

Jülich Supercomputing Centre

CHANGES

CHinese-AmericaN-German cyberinfrastructure and E-Science workshop

3-9-2012

Supercomputing @ Jülich: Mission and Objectives

Mission

Enable scientists and engineers to solve grand challenge problems of highest complexity in science and engineering in collaborative infrastructures by means of supercomputing and Grid technologies

Objectives

Provide supercomputer resources of the highest performance class and enable their most effective usage

Provide large-scale data resources and services of the highest quality worldwide

Develop leading European supercomputing centre as user facility with broad horizontal profile (since 2010)

Computational Challenges in Fundamental Sciences

Challenges in Applied Sciences

Environment
Climatology
Pollution

Aging Society
Medicine
Biology

Materials
Spintronics
Nano-Technology

Energy
Plasma Physics
Batteries

Helmholtz Programme Supercomputing: Strategic Significance of Supercomputing

Computational Science and Engineering

- New ways of insight and evolution for scientific research
- Give boost to industrial innovation

Simulation

- Understanding the most complex scientific and eng. phenomena
- Anticipation of the future, fighting uncertainties

Supercomputers

- Most powerful locomotives of simulation science
- Challenging from design, procurement, operation to exploitation

Grid Technologies and Infrastructures

- Integrate the full supercomputing and data ecosystem
- Create collaborative environments for simulation science

Programme Structure

Topic 1

Computational Science and Mathematical Methods

Topic 2

Grid Technologies and Infrastructures

Large Scale Facility

Supercomputer development, procurement, operation, technical support and training

Large Scale Facility: Supercomputer

Supercomputer Operation for

- Centre FZJ,
- Regional JARA
- Helmholtz & National NIC GCS
- Europe PRACE, European Communities (CECAM, EFDA, HBP...)

Interconnects / Networks

FZJ, D-Grid, DEISA, PRACE, HBP

Application Support

- User support; coordination with SimLabs
- Scientific Visualization
- Peer review support and coordination

Technology Development

- Community data management service
- Exascale Laboratories:
 EIC and ECL → EU Project DEEP

Computational Science and Mathematical Methods

Simulation Laboratories

- Biology
- Molecular Systems
- Plasma Physics
- Climate Science
- Fluid & Solid Engineering
- (Nuclear and Particle Physics)

Cross-Sectional Teams

- Mathematical Methods & Algorithms
- Application Optimization
- Parallel Performance Analysis

Research Groups

- Quantum Information Processing
- Materials Physics (NIC Group)

HGF Portfolio Topics

- Supercomputing and Modelling for the Human Brain
- Safety Research

Grid Technologies and Infrastructures

- Middleware Development: UNICORE
- Interoperability through open standards
- **Application support and advancement**
- e-Infrastructure operations and support
- Data management, access, transfer, control, and governance

3rd Party Funded Projects (Head Count)

SUPERCOMPUTER STRATEGY 2010-2015-2020

The Jülich Dual Scalability Concept

JUGENE

Scalability unltd.? MD code PEPC for modelling strongly coupled plasmas

- Hybrid O(N log N) tree algorithm to compute forces (MPI + pthreads)
- Parallel scaling to 288k cores of BlueGene/P
- Multi-billion ab-initio simulation with charged particles

Winkel, Speck, Hübner, Arnold, Krause, Gibbon, Comp. Phys. Commun. (accepted, 2011)

JUROPA + HPCFF (5/2009 - 308 TF)

QPACE (made in Europe, 2009)

Massively parallel architecture for LQCD

4+4 racks installed in 2009= 400 SP TFlops (peak)

Developed by an academic-industrial team (SFB/TR 55)

U Regensburg

 U Wuppertal
 U Ferrara/Milano
 FZJ, DESY

 Industrial partner: IBM

Concept

- Fast commodity processor= IBM PowerXCell 8i
- Custom network→ custom network processor
- Custom system design

JUQUEEN (2012)

Jülich's Novel Scalable Petaflop System (PoF funded)

IBM Blue Gene/Q

- IBM PowerPC® A2
- 1.6 GHz
- 16 cores per node
- 8 racks, 131072 cores
- 1,7 PF peak, 1.4 PF Linpack
- 128 TByte main memory
- Global Parallel File System
 - 8 PByte online disk
 - up to 80 PB tape
 - full end-to-end data integrity
 - fast rebuilt-technology
- 5D network
- Production start: May 16, 2012

TEM Commonwell and Co

Extension to 20 (28) racks in September 2012 (December 2012)

Dynamical Exascale Entry Platform

FP7-ICT-2011-7 Integrated Project No. 287530

16 partners from 8 countries:

3 PRACE Hosting Members

5 industry partners

Knights Corner Processor

EXTOLL network

ParaStation cluster operation StarSS programming env.

Start: 1st Dec 2011

Duration: 3 years

Budget: 18.5 M€ (8.03 M€ funded by EU)

DEEP Cornerstones

- Knights Corner Processor
 - > 50 Cores
 - 22 nm process
- EXTOLL network
 - Ultra low latency
 - Cut-through routing
- ParaStation
 - Cluster operation
- StarSS
 - Programming environment

DEEP Partners

Helmholtz-Roadmap für Forschungsinfrastrukturen Stand 2011

Exascale Computer (ExaCom)

Timeline

Construction: 2016–2020 (continuously)

Operation: 3 to 5 years after last upgrade

Estimated Costs

Preparation: 2 Mio. €

Implementation: 150 Mio. € (GCS funding expected)

Operation: 6 Mio. € p.a.

International Dimension

The planned Exascale Computer for Jülich will be the leadership-system of the EuropeanTier-0 centres. It will give researchers in the HGF a substantial competitive advantage

Role of the Centre

With 25 years experience and excellence in development, implementation and operation of national and European Supercomputers FZJ is an ideal location and architect of the infrastructure

STRATEGIC ACTIVITIES AND PERSPECTIVES

Local:

Institute for Advanced Simulation

Institute for Advanced Simulation (IAS) Structure, Topics and Integration

IAS-1 Quantum Theory of Materials

Investigation of the complex structural. electronic and magnetic qualities of solids and molecules

Prof. Stefan. Blügel

IAS-4 Theory of the Strong Interactions

Analysis of the structure and dynamics of hadrons and atomic nuclei

Prof. Ulf Meissner

IAS-2

Theoretical Soft Matter and Biophysics

Exploration of the structure and dynamics of complex fluids, soft matter and biological systems

Prof. Gerhard Gompper Prof. David DiVincenzo

IAS-5 Computational Biomedicine

Integrating the in silico approach with in vitro and in vivo experiments

IAS-3

Theoretical Nanoelectronics

Information processing based on the quantum mechanical nature of matter

IAS-6 (planned) Computational and Systems Neuroscience

Development of multi-scale models of the brain

Prof. Markus Diesmann Prof. Paolo Carloni ISC

Jülich Supercomputing Centre

Prof. Thomas Lippert

Management:

Managing Director, elected for one year from Board of Directors; permanent Deputy Director

Organisation:

Most IAS divisions are as well divisions in disciplinary departments

Regional: Cooperation with Excellence University RWTH Aachen

JARA-BRAIN

JARA-ENERGY

JARA-F-IT

JARA-HPC

JARA

- is unique in Germany
- joins University and Research Centre
- cooperates in
 - Research
 - Education
 - Infrastructure
 - Knowledge transfer
 - Services

JARA HPC Partition: 500 TF (JSC), 100 TF (Aachen)

Supporting German University Groups: John von Neumann-Institute for Computing

The NIC is a guarantee for highest quality of scientific proposals for CPU time. The NIC was blueprint for the PRACE scientific steering committee

Thomas Lippert 26

Germany: Gauss Centre for Supercomputing

- Alliance of the three German SC centres
 HLRS, JSC, LRZ
- Creating joint scientific governance
- German representative in PRACE
- More information: http://www.gauss-centre.de

Europe: PRACE

HPC part of the ESFRI Roadmap; creation of a vision involving 15 European countries

Creation of the Scientific Case

Signature of the MoU

Creation of the PRACE Research Infrastructure

HPCEUR

HFT

PRACE Initiative

PRACE RI

2005 T2006Lip er2007

2008

2009

2010

2011

2012

28

PRACE Preparatory

Phase Project

PRACE-1IP

PRACE-31P

PRACE-2IP

PRACE Tier-0 Capability and Support

- Accumulated Tier-0 performance > 15 Pflop/s in 2013/14
- PRACE includes 18 Tier-1
 systems with accumulated
 capability of > 2 PF (building
 on DEISA / DECI)
- PRACE provides capability support competence centres over several sites

OUR MOTIVATION

Ab Initio Calculation of the Hoyle State

Epelbaum, Meissner et al. (2011) (JUGENE)

Jülich Supercomputing Centre

