

JUST JÜLICH STORAGE CLUSTER

21. NOVEMBER 2022 | STEPHAN GRAF (JSC)

TIERED STORAGE OFFERING

- High Performance Storage Tier (HPST): NVMe based Storage (low latency+high bandwidth)
- Large Capacity Storage Tier (LCST): Lenovo DSS Cluster (GNR, 5th Gen. of JUST, bandwidth optimized) → LCST
- Extended Capacity Storage Tier (XCST): GPFS Building Blocks (target: capacity) → XCST
- Archive: Tape storage (Backup + GPFS&TSM-HSM)

JUST CLUSTER(S)

Key Characteristics

- File system access: parallel, POSIX compliant
- No user login
- Cross mounted on HPC systems
- One global namespace

HPST	LCST	XCST	ARCHIVE
NVMe based Cache	Spinning Disc bandwidth optimized	Spinning Disc Capacity optimized	Tape
110 server	22 Building Blocks	8 Building Blocks	1 Building Block 4 Tape Libraries
1.100 NVMe drives (2TB)	7.500 x 10TB Discs	8.000 Discs (10TB, 12TB, 16TB)	>39.000 Tapes (8TB – 18TB)
2.2 PB (raw)	75 PB (raw)	~95 PB (raw)	>360 PB
Infinite Memory Engine	Spectrum Scale (GPFS)+ GPFS Native RAID	Spectrum Scale (GPFS)	Spectrum Scale + Spectrum Protect (GPFS + TSM-HSM)

CENTRALIZED STORAGE

HPC USAGE MODEL @ JÜLICH

Key Characteristics

- One account per user: surname# (# is a consecutive number)
- Separation of user and project data user must be joined to project to get access
- Data owner is the project
- Two project types: Compute + Data
- Project membership realized by UNIX groups
 - User's primary group: jusers
 - User's secondary groups: list of project groups user is joined>
 - Files/directories created in project directory belongs to project group, realized by setGID bit:

drwxrws---

- !! Owner can overrule it !! (chown, rsync, cp -pR, ...)
- Project Quota accounted on directory base

USER DIRECTORY (HOME)

- Path: /p/home/juser/<userid>
- Small quota per user: 20 GB + 80.000 files
- Data is in Backup

Store your personal data (System profiles, SSH Key, ...)

- Separate HOME on each system, e.g. on JUDAC: \$HOME = /p/home/jusers/graf1/judac
- Link to **shared** folder

SCRATCH DIRECTORY

Compute Project

- Bandwidth optimized
 - JUST is capable of >300 GB/s
 - JURECA and JUWELS can achieve up to 200 GB/s by design
- Belongs to compute project
- Path: /p/scratch/<group>
 \$SCRATCH = /p/scratch/cjsc
- Temporary files, checkpointing
- Quota per group: 90 TB + 4 million files
- No Backup
- !!!Data deleted after 90 days without access!!!
- Empty directories are deleted after 3 days

HPST: CACHE LAYER FOR \$SCRATCH

Compute Project

- High Bandwidth & Low Latency, optimal for "hard" IO pattern like small random access
- Available on JUWELS, JURECADC and JUSUF
- Compute project proposal must point out it's requirements (depends on IO pattern)
- Path: /p/cscratch/fs/<group> → is a mapping to /p/scratch/<group>
 \$CSCRATCH = /p/cscratch/fs/cjsc
- Access realized by additional secondary group
- POSIX access (fuse) and native interface
- Quota per project: 20 TB (soft quota)
- Global namespace
- Data staging

to get access

Total	2110 TB	2064/1420 GB/s
JUSUF	230 TB	240/220 GB/s
JURECADC	844 TB	800/600 GB/s
JUWELS	1036 TB	1024/600 GB/s
Slize	size	Bandwidth

PROJECT REPOSITORY

Compute Project

- Data repository for the compute project
 - Path: /p/project/<group> e.g: \$PROJECT = /p/project/cjsc
- Default Quota: 16 TB / 3 Mio inodes (files)
- Data is backed up
- Lifetime depends on project time span | longterm storage/archiving can be realized by a data project

FASTDATA REPOSITORY

Data Project

- High Bandwidth (close to \$SCRATCH)
- Data project proposal must point out it's requirements for FASTDATA
- Path: /p/fastdata/<group> e.g: \$FASTDATA = /p/fastdata/zam
- Quota per group: as granted to project
- Data is backed up

LARGEDATA REPOSITORY

Data Project

- Separate storage cluster (XCST)
- High Capacity (disk based)
- Data project proposal must point out it's requirements for LARGEDATA

Repository Type: File System

- Path: /p/largedata[2]/<group>\$DATA = /p/largedata/zam
- Quota per group: as granted to project
- Data is backed up
- Data sharing to Community/World by VM (on request)

Repository Type: Object Storage

- Supported protocols: OpenStack Swift and S3
- Client environment on JUDAC available https://apps.fz-juelich.de/jsc/hps/just/object-storage.html
- Backup: TBD

ARCHIVE REPOSITORY

Data Project

- Filesystem consist of 2 tiers: disks (cache) and tapes (long term)
- Path: /p/arch[2]/<group>
 \$ARCHIVE = /p/arch/zam
- Archive your results
- Only available on login
- Quota per group: as g
- Data are in Backup
- Special rules:
 - Files > 7 days are migration candidate → moved to tape
 - Recall per file is expensive (1 minute mount time + 100 MB/s)
 - → use (zipped) tar balls > 1TB
 - Avoid renaming of directory structures (may trigger huge recalls)

FILESYSTEMS - SUMMARY

File System	Shell Variable	Description	Project Type	Characteristics
home	\$HOME	Users HOME File Systems		User Quota: 10GB/40.000 Files Files in Backup
project	\$PROJECT	Compute Project File System	Compute	Group Quota: 16TB/3Mio Files Files in Backup
scratch	\$SCRATCH	Compute Project Scratch File System	Compute	Group Quota: 90TB/4Mio Files Files deleted after 90 days
cscratch	\$CSCRATCH	Fast cache for scratch file system	Compute	Group Quota: 20TB Data staging required
fastdata	\$FASTDATA	High Bandwidth and large Capacity File System	Data	Group Quota: depends Files in Backup
largedata	\$DATA	Large Capacity (Disk based)	Data	Group Quota: depends Files in Backup
arch arch2	\$ARCHIVE	Archive File System (Tape)	Data	Group Quota: depends Files in Backup Migration to tape

JUDAC – JUELICH DATA ACCESS

Data access and transfer cluster

- All HPC user can login on judac: ssh <userid>@judac.fz-juelich.de
- Independent from HPC systems (e.g. in maintenance)
- Access to Jülich Object Storage: openStackClient
- Purpose: data transfer in & out the HPC filesystems
 - scp, rsync
 - Standard ssh setup can be used (connection must be initiated from external)
 - Use **screen** or **tmux** for long running data transfer
 - jutil
 - Grid Tools
 - UNICORE FTP (next slide)

DATA TRANSFER TO/FROM JÜLICH USING UNICORE

- Install client from <u>sourceforge</u> on your system (1x)
- Create client SSH key (1x)

```
[user@home ~]$ mkdir -p $HOME/.uftp
[user@home ~]$ ssh-keygen -a 100 -t ed25519 -f $HOME/.uftp/id_uftp
```

Prepare client environment (1x)

```
[user@home ~]$ export UFTP_USER=<your_remote_user_id>
[user@home ~]$ export UFTP_AUTH_URL=https://uftp.fz-juelich.de:9112/UFTP_Auth/rest/auth/JUDAC:
[user@home ~]$ export UFTP_KEY=$HOME/.uftp/id_uftp
```

• Copy public key to JUDAC (UNICORE server) (1x)

```
[user@home ~]$ ssh $UFTP_USER@judac.fz-juelich.de 'mkdir -p $HOME/.uftp'
[user@home ~]$ scp $HOME/.uftp/id_uftp.pub $UFTP_USER@judac.fz-juelich.de:.uftp/authorized_keys
```

Upload/download data

```
[user@home ~]$ uftp cp --user $UFTP_USER --identity $UFTP_KEY "file.tar" $UFTP_AUTH_URL/p/home/jusers/$UFTP_USER/jureca [user@home ~]$ uftp cp --user $UFTP_USER --identity $UFTP_KEY $UFTP_AUTH_URL/p/home/jusers/$UFTP_USER/juwels/file.tar .
```


DATA SHARING INSIDE JÜLICH HPC

Different use cases and solutions for sharing data between users:

1. Use compute project repository (\$PROJECT)

Any user can be joined to project without access to project's compute resources

2. Use data project

Members of different compute projects can join a common data project

3. Single files

All users can access common directory "\$SCRATCH/../share". Remember the automatic file deletion after 90 days!

4. Software project

Special data project which is mounted on compute nodes

HINTS & TIPS

- Create checksum on data files
- Restore files from backup: adsmback
 - available only on JUDAC
 - Calls IBM TSM Backup/Restore GUI
 - Hard to guaranty daily backup → snapshots available, eg: \$PROJECT/../.snapshots/daily-YYYYMMDD/<project>/
- Quota usage information: jutil
 - Project group quota info:
 jutil project dataquota -p project>
 - User quota info: jutil user dataquota -u <user>
- SSH/SCP usage
 - Multiple external (scripted) access can be classified as an attack
 - → Firewall will block external IP
- Take care of your files
 - No special characters in filenames (newline, tab, escape, ...)

AND FINALLY

- Filesystem status: https://status.jsc.fz-juelich.de/
- JUST web pages (e.g. FAQ) https://go.fzj.de/JUST
- JUDAC web pages (e.g. data transfer, object store) https://go.fzj.de/JUDAC
- Jülich HPC Usage Model: http://www.fz-juelich.de/ias/jsc/usage-model
- JuDoor manage accounts/projects, overview of resources, ... http://www.fz-juelich.de/ias/jsc/judoor
- For any problem (accessing files, access rights, restore, quota, data transfer, ...) contact JSC application support (sc@fz-juelich.de)
- If you want to optimize your application IO:
 - What is the access pattern?
 - Use IO libraries/formats HDF5, MPI-IO, SIONLIB, ...
 - Contact JSC application support (sc@fz-juelich.de)

