
INTRODUCTION TO SUPERCOMPUTING AT JSC
Andreas Smolenko Benedikt Steinbusch Alexandre Strube Max Holicki

Ilya Zhukov Jolanta Zjupa

21-24 November 2022

Introduction
Access

Getting a JSC account
Joining a compute time project
Login procedure
Checking System/Service Status
Further reading

Unix shell basics
Environment

Active project
File system points of interest
Further reading

So�ware Modules
Further reading

Custom so�ware
Compiled languages
Scripting languages

Transferring data
Download files from the web (supported only on login nodes!)
Transferring files and folders from/to cluster
Archiving files

Budgeting
Job Accounting
Data Quotas

Running jobs
Interactive mode
Batch mode
Affinity and multi-threading
Further reading
LLview - Detailed Job Reporting

Using GPUs

GPU Inspection During Execution
GPU Affinity
Network Architecture Study
Further reading

Useful Links
System Documentation
JSC Services
Job Reporting
Apply for Computing Time
Apply for a Data Project
JSC Course Programme
Supercomputing Support

INTRODUCTION
The largest computers used for computational science have exhibited an exponential
increase in the rate of basic operations they can perform since at least the 1990s. For
more than a decade, this growth has been enabled, not by increasing clock speeds of
individual processing units, but by assembling systems that consist of ever greater
numbers of processing units. Scientific applications that are meant to run on these
systems are expected to orchestrate many of these computational units to collaborate on
solving a given computational problem. Building these kinds of applications is called
parallel programming. Parallel programming will only be touched on briefly in this
course, but Jülich Supercomputing Centre (JSC) offers several courses that teach various
techniques related to the topic.

Scientists who want to run applications, be they custom made or third-party, on these
systems are expected to know how to use these systems. Working through this guide will
teach you how to

access the systems available at JSC,
navigate the file system,
find pre-installed so�ware,
build your own so�ware, and finally
run so�ware.

ACCESS
This chapter will teach you how to log in to one of the systems at JSC.

https://www.top500.org/statistics/perfdevel/
https://en.wikipedia.org/wiki/Dennard_scaling

Getting a JSC account
A basic prerequisite to get acces to the HPC system and other services at JSC is a JSC
account. If you do not already have an account (they have the form <family name>
<number>, e.g. steinbusch1), one can be created through JSC s̓ user portal JuDoor
(click the Register button).

Joining a compute time project
To be allowed to log in to an HPC system, your JSC account needs to be a member of a
computing time project that has an active budget on the system. This is the case if

you have successfully applied for test computing time for a test project and are now
the principal investigator (PI) of your own project, or
you have successfully applied for computing time during one of our calls for project
proposals and are now the principal investigator (PI) of your own project, or
you have gained access to a project either by being invited by the PI or project
administrator (PA) or by being granted access upon requesting to join a project
through JuDoor.

We have created a computing time project for this course with a project id of
training2230. To join the project, log in to JuDoor and click Join a project under the
Projects heading. Enter the project id and, if you want to, a message to remind the PI/PA
(one of the instructors) why you should be allowed to join the project. A�erwards the
PI/PA will be automatically informed about your join request and can add you to the
different systems available in the project. As soon as you are unlocked for the system, the
system entry will be shown on your JuDoor main page. You have to accept our Usage
Agreement before you can continue with the next step.

Login procedure
Logging in to our systems is usually done through the Secure Shell (SSH) mechanism,
although there are alternatives such as UNICORE and JupyterLab. Our SSH configuration
uses an authentication mechanism based on public and private keys rather than
passwords. A pair of public and private keys has to be generated on your personal
computer. The private key has to be protected by a passphrase. The public key is then
registered for access to the system through JuDoor.

NEVER SHARE YOUR PRIVATE KEY!!!

https://judoor.fz-juelich.de/
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/call-for-applications-for-test-projects-with-jsc-supercomputing-and-support-resources
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/apply-for-computing-time
https://judoor.fz-juelich.de/
https://en.wikipedia.org/wiki/Secure_Shell
https://www.unicore.eu/
https://jupyter-jsc.fz-juelich.de/

Several so�ware packages can be used for logging in through SSH. The procedure is
documented below for some popular choices:

OpenSSH which is a popular choice on GNU/Linux, macOS, and other Unix-like
operating systems
PuTTY which is a popular choice on Windows

Generating a key pair with OpenSSH

OpenSSH is a set of command line tools, so open up a terminal. We suggest you start by
creating a fresh pair of public and private key (a key pair). To generate a key pair enter the
command below. The program asks for a passphrase. This passphrase is not used for
authenticating to the remote system, but rather acts as an encryption key for the private
part of the key pair stored on the local file system. In case the private key file is stolen by
an attacker, they will not be able to use the key without knowing the passphrase, so make
sure to use one that is hard to guess.

$ ssh-keygen -a 100 -t ed25519 -f ~/.ssh/id_ed25519
Generating public/private ed25519 key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/bsteinb/.ssh/id_ed25519.
Your public key has been saved in /Users/bsteinb/.ssh/id_ed25519.pub.
The key fingerprint is:
SHA256:tHin8v4j4cyVVe2BEWAinq/vlhFExupY+37s94216uA bsteinb@zam478
The key's randomart image is:
+--[ED25519 256]--+
| .o+ o.o+. |
| . +oo |
| o+ . ..|
| =.o . .|
| = S.oo |
| . +o+o |
| .=oo+. .|
| o*+oo.. oo|
| .**+Eoo+o.|
+----[SHA256]-----+

If the designated output file (~/.ssh/id_ed25519) already exists, the program asks to
overwrite it. This is probably not what you want, since you might be using the key
contained therein. Change the output name by using the arguments -f
~/.ssh/id_ed25519_jsc instead of -f ~/.ssh/id_ed25519. If you do so, keep in
mind that your keys are in a non-default location for the remainder of the course.

Print the contents of the public key to the terminal by entering:

https://en.wikipedia.org/wiki/Password_strength

$ cat ~/.ssh/id_ed25519.pub
ssh-ed25519 AAAAC3NzaC1lZDI1N [...] 6BRJMTyE4voyqJGm36P+ bsteinb@zam478

and copy it to the clipboard (do not copy the key above, that one is mine, yours will be
different). Continue by uploading the public key to JuDoor.

Generating a key pair with PuTTY

Open puttygen.exe to generate a key pair. Select Ed25519 as the key type then click
Generate and follow the instructions of the program. Once the key has been generated,
enter a strong passphrase that cannot be guessed easily. This passphrase is used to
encrypt the key while it is stored on disk so that it cannot be used if it is stolen.

Click Save private key to save the private key to a .ppk file.

Now copy the contents of the field Public key for pasting into OpenSSH authorized_keys file to
the clipboard.

Key generation with PuTTY

Uploading the public key

Navigate to JuDoor and click on Manage SSH-keys next to the entry for the system you want
to use under the Systems heading. Paste the public key into the form in the field labeled

Your public key and options string, but do not submit yet. As a further security measure, you
have to specify the systems that your log in attempts will come from. This is done via an
additional from-clause on your public key, that can contain single IP-addresses and
address ranges as well as host names and even wildcard patterns based on either of these.

Specifying a from-clause is relatively easy if you have access to a system with a fixed IP-
address or an IP-address that changes dynamically, but comes from a range of addresses
that can be specified concisely. This is typically the case for systems which are connected
to university or research centre networks (even via VPN when working from home). For
example, systems connected to the network of Forschungszentrum Jülich will be assigned
an IP-address from the range 134.94.0.0/16, so a valid from-clause would be
from="134.94.0.0/16". Other institutions will use different address ranges, you
should be able to find these out from your institutions network operations centre.

Sometimes, patterns based on host names will work better than those based on IP
addresses. For example, Forschungszentrum Jülich assigns host names that end in either
fz-juelich.de or kfa-juelich.de, so a valid from-clause could also be
from="*.fz-juelich.de,*.kfa-juelich.de" (notice how multiple patterns can be
combined with a comma in between). Once again, the host names assigned by other
institutions will be different. To some extent, this scheme also works for home internet
access. Internet providers typically assign IP addresses dynamically drawing from
fragmented pools that are hard to specify completely in terms of address ranges, but they
o�en assign host names which follow a pattern that can be found out. The command
nslookup <your IP> will tell you the host name assigned to your system by the
provider (find out your IP either from the JuDoor key upload form or by asking a search
engine “what is my ip”). This host name might look something like 2909a2-
ip.nrw.provider.net. Chop name components off the beginning and replace them
with * to come up with a pattern, e.g. *.nrw.provider.net.

Add your from-clause in front of the public key you already pasted into the form. The
result should be something like:

from="134.94.0.0/16" ssh-ed25519 AAAA [...]

Then click Start upload of SSH keys. It will take some time for the key you uploaded to
JuDoor to be synched to the actual system. Eventually though, you will be able to log in.
Once again, we have instructions for

OpenSSH
PuTTY

Logging in with OpenSSH

To log in with OpenSSH, enter the following command:

$ ssh -i ~/.ssh/id_ed25519 <account name>@<system name>.fz-juelich.de

(Remember to change the location of the key ~/.ssh/id_ed25519 if you saved it to a
non-default location.) For example, if I wanted to log in to JUWELS Cluster it would be:

$ ssh steinbusch1@juwels-cluster.fz-juelich.de

The following table lists the host names of login nodes for the different systems. Pick the
one you want to use.

System Login node host name

JURECA DC jureca.fz-juelich.de

JUWELS Cluster juwels-cluster.fz-juelich.de

JUWELS Booster juwels-booster.fz-juelich.de

JUSUF jusuf.fz-juelich.de

When connection for the first time, OpenSSH will prompt you to confirm the server key
fingerprint:

The authenticity of host 'jusuf.fz-juelich.de (134.94.0.184)' can't be established.
ECDSA key fingerprint is SHA256:tuswM7JtVcWNS5wRCVIfv1h4uRHReHIN77C4zTYaPjs.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

JSC publishes SSH fingerprints for its systems through JuDoor. You can find them on the
page you used to upload your public key. Either compare the keys or, in newer versions of
OpenSSH, you can paste the fingerprint from JuDoor into the prompt to confirm it.

Then you should see an informational message (the message of the day, MOTD) followed by
a shell prompt similar to the following:

**
* Welcome to *
* _ _ ___ _______ _ ____ *
* | | | | \ \ / / ____| | / ___| Juelich Wizard *
* _ | | | | |\ \ /\ / /| _| | | ___ \ for *
* | |_| | |_| | \ V V / | |___| |___ ___) | European Leadership *
* ___/ ___/ _/_/ |_____|_____|____/ Science *
* *
**
 2020-11-19T14:00+0200
 ### Status information JUWELS ###

Known issues: https://apps.fz-juelich.de/jsc/hps/juwels/known-issues.html

https://dispatch.fz-juelich.de:8812/HIGHMESSAGES

**
steinbusch1@jwlogin01:~ $

Once you have logged in successfully, you can continue with Unix shell basics.

Logging in with PuTTY

Launch putty.exe to log in. Set the Host name for the system you want to connect to,
e.g. juwels-cluster.fz-juelich.de.

PuTTY session configuration

The following table lists the host names of login nodes for the different systems. Pick the
one you want to use.

System Login node host name

JURECA DC jureca.fz-juelich.de

JUWELS Cluster juwels-cluster.fz-juelich.de

JUWELS Booster juwels-booster.fz-juelich.de

JUSUF jusuf.fz-juelich.de

Navigate to Connection > SSH > Auth and under Private key file for authentication: select the
key you just generated.

PuTTY auth configuration

If you want to save this configuration, you can navigate back to the Session screen to give
the session a name and save it. Now click Open to connect. When you connect for the first
time, PuTTY will display a dialog like the following:

PuTTY security alert

This is not an error, but a security feature. The server key fingerprint displayed in the
dialog has to be verified by comparing it to the known good fingerprint. JSC publishes
SSH fingerprints for its systems through JuDoor. You can find them on the page you used
to upload your public key.

Once you have logged in successfully, you can continue with Unix shell basics.

JupyterLab

Alternatively, you can use JupyterLab to log in. The authentication credentials are the
same as for JuDoor. Once you have logged in, you need to create a JupyterLab instance by
clicking Add New JupyterLab. On the next screen you must select which system you want
to log in to, what project to use for accounting and what part of the system you want to log
in to (more about this later), login nodes are the right choice for the moment. Startup of
JupyterLab may take a while, but once it is done, you can launch a terminal running a
shell on the system of your choice inside the browser. To do so, click File > New > Terminal
and you should see a shell prompt similar to this:

[steinbusch1@jrl06 ~]$

Checking System/Service Status
I cannot log in, the system is slow — the root cause of many problems can be found by
checking the JSC status webpage. Here you will find up-to-date status information on the
services JSC provides, including upcoming planned maintenances. A trafficlight-colour
system is used to indicate the state of a system or service, with green systems functioning
as expected for most or all users. Yellow systems are degraded and this will impact many
users. Red systems are strongly degraded which will impact most or all users. Finally,
dark-red systems are unavailable. Do not fret that you see more systems than what you
have access to, this is a general landing page for all our systems.

Below our cluster systems you can find information on our storage systems/tiers. If you
cannot find files, a certain mount is unavailable or the system becomes unresponsive to
filesystem commands like ls this is the place to check. Even further down is the status of
the services JSC provides, like JuDoor or Jupyter-JSC. Finally there is the status of JSC-
support. Check here if you cannot reach JSC support or they do not respond in a timely
fashion, if there is no reported issue try contacting them again using a different mode of
communication, i.e. telephone or email. At the bottom of the page is a description of the
trafficlight icons.

You can get further information on the degradations of the systems and services by
clicking on any of the system names, filesystem names or services. Give it a try. There you
can also see older issues to help you diagnose problems that may have occured a couple of
days ago.

Further reading

https://jupyter-jsc.fz-juelich.de/
https://status.jsc.fz-juelich.de/

Our online documentation has more information on accessing the systems. It provides
further examples of from-clauses, discusses configuration of SSH clients to set up short-
cuts and gives hints for troubleshooting. If you want more details, you can find the
documentation for our various systems here:

JUWELS documentation: Access
JURECA documentation: Access
JUSUF documentation: Access

UNIX SHELL BASICS
Whether you log in via OpenSSH or PuTTY or opening a Terminal in JupyterLab, you will
be interacting with the system through a Unix shell. Unix shells are text based interfaces
that prompt the user to input commands and display the result of executing those
commands back to the user. The underlying concepts (the file system, executing
programs, etc.) are probably familiar to you, but the text based interface can seem
daunting at first. This section will teach you how to accomplish essential tasks on a Unix
shell. If you are already familiar with this kind of interface, you may want to skip ahead to
the section describing the environment.

Like many operating systems, Unix provides an abstraction for storage media called a file
system. Data of various types (text, images, executable code, etc.) is stored in files which
can be organized in a tree-like hierarchy of directories that starts at a single root (the “root
directory”). Objects in the file system (files or directories) are addressed using strings of
characters called “paths” that list the directories one has to traverse to get to an object
plus the objects name. The slash / serves as the separator between elements of a path and
cannot itself appear in file or directory names. Some examples for paths are:

/etc
/usr/bin/env
/home/bsteinb/Documents

These paths are all “absolute paths”, meaning, they describe the location of an objects in
relation to the root directory (which is represented by a single slash /):

etc is a directory that is found inside of the root directory
env is a file found in the directory bin which itself is found in the directory usr
inside the root directory
Documents is a directory in bsteinb which is a directory in home which is a
directory in the root directory

https://apps.fz-juelich.de/jsc/hps/juwels/access.html
https://apps.fz-juelich.de/jsc/hps/jureca/access.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/access.html
https://en.wikipedia.org/wiki/Unix_shell

Since absolute paths can become unwieldy in deep directory hierarchies, Unix also allows
relative paths. To this end, every program (including the shell you are using) is executed
in a “working directory” (which can be changed during the execution of the program).
Relative path specifications are then interpreted in relation to this working directory.
They are written without the initial slash /. Some examples for relative paths are:

Documents
bin/env
../etc/crontab

With a working directory of /usr, bin/env refers to /usr/bin/env, just like the
absolute path above. The path component .. above has a special function. It refers to the
parent (the containing directory) of a file system object and can appear in both relative
and absolute paths. So ../etc/crontab refers to a file crontab in a directory etc that
can be found in the parent directory of the current working directory.
/home/bsteinb/../janedoe/.bashrc can be simplified to
/home/janedoe/.bashrc.

To find out the current working directory of the shell you are using, type:

$ pwd

The output should be something like:

/p/home/jusers/steinbusch1/juwels

which is the “home directory” associated with your account on the system. To list the
contents of the working directory, execute the ls command:

$ ls

If you are working with a fresh user account, the output of this command might be empty,
because there are no files (or only hidden files) in your home directory. To make ls
display the hidden files as well, add the optional argument -a:

$ ls -a

The output should now be non-empty and contain files and directories with names that
start with the period .. In Unix, whether a file system item is hidden or not is determined
by the first character in its name being the period ..

ls -a is our first example of a more complex command invocation. It starts with the
name of a command (so far, we have seen pwd and ls) followed by a list of arguments
(here -a), all separated by spaces. ls can be used to list the contents of any directory, by
specifying the path of the directory in the last position. To list the items in the /etc
directory, type:

$ ls /etc

Most commands and the list of arguments they accept are documented in the Unix
manual pages. They can be accessed through a command – man – that takes as its only
argument the name of the manual page you want to read. For most commands there is a
manual page with the same name as the command. To read the manual page for ls, type:

$ man ls

You can scroll through the manual page using the arrow keys. When you are done
reading, close the manual by pressing q on the keyboard. To find manual pages for a
specific topic, you can use the apropos command which searches the library of manual
pages for a given keyword.

To change the working directory of your shell and all commands you invoke subsequently,
use the cd command:

$ cd /

This will take you to the root directory. If you now execute ls without specifying a path, it
should show you all items in the root directory, e.g.:

$ ls
arch bin dev gpfs lib media opt proc run selinux sys usr
arch2 boot etc home lib64 mnt p root sbin srv tmp var

Invoking cd without an argument takes you back to your home directory:

$ cd
$ pwd
/p/home/jusers/steinbusch1/juwels

Alternatively, the path to your home directory is also availably as the value of an
“environment variable”. Environment variables map names (strings) to values (also
strings) and can be seen as implicit input to commands while arguments on the command
line are explicit inputs. The name of the environment variable that contains the path to
your home directory is HOME. Its value can be inspected using the printenv command:

$ printenv HOME
/p/home/jusers/steinbusch1/juwels

The printenv command asks the environment for the value of the variable HOME (using
the getenv function) and prints it to the terminal. In some situations it makes sense, to
use the value of environment variables as explicit arguments to a command (e.g. if you
want to cd to the value of HOME). This is supported by a shell mechanism called “variable
expansion”: mention the name of a variable, prefixed by the dollar sign $ in a command

line and the shell will substitute the value of the variable and pass that as an argument to
the command:

$ cd $HOME
$ pwd
/p/home/jusers/steinbusch1/juwels

The env command can be used to inspect the environment. When invoked without any
arguments it prints a list of all variables currently defined and their values.

$ env
[...]
HOME=/p/home/jusers/steinbusch1/juwels
[...]

pwd, cd and ls let you navigate the file system. The following commands can be used to
make modifications to the file system. First is mkdir which allows you to make a
directory:

mkdir <directory_path>

To create an empty file at a given location, use:

touch <file_path>

In your home directory, create two directories and a file:

$ mkdir dir1 dir2
$ touch dir1/file1

You can use ls to confirm that you have created two directories next to each other, one of
which contains an empty file.

$ ls
dir1 dir2
$ ls dir1
file1
$ ls dir2

Files and directories can be moved, copied and deleted with the commands:

$ mv <source_path> <destination_path>
$ cp -r <source_path> <destination_path>
$ rm -r <path>

Make a copy of dir1 and check that it also contains file1.

$ cp -r dir1 dir3
$ ls dir3
file1

Move the copy of the file into dir2.

$ mv dir3/file1 dir2
$ ls dir2
file1
$ ls dir3

Finally, remove all three directories.

$ rm -r dir1 dir2 dir3
$ ls

Lastly, we will mention one way of editing text files: the nano editor. To open a file in
nano, type:

$ module load nano
$ nano <file_path>

(The module command will be explained in detail later on.)

To insert something into the file, just start typing. Save your changes by pressing CTRL-O.
Exit the editor by pressing CTRL-X. The bottom part of the terminal will display more
functions which can be reached using certain key bindings. Interaction with the editor,
such as specifying a file name when saving, will also happen here.

ENVIRONMENT
Now that you know about the basic Unix commands, this section will teach you about
some of the peculiarities of the environment on the systems at JSC.

Active project
The first point to talk about is the active project. You already know about accounts and
computing time projects and by this point you should be a member of at least one project
to have access to one of our systems. However, in general, a single user account can be a
member of multiple computing time (“C”) projects (and also data projects (“D”)) at the
same time. You can see the projects that you are currently a member of in your user
profile on JuDoor, or, if you are logged in to one of the HPC systems, you can use the
jutil command:

$ jutil user projects
 project unixgroup PI-uid project-type budget-accounts
------------ ------------ ----------- ------------ ---------------
 hello hello hellopi1 D -
 chello chello hellopi1 C hello
 training00 training00 coach2 C training00

Certain system resources, like file system space and compute time, are associated with
the projects that you are a member of. Performing actions that consume these resources,
storing files or running a computation, have to be counted against the resource pool
available to the project. This is done by storing files in certain locations or specifying a
compute time budget when running computations. It is possible to explicitly specify a
project, each time one of these actions is performed. For brevity s̓ sake, one can also
make one of the projects the “active project” and then all actions performed in the
remainder of the session will implicitly be performed in the context of that project. This
can also be done through the jutil command:

$ jutil env activate -p training2230 -A training2230

Now training2230 is the active project. Any computational jobs will be accounted
against its budget and the special file system locations associated with it can be reached
through certain environment variables. More about that in the next section.

Hint: In case you are working on different compute budgets we recommend to set the
budget explicitly as it is described later in the document to avoid using the “wrong”
budget for a specific simulation job.

File system points of interest
Every user account on the systems has a home directory (reachable through the HOME
environment variable) where the user can store his personal files. However, there is a
limit on the volume of data and also the number of files that can be stored in this
directory. Furthermore, the file system performance in HOME is reduced. It is
recommended to use HOME only for configuration files. More storage space is granted to
computing time projects. At least two directories are created for each project:

a PROJECT directory, that can store medium amounts of data, offers modest
performance and is backed up regularly, and
a SCRATCH directory, that offers high I/O bandwidth, should be used for input and
output of computations (however, no back up is performed and files that have not
been touched in 90 days get deleted automatically).

Data projects have access to other storage locations, e.g. the tape based ARCHIVE for long
term storage of results.

The path of these directories is available as the value of environment variables of the
form <directory>_<project>, e.g. PROJECT_training2230 or
SCRATCH_training2230. If you have activated a project in the previous section, you

will also have environment variables that are just PROJECT and SCRATCH that point to the
respective directories of the active project.

Print the contents of PROJECT_training2230 and PROJECT:

$ printenv PROJECT_training2230
/p/project/training2230
$ printenv PROJECT
/p/project/training2230

Change into that directory and see what is already there:

$ cd $PROJECT_training2230
$ ls

Inside the PROJECT directory, make a directory to contain the files that you work on. In
order to avoid collisions, use your account name as the name of the directory (the USER
environment variable contains your user name):

$ mkdir $USER

There is more information on file system points of interest in the documentation.

Further reading
Our online documentation has more information on the system environment. It describes
further file systems covering more specialised use cases and discusses transferring files
to and from the systems via SSH and Git. If you want more details, you can find the
documentation for our various systems here:

JUWELS documentation: Environment
JURECA documentation: Environment
JUSUF documentation: Environment

SOFTWARE MODULES
HPC centres will usually make some effort to provide so�ware that is commonly used for
scientific purposes. This includes compilers, parallel programming libraries like MPI,
numerical libraries, and even complete simulation programs. These so�ware packages
form a hierarchy of dependencies (simulation programs use the numerical and parallel
programming libraries and all of it is compiled with a certain compiler). Towards the
bottom of this hierarchy, packages tend to be interchangeable (several compilers for C or
Fortran, several libraries implement the MPI standard) and some of the higher up
packages perform better for example when compiled with a certain compiler. Therefore,

https://apps.fz-juelich.de/jsc/hps/judac/faq.html
https://apps.fz-juelich.de/jsc/hps/juwels/environment.html
https://apps.fz-juelich.de/jsc/hps/jureca/environment.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/environment.html

it makes sense to offer a range of so�ware packages that implement low level functions
and then build a so�ware landscape upon each combination of those low level packages.
The two lowest levels in this hierarchy, compiler and MPI library together form a
“toolchain”. To help keep the complexity of accessing these different collections of
so�ware in check, JSC uses a combination of EasyBuild and Lmod to build so�ware and
make it available as so�ware modules. During a log in session, modules can be loaded
and unloaded using the module command to use the so�ware that is provided by them.
When you log in, a set of default modules is loaded for you, e.g. on JUWELS:

$ module list

Currently Loaded Modules:
 1) GCCcore/.9.3.0 (H) 3) binutils/.2.34 (H)
 2) zlib/.1.2.11 (H) 4) StdEnv/2020

 Where:
 H: Hidden Module

To see what other modules can currently be loaded, type:

$ module avail

-------------------------- Core packages ---------------------------
 Advisor/2020_update3
 Autotools/20200321
 Autotools/20200321 (D)

 [...]

 unzip/6.0
 xpra/4.0.4-Python-3.8.5
 zsh/5.8

---------------------------- Compilers -----------------------------
 GCC/9.3.0 NVHPC/20.9-GCC-9.3.0 (g)
 Intel/2020.2.254-GCC-9.3.0 NVHPC/20.11-GCC-9.3.0 (g,D)
 NVHPC/20.7-GCC-9.3.0 (g) NVHPC/21.1-GCC-9.3.0 (g)

----------------- User-based install configuration -----------------
 UserInstallations/easybuild

 Where:
 S: Module is Sticky, requires --force to unload or purge
 g: built for GPU
 L: Module is loaded
 Aliases: Aliases exist: foo/1.2.3 (1.2) means that "module load foo/1.2" will load
foo/1.2.3
 D: Default Module

Use "module spider" to find all possible modules and extensions.

https://easybuild.readthedocs.io/
https://lmod.readthedocs.io/

Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

The available modules are grouped into categories:

Core packages, which are independent of the choice of toolchain
Compilers, which are the first ingredient of a toolchain
Archictectures, that can be used to load so�ware for different processor
architectures, this category does not exist on all systems

Go ahead and load a compiler:

$ module load GCC

If you now run module avail again, you will notice two additional so�ware categories:

$ module avail

------------- MPI runtimes available for GNU compilers -------------
[...]

--------------- Packages compiled with GNU compilers ---------------
[...]

These contain modules that depend on (or were built with) the GCC module that you just
loaded. Loading one of the available MPI modules will complete your choice of a
toolchain and make more so�ware available:

$ module load OpenMPI
$ module avail

------------------------- OpenMPI settings -------------------------
 mpi-settings/CUDA-low-latency mpi-settings/CUDA (L,D)

--------- Packages compiled with OpenMPI and GCC compilers ---------
[...]

If you are looking for a particular piece of so�ware that you know the name of, rather
than rummaging through all the toolchains, you can use the module spider
subcommand, as the output of module avail suggests:

$ module spider LAMMPS

--
 LAMMPS:
--
 Description:
 LAMMPS is a classical molecular dynamics code, and an acronym for
 Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has
 potentials for solid-state materials (metals, semiconductors) and

 soft matter (biomolecules, polymers) and coarse-grained or mesoscopic
 systems. It can be used to model atoms or, more generically, as a
 parallel particle simulator at the atomic, meso, or continuum scale.
 LAMMPS runs on single processors or in parallel using message-passing
 techniques and a spatial-decomposition of the simulation domain. The
 code is designed to be easy to modify or extend with new
 functionality.

 Versions:
 LAMMPS/24Dec2020-CUDA
 LAMMPS/24Dec2020
 LAMMPS/29Oct2020-CUDA
 LAMMPS/29Oct2020

--
 For detailed information about a specific "LAMMPS" package (including how to load the
modules) use the module's full name.
 Note that names that have a trailing (E) are extensions provided by other modules.
 For example:

 $ module spider LAMMPS/29Oct2020
--

Loading the LAMMPS module with OpenMPI loaded fails:

$ module load LAMMPS
Lmod has detected the following error: These module(s) or
extension(s) exist but cannot be loaded as requested: "LAMMPS"
 Try: "module spider LAMMPS" to see how to load the module(s).

module spider with a specific module version provides details on how the module can
be loaded:

$ module spider LAMMPS/24Dec2020

--
 LAMMPS: LAMMPS/24Dec2020
--
 Description:
 LAMMPS is a classical molecular dynamics code, and an acronym for
 Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has
 potentials for solid-state materials (metals, semiconductors) and
 soft matter (biomolecules, polymers) and coarse-grained or mesoscopic
 systems. It can be used to model atoms or, more generically, as a
 parallel particle simulator at the atomic, meso, or continuum scale.
 LAMMPS runs on single processors or in parallel using message-passing
 techniques and a spatial-decomposition of the simulation domain. The
 code is designed to be easy to modify or extend with new
 functionality.

 You will need to load all module(s) on any one of the lines below before the

"LAMMPS/24Dec2020" module is available to load.

 GCC/9.3.0 ParaStationMPI/5.4.7-1
 Intel/2020.2.254-GCC-9.3.0 ParaStationMPI/5.4.7-1

 Help:
 Description
 ===========
 LAMMPS is a classical molecular dynamics code, and an acronym
 for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has
 potentials for solid-state materials (metals, semiconductors) and soft matter
 (biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be
 used to model atoms or, more generically, as a parallel particle simulator at
 the atomic, meso, or continuum scale. LAMMPS runs on single processors or in
 parallel using message-passing techniques and a spatial-decomposition of the
 simulation domain. The code is designed to be easy to modify or extend with new
 functionality.

 More information
 ================
 - Homepage: https://lammps.sandia.gov/
 - Site contact: a.kreuzer@fz-juelich.de

The problem is that LAMMPS is only available in toolchains which include
ParaStationMPI. It is not necessary to reload the entire toolchain, it is enough to reload
the MPI runtime:

$ module load ParaStationMPI
$ module load LAMMPS

Specific modules can be unloaded again using the module unload command. To unload
(almost) all modules and start with a fresh environment, use module purge.

The module command is part of the Lmod so�ware package. It comes with its own help
document which you can access by running module help and a user guide is available
online.

The JUWELS system is special in terms that it consist of multiple system modules (as
opposed to so�ware modules) based on different compute technologies. The so�ware we
provide on JUWELS is also split into different hierarchies, one per system module. As
JUWELS uses different login nodes for the different system modules (Cluster and
Booster), the correct so�ware collection is loaded automatically based on which login
node you use.

Further reading

https://lmod.readthedocs.io/

Our online documentation has more information on so�ware modules. It lists the basic
tool chains (compiler + communication library + math library) available on our systems
and discusses using older so�ware stages. If you want more details, you can find the
documentation for our various systems here:

JUWELS documentation: So�ware Modules
JURECA documentation: So�ware Modules
JUSUF documentation: So�ware Modules

CUSTOM SOFTWARE
For some, the so�ware that is made available via the module system is enough to do their
daily work. Others will want to bring their own so�ware to the systems. This chapter will
teach you how to run so�ware distributed as source code for both compiled programming
languages and scripting languages.

Compiled languages
For the three most common compiled languages in scientific computing, C, C++, and
Fortran, the basic workflow is very similar. Open the file hellompi.c in the nano editor
(or a different editor of your choice). (nano is available as a module, if you want to use it,
type module load nano.)

$ nano hellompi.c

Paste the following listing into the file, save and close the editor.

Once you have a compiler and an MPI library loaded (e.g. module load GCC
OpenMPI), the file can be compiled as follows:

$ mpicc -std=c11 -o hellompi hellompi.c

#include <stdio.h>
#include <mpi.h>

int main(int argc, char* argv[]) {
 MPI_Init(&argc, &argv);

 int r, s;
 MPI_Comm_rank(MPI_COMM_WORLD, &r);
 MPI_Comm_size(MPI_COMM_WORLD, &s);
 printf("hello from process %d of %d\n", r, s);

 MPI_Finalize();
}

https://apps.fz-juelich.de/jsc/hps/juwels/software-modules.html
https://apps.fz-juelich.de/jsc/hps/jureca/software-modules.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/software-modules.html

We will explain how to run the program in a later chapter.

A lot of so�ware is not compiled and installed by invoking the compiler directly, but by
using a build system. GNU make is installed from the operating system package sources
and GNU autotools as well as CMake are available as modules. More exotic build
systems are also available, as are compilers for other languages like Go or Rust.

Scripting languages
Scripting languages have become more popular in scientific computing recently. Modules
are available for Python and Julia.

Python

The Python interpreter can be loaded as a module as well as the mpi4py package that
allows you to use MPI from your Python programs.

$ module load Python mpi4py

Edit a file hellompi.py:

($ module load nano)
$ nano hellompi.py

And paste the following content into it, then save and exit the editor.

We will explain how to run the program in a later chapter.

More Python packages are available as modules. For scientific computing, the SciPy-
Stack collection is especially interesting.

TRANSFERRING DATA
With increasing supercomputer performance the data produced through simulation
increases. Data management needs to be considered for every compute time project. In
some workflows it could be necessary to get access to storage technology with improved
IO bandwidth. At JSC there are several storage technologies serving different needs.
Access is granted for some of the storage technologies through application for a data

from mpi4py import MPI

r = MPI.COMM_WORLD.rank
s = MPI.COMM_WORLD.size

print(f"hello from process {r} of {s}")

https://apps.fz-juelich.de/jsc/hps/just/faq.html#what-file-system-to-use-for-different-data
https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects

project which can be submitted at any time. For large data transfers to or from the
supercomputer infrastructure at JSC the system JUDAC with the address judac.fz-
juelich.de delivers maximal bandwidth performance.

Download files from the web (supported only on login nodes!)
wget is a simple file downloader that allows downloading files using HTTP, HTTPS, and
FTP protocols. wget supports a number of options allowing to download multiple files,
resume downloads, limit the bandwidth, recursive downloads, download in the
background, etc.

Here is the typical syntax

$ wget <url link to the file>

Transferring files and folders from/to cluster

scp

scp allows to copy files over a secure, encrypted network connection. As scp command
uses SSH to transfer data, it requires a password for authentication.

Copy file to the cluster

[from your laptop] $ scp [options] /path/to/file/filename <account name>@<system
name>.fz-juelich.de:/path/where/to/copy

Download file from the cluster

[from your laptop] $ scp [options] <account name>@<system name>.fz-
juelich.de:/path/to/the/file /path/where/to/save

To recursively copy a directory, use the -r (recursive) option.

rsync

If you already experienced with scp, you can test rsync. The rsync utility provides
many advanced features for file transfer.

The syntax is similar to scp. Here is an example of file transfer to the cluster with
commonly used options

[from your laptop] $ rsync -avzP /path/to/file/filename <account name>@<system name>.fz-
juelich.de:/path/where/to/copy

https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects
https://www.fz-juelich.de/en/ias/jsc/systems/storage-systems/judac

Download file from the cluster

[from your laptop] $ rsync -avzP <account name>@<system name>.fz-
juelich.de:/path/to/the/file /path/where/to/save

Where * -a (archive) preserves the date and times, and permissions of the files; * -v
(verbose) option gives verbose output to help monitor the transfer; * -z (compression)
option compresses the file during transit to reduce size and transfer time; * -P
(partial/progress) option preserves partially transferred files in case of an interruption
and also displays the progress of the transfer.

SSHFS

SSHFS allows you to mount a remote filesystem using SFTP.

To mount a remote filesytem you can do the following

Make sure that SSHFS is installed on your local machine, e.g.

[from your laptop] $ which sshfs

Output will show where SSHFS is installed. If the result is empty, you need to install it (or
tell the shell which directories to search for executable files).

Create a directory which will be your mounting point

[from your laptop] $ mkdir <mountpoint>

To mount remote directory

[from your laptop] $ sshfs <account name>@<system name>.fz-juelich.de:/path/to/directory
/path/to/mounting/point

To unmount the filesystem

[from your laptop] $ fusermount -u <mountpoint>

On BSD and macOS, to unmount the filesystem

[from your laptop] $ umount <mountpoint>

Alternatives

On Windows you can use various clients, e.g. WinSCP, FileZilla, PuTTY, etc.
UFTP (UNICORE FTP) is a file transfer tool similar to Unixʼ FTP. Its main features
include high-performance file transfers from client to server (and vice versa), list
directories, make/remove files or directories, sync files and data sharing. In

https://github.com/libfuse/sshfs
https://winscp.net/eng/download.php
https://filezilla-project.org/
https://apps.fz-juelich.de/jsc/hps/judac/uftp.html

addition, users can easily share their data even with users who do not have Unix-
level access to the data.
GridFTP is an extension of FTP used within large science projects. It includes
features like parallelized FTP streams, fault tolerancy, download of portions of data
and authentication and encryption for file transfers.

Archiving files
One of the biggest problems we o�en encounter when transferring data between remote
HPC systems is the transfer of large numbers of files. There is an overhead involved in
transferring each individual file, and when transferring a large number of files, this
overhead in combination slows down the data transfer dramatically.

This issue can be solved by archiving multiple files into a smaller number of larger files
before transferring the data. It is also possible to combine archiving with compression to
reduce the amount of data we need to transfer, thereby speeding up the transfer. This can
be done for example with tar utility.

Here is an example of archiving all data from a specific directory

$ tar -cvf <achive name>.tar /path/to/data/to/be/archived

Extract data from the archive

$ tar -xvf <achive name>.tar

Where * -c (create) create new archive; * -v (verbose) option gives verbose output to help
monitor the archiving process; * -f (file) filename of the archive; * -x (extract) extract
files from an archive.

To create a compressed archive using tar we add the -z option and add the .gz
extension to the file to indicate it is compressed

$ tar -czvf <achive name>.tar.gz /path/to/data/to/be/archived

Please note that data compression and decompressing can take longer than transferring
the un-compressed data.

The extract compressed files from the archive you can use the same way as for
uncompressed data as tar recognizes it is compressed and decompresses and extracts at
the same time.

$ tar -xvf <achive name>.tar.gz

https://apps.fz-juelich.de/jsc/hps/judac/gridftp.html
https://en.wikipedia.org/wiki/File_Transfer_Protocol

BUDGETING
There is a large amount of users involved in using supercomputing resources. In the
application phase it is made sure that they are in need of this amount of computing
resource. Would we let everyone use all the resources, monopolizing of the compute time
and/or data storage capabilities would be quickly happening. With budgeting this fate is
prevented. There are budgets on compute time, the amount of data and the number of
files stored. This ensures that every user can use a portion of the supercomputing
facilities at JSC.

Job Accounting
Each computing time project has been granted a certain amount of compute time (core
hours) on an HPC system. This budget is split monthly over the runtime of a project so
that a regular project that runs for 12 months has 1/12 of the total amount of the granted
core-h available each month. To allow further flexibility we have established a “3-month-
window”: Core hours that have not been used in the previous month can be used in the
current month and will be lost in the next month if they are not used in the current
month. Whereby in the current month you can also use the quota of the next month but
with a decreased priority of the submitted jobs. The priority will be further decreased if
you have used up even the quota of the next month.

Users are charged for complete nodes they occupy, regardless of the number of CPUs
used since the requested compute nodes for your application are not shared among users.
The comute time used for one job will be accounted by the following formula: #nodes *
#AvailableCoresPerNode * walltime.

Jobs that run on nodes equipped with GPUs are charged in the same way. Independent of
the usage of the GPUs the available cores on the host CPU node are taken into account.

Detailed information of each job can be found in KontView which is accessible via the
button ʻshow extended statisticsʼ for each project in Judoor.

Alternatively, you can execute the following command on the login nodes to query your
CPU quota usage: jutil user cpuquota. Further information can be found in the
“Accounting” chapter of the corresponding System Documentation.

Data Quotas
There are limitations on the amount of data and the number of files on each file system.
The usage of the data within a project is visualized in JuDoor. Following the links within

https://judoor.fz-juelich.de/projects/training2230/
https://apps.fz-juelich.de/jsc/hps/just/faq.html#what-data-quotas-do-exist-and-how-to-list-usage
https://judoor.fz-juelich.de/login

JuDoor to KontView, more detailed statistic on the data usage are visualized.

Applications for a data project, giving access to other data storage facilities than PROJECT
or SCRATCH of the compute time projects, can be submitted according to the information
here. Applications for data projects are processed in a rolling manner. Therefore, you can
apply at any point should you see the need during a compute time project for such a data
project.

RUNNING JOBS
Up to now, you have been working on the log in nodes of the system. These nodes are set
aside for working interactively on tasks that are needed to prepare your computations,
such as compiling your applications, moving input data into place, and writing
configuration files for your programs. Since the number of log in nodes for each system is
small and they are shared between all users, we ask you to keep the resource
consumption on these systems as low as possible. Building so�ware should be restricted
to using only a few processes in parallel, simulations and post-processing jobs should be
run on the compute nodes. Use the who command to see who else is logged in to the log in
node you are currently using:

$ who
steinbusch1 pts/71 2021-03-11 09:51 (pool-148-54.vpn.kfa-juelich.de)
[...]
$ who | wc -l
59

Unlike the log in nodes, users are not given free access to the compute nodes at any time.
Instead they form a pool of resources managed by the resource manager so�ware. Due to
our collaboration with the company Partec we use “psslurm” which is based on Slurm and
optimized for our systems to manage these resources. To run a computation on the
compute nodes, you have to specify to the resource manager what amount of resources
you need and for which duration. Once the resources have become available, you will be
allowed to execute programs on them. Two modes of operation are possible:

interactive mode where programs can be run on the allocated resources from a
shell, possibly repeatedly, and
batch mode where a shell script describing the commands to run as part of a
computation is handed off to the resource manager for asynchronous execution.

Interactive mode

https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects
https://www.par-tec.com/
https://slurm.schedmd.com/documentation.html

One-shot

The srun command is used to execute commands on a set of allocated resources. If no
resources are currently allocated, srun can infer from its command line arguments what
resources are needed, request them from the resource manager and defer the execution
of the associated commands until the resources are available. A�er the associated
commands have been run, the resources are relinquished and running further
commands will have to ask for resources again. This one-shot mode can be useful when
you want to interactively run a few quick jobs with varying sets of resources allocated for
them. Run the hostname command to see how srun will run commands on different
nodes than the log in nodes. On JURECA and JUSUF, use this command (Important: do
not forget to replace YYYYMMDD, where YYYY and MM and DD are the current year and
month and day in the Gregorian calendar, e.g. 20221122):

$ hostname
jrlogin09.jureca
$ srun -A training2230 --reservation hands-on-YYYYMMDD hostname
srun: job 3472578 queued and waiting for resources
srun: job 3472578 has been allocated resources
jrc0454

For the JUWELS Cluster and JUWELS Booster, there are a few differences: The name of
the reservation on JUWELS Cluster is hands-on-cluster-YYYYMMDD and hands-on-
booster-YYYYMMDD on JUWELS Booster. To submit to JUWELS Cluster, you want to be
logged in to the Cluster login nodes:

$ hostname
jwlogin02.juwels
$ srun -A training2230 --reservation hands-on-cluster-YYYYMMDD hostname
srun: job 9792359 queued and waiting for resources
srun: job 9792359 has been allocated resources
jwc06n213.juwels

To submit to JUWELS Booster, you want to be logged in to the Booster login nodes and you
have to specify the number of GPUs you want to use

$ hostname
jwlogin24.juwels
$ srun -A training2230 --reservation hands-on-booster-YYYYMMDD --gres gpu:4 hostname
srun: job 4575092 queued and waiting for resources
srun: job 4575092 has been allocated resources
jwb0053.juwels

Please keep these differences in mind if you are using JUWELS Booster, they will not be
repeated in further examples.

Invocations of the srun command have the following syntax:

$ srun <srun options...> <program> <program options...>

Above we have seen four srun options:

-A (short for --account) to charge the resources consumed by the computation to
the budget allotted to this course (if you have used jutil env activate -A
training2230 earlier on, you do not need this)
--reservation to use nodes which have been set aside for this course. For this
course we have active reservations for the following systems: JURECA, JUWELS
Cluster, JUWELS Booster and JUSUF. For JURECA and JUSUF use the following
reservation: hands-on-YYYYMMDD. To work on JUWELS Cluster or Booster
modules, you have to use hands-on-cluster-YYYYMMDD or hands-on-
booster-YYYYMMDD respectively. Do not forget to replace YYYYMMDD, where YYYY
and MM and DD are the current year and month and day in the Gregorian calendar,
e.g. 20221122.
--partition specifies which set of compute nodes to request resources from. We
typically group nodes of the same hardware type into a partition.
--gres specifies additional resources, other than compute nodes, in this case the
presence of four GPUs in the compute nodes.

For the <program> we used hostname with no arguments of its own.

To run more parallel instances of a program, increase the number of Slurm tasks using
the -n option to srun:

$ srun --label -A training2230 --reservation hands-on-cluster-YYYYMMDD -n 10 hostname
srun: job 3472812 queued and waiting for resources
srun: job 3472812 has been allocated resources
8: jwc00n002.juwels
9: jwc00n002.juwels
0: jwc00n002.juwels
1: jwc00n002.juwels
6: jwc00n002.juwels
3: jwc00n002.juwels
5: jwc00n002.juwels
2: jwc00n002.juwels
7: jwc00n002.juwels
4: jwc00n002.juwels

If you do not tell Slurm that your commands are multi-threaded (hostname is not), it will
assume each task only needs a single CPU core and pack as many as possible into a node.
Note also the --label option to srun which prefixes every line of output by a number
that identifies the task that generated the output.

Running more tasks than will fit on a single node will allocate two nodes and split the
tasks between nodes:

$ srun --label -A training2230 --reservation hands-on-cluster-YYYYMMDD -n 100 hostname
srun: job 3473040 queued and waiting for resources
srun: job 3473040 has been allocated resources
 0: jwc00n007.juwels
[...]
50: jwc00n008.juwels
[...]

Allocations always contain entire nodes exclusively. So your jobs should request a number
of tasks that is divisible by the number of tasks which can fit on a node to avoid losing
parts of your budget.

You can now also use srun to run the hellompi program introduced in the previous
section on deploying custom so�ware:

$ srun -A training2230 --reservation hands-on-cluster-YYYYMMDD -n 5 ./hellompi
srun: job 3471349 queued and waiting for resources
srun: job 3471349 has been allocated resources
hello from process 4 of 5
hello from process 0 of 5
hello from process 3 of 5
hello from process 1 of 5
hello from process 2 of 5

Interlude: Partitions

The systems at JSC typically provide more than one pool of resources, called partitions.
The resources in the different partitions might have different hardware characteristics or
cater to different use cases.

The previous examples were run on the default partition of the system you are using,
batch on JUWELS Cluster and JUSUF Cluster, booster on JUWELS Booster and dc-cpu
on JURECA. You can find out what partitions the different systems have in the
documentation for JURECA, JUWELS, and JUSUF.

Of particular interest are the development partitions on each system (look for devel in
their name). These consist of a small number of nodes which are set aside to prioritise
small and short jobs which are typically run as part of development work on your
application rather than production use of the system.

Try running the previous two examples using hostname on the development partition of
your system by specifying it through srun s̓ -p option. Remove the --reservation
option, because the reservation does not include nodes from the development partition.

https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html#slurm-partitions
https://apps.fz-juelich.de/jsc/hps/juwels/batchsystem.html#slurm-partitions
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/batchsystem.html#slurm-partitions

We will have a look at other partitions later.

Interactive allocation

If, instead of requesting resources anew everytime you want to run a command on the
compute nodes, you want to hold on to a specific set of resources and quickly dispatch a
series of commands to run on them, you can use the salloc command in combination
with srun. To do so, you specify the amount of resources you will need for your
computations when calling salloc. salloc will request these resources from the
resource manager and block until they are available. Then it will launch a new shell for
you from which you can call srun, possibly multiple times, to dispatch commands onto
the allocated resources.

In the previous section you took a task-centric approach to requesting resources by using
the -n command line argument to srun to specify a number of tasks you want to run.
This approach also works with salloc – in fact the way you specify resources is mostly
the same between all different modes Slurm supports. However, since the number of CPU
cores is always rounded up to the next multiple of the number of CPU cores in a single
node, it might make sense to take a hardware centric approach to requesting resources.
Using the -N command line argument, you can request a number of nodes from the
resource manager (remember to specify --gres gpu:4 for JUWELS Booster):

$ salloc -A training2230 --reservation hands-on-cluster-YYYYMMDD -N 1
salloc: Pending job allocation 3475519
salloc: job 3475519 queued and waiting for resources
salloc: job 3475519 has been allocated resources
salloc: Granted job allocation 3475519
salloc: Waiting for resource configuration
salloc: Nodes jwc00n014 are ready for job
$

At the new shell prompt, you can use srun to run commands without having to specify
resources again:

$ srun hostname
jwc00n014.juwels

By default, Slurm assumes that your program is single-threaded, but still only launches
one task per allocated node. This can be changed by specifying the CPUs per task with the
-c argument.

$ srun -c 1 hostname
jwc00n014.juwels
[...]
jwc00n014.juwels

If you want to run several commands on a node without having to go through srun each
time, you can use srun to launch a shell on the node:

$ srun --pty --cpu-bind=none /bin/bash
$ hostname
jwc00n014.juwels
$ exit

When using srun in one-shot mode, your account is charged for the time it takes to run
the associated command. With salloc your account is charged for the duration of time
you spend in the shell launched by salloc (and commands launched by that shell). Once
you are done with the allocated resources, do not forget to exit from the shell:

$ exit
salloc: Relinquishing job allocation 3475519
salloc: Job allocation 3475519 has been revoked.
$ printenv SLURM_JOB_ID
$

If the printenv SLURM_JOB_ID prints a number, then you are still inside the
allocation.

Batch mode
If the system is relatively quiet and you are asking for a small amount of resources (or
working on the devel partitions), salloc or one-shot srun should allow you to work
with the system more or less interactively. Large production jobs on the other hand might
have to wait an uncomfortably long time for resources and so running them interactively
is not really convenient. Imagine you salloc a large number of nodes and while you wait
you decide to go have lunch. If the allocation comes through while you are away you will
still be charged for the resources even if they idle.

Also, if the systems were only used interactively, resource utilization would drop off in the
late hours of the evening and ramp up in the mornings.

To enable better resource utilization and allow users to schedule jobs asynchronously,
Slurm offers a batch mode through the sbatch command. It too requests resources from
the resource manager, but unlike salloc which presents you with an interactive shell
prompt from which you can call srun, sbatch runs commands from a shell script (the
“job script”) without needing user intervention. The resources can be specified as
command line arguments to sbatch, same as with salloc and srun, but can also be
described in the job script. Open a new shell script in the editor:

($ module load nano)
$ nano testjob.sh

And enter the following script:

Remember to specify gpu:4 gres for JUWELS Booster.

Then save the script and submit it for execution with:

$ sbatch testjob.sh
Submitted batch job 3476793

A�er the first line (the shebang line) the script contains specially formatted comments
that act like arguments to sbatch. These arguments are written in their long form.
Previously, you used the short form (e.g. -N is the same as --nodes). A�er the block of
comments come regular shell comands. Inside the job script, we use the module
command to make the so�ware modules needed by the job programs available (here the
compiler with its runtime libraries and an MPI library). The tasks are once again created
using the srun command which works the same as before.

The job created by sbatch has to wait in a queue until the necessary resources become
available. Use the squeue command to inspect the queue:

$ squeue -u $USER
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3476793 batch testjob. steinbus PD 0:00 2 (Priority)

You might have to wait for a while, but eventually your job will be run. While your job is
pending in the queue or already running you can execute another command to retrieve
further information about your job:

$ scontrol show job <JOBID>

Once it is running, you will find two files next to the job script, mpi-err.XXXXXXX and
mpi-out.XXXXXXX where X are decimal digits. These contain what was written to the
standard error and output streams by your job. Should you need access to the hardware

#!/bin/bash
#SBATCH --account=training2230
#SBATCH --reservation=hands-on-cluster-YYYYMMDD
#SBATCH --nodes=2
#SBATCH --cpus-per-task=1
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:05:00

module load GCC ParaStationMPI

srun ./hellompi

during job execution check out the sgoto --help command to log into a compute node
during job execution.

Affinity and multi-threading
Computers today are typically equipped with multi-core CPUs which can work on
multiple streams of instructions at the same time. The operating system is in charge of
deciding which program gets to use which CPU core at a given point in time. Usually, it
will let those programs which need access to resources run wherever resources are
available, meaning one and the same program can end up using different CPU cores at
different points in time. On a desktop machine this is not a problem. In fact it is a good
thing, since we typically run far more programs than we have CPU cores available.

In an HPC setting things are different in that the workloads are adapted to use a number
of processes or threads which matches the number of CPU cores (normally, you will have
n_processes x n_threads = n_nodes x n_CPU_cores_per_node). If there is
exactly one process or thread per CPU core, it would be wasteful to shuffle them around
between different CPU cores. In order to avoid this shuffling, the resource manager
assigns to the processes that it spawns an affinity mask. An affinity mask is a set of
numbers identifying the CPU cores a process is allowed to use. By default, Slurm assumes
that the processes you create are single threaded and gives each process access to a single
CPU core. Allocate a node for playing around with this mechanism:

$ salloc -A training2230 --reservation hands-on-cluster-YYYYMMDD -N 1
salloc: Pending job allocation 3499694
salloc: job 3499694 queued and waiting for resources
salloc: job 3499694 has been allocated resources
salloc: Granted job allocation 3499694
salloc: Waiting for resource configuration
salloc: Nodes jwc00n001 are ready for job

Use the numactl command to inspect the affinity masks created by Slurm:

$ srun --label numactl --show
0: policy: default
0: preferred node: current
0: physcpubind: 0
0: cpubind: 0
0: nodebind: 0
0: membind: 0 1

The identifiers of accessible CPU cores are listed in physcpubind. Here, the single
process that is created has access to a single CPU core, 0. Now, confirm that different
processes will get access to different CPU cores:

$ srun --label -n 3 numactl --show
2: policy: default
2: preferred node: current
2: physcpubind: 1
2: cpubind: 0
2: nodebind: 0
2: membind: 0 1
1: policy: default
1: preferred node: current
1: physcpubind: 24
1: cpubind: 1
1: nodebind: 1
1: membind: 0 1
0: policy: default
0: preferred node: current
0: physcpubind: 0
0: cpubind: 0
0: nodebind: 0
0: membind: 0 1

The three processes get access to CPU cores 0, 1, and 24 respectively. If your processes
are not single-threaded, you will have to give them access to more CPU cores (otherwise
all threads will run on the same CPU core). This can be done using Slurms̓ --cpus-per-
task parameter, or -c:

$ srun --label -c 24 numactl --show
1: policy: default
1: preferred node: current
1: physcpubind: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
1: cpubind: 1
1: nodebind: 1
1: membind: 0 1
0: policy: default
0: preferred node: current
0: physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0: cpubind: 0
0: nodebind: 0
0: membind: 0 1
2: policy: default
2: preferred node: current
2: physcpubind: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
2: cpubind: 0
2: nodebind: 0
2: membind: 0 1
3: policy: default
3: preferred node: current
3: physcpubind: 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
3: cpubind: 1
3: nodebind: 1
3: membind: 0 1

Note how once you specify the number of CPU cores per task, Slurm switches its behavior
from creating one process per node to filling the node with as many processes as
possible. Each process gets access to 24 different CPU cores.

Copy the following small program into a file hellohybrid.c:

And compile it with:

$ mpicc -fopenmp -o hellohybrid hellohybrid.c

Now run the program:

$ srun ./hellohybrid
hello from process 0 of 1, using 1 threads

Again, using default settings, Slurm creates a single process and restricts it to a single
CPU core. The OpenMP run time library supports shared-memory multiprocessing and
allows to query the number of CPU cores accessible to the process. It creates just as many
threads (here only one). If you specify a number of CPU cores per process this changes:

$ srun -c 24 ./hellohybrid
hello from process 2 of 4, using 24 threads
hello from process 0 of 4, using 24 threads
hello from process 3 of 4, using 24 threads
hello from process 1 of 4, using 24 threads

Once more, Slurm fills the node with four processes having appropriate affinity masks.
The OpenMP run time figures out that each process is allowed to use 24 CPU cores and
creates a team of threads to fill those CPU cores.

#include <stdio.h>
#include <mpi.h>
#include <omp.h>

int main(int argc, char* argv[]) {
 MPI_Init(&argc, &argv);

 int r, s;
 MPI_Comm_rank(MPI_COMM_WORLD, &r);
 MPI_Comm_size(MPI_COMM_WORLD, &s);
 #pragma omp parallel
 if (!omp_get_thread_num())
 printf(
 "hello from process %d of %d, using %d threads\n",
 r, s, omp_get_num_threads()
);

 MPI_Finalize();
}

https://en.wikipedia.org/wiki/OpenMP

IMPORTANT: Do not forget to exit your salloc session at this point.

JSC Affinity Tools

Since we are using psslurm we have implemented a few options different than the default
in Slurm. For this reason we are offering two tools that can help you to understand the
process affinity on our systems:

1. The command line executable: psslurmgetbind
2. An online pinning tool

Further information can be found in the “Processor Affinity” chapter of the
corresponding System Documentation.

Further reading
Our online documentation has more information on working with the resource manager.
It has detailed lists with the hardware available in various partitions as well as job limits.
Also, it discusses advanced topics like multiple job steps, dependency chains and
heterogeneous jobs. If you want more details, you can find the documentation for our
various systems here:

JUWELS documentation: Batch system
JURECA documentation: Batch system
JUSUF documentation: Batch system

You can also have a look at the official Slurm documentation.

LLview - Detailed Job Reporting
LLview is an excellent tool that provides an overview of currently running and finished
jobs, including detailed job reports plus obscure error messages that are hard to find for
users. Your jobs crash and you do not know why? This is the first place to check. There is a
website for each of our large systems. You can find the link for every system at the lower
le� corner of the documentation webpage of LLview. To begin check out your system of
interest, ideally one you have run jobs on.

Currently Active Jobs

When opening LLview by default it will first show you the list of your currently active
jobs, either pending or running. If you are the Principal Investigator (PI) or Project

https://apps.fz-juelich.de/jsc/llview/pinning/
https://apps.fz-juelich.de/jsc/hps/juwels/batchsystem.html
https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/batchsystem.html
https://slurm.schedmd.com/documentation.html
https://apps.fz-juelich.de/jsc/llview/docu/

Administrator (PA) for a project and you are in the project view you will see all active jobs
from your project. Project mentors also have access to this view.

You filter the list based on the filters below any of the column headings. Clicking on any
column heading will cause the jobs to be sorted in ascending or descending order, an
arrow will appear next to the column title indicating either ascending (upwards-pointing
arrow) or decending (downwards-pointing arrow). In the case a of sort conflict the
submission time of a job is used to resolve the conflict, with jobs that were submitted
more recently appearing above jobs that started earlier, if sorted ascending. By default
jobs are sorted according to ascending job start submit time with your most recently
submitted jobs at the top.

Values in red in the list indicate that something may be wrong. For example the average
load on a node may be high. Note that this is reported in fractions of the utilization of a
single core. A 1.0 therefore means that a single core was fully utilized. This value should
ideally be as close as possible to the number of cores a node has.

Important to note is also the state of the job, which you can find on the right. The job can
either be pending, if it has been submitted, but is not yet running, or running. Sometimes
it can also be completed (CMPL) or error if the job has finished successfully or errored out
respectively. These jobs will then be shortly removed from this list.

Clicking on any of the jobs will cause the graphs to be populated at the bottom of the page
if the job ran for more than a couple of minutes, depends on how o�en LLview is able to
query the system state. The “Load on Node” gives you an idea of the evolution of the load
placed on a node over time. The other two graphs show the evolution of I/O bandwidth
and number of I/O operations per second for various storage tiers, you can change the
storage tier by clicking on one of them in the bottom right (HOME, PROJECT, SCRATCH,
FASTDATA).

The two right-most columns can contain small pictograms, one of a chart and the other is
the Adobe PDF icon. If they are available it means that job reports are available for the
jobs. The chart pictogram takes you to a webpage-based interactive report. The PDF icon
downloads a non-interactive PDF report. These contain detailed information on the job as
well as error codes. They with a textual header listing important information regarding
the job. Then, if the job ran long enough graphs of various metrics, like CPU and GPU
usage, are presented. Finally a list of nodes and error messages is included at the end.
The error messages are especially important as these can be Slurm diagnostic error
messages that might be difficult for users to find. For more information see the detailed-
report documentation.

https://apps.fz-juelich.de/jsc/llview/docu/detailed_reports.html

Jobs Ended Today

This is the same view as the currently active jobs view but for jobs that have finished in
the last 24 hours.

Jobs < 3 weeks

This is the same view as the currently active jobs view but for jobs that have finished in
the last three weeks.

Live

Here you can see a live view of the system and how jobs are distributed across the
supercomputer on a rack level on the le�. At the bottom on the le� is a scheduling
prediction which shows when which jobs are expected to be scheduled. Large jobs also
have their names displayed.

On the right you can see the color-coded queue of all jobs, including currently running
and finalizing jobs. Clicking on a column title sorts the list either ascending (upwards-
pointing arrow) or descending (downwards-pointing arrow).

If this tab has a drop down then you can see different queues, for example for the JUWELS
cluster you will be able to see the batch and GPU queues. Note that only the main queues
are shown. Queues like the devel queue for development are not shown. To see these
queues you will have to login to the systems and use squeue.

Queue Tab

In the queue tab you can see the queue for all partitions you can submit to. Unlike (Live)
the results are not filtered according to the partition and the queue is displayed in the
typical LLview fashion.

Further reading

Here you can find the documentation for LLview.

USING GPUS
All systems at JSC have nodes which are accelerated by General Purpose Graphics
Processing Units (GPGPUs or just GPUs). Since the GPUs are all made by NVIDIA, using
them is accomplished through their CUDA SDK. CUDA is available as a module:

$ module load CUDA

https://apps.fz-juelich.de/jsc/llview/docu/
https://docs.nvidia.com/cuda/

This example is executed on the JUWELS booster. To demonstrate how to compile and
run a program that uses GPUs, we will use one of the examples included in CUDA and
load additionally the compiler NVHPC and the MPI implementation ParaStationMPI.
The samples directory of the CUDA installation has a plethora of exemplaric codes you
can play and learn with:

$ module load NVHPC ParaStationMPI
$ cp -r $EBROOTCUDA/samples $PROJECT_training2230/$USER
$ cd $PROJECT_training2230/$USER/samples/0_Simple/simpleMPI
$ make
/p/software/juwelsbooster/stages/2022/software/psmpi/5.5.0-1-NVHPC-22.1/bin/mpicxx -
I../../common/inc -o simpleMPI_mpi.o -c simpleMPI.cpp
/p/software/juwelsbooster/stages/2022/software/CUDA/11.5/bin/nvcc -ccbin g++ -
I../../common/inc -m64 --threads 0 --std=c++11 -gencode arch=compute_35,code=sm_35 -
gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode
arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode
arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode
arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode
arch=compute_86,code=sm_86 -gencode arch=compute_86,code=compute_86 -o simpleMPI.o -c
simpleMPI.cu
nvcc warning : The 'compute_35', 'compute_37', 'compute_50', 'sm_35', 'sm_37' and
'sm_50' architectures are deprecated, and may be removed in a future release (Use -Wno-
deprecated-gpu-targets to suppress warning).
/p/software/juwelsbooster/stages/2022/software/psmpi/5.5.0-1-NVHPC-22.1/bin/mpicxx -o
simpleMPI simpleMPI_mpi.o simpleMPI.o -
L/p/software/juwelsbooster/stages/2022/software/CUDA/11.5/lib64 -lcudart
mkdir -p ../../bin/x86_64/linux/release
cp simpleMPI ../../bin/x86_64/linux/release

This sample shows how to compile a combination of C++, MPI and CUDA code. There
should now be an executable called simpleMPI inside the simpleMPI directory. To run
the program, use srun like before:

$ srun -A training2230 -p <gpu partition> --gres gpu:4 -N 1 -n 4 ./simpleMPI
[...]
Running on 4 nodes
Average of square roots is: 0.667305
PASSED

Note: In this output nodes are meaning MPI tasks. The developers seem to have assumed
implicitly that only one GPU with one MPI task is located on one node when executing
this so�ware.

You have to specify a partition that contains nodes equipped with GPUs, -p develgpus
for JUWELS and JUSUF, -p dc-gpu-devel for JURECA, or -p develbooster for
JUWELS Booster, and you have to specify how many GPUs you want those nodes to have, -
-gres gpu:4 (or --gres gpu:1 on JUSUF).

GPU Inspection During Execution
First of all, LLview is already an elaborated tool to monitor your jobs and extracts most of
the data being relevant for many use cases of monitoring with small effort from the user
side. Nevertheless, logging into the compute nodes during job execution is easy and
comfortable and in some cases needed.

In the following bash session on the JUWELS booster a job is initiated through srun in
the background of this login node session (& at the end of the command). Just hit enter
a�er this line to retrieve the normal command line. The job is waiting 600 seconds or 10
minutes. A�er logging into the compute node, through sgoto, we show the usage of the
GPUs with nvidia-smi, which can be exchanged with anything you would like to do on
the compute node during job execution. A�erwards we log out from the compute node,
put the executed srun command from the background to the foreground with fg and
cancel this execution by hitting CTRL-C a couple of times until the normal command line
is available.

$ srun -N 1 -n 1 -t 00:10:00 -A training2230 -p develbooster --gres=gpu:4 sleep 600 &
[1] 25114
srun: job 5535332 queued and waiting for resources
srun: job 5535332 has been allocated resources
$ sgoto 5535332 0
$ nvidia-smi
Thu May 12 08:49:34 2022
+---+
| NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA A100-SXM... On	00000000:03:00.0 Off	0
N/A 44C P0 55W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+		
1 NVIDIA A100-SXM... On	00000000:44:00.0 Off	0
N/A 44C P0 54W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+		
2 NVIDIA A100-SXM... On	00000000:84:00.0 Off	0
N/A 45C P0 58W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+		
3 NVIDIA A100-SXM... On	00000000:C4:00.0 Off	0
N/A 44C P0 58W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+
$ exit
logout
$ fg
srun -N 1 -n 1 -t 00:10:00 -A training2230 -p develbooster --gres=gpu:4 sleep 500
^Csrun: sending Ctrl-C to StepId=5535332.0
srun: forcing job termination
srun: Job step aborted: Waiting up to 6 seconds for job step to finish.

sgoto takes the job id as first argument and the node number within the job as second
argument where the counting starts with 0. nvidia-smi prints some useful information
about available GPUs on a node, like temperature, memory usage, currently running
processes and power consumption.

GPU Affinity
On systems with more than one GPU per node, a choice presents itself of which GPU
should be visible to which application task. This is controlled through the environment
variable CUDA_VISIBLE_DEVICES, which can be set to a comma separated list of
integers identifying devices to be visible to a task. You can manually define this variable
before running your tasks with srun if the pinning is going to be the same for every task.

Let us investigate further on this with a practical example. First, we prepare a device
query example.

$ cd $PROJECT_training2230/$USER/samples/1_Utilities/deviceQueryDrv
make
/p/software/juwelsbooster/stages/2022/software/CUDA/11.5/bin/nvcc -ccbin g++ -
I../../common/inc -m64 --threads 0 --std=c++11 -gencode
arch=compute_35,code=compute_35 -o deviceQueryDrv.o -c deviceQueryDrv.cpp
nvcc warning : The 'compute_35', 'compute_37', 'compute_50', 'sm_35', 'sm_37' and
'sm_50' architectures are deprecated, and may be removed in a future release (Use -Wno-
deprecated-gpu-targets to suppress warning).
/p/software/juwelsbooster/stages/2022/software/CUDA/11.5/bin/nvcc -ccbin g++ -m64
-gencode arch=compute_35,code=compute_35 -o deviceQueryDrv deviceQueryDrv.o -
L/p/software/juwelsbooster/stages/2022/software/CUDA/11.5/lib64/stubs -lcuda
nvcc warning : The 'compute_35', 'compute_37', 'compute_50', 'sm_35', 'sm_37' and
'sm_50' architectures are deprecated, and may be removed in a future release (Use -Wno-
deprecated-gpu-targets to suppress warning).
mkdir -p ../../bin/x86_64/linux/release
cp deviceQueryDrv ../../bin/x86_64/linux/release

This will create the executable deviceQueryDrv. During the execution of
deviceQueryDrv all visible CUDA devices are queried. The following sbatch script
gpuAffinityTest.sbatch written for the JUWELS Booster executes the assisting bash
script gpuAffinityTest.bash which in turn executes deviceQueryDrv.

The in parallel executed helper script gpuAffinityTest.bash will be needed to print
the environment variable CUDA_VISIBLE_DEVICES for every MPI task initiated.

The environment variable SLURM_PROCID contains the current MPI task ID. The
definition of the environment variable CUDA_VISIBLE_DEVICES is not yet manually
done. By uncommenting the commented line within gpuAffinityTest.bash,
CUDA_VISIBLE_DEVICES can be defined manually for every task.

Execute this example for ntasks=1 and study the output file.

MPI task 0 with CUDA_VISIBLE_DEVICES = 0,1,2,3
./deviceQueryDrv Starting...

 CUDA Device Query (Driver API) statically linked version
 Detected 4 CUDA Capable device(s)

 Device 0: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
 [...]
 Device 1: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 68 / 0
 [...]
 Device 2: "NVIDIA A100-SXM4-40GB"

#!/bin/bash
#SBATCH --ntasks=<number of MPI tasks>
#SBATCH --nodes=1
#SBATCH --time=00:01:00
#SBATCH --partition=develbooster
#SBATCH --gres=gpu:4
#SBATCH -A training2230

module load CUDA NVHPC ParaStationMPI

srun bash gpuAffinityTest.bash

#!/bin/bash

#export CUDA_VISIBLE_DEVICES=<comma-separated list of visible gpus>
echo "MPI task" $SLURM_PROCID "with CUDA_VISIBLE_DEVICES =" $CUDA_VISIBLE_DEVICES

./deviceQueryDrv

 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 132 / 0
 [...]
 Device 3: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 196 / 0
 [...]
> Peer-to-Peer (P2P) access from NVIDIA A100-SXM4-40GB (GPU0) -> NVIDIA A100-SXM4-40GB
(GPU1) : Yes
> Peer-to-Peer (P2P) access from NVIDIA A100-SXM4-40GB (GPU0) -> NVIDIA A100-SXM4-40GB
(GPU2) : Yes
[...]
Result = PASS

The value for CUDA_VISIBLE_DEVICES at the beginning and the different Bus IDs,
representing the 4 GPUs, are of importance. For this single MPI task all 4 GPUs are visible.
At the end of the file you can also see the successful interconnectivity tests of the GPUs.

If the environment variable CUDA_VISIBLE_DEVICES is not defined by you, srun will
provide a default:

for jobs with a single task (-n 1) all devices will be visible
CUDA_VISIBLE_DEVICES=0,1,2,3
for all other jobs, only a single device will be visible per task, with the same device
being visible to multiple tasks if there are more tasks than GPUs

By playing a little with the number of tasks within the scripts stated above you can study
the behaviour of the GPU pinning and confirm the default. If this default is not suited to
your needs you can uncomment the line

export CUDA_VISIBLE_DEVICES=<comma-separated list of visible gpus>

and define CUDA_VISIBLE_DEVICES as you wish.

Network Architecture Study
The JUWELS Booster delivers a network infrastructure accelerating direct data exchange
between the GPUs. These GPUs have internal hardware to store data and are directly
connected to the high-performance network.

Having this in mind, the traditional data exchange between two GPUs, with an
intermediate hop of data on host memory, will lead to reduced performance. CUDA-
awareness of an MPI implementation is a vital part to increase data exchange
performance between GPUs. At the supercomputing infrastructure from JSC there are
implementations for CUDA-aware MPI, like ParaStationMPI and OpenMPI,
preinstalled. CUDA-awareness enables to pass a pointer to data on the GPU directly to an
MPI-directive.

The following example mpiBroadcasting.cpp performs three different measurements
for data exchange by use of MPI_Bcast. MPI_Bcast broadcasts data from one MPI
process to other MPI processes. In the source code below, at first, data between host
memories is exchanged. Secondly, data between GPUs is exchanged by hopping
intermediately onto the host memory. At last, data between GPUs is exchanged by use of
the direct network connection between the GPUs.

#include <stdio.h>
#include <string.h>
#include <mpi.h>
#include <time.h>
#include "cuda_runtime.h"

int main(int argc, char *argv[])
{
 clock_t start, end; // Time stamps
 double cpu_time_used;
 int myrank;
 int N=100000000; //# elements to broadcast per repetition

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

 //# broadcasting several repetitions since maximal size of
 // elements to send is restricted through MPI
 int Nbcast=20;

 double *x = new double[N]; // Allocate space on host memory
 double *d_x; // Array on device
 cudaMalloc(&d_x, N*sizeof(double)); // Allocate space on device

 for (int i=0;i<N;i++) x[i] = 1.0f; // prefilling data into allocated memory
 // send data into device
 cudaMemcpy(d_x, x, N*sizeof(double), cudaMemcpyHostToDevice);

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 // Initial unmeasured broadcasting due to
 // setup offsets in initializing connections
 for(int i=0;i<Nbcast;i++) {
 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Bcast(d_x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 }

 // host to host memory measurement
 start = clock(); // set the start time
 for(int i=0;i<Nbcast;i++) {
 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 }
 end = clock(); // set the end time
 // compute cpu time elapsed during the broadcasting
 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
 if (myrank == 0) printf("Broadcasting to all host memories \
 took %f seconds. \n", cpu_time_used);

 // device to device with intermediate copy to/from host
 start = clock();
 for(int i=0;i<Nbcast;i++) {
 cudaMemcpy(x, d_x, N*sizeof(double), cudaMemcpyDeviceToHost);
 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 cudaMemcpy(d_x, x, N*sizeof(double), cudaMemcpyHostToDevice);
 MPI_Barrier(MPI_COMM_WORLD);
 }
 end = clock();
 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
 if (myrank == 0) printf("Broadcasting to all GPUs took %f seconds \
 with intermediate copy to host memory. \n", cpu_time_used);

 // device to device through direct network connection of the GPUs
 start = clock();
 for(int i=0;i<Nbcast;i++) {

The initial broadcasts are needed to let the network establish connections between the
MPI tasks. Some implementations of MPI are setting up network connections between
MPI tasks only at first data exchange. This is an offset which is not planned to be
measured here. MPI_Barrier directs all MPI tasks to wait until all data was broadcasted.
As a result there are three times measured and printed. This example is executed on 2
nodes with 4 tasks on every node, where each task occupies one GPU.

Important: Note that we switch the compiler at this stage, when you compare to the
previous instructions of this chapter. It is worth it mentioning that you should use the
same modules for compilation which you are planning to use for the execution.

$ module load NVHPC CUDA OpenMPI
$ mpicxx -O0 -I$CUDA_HOME/include -L$CUDA_HOME/lib64 -lcudart -lcuda mpiBroadcasting.cpp
$ srun -N 2 -n 8 -t 01:00:00 -A training2230 -p booster --gres=gpu:4 ./a.out
Broadcasting to all host memories took 4.526835 seconds.
Broadcasting to all GPUs took 7.481972 seconds with intermediate copy to host memory.
Broadcasting to all GPUs took 2.625439 seconds.

The parameter -O0 deactives any optimizations performed by the compiler, which is
needed since a powerful compiler could know at compile time that the same data is
initialized for all tasks and then sent around. This could lead to a deletion of the MPI
directives at compile time leading to extremely small but erroneous time measurements.
The data exchange directly from one GPU to another GPU is the fastest. Furthermore, the
CPUs on the JUWELS Booster nodes have a relatively small compute performance, to
avoid too much overhead and unnecessary power consumption. These nodes are
designed such that as much workload and data exchange as possible should be performed
by the GPUs.
You can study the source code and play around with this setup. This will give you valuable
insights on how to develop your own so�ware for execution on the JUWELS Booster.

 MPI_Bcast(d_x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 }
 end = clock();
 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
 if (myrank == 0) printf("Broadcasting to all GPUs took %f \
 seconds. \n", cpu_time_used);

 // Release allocated memory space on host and device
 cudaFree(d_x);
 delete x;

 MPI_Finalize();
 return 0;
}

Further reading
Our online documentation has more information on so�ware modules. It lists the basic
tool chains (compiler + communication library + math library) available on our systems
and discusses using older so�ware stages. If you want more details, you can find the
documentation for our various systems here:

JUWELS documentation: GPU Computing
JURECA documentation: GPU Computing
JUSUF documentation: GPU Computing

The CUDA SDK documentation gives you detailed information about how to develop
CUDA code. There are also excellent articles in the web for learning CUDA like An Even
Easier Introduction to CUDA or An Introduction to CUDA-Aware MPI.

The JSC regularly offers CUDA courses for HPC being an ideal starting point to get into the
topic.

USEFUL LINKS
In this chapter, you can find a useful collection of links to get more information about
several topics. The slides of workshops held at JSC (also from this introductory workshop)
you can find here. For the future, the regularly updated master of this working document
you can find here. Keep in mind that some template words are le� within the document
on purpose. You will need to adjust them for your testcase.

System Documentation
JSC offers documentation for the production systems:

JUWELS
JURECA
JUSUF

JSC Services

JSC Service Status
JuDoor
Jupyter Lab
HDF Cloud

https://apps.fz-juelich.de/jsc/hps/juwels/gpu-computing.html
https://apps.fz-juelich.de/jsc/hps/jureca/gpu-computing.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/gpu-computing.html
https://docs.nvidia.com/cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses
hhttps://www.fz-juelich.de/en/ias/jsc/education/training-courses/training-materials
https://cstao-public.pages.jsc.fz-juelich.de/JSCHandsOn
https://apps.fz-juelich.de/jsc/hps/juwels/index.html
https://apps.fz-juelich.de/jsc/hps/jureca/index.html
https://apps.fz-juelich.de/jsc/hps/jusuf/index.html
https://status.jsc.fz-juelich.de/
https://judoor.fz-juelich.de/login
https://jupyter-jsc.fz-juelich.de/hub/login?next=%2Fhub%2Fhome
https://hdf-cloud.fz-juelich.de/auth/login/

Job Reporting
The Job Reporting service gives you access to PDF reports which contain certain
performance metrics that the system automatically collects about your jobs. It also
includes an overview over the system utilization and queue. You can access the Job
Reporting service for the different systems here:

JUWELS
JURECA
JUSUF

Apply for Computing Time
The JSC web site describes how to apply for computing time.

Apply for a Data Project
The JSC web site describes how to apply for a data project.

JSC Course Programme
JSC offers many courses throughout the year covering topics such as parallel
programming, machine learning, and visualization. Please have a look at the course
programme on the JSC web site.

Supercomputing Support
Our high-level support team supports the users in case of problems on our systems,
e.g. porting of the application, parallelisation and performance issues as well as usage of
the HPC system. So if you are having a question, you cannot sort out by yourself, by
working through this document or by having a look into the documentation, just drop a
mail to sc@fz-juelich.de.

https://llview.fz-juelich.de/LLweb/juwels/jobreport/login.php
https://llview.fz-juelich.de/LLweb/jureca/jobreport/login.php
https://llview.fz-juelich.de/LLweb/jusuf/jobreport/login.php
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/apply-for-computing-time
https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects
https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses
mailto:sc@fz-juelich.de

