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Outline 

●Brief introduction 

●Two cases with details 

●Other practices for scientific applications in SCCAS 

●Summary and future considerations 
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Motivation of using accelerators 

 

Real 
Performance 

Power Cost 
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Some basic specifications 

  
  

CPU Accelerator 

Sandy Bridge-EP 
Xeon E5-4650 

Interlagos 
Opteron 6284SE 

Kepler 
Tesla K20 

Knights Corner 
Xeon Phi 

Vender Intel AMD NVIDIA Intel 

Peak Flops 172.8Gflops 172.8Gflops >1Tflops >1Tflops 

Cores 
8 cores 

16 threads w/HT 
8 FP modules 

16 cores 
15 SMX modules 
2880 CUDA cores 

>50 cores 

Connection QPI HyperTransport PCIe Gen3 PCIe 

Memory 
4-channel DDR3 

max 1500GB 
4-channel DDR3 384 bit GDDR5 

GDDR5 
8GB+ 

Power 130W 140W 250W(K10)   

● 4-way CPU node 
□ 700Gflops, ~550W, 1.27Gflops/W 

● Single CPU node + 1 accelerator 
□ 170+1000Gflops, ~430W, 2.72Gflops/W 
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Challenges 

●What to do 

●Performance and scalability 

□ High concurrency 

□ Memory size 

□ Data copy latency 

□ Internode communication 

●Real co-processing  
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Heterogeneous practices in SCCAS 

●Materials 
□ SC-PEtot 

●Cosmology 
□ Widgeon 

●Geology 
□ KTM algorithm 

●Bioinformatics 
□ Linkage disequilibrium computation  

□ InsPecT 

●Fluid Mechanics 
□ 2D Riemann problem 

●Mathematics 
□ HPSEPS 
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 Supported by 

– NSFC (61202054) 

– Knowledge Innovation Program of CAS (CNIC_ZR_201202) 

 Collaborated with FDU and LBL 

 People involved: 

– SCCAS (computer science) 

• WANG Long, JIA Weile, CAO Zongyan, FU Jiyun 

– FUDAN University (computational mathematics) 

• GAO Weiguo, WU Yue 

– Lawrence Berkeley National Laboratory (physics) 

• WANG Lin-Wang 

 SC-PEtot: First large-scale GPU planewave DFT code 

7 



Sweet spot for planewave DFT calculations  

●100 to 1000 atoms system 

□ For >>1000 atoms, using linear scaling method  (LS3DF) 

●ab initio MD simulation for a few ns 

□ State-of-the-art: 1-2 min per MD step 
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 Progress of SC-PEtot 

●Extreme redesign and optimization from the PEtot CPU code 

□ CUDA + MPI implementation 

□ All data in GPU 

□ Local FFT 

□ Hybrid precision computing 

□ compressed data for communication optimization 

□ Faster libraries 

□ Performance analysis and prediction model 

Wang, etc., Large scale plane wave pseudopotential density functional theory 
calculations on GPU clusters (SC’11) 

Jia, etc. The analysis of a plane wave pseudopotential density functional theory code 
on a GPU machine (Comp. Phys. Comm., doi: 10.1016/j.cpc.2012.08.002 ) 

Jia, etc. Fast plane wave density functional theory molecular dynamics calculations 
on multi-GPU machines (SC’12 poster) 

Talks on APS March Meeting 2012, NVIDIA GTC 2012, etc. 

9 



 

Diagram of SC-PEtot MD steps 
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G-space distribution to i-index distribution 

– Using all-to-all collective communication 

 FFT done by CUFFT routine 

– 4x faster 

Local FFT 
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Hybrid precision and data compression 

●Residual P 
□ 1-6-9 data format 

□ ¼ alltoall time 

●FFT 
□ Single precision 

□ Half FFT time 

●Subdiagonization 
□ Single precision 

□ Half allreduce time 

□ Half eigenvalue solving time 

 

Convergence of AB_CG 
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 MAGMA for BLAS routines and Cholesky decomposition 

 ELPA (up to 64 CPU cores) for eigenvalue solving 
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Library choosing 



Performance analyzing equations 
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Test results 

No. of CPU core 32×16 64×16 128×16 256×16 

PEtot_CPU(Titan) 277s 223s 203s 216s 

No. of GPU 32 64 128 256 

PEtot_GPU(Titan) 31.6s 20.8s 13.2s 11.4s 

PEtot_GPU(Mole-8.5) 33.1s 21.6s 13.7s 14.7s 

     
 

●Testing system: 

□ 512 atom GaAsN bulk system 

●Platform 

□ OLCF Titan first phase 

□ IPE Mole-8.5 

●Results 

□ 18x absolute speedup for MD steps 
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Conclusion of SC-PEtot work 

●It is possible to use GPU to implement planewave DFT 
calculation with >10 times absolutely speedup.  

●Rethink the whole parallelization scheme, and introduce 
new algorithm.  

●Move most data and the calculation into the GPU. 

●Hybrid precision computing may possibly benefit the 
performance, but it must be proved not influencing the 
correctness of the computation. 

●Try new numerical libraries for algebra routines. 
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MIC enabling project: Widgeon 

●Supported by and collaborated with Intel 

●People involved: 

□ SCCAS 

• CAO Zongyan, MENG Chen, WANG Long 

□ Intel 

• ZHOU Shan 
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Widgeon: a Galactic wind simulation code 
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2048 4096 8192 16384
Speedup 1 1.996 3.62 6.9
Linear 1 2 4 8
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Potential for using accelerators 

●>95% time to intensively calculate the equation: 

 

 

●Exchange data only with neighbors, no collective 

communication 

●High MPI scalability on clusters 
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Some progress 

●Running  with stand alone MPI mode on KNC 

□ Very bad performance at the beginning 

□ Offload mode should get worse performance 

●Vectorization ratio of the code is essential for the 
computing performance 

□ Hardly optimizing the code, for better vectorization 

□ Many optimization also made the code running faster on 
CPU 

●Writing out a basic GPU code 

□ Slower than one CPU core 
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Code optimization details (1) 

●1. Eliminating the data dependencies in the loops to make 

the loops vectorizable for the compiler. 

 
DO i=1, N 
    …… 
    calc out a temp num, store in t 
    f(i) = f(i) + t 
    …… 
    calc out another temp num, store in t 
    f(i) = f(i) + t 
ENDDO 

DO i=1, N 
    …… 
    calc out a temp num, store in t1 
…… 
    calc out another temp num, store in t2 
    f(i) = f(i) + t1 + t2 
ENDDO 

21 



Code optimization details (2) 

●2. Rearranging and combining the loops to remove some 

temporary arrays. 

 
DO i=1, N+1 
    …… 
    calculate f(i) 
    calculate v(i) from f(i) 
    …… 
ENDDO 
 
DO i=1, N 
    …… 
    g(i) = (f(i) + f(i+1)) * v(i+1) 
    …… 
ENDDO 
 

calculate f(1) 
calculate v(1) from f(1) 
 
DO i=2, N+1 
    …… 
    calculate f(i) 
    calculate v from f(i) 
    g(i-1) = (f(i-1) + f(i)) * v 
    …… 
ENDDO 

22 



Code optimization details (3) 

●3. Manually unrolling the small inner loops to make more 

calculation vectorized. 

 
DO i=1, N 
    …… 
    lots of calculation 
    DO j=1,5 
        f(j,i) = u(j,i) * a 
    ENDDO 
    lots of calculation 
    …... 
 
ENDDO 
 

DO i=1, N 
    …… 
    lots of calculation 
    f(1,i) = u(1,i) * a 
    f(2,i) = u(2,i) * a 
    f(3,i) = u(3,i) * a 
    f(4,i) = u(4,i) * a 
    f(5,i) = u(5,i) * a 
    lots of calculation 
    …... 
 
ENDDO 
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Code optimization details (4) 

●4. Rearrange the rows and the columns of  array in order to 

make memory access contiguous in nearby loop steps. 

 
REAL,DIMENSION(3,N)::f,u 
DO i=1, N 
    …… 
    f(1,i) = u(1,i) * a 
    f(2,i) = u(2,i) * b 
    f(3,i) = u(3,i) * c 
…... 
ENDDO 
 

REAL,DIMENSION(N,3)::f,u 
DO i=1, N 
    …… 
    f(i,1) = u(i,3) * a 
    f(i,2) = u(i,3) * b 
    f(i,3) = u(i,3) * c 
…... 
ENDDO 
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On-going work 

●Deep analysis with special tools 

□ Find a way to higher performance 

●GPU implementation for comparing 

□ Better understanding of the generalities and differences 
between GPU and MIC 

●Using some other modes for running 

□ Especially as coprocessor 
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GPU implementation of Kirchhoff time migration 

● For a measured time sample on a given input trace, the travel time from 
source and receiver can be calculated using the velocity model and summed 
as t. 

● If the computed travel time equals the actual recorded time at that point, the 
amplitude will be filtered and accumulated to contribute to the output sample.  

 

Held by Dr. LIU Fang, supported by Beijing Petrosound Geoservices Ltd. 
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Implementation details 

● A hybrid system on multi-GPU clusters 
□ Implemented by MPI/CUDA using CPU/GPU cooperation 

□ Based on a typical master-slave mode 

□ Mapped to three levels: MPI process - pthread - CUDA thread 

● Test pata 
□ 2D data with 1423 CDPs and 132036 traces (1.3GB) 

□ 3D data with 3 inlines and 300 crosslines  and 108368 traces (694MB) 

● Test platform 
□ 8 nodes composed of 4 CPU cores and 2 GPUs per node 

 
Mode 

2D 3D 
CPU GPU speedup CPU GPU speedup 

Migration stack 256s 78s 3.3 140s 58s 2.4 

Velan Movie 1068s 264s 4.0 264 151s 1.8 

crp 517s 276s 1.9 549s 102s 5.4 

angle 1281s 160s 8.0 269 57s 4.7 
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 Linkage disequilibrium 
– Consider the haplotypes for two loci A and B with two alleles 

each—a two-locus, two-allele model 

– The following table defines the frequencies of each combination: 

 

 

 

 

 
– The absent alleles are recorded by ‘N’, while the rest are by ‘A/G/C/T’ 

 

Held by Dr. LIU Fang, supported by China Agriculture University 

Accelerating Linkage Disequilibrium Computation on GPU 
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 Pre-process the input data and convert the data type from ‘char’ to two bits 
– Data bit：whether the primary allele 

– Flag bit：whether absent 

 Count N,x11,p1 and q1 using a special designed instruction ‘__popc’ 
on GPU   

– Returns the number of bits that are set to 1 in the binary representation in a clock cycle on Fermi 
devices  

– Load input 32 chars by 2 reads of unsigned integers 

– Can gain a speedup of more than 32 times theoretically 

 Divide data into blocks 
– Less memory consumption on GPU 

– Better for parallel work on GPU clusters 

 Re-arranage input data for coalesce read on GPU 

 Using ‘atomicInc’ instruction to only store the related pairs 

 Map thread organization from 2D matrix to 3D grid 
– Less threads in first two dimensions 

– Same input data for the same block, better for cache hit 

Optimization details 
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 Test Platform： 
– GPU version:  NVIDIA C2075(448  cuda cores)   

– CPU version: Intel Xeon 5410 (4 CPU cores) 

 Timing: 
– N=1000，M=296 (No I/O) 

• CPU：0.62s 

• GPU：0.00091s 

• speedup：more than 600 times 

– N= 45099，M=515 (No I/O) 

• CPU：2126.25 s  

• GPU：1.39 s 

• speedup：more than 1500 times 

– Larger input data: 

• Divide into files with moderate size 

• Gains the similar speedup each 

 

Some test results 
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Accelaration of InsPecT 

cuda-InsPecT 
•  via MPI+CUDA 

Software: cuda-InsPecT（two modifications） 
Database: 62346 mass spectrometric， 
107962 protein sequences 
Platform: Dawning 6000A 

 
 

Single CPU core(estimate) 677 Tesla C2050 GPUs 

Time 6 year 2.034 h 

●A commonly used software in SIBS 

□ CUDA+MPI 

□ Master/Slave mode 
 

Held by Dr. LANG Xianyu. 
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HPSEPS 

●Parallel eigenvalue solver 

□ Multi-GPU solution for symmetric tridiagonal matrices 

□ Based on MRRR algorithm 

□ MPI+CUDA 

 

Held by Prof. ZHAO Yonghua 

 

20k*20k matrix performance 
GPUs 1 2 4 8 16 

Time(s) 824.2 480.4 290.9 210.4 135.8 

1 GPU compared to 1 CPU core 
 Size 2000 5000 10000 15000 

CPU 23.8 548.1 2320.18 8942.4 

GPU 2.06 29.49 102.32 365.56 

Speedup 11.67 18.93 22.68 24.5 

16 GPUs with huge matrices 
Size 20000 30000 50000 

Time(s) 135.8 433.44 1388.33 
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●Be a kernel of the solvers in CCFD software 

□ OpenCL/CUDA (2 versions) 
 

Held by Prof. LU Zhonghua 

 

63.5x 16x 

2D Riemann problem in CFD 

Size OpenCL CUDA 

512 * 512 4.7x 10.43x 
1024 * 1024 7.69x 14.72x 
2048 * 2048 8.6x 16x 
4096 * 4096 30.7x 57.14x 
5120 * 5120 34.8x 63.17x 
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Some considerations 

●How to decide whether an application can be speedup on the 

accelerators, Especially for large scale computations? 

●Are there more efficient models to implement the heterogeneous 

codes with out performance loss? 

●How to build a simple but available performance model for 

applications and using it to find out the bottlenecks? 

● If accelerators do most computation, what will CPUs be? 

●How to build future machines for a supercomputing center, 

CPUs, GPUs, MICs? 
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Summary 

● Heterogeneous computing with accelerators is one of the trend in 
scientific High-performance computing. It will play an important role 
on the way to Exascale. 

● We are keeping the pace with the development of heterogeneous 
computing. Guys in SCCAS actively participate and practice 
heterogeneous computing and got some achievement, especially on 
GPU computing. 

● Before another revolutionary technique comes out, using MPI with 
heterogeneous computing kernel is still a efficient model of 
implementing large scale applications. 

● Working on scientific applications, we need the cooperations for 
scientists of specialized subject, mathematics and computer science. 

● Scalability may become a problem, but the essential thing is to 
extremely explore the absolutely real performance of the accelerators. 

● There should be more practice or research work to find out an easy 
way to make good use of  both CPUs and accelerators. 
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THANK YOU! 


