Providing More Intuitive Performance Analysis through Scalable Visualizations

Martin Schulz Lawrence Livermore National Laboratory

CHANGES Workshop ◆ Sept. 5th, 2012

LLNL-PRES-578932

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Where is Livermore?

Lawrence Livermore National Laboratory

- 2 km² site in Livermore, CA
 - ~6,800 employees
 - Interdisciplinary
- Primarily funded by the U.S. Department of Energy
 - Budget: \$1.6 billion
- Mission:

Apply science and technology to:

- National Security
- Energy Security
- Economic Competitiveness

Livermore Computing

Long supercomputing tradition

Simulation in support of LLNL missions

BlueGene/L (~600TF) – 212,992 cores

- #1 machine from 2005-2007
- #8 on the Top500 in June 2011
- Last part decommissioned later this year

Some other current machines (as of 2011)

•	Zin	Sandy Bridge/IB	~1 PF
•	Dawn	BlueGene/P	~500 TF
•	Cab	Sandy Bridge/IB	~425 TF
•	Sierra	Nehalem / IB	~261 TF
•	Juno	Opteron / IB	~160 TF
•	Hera	Opteron / IB	~120 TF
•	Graph	Opteron / IB / GPU	~110 TF
•	Hyperion	Nehalem / IB	~90 TF

The Next Generation at LLNL: Sequoia

Blue Gene/Q:

- 20PF/s peak
- 96 racks, 98,304 nodes
- 1.5M cores/6M threads
- 1.5 PB memory
- Liquid cooled
- 5D torus interconnect
- New technologies like HW-TM

Complexity is on the Rise

Architectures are getting more complex

- Huge process and/or thread counts
- Deep memory hierarchies
- High dimensional network topologies
- New accelerators and hardware features

- Less memory per core
- Power ceilings
- Reliability

Applications are getting more complex

- Scale-bridging codes
- Heterogeneous applications
- Integration of UQ

Complexity Directly Impacts Programmers

It will be a challenge to achieve efficiency

- Load balance will be key at billions of threads
- Exploiting new hardware features
- Reduction of data movements
- Memory and network architectures will require layout optimizations

Definition of efficiency needs to be revisited

- Heterogeneous systems/nodes/chips/units/...
- Multiple optimization targets (power vs. reliability vs. memory vs. speed)
- Self-adaptive systems at all layers
- Baselines are no longer obvious
- Need to think about machine wide resource utilization

Programmers need tools and performance models more than ever

- Visualize/Illustrate code behavior
- Distinguish "good" from "bad" behavior
- Identify critical regions and bottlenecks in the code
- Track down root causes of code behavior

Example: Scalable Load Balancing in AMR

Adaptive Mesh Refinement (SAMRAI library)

- Different levels of patches to refine in areas of interest
- Requires active load balancing
- Load balancing shows bad scaling behavior
- Dominates at large scale

Example: Node Mappings in Torus Networks

First principle molecular dynamics code

- Dense 2D matrix as the base data structure with X/Y communication
- Need to map rows/columns onto 3D torus of BG/L

Understanding of performance is essential

- Why do certain mappings perform better?
- How can we select and create mappings efficiently?
- We must do this as scale!

Performance Tools are a Necessity!

Demand is increasing

- Traditionally little development time invested in optimization
- Code teams are getting more interested in tools

Widely researched in many projects and groups

- From specialized tools to comprehensive toolkits
- Different data acquisition (sampling and/or tracing)
- Different instrumentation options
- Commercial and open source options

Wide Range of Performance Tools

Basic OS tools

time, gprof, strace

Hardware counters

- PAPI API & tool set
- hwctime (AIX)

Sampling tools

- Typically unmodified binaries
- Callstack analysis
- HPCToolkit (Rice U.)

Profiling/direct measurements

- MPI or OpenMP profiles
- mpiP (LLNL&ORNL)
- ompP (LMU Munich)

Tracing tool kits

- · Capture all MPI events
- Present as timeline
- Vampir (TU-Dresden)
- Jumpshot (ANL)

Trace Analysis

- Profile and trace capture
- Automatic (parallel) trace analysis
- Kojak/Scalasca (JSC)
- Paraver (BSC)

Integrated tool kits

- · Typically profiling and tracing
- Combined workflow
- Typically GUI/some vis. support
- Binary: Open|SpeedShop (Krell/TriLab)
- Source: TAU (U. of Oregon)

Specialized tools/techniques

- Libra (LLNL)Load balance analysis
- Boxfish (LLNL/Utah/Davis)
 3D visualization of torus networks
- Rubik (LLNL)
 Node mapping on torus architectures

Vendor Tools

Performance Tools are a Necessity!

Demand is increasing

- Traditionally little development time invested in optimization
- Code teams are getting more interested tools

Widely researched in many projects and groups

- From specialized tools to comprehensive toolkits
- Different data acquisition (sampling and/or tracing)
- Different instrumentation options
- Commercial and open source options

Example: Open|SpeedShop (http://www.openspeedshop.org/)

- Developed by the Krell Institute in close collaboration with ASC
- Performance analysis tool framework
- Support for sampling and tracing on unmodified binaries
- Support for Linux as well as BG/P&Q and Cray X? machines

Typical Tool Workflow (looking at O|SS)

Existing Tools Enable Sophisticated Measurements

Large variety of measurements

- Attribution to source code
- Multi-metric visualizations

Some tools provide analysis

- Scalasca detects trace patterns
- Expert systems like PerfExpert
- Limited to previously identified issues

Information often low level

- ➤ Need user's perspective
 - Developers need to understand their codes
 - Mapping to user's domain
- ➤ Needed: Intuitive analysis & visualization

Bridging the Gap to the Application Domain

- Example: 256 core run of a CFD application
 - Floating point operations
- Application developers think in the app domain
- Simple step:
 - Map floating point ops onto the application domain
 - Similar L2 cache misses
- Clear correlations
 - Explains performance
 - Helps establish a baseline

Mapping Measurements into the Application Domain

Multiple Views Can Help Disambiguate Effects

- Observation: single core per socket creates more Li misses
 - Caused by the execution of collective MPI operations
 - Shows the need for different perspectives to disambiguate causes
 - Feature detection and correlation can automate this process

HW Domain: 16 nodes with 4x4 cores

Feature Detection and Isolation

Same data with linear color map

L1 Cache Misses **FP Operations**

Feature Detection and Isolation

Same data with linear color map

L1 Cache Misses with MPI worker filtered

FP Operations

Feature Detection and Isolation

Same data with linear color map

L1 Cache Misses with MPI worker filtered

FP Operations

L1 Misses per FP operation: Proxy for efficiency

Correlating Performance Domains

Single view on data is insufficient

Different perspectives for different problems

Need to support correlation between views

Map data from one domain to the one of the other domains

- Comparable data
- **Enable correlation**
- Understand interactions
- Access to visualization techniques
- Increase intuition for users
 - Display data in domains familiar to users
 - Make abstract measurements tangible

Boxfish: Interactively Visualizing Across Domains

Target: Optimize Node Mappings

- Network topologies getting more complex
 - Interactions with communication topology non-trivial
 - Node placement has huge impact on performance

- Require tools to help with defining and evaluating layouts
 - Easier specification and visualization of layouts
 - Capture and compare network traffic

Comparing Communicator Layouts with the Boxfish Tool

- Mapping a single plane into a torus
 - Multiple options (through BG/P mapfiles)
 - Combination of mapping and tilting
- Layouts can get complicated and need to be visualized
 - Boxfish can be used to visually confirm mappings
 - Example: single X/Y plane of a 3D problem
- 3D view can be tricky to visualize link utilization

Flattening Network Traffic to 2D

Views into an LLNL Laser Code

- Problems setup as a series of 2D slabs
 - During each step: X/Y phases within a slab
 - Looking at performance for each step

Boxfish's 2D mini-maps Summarize Bandwidth (x phase)

Boxfish's 2D mini-maps Summarize Bandwidth (y phase)

Utilizing the Full Capacity of the Torus

Black links are "spare" links that can handle extra traffic that comes through the cube.

Dimension independent transformations/tilting

- Tilting optimization allows higher bandwidth on torus links
- Tilting is easily extended into higher dimensions (5D, etc.)

Rubik: Easy generation of BG mapping files


```
# Create app partition tree of 27-task planes
app = box([9,3,8])
app.tile([9,3,1])
# Create network partition tree of 27-task cubes
network = box([6,6,6])
network.tile([3,3,3])
network.map(app) # Map plane tasks into cubes
```


Additional Rubik Operations

div

app = box([4,4,4])app.div([2,1,4])

tile

app = box([4,4,4])app.tile([2,4,1])

mod

app = box([4,4,4]) app.mod([2,2,2])

Z, Y, X = 0, 1, 2

cut

app = box([4,4,4]) app.cut([2,2,2], div,div,mod])

net = box([12,4,4])
net.div([3,1,1])
net[0,0,0].tilt(Z,X,1)
net[0,0,0].tilt(X,Y,1)
net[1,0,0].zorder()
net[2,0,0].zigzag(Z,X,1)
net[2,0,0].zigzag(X,Y,1)

Mappings for the Laser Code

- Improved bandwidth from 50 MB/s to over 201 MB/s
- Can be implemented as a single, short Python script
- Integrated visualization of mappings

Optimizing Load Balancing in AMR

- Adaptive Mesh Refinement (SAMRAI library)
 - Different levels of patches to refine in areas of interest
 - Requires active load balancing
 - Load balancing shows bad scaling behavior
 - Dominates at large scale

Attempt 2: Timings in MPI rank space

Per node timings for each phase

- Bottleneck is in phase 1 and not phase 3
- Limited correlation based on rank space

Alternative: Map Performance Metrics onto Underlying Communication Graph (1024 processes)

Visualizing Large Communication Graphs

- Display of individual nodes is not scalable
 - Need to group nodes
 - Outer layers are best targets for this
 - Keep metric information / coloring

Load on 16k cores

Wait time for box distribution

Wait time with flow information

Highlighting Areas of Interest in Deep Trees

- Heavier trees are expanded to a deeper level
- Angles are apportioned by flow in the subtree
- Can see flow problems at any level of the tree

Performance Improvements

Need to address flow problem

- Reduce traffic through root
- Box size / granularity is one of the knobs

Ultimately need new communication/balancing algorithm

- Spread out load over multiple trees
- Leads to a fat forest communication structure

Large Scale Visualization Can Help Performance Analysis

Tool support will be essential to exploit future machines

- Complex applications and architectures
- Need intuitive insight for developers

Node mapping optimizations

- Compare different mappings
- Boxfish minimaps

Optimizing AMR

- Map performance to underlying graph
- Scaling imbalance visualizations

New generation of tools

- More intuitive tools that help our users to understand performance at scale
- Large scale visualization as driving instrument

The PAVE Team

- Lawrence Livermore National Laboratory
 - Ahbinav Bhatele, Peer-Timo Bremer, Todd Gamblin, Nikhil Jain (UIUC), Martin Schulz
- University of Utah / SCI Institute
 - Aaditya Landge, Valerio Pascucci
- University of California Davis
 - Bernd Hamann, Kate Isaacs
- Clemson University
 - Joshua Levine

Large Scale Visualization Can Help Performance Analysis

Tool support will be essential to exploit future machines

- Complex applications and architectures
- Need intuitive insight for developers

Node mapping optimizations

- Compare different mappings
- Boxfish minimaps

Optimizing AMR

- Map performance to underlying graph
- Scaling imbalance visualizations

New generation of tools

- More intuitive tools that help our users to understand performance at scale
- Large scale visualization as driving instrument

http://scalability.llnl.gov/

