
PERFORMANCE MODELING FOR PARALLEL
SOFTWARE DEVELOPMENT AND TUNING
TORSTEN HOEFLER

 David Patterson: “A portable parallel program is
an oxymoron”
 Certainly true, isn’t it?

 And it gets worse … why?

 Performance is complex!
 In parallel even more …

 We need tools to understand and generalize!

 Even correctness is complex
 Mainly fixed by models of computation/invariants

 We propose performance modeling for a change!

MOTIVATION

Slide 2 of 28 Torsten Hoefler

PERFORMANCE MODELING
 Representing performance with analytic expressions

 Not just series of points from benchmarks

 Algebraic derivation to find sweet-spots

 Why performance modeling?

 Extrapolation (scalability)

 Insight into requirements
 Message sizes, HW/SW Co-Design

 Purchasing decisions based on models

 BUT: It’s mostly used by computer scientists!

 Our goal: enable application developers and domain

scientists to use performance modeling

Slide 3 of 28 Torsten Hoefler

OUR SIMPLE METHODOLOGY
 Combine analytical methods and empirical

performance measurement tools

 Programmer specifies expectation
 E.g., T = a+b*N3

 Tools find the parameters
 Empirically, e.g., least squares

 We derive the scaling analytically and
fill in the constants with empirical measurements

 Models must be as simple and effective as possible

 Simplicity increases the insight

 Precision needs to be just good enough to drive action

Slide 4 of 28 Torsten Hoefler

OTHER PHILOSOPHIES

 Simulation:

 Very accurate prediction, little insight

 Traditional Performance Modeling (PM):

 Focuses on accurate predictions

 Tool for computer scientists, not application developers

Performance Engineering

Slide 5 of 28 Torsten Hoefler

WHEN AND WHERE SHOULD IT BE USED?

 During the whole software development cycle
 Analysis (pick the right algorithms)

 Design (pick the right design pattern)

 Implementation (choose implementation options)

 Testing (test if performance expectations are met)

 Maintenance (monitor performance)

 Performance bugs can be as serious and
as expensive as correctness bugs!

Slide 6 of 28 Torsten Hoefler

SOFTWARE DEVELOPMENT - EXAMPLE - MM

 Matrix multiplication (N3 algorithm)

 Trivial (non-blocked) algorithm

 Analytic Model:
 N3 FP add/mult, 4N3 FP load/store, +int ops
 How can we get to an execution time?  very hard!

for(int i=0; i<N; ++i)

 for(int j=0; j<N; ++j)

 for(int k=0; k<N; ++k)

 C[i+j*N] += A[i+k*N] * B[k+j*N];

1 1 3 1
1 4 1 7
9 4 1 2
1 5 1 3

1 3 0 1
3 7 4 1
3 0 9 8
1 2 5 6

5

…

Slide 7 of 28 Torsten Hoefler

SEMI-EMPIRIC MODEL FOR MM

 T(N) = tN3

 POWER7
 t=2.2ns

 0.8% err

 Is that all?
 Requirement

Model delivers
more insight!

Slide 8 of 28 Torsten Hoefler

REQUIREMENTS MODEL FOR MM

 Required floating point operations: 2N3 (verified)

 Cache misses?
 Semi-analytic!

 C(N) = aN3 – bN2

 POWER7
 a=3.8e-4

 a=2.7e-1

Slide 9 of 28 Torsten Hoefler

 Performance Optimization
 Identify bottlenecks and problems

during porting

 System Design
 Co-design based on application requirements

 System Deployment and Testing
 Know what to expect, find performance issues quickly

 During System Operation
 Detect silent (and slow) performance degradation

MORE USES OF MODELS

Slide 10 of 28 Torsten Hoefler

OUR PROCESS FOR EXISTING CODES
 Simple 6-step process:

 Analytical steps (domain expert or source-code)

1) identify input parameters that influence runtime

2) identify most time-intensive kernels

3) determine communication pattern

4) determine communication/computation overlap

 Empirical steps (benchmarks/performance tools)

1) determine sequential baseline

2) determine communication parameters

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP

Slide 11 of 28 Torsten Hoefler

ALL STEPS BY EXAMPLE – MILC

• MIMD Lattice Computation

• Gains deeper insights in

fundamental laws of physics

• Determine the predictions of

lattice field theories (QCD &

Beyond Standard Model)

• Major NSF application

• Challenge:

• High accuracy (computationally intensive) required for

comparison with results from experimental programs in

high energy & nuclear physics

Bernard, Gottlieb et al.: Studying Quarks and Gluons On Mimd Parallel Computers

Slide 12 of 28 Torsten Hoefler

STEP 1: CRITICAL PARAMETERS
 Best way: ask a domain expert!

 Or: look through the code/input file format

 For MILC (thanks to S. Gottlieb):

Slide 13 of 28 Torsten Hoefler

STEP 2: FIND KERNELS

 E.g., investigate call-tree or source-code

 Control logic
 update

 MILC’s kernels:
 LL (load_longlinks)

 FL (load_fatlinks)

 CG (ks_congrad)

 GF (imp_gauge_force)

 FF (eo_fermion_force_twoterms)

Slide 14 of 28 Torsten Hoefler

STEP 4: SEQUENTIAL PERFORMANCE

 MILC “only” loops over the lattice 

T(V) = tV

 Wait, it’s not that simple with caches 

 Small V fit in cache!

T(V) = t1 * min(s, V) + t2 * max(0, V-s)

 Cache holds s data elements

 Three parameters for each kernel

Slide 15 of 28 Torsten Hoefler

AN EXAMPLE KERNEL: GF (GAUGE FORCE)

 Hopper (XE6):
 t1=81 μs, t2=261 μs

 s=1.500

 Kraken (XT-5):
 t1=74 μs, t2=387 μs

 s=1.500

 Surveyor (BG/P):
 T1=483 μs, t2=567 μs

 s=2000

Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012c

Data from Hopper

Slide 16 of 28 Torsten Hoefler

COMPLETE SERIAL PERFORMANCE MODEL

 High predictability!

 Low variance

 Avg. model error <5%

Slide 17 of 28 Torsten Hoefler

STEP 3: COMMUNICATION PATTERN
 4d domain is cut in all dimensions (cubic)

 4d nearest-neighbor communication (8 neighbors)

 Allreduce to check CG convergence

 One per iteration on full process set

 We counted messages and sizes

 Separate for each kernel

 See paper for
sizes and full
model equation!

Slide 18 of 28 Torsten Hoefler

Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012cs

STEP 6: COMMUNICATION PARAMETERS

 Two options:
 Semi-analytic – fit measurements to get effective latency and

bandwidth
 Enables to check if they match expectations

 Analytic – derive parameters separately (e.g., documentation
or separate benchmark)
 Often problematic if they do not match expectations

 We did both! “Measure” impact of topology!
 Uses analytic LogGP parameters (measured by Netgauge [1])

 Observe effective bandwidth and latency semi-analytically!

[1] Hoefler et al.: Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks

Slide 19 of 28 Torsten Hoefler

THE ANALYTIC PARALLEL MODEL

Data from POWER5

Slide 20 of 28 Torsten Hoefler

THE ANALYTIC PARALLEL MODEL

Data from POWER5

Slide 21 of 28 Torsten Hoefler

 … you have a machine like this (from a user):

BUT WHAT IF …

Graph by Steven Gottlieb, Indiana University

Slide 22 of 28 Torsten Hoefler

 User functions as expected performance

 Capture variance during measurements as deviation model 
machine characteristic!

 99% network variations in our tests

 Effective latency and bandwidth (+variance) [1]:

 BG/P (P=4096): 16.1 us (2%), 118 MiB/s (0.2%)

 XT-5 (P=2048): 10.3 us (5%), 211 MiB/s (3.8%)

 XE6 (P=8291): 41.5 us (4.8%), 232 MiB/s (1.7%)

 IB (P=2048): 33.6 us (16%), 164 MiB/s (3%)

 Relatively low network variance leads to high
performance variance  conjecture network noise [2]

STATISTICAL MODELING

[1]:Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012
[2]: Hoefler, Schneider, Lumsdaine: “The Effect of Network Noise on *…+ Collective Communication, PPL 2009

Slide 23 of 28 Torsten Hoefler

USE-CASE 1: HETEROGENEOUS TUNING

 Imagine a heterogeneous system

 CPU/GPU

 Multicore

 DEEP architecture

 Establish static models for each kernel and
architecture

 Model-driven scheduling in the runtime system

 Guide auto-tuning at very high level

Slide 24 of 28 Torsten Hoefler

USE-CASE 2: MODEL-GUIDED OPTIMIZATION
 Parallel application performance is complex

 Often unclear how optimizations impact performance

 Issue for applications at large-scale

 Models can guide optimizations

 The developed model shows:

 Local memory copies to prepare
 communication are significant
 Re-engineering resulted in 20% performance gain of a QCD code

 Frequent communication synchronizations are critical
 Importance increases with P – new algorithms in development

 Slide 25 of 28 Torsten Hoefler

USE-CASE 3: ARCHITECTURAL OBSERVATIONS

 How important is topology?

 Compare LogGP analytic results wit effective BWs

Performance degradation
over ideal network

Expected performance
degradation due to network variance

Slide 26 of 28 Torsten Hoefler

CONCLUSIONS

 We advocate performance modeling as tool for

 Increasing performance

 Guide application design and tuning

 Guide system design and tuning

 Throughout the whole software development process!

 Early results and key takeaways:

 PM has been successfully applied to large codes

 PM-guided optimization does not require high precision

 Looking for insight with rough bounds is efficient
All used images belong to the owner/creator!

Slide 27 of 28 Torsten Hoefler

ACKNOWLEDGMENTS

Slide 28 of 28 Torsten Hoefler

