

export OMP NUM THREADS=5{SLURM CPUS PER TASK}

srun -n 4 ./hello hybrid | sort

Hello from thread 00 out of 24 from process 0 out of 4 on jwc0ln238. juwels
Hello from thread 00 out of 24 from process 1 out of 4 on jwc01ln238. juwels
Hello from thread 00 out of 24 from process 2 out of 4 on jwc01ln247. juwels
Hello from thread 00 out of 24 from process 3 out of 4 on jwc01ln247. juwels
Hello from thread 01 out of 24 from process 0 out of 4 on jwc0Oln238. juwels
Hello from thread 01 out of 24 from process 1 out of 4 on jwcO0ln238. juwels
Hello from thread 01 out of 24 from process 2 out of 4 on jwc0ln247. juwels
Hello from thread 01 out of 24 from process 3 out of 4 on jwc01ln247. juwels
Hello from thread 23 out of 24 from process 0 out of 4 on jwcO0ln238. juwels
Hello from thread 23 out of 24 from process 1 out of 4 on jwc01ln238. juwels
Hello from thread 23 out of 24 from process 2 out of 4 on jwcO0ln247. juwels
Hello from thread 23 out of 24 from process 3 out of 4 on jwc01ln247. juwels

May 19th, 2022 Tuning for the platform - Patrick Kiven, ParTec AG

21

o o
L@ ParTec Pinning

= JUWELS:
= 2 Sockets, 24 Cores per Socket
= 2 HW-Threads per Core
= - 96 HW-Threads possible

= Normally (SMT):

= HW-Threads 0'23, 48-71 - CPUO “Package”
= HW-Threads 24-47, 72-95 - CPU1
Node
Socket0 4 Socket1 4
Core 0 | Core 1 Core 22| Core 23||| Core 24| Core 25 Core 46| Core 47
HWTO [HWT 1 HWT 22 | HWT 23 HWT 24 | HWT 25 HWT 46 | HWT 47

HWT 48 | HWT 49 HWT 70 | HWT 71 HWT 72 | HWT 73 HWT 94 | HWT 95

€5}

ParTec Pinning

dular Supe ng

= JURECA DC.:
= 2 Sockets, 64 Cores per Socket
= 2 HW-Threads per Core
= - 256 HW-Threads possible

= Normally (SMT):

= HW-Threads 0'63, 128-191 -~ CPUO “Package”
= HW-Threads 64-127, 192-255 - CPU1
Node
Socket0 4 Socket1 “4
Core 0 | Core 1 Core 62| Core 63(|| Core 64| Core 65| ... | Core 126| Core 127

HWT 128 | HWT 129 HWT 190 | HWT 191 HWT 192 | HWT 193 | ... HWT 254 HWT 255

oo

L@ ParTec Pinning

No thread pinning by default on JURECA and JUWELS

Allow the Intel OpenMP library thread placing
= export KMP AFFINITY=[verbose,modifier,]...

compact: place threads as close as possible
scatter: as evenly as possible

Full environment is exported via srun on JURECA and JUWELS

For GCC: set GOMP CPU AFFINITY (see manual)

o . .
tQParTec Large Job Considerations

Every MPI process talks to all others:
= (N-1) x 0.55 MB communication buffer space per process!

Example 1 on JUWELS:
= job size 256 x 96 = 24,576 processes
= 24575 %x 0.55 MB — ~ 13,516 MB / process
= x 96 process / node — ~ 1,267 GB communication buffer space
= But there is only 96 GB of main memory per node

Example 2 on JURECA DC:
= job size 256 x 256 = 65,536 processes
= 65,5635 x 0.55 MB — ~ 36,044 MB / process
= X 256 process / node — ~ 9,011 GB mpi buffer space
= But there is only 512 GB of main memory per node

Example 3 on JURECA Booster:
= ~ 10,173 GB mpi buffer space < 96 GB of main memory per node

oo

:,gP rfec On Demand / Buffer Size

Three possible solutions:

= 1. Try using alternative meta modules

= 2. Create buffers on demand only:
= export PSP ONDEMAND=1

= Activated by default!

= 3. Reduce the buffer queue length:
= (Default queue length is 16)
= export PSP OPENIB SENDQ SIZE=3

= export PSP OPENIB RECVQ SIZE=3

= Do not go below 3, deadlocks might occur!
= Trade-off: Performance penalty

= (sending many small messages)

16k

16K

16k

16k

Ui1oua| ananb

ParTfec On Demand / Queue Size Guidelines

Modular Su percom puting

On-Demand works best with nearest neighbor communications
(Halo) Exchange
Scatter/Gather
All-reduce

Buﬁor All-to-All communication:
queue size modification only viable option...
Example

rank O0: for (; ;) MPI_Send ()
rank 1: for (; ;) MPI_Recv ()

PSP_OPENIB_SENDQ/RECVQ_SIZE=4: 1.8 seconds
PSP_OPENIB_SENDQ/RECVQ_SIZE=16: 0.6 seconds
PSP_OPENIB_SENDQ/RECVQ_SIZE=64: 0.5 seconds

May 19th, 2022 Tuning for the platform - Patrick Kiiven, ParTec AG

27

oo
tQParTec Resources

= WWW.par-tec.com

= www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/supercomputers
node.html

= /opt/parastation/doc/pdf

= by mail: sc@fz-juelich.de

= by mail: support@par-tec.com

= Download ParaStation MPI at github:
= https://github.com/ParaStation/psmgmt
= https://github.com/ParaStation/pscom
= https://github.com/ParaStation/psmpi

https://www.par-tec.com/
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/supercomputers_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/supercomputers_node.html
mailto:sc@fz-juelich.de
mailto:support@par-tec.com
https://github.com/ParaStation/psmgmt
https://github.com/ParaStation/pscom
https://github.com/ParaStation/psmpi

{0}

ParTfec Summary

dular Supercomputin

= You now should be able to
= compile
= run your application
= fune some runtime parameters
= diagnose and fix specific errors
= know where to turn to in case of problems

x@ ParTec Thank you for your attention!

Modular Supercomputing

Questions?

