
Possible Stack for Parallel Programming Models     
for Scientific Computing

Zeyao Mo

Institute of Applied Physics and Computational Mathematics
Sepetember 3-5, Juelish, Germany 

1st CHANGES workshop HPC: Performance Tools, 
Modeling and Algorithms.



1. Challenges for parallel programming
2. Possible domain-specific programming model for 

scientific computing
3. An instance : JASMIN framework
4. Conclusion

Contents



1. Challenges for parallel programming



In the past decade:  Parallel Programming

Terascale to Petascale Machines

MPI for O(10K) parallelism, OpenMP 
for O(1) parallelism.

18 years of legacy codes for various applications 
such as fusion energy, high energy physics, climate 
forecasting, facility and experimental design, materials, 
chemistry, etc. 



Terascale Laptop   :    Uni-Supernode — few-node  — many-core

Petascale Desktop :  Multi-Supernode — multi-node  — many-core

Exascale Center   :  Many-Supernode — many-node — many-core

In the next decade : Three parallel computing Points

2018 Goal : Make
Petascale = Terascale + more; 
Exascale = Petascale + more.

Common elements



Machine Parallelism: Nested/Hybrid Programming Models

Emerging models: Accelerators, Resilience, Energy.



In the next ten years:  Parallel Programming

Petascale to Exascale machines

Nested/Hybrid Parallel Programming Models 
MPI O(10K), DSM-X O(10), OpenMP O(100),  ILP O(1);

Accelerator:  OpenCL/CUDA;  Resilience, Energy, …

Reconstruction of 15 years of MPI legacy codes,             
New generation codes for multi-physics complex systems

Petascale to Exascale Applications

Big and increasing gaps for realization



Big and increasing gaps for realization

1. Evolving and nested/hybrid parallel programming
2. Complex management for data structure, hierarchical 

memory, irregular communication, etc.; 
3. Multilevel/Hybrid load imbalance arising from physics, 

numerical stencils, communication, run time status of 
machine, etc.; 

4. Implementation and integration for fast numerical 
algorithms; 

5. Code extensibility for more and more complex 
applications: O(10K1M) lines;  

6. Data management and visualization.

1. Evolving and nested/hybrid parallel programming
2. Complex management for data structure, hierarchical 

memory, irregular communication, etc.;
3. Multilevel/Hybrid load imbalance arising from physics, 

numerical stencils, communication, run time status of 
machine, etc.;

4. Implementation and integration for fast numerical 
algorithms;

5. Code extensibility for more and more complex 
applications: O(10K1M) lines;  

6. Data management and visualization.

In the next ten years:  Parallel Programming



Fussy Parallel Programming 
Load imbalance 
Fast algorithms implementation 
Code complexity 
Visualization Interfaces

Great Challenges: 

Good solutions

Scientific 
Computing and 
Engineering 
Applications

Applicaiton A: parallel code A

Application N: parallel code N

………
Softw

are 
Fram

ew
orks

common



Encapsulates and seperates fussy works of parallel computing from 
applications  (e.g. data structure, parallel programming, numerical 
libraries); 

Encapsulates code complexity and applies software engineering for 
code extensibility and maintenance; 

Accelerates the developments of codes towards petascale/exascale.

Encapsulates and seperates fussy works of parallel computing from 
applications  (e.g. data structure, parallel programming, numerical 
libraries);

Encapsulates code complexity and applies software engineering for 
code extensibility and maintenance;

Accelerates the developments of codes towards petascale/exascale.

Applications, algorithms, parallel experts, computer experts can 
cooperate tightly in the development of complex codes. 

Frameworks enable:



Meet the expectation of application/physics experts

Think Parallel, Write Sequential

1. Significantly simplify or reuse the parallelism patterns 
using the emerging programming models; 

2. The return on their rewrite efforts can be leveraged for 
multiple years even the machine is rapidly changing 
(e.g., 20 years ? ----- 20 or more years for MPI) ; 

3. Once infrastructure in place, ratio of science experts vs. 
parallel experts : 10:1, physics added as serial code, 
now and in the future.   

--M.Heroux, LANL, July. 2011, 
DOE Workshop on Exascale Programming Challenges

1. Significantly simplify or reuse the parallelism patterns 
using the emerging programming models;

2. The return on their rewrite efforts can be leveraged for 
multiple years even the machine is rapidly changing 
(e.g., 20 years ? ----- 20 or more years for MPI) ;

3. Once infrastructure in place, ratio of science experts vs. 
parallel experts : 10:1, physics added as serial code, 
now and in the future.   

--M.Heroux, LANL, July. 2011, 
DOE Workshop on Exascale Programming Challenges



2. Possible Domain Specific Programming 
Model for Scientific Computing

------ Think Parallel, Write Sequential



Possible Stack of Programming Models: Frameworks



Framework-based DSPM is possible for scientific computing ?

DDM Graph Based Patterns: Halo exchanges, CollectivesDDM Graph Based Patterns: Halo exchanges, Collectives

Digraph Based Patterns: data driven, dynamic tasks Digraph Based Patterns: data driven, dynamic tasks 

separate parallel programming from serial codes:
Computational Patterns



0 1 9

8

17
2 8

16

9
10

8 9 10 1716

0 1 92 8 8 9 10 1716
0
1
2

8
9

8

17
16

9
10

0
1
2

8
9

1 2

3 4

Halo Exchange Pattern: Separate Parallel Programming



Halo Exchange Pattern: Separate Parallel Programming



Do MPI message passing
fill ghost cells for uo ；

Halo Exchange Pattern: Separate Parallel Programming



User 
Part

Halo Exchange Pattern: Separate Parallel Programming



0

1

2

3

4

5

6
User 
Part

Halo Exchange Pattern: Separate Parallel Programming



3. An instance: JASMIN framework
------ Think Parallel, Write Sequential



JASMIN :  Parallel Patterns + Libarary  DSPM

DDM Graph Based Patterns: Halo exchanges, CollectivesDDM Graph Based Patterns: Halo exchanges, Collectives

Digraph Based Patterns: data driven, dynamic tasks, barriersDigraph Based Patterns: data driven, dynamic tasks, barriers

C++ Components = parallelism/libs + interfaces  serial 
numerical subroutines

Numerical LibrariesNumerical Libraries



Unstructured 
Grid

Structured 
Grid

Inertial 
Confinement 
Fusion

Global 
Climate 
Modeling

……

Particle 
Simulation

3.1  JASMIN

JASMIN

http:://www.iapcm.ac. 
cn/jasmin，

 2010SR050446

J parallel 
Adaptive 
Structured Mesh 
INfrastructure



• Hides parallel programming using millons of cores and 
the hierarchy of parallel computers;

• Integrates the efficient implementations of parallel fast 
algorithms；

• Provides efficient data structures and solver libraries;
• Supports software engineering for code extensibility.

Motivations: 
Supports the developments of parallel codes for large scale 
scientific computing on personal computers. 

3.1  JASMIN



Computers

Data Dependency

extract

Data Structure

Promote

Communications

Load Balancing
support

Computatio 
nal 

Patterns
form

3.2 Basic Ideas

Applications 
Codes

Physical Models
Discrete Stencils

Numerical Algorithms



Computers

Data Dependency

extract

Data Structure

Promote

Communications

Load Balancing
support

Computatio 
nal 

Patterns
form

separateModels    
Stencils

Algorithms
Special

Library

Models    
Stencils

Algorithms
Common

3.2 Basic Ideas



Data Dependency

extract

Data Structures

Promote

Communications

Load Balancing
support

Computatio 
nal 

Patterns
form

separateModels    
Stencils

Algorithms
Special

Library

Models    
Stencils

Algorithms
Common

JASMIN
parallel middlewares for  scientific 
computing on structured meshes

Applications 
Codes

Computers

3.2 Basic Ideas

Parallel Programming Interfaces

Automatic 
parallelism



Component 
Interfaces

Fast 
Algorithms

ParallelizationData 
Structures

JASMIN

3.3  key factors



Neighboring Graph Based Patterns: Halo exchanges, CollectivesNeighboring Graph Based Patterns: Halo exchanges, Collectives

3.3.1  Data Structures

MPI

MPI/   
OpenMP

OpenMP



Mesh 
supported

3.3.1  Data Structures



3.3.2  Communications

Distributed Undirected Graph    
(2 processors)

0

1
4

3

2
5

6



3.3.2  Communications

8 angles

Parallel Sweeping for Sn transport

distributed directed graph (digraph)

Digraph Based Patterns:  data driven, dynamic tasks Digraph Based Patterns:  data driven, dynamic tasks 




Global atmosphere model

day, night

extreme load imbalance

Radiation and neutron transport

3.3.3  dynamic load balancing

Regional rainstorm model




3.3.3  dynamic load balancing

501

508 525

543
 

1

2 3

4 5 6

78

9 10

111213

1415

16

17 18

1920

21

22 23

24 25

26 27

28

2930

31 32 33 34

3536

37

38 39

40 41

42 43

44

4546

47 48

49

5051

525354

55 56

5758

59 60 61

62 63

64

0 50 100 150 200 250 300
0

50

100

150

200

250

300

space filling curves    : 2D,3D->1D 
MAW/Cycle methods : 1D balancing



3.3.3  dynamic load balancing

Redistributes particles among   8 Processes




Radiation hydrodynamics:
Usual algorithms ：O(N1.5)

PAMG+DDM ：O(NlogN)

Radiation hydrodynamics:
Usual algorithms ：O(N1.5)

PAMG+DDM ：O(NlogN)

data structures

solver interfaces

JXP Hypre Kinsol

3.3.4  Solvers for linear systems



h-adaptivity：Advance-Estimate-Tag-Refine-Synchronize

Coarser level integrates                    
（user provides stencil）

Error estimation         
（user provides）

Tag cells for refinement

Cluster tagged cells into  Boxes Generate patches for finer level

Finer level is initialized and 
integrates

Synchornization

3.3.5  SAMR



Middle level

Finest levelPatchLevel 2

PatchLevel 1

PatchLevel 0

Patch

Coarsest level

PatchHierarchy SAMR

3.3.5  SAMR：data structure



PatchLevel 2

PatchLevel 1

Patch

PatchHierarchy

PatchLevel 0

PatchHierarchyPatchHierarchy －－
 

PatchLevelPatchLevel－－Patch  ( Patch  ( PatchDataPatchData ))

Middle level

Finest level

Coarsest level

SAMR

3.3.5  SAMR：data structure



SAMR: using flux 
conservation interpolation 

schemes of high order 
precision

Refine

Coarsen

3.3.5  SAMR：Communication



ICF 2-D radiation hydrodynamics 
simulation using LARED-S using 
three levels of SAMR meshes. 

ICF 2-D radiation hydrodynamics 
simulation using LARED-S using 
three levels of SAMR meshes.

Resolution of 
coarsest level

# levels # cells # 
steps

# CPU 
cores

Time
(hours)

Resolution of finest level：10240x2048. Physical time =1.324ns

10240x2048 1 2097 1024 cores require 20 days

640x128 3 38 ~ 124 28700 64 24.6

Speedup = 160.

3.3.5  SAMR



3.3.6 User Interfaces

Time integration class on hierarchy:
 algs::HierarchyTimeIntegrator<DIM>

Strategy for time integration on levels:
 algs::TimeIntegratorLevelStrategy<DIM>

JASMIN 
supports

Main program

C++ Components for automatic parallelization：
 initialize, step, numerical, memory, copy, synch., 

sweeping, particles, etc.

User time integrator for patch level

Strategy for time integration on patches: 
algs::StandardComponentPatchStrategy<DIM>

User numerical 
subroutines for patches

User implements



3.4  Current Version

Architecture：Multilayered, Modularized, Object-oriented；
Codes: C++/C/F90/F77, MPI+MPI+MPI+OpenMP，660K LOC；
Installation: Personal computers, Cluster, MPP.

JASMIN

V. 2.5

User provides: physics, parameters, numerical methods,          
expert experiences, special algorithms, etc.

HPC implementations( thousands of CPUs)：data 
structures, parallelization, load balancing, adaptivity, 
visualization, restart, memory, etc.

Numerical Algorithms：geometry, fast solvers, 
mature numerical methods, time integrators, etc.

User Interfaces：Components based Parallel 
Programming models. ( C++ classes)



成功的
 实际应
 用领域

CFD

Climate forecasting

Instabilities & 
Turbulence

Materials

Radiation 

Hydrodynamics

PIC

JASMIN 

Applications 
currently

25 codes

3.4  Current Version



Codes # CPU cores Codes # CPU cores

LARED-S 32,768 RH2D 1,024 

LARED-P 72,000 HIME3D 3,600

LAP3D 16,384 PDD3D 4,096

MEPH3D 38,400 LARED-R 512

MD3D 80,000 LARED Integration 128

RT3D 1,000
JMES-FDTD 60,000 NEPTUNE 1,024

3.5 Some Applications on PetaFlops System TianHe-1A

Simulation times :  several hours to tens of hours.



12 codes,                         
48 researcheres, 
concurrently develop 

12 codes,                         
48 researcheres, 
concurrently develop

Simulation 
Cycle

Applications-1：Inertial Confinement Fusion

ICF Application Codes

numerical 
methods

Physical 
parameters

Expert 
Experience

Different Combinations

• Hides parallel computing and adaptive implementations 
using tens of thousands of CPU cores；

• Provides efficient data structures, algorithms and solvers;
• Support software engineering for code extensibility.



Codes Year 2004 Year 2010

LARED-H 
2-D radiation 

hydrodynamics Lagrange 
code

serial Parallel 

Single bolck Multiblock

Without capsule NIF ignition target  

LARED-R 
2-D radiation transport code

Serial Parallel (2048 cores)

LARED-S
3-D radiation 

hydrodynamics Euler code

Serial Parallel (32768 cores)
Single level SAMR

2-D: single group Multi-group diffusion

3-D: no radiation 3-D: radiaiton multigroup 
diffusion

LARED-P
3-D laser plasma 
interaction code

serial Parallel (36000 cores)
Terascale of particles

Scale up a factor of 1000Scale up a factor of 1000

Applications-1：Inertial Confinement Fusion



ICF-1: Integration simulations for ignition targets

Multi-physical modeling for radiation hydrodynamcs 
simulations

Transport modeling

Laser transfer modeling

Radiation thermal conduction modeling
Three 
temperatures 
conduction 
modeling

Multigroup diffusion modeling



Radiation temperatures     
in the hohlraum.

Radiation temp.

Lagrange Meshes

Electron temp.

E/R swapped engr.

ICF-1: Integration simulations for ignition targets

LLNL NIF base target



ICF-2: 3-D simulations for laser plasma interactions

LARED-P: super-strong lasers transfer and focus over the plasma cone and generate 
high energy electrons.

#mesh: 768M 
#partiles: 40G

CPU Cores: 72,000
Para.Effi.: 44%

Phys. time : 320 fs
Sim. time: 4.5 hours

#steps : 9500

Output data
640GB/ 20

33.580 fs 67.298 fs 319.295 fs



ICF-3: 3-D simulations for laser plasma hydrodynamics

LAP3D: lasers filament and self-focus while transfer over a long distance in the lower 
density plasma environments.

#mesh: 2.1G 

CPU Cores: 16,384
Para.Effi.: 50%

Phys. time : 56.5 ps
Sim. time: 12.8 hours

#steps : 41,200

Output data
1.74TB/ 104

Parallel rendering 
using 72 cores 

Solve the 
hydrodynamics   
equations 
coupled with 
laser paraxial 
transfer 
equations.

Simulation 
results are 
coincides with 
the ALPS codes 



ICF-4: 3-D simulations for radiation hydrodynamics instabilities

LARED-S: radiation hydrodynamics instabilities occur over the capsule interfaces 
while the capsule shell rapidly slows down.    

#mesh: 160M
256x256x256 

# Cores: 32,768
Para.Effi.: 52%

P. time : 0.1 ps
S. time: 39 hours
#steps : 778,580

Output data
4.4TB/ 670

Ideal compress

3-D disturb

Gray : shell materials.
Color: ion temperature  for hot spots.



Applications-2：Material simulations

PDD3D: 3-D discrete dislocation simulations for the locally plastic deformations of 
metal materials while the shock is enforced.    

#dislocation: 3 M

CPU Cores: 4096
Para.Effi.: 47%

Phys. time : 5.5 ns
Sim. time: 12 hours

#steps : 1,800

Output data
196 GB/ 196

The details of dislocation structures are discovered.

The stretch simulations of Cu crystal (0.12 mm3, r=107/s). 
Left: dislocation density;  Right: local structures.



Applications-2：Material simulations

MD3D: 3-D molecule dynamics simulations for 
the structures and dynamics shock responses of  
metal materials with nano-scale defects.    

Dislocation holes release and 
collapse.    

#Molecules: 
50G

#Cores: 80,000
Para.Effi.: 62%

Ph.time: 5.5 ps
Sim. time: 3.0 

hours
#steps: 30,000

Output data
162 GB/ 150

Discation holes collapse and  
interact with each other, hot 
spots are formed to generate 
various dynamics responses.  
Left: local spots; Right:  LLNL’s 
results in 2005.

Shock

Hot spot Shock Front 



Applications-3：Electromagnetic Simulations

JMES3D: 3-D FDTD simulations for destroy mechanism of electromagnetic 
waves with different frequencies and directions.    

# mesh: 1.2 G

#Cores: 60,000
Para.Effi.: 70%

Phy.ime : 250 ns
S.time: 8.1 hours
#steps : 254,000

Output data
736 GB/ 172 Energy Electronic Field Snapshot



Coupler 
JASMIN

Ocean: 
LICOM-JASMIN

Atmosphere:
GAMIL-JASMIN Land:               Land:               

CLM-JASMIN

Ocean ice:      
CSIM4-JASMIN

Applications-4：Climate Forecasting



Applications-5：CFD

# cells:  

9,574,784
# blocks:

194
# cores: 

2048
# s/10K steps   

800
# speedup 

580
DDM 64 cores

mesh blocks 
distribution 



4. Conclusion

• Domain specific programming models are possible to enable 
domain scientists “think parallel ,write sequential”. 

• A possible stack of programming model for scientific 
computing is “Framework-based DSPM —MPI—DSM-X— 
OpenMP—ILP”.

• Numerical fast algorithms are essential components for the 
implementation of DSPM.

• JASMIN shows the possibility of DSMP on structured meshes.


	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	In the past decade:  Parallel Programming
	幻灯片编号 5
	幻灯片编号 6
	In the next ten years:  Parallel Programming
	幻灯片编号 8
	Fussy Parallel Programming�Load imbalance�Fast algorithms implementation�Code complexity�Visualization Interfaces
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	 h-adaptivity：Advance-Estimate-Tag-Refine-Synchronize 
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	3.3.6 User Interfaces
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	幻灯片编号 57

