
Large Scale Heterogeneous
Scientific Computing in SCCAS:

Practice and Prospects

CAO Zongyan

zycao@sccas.cn

2012-9-5

Outline

●Brief introduction

●Two cases with details

●Other practices for scientific applications in SCCAS

●Summary and future considerations

2

Motivation of using accelerators

Real
Performance

Power Cost

3

Some basic specifications

CPU Accelerator

Sandy Bridge-EP
Xeon E5-4650

Interlagos
Opteron 6284SE

Kepler
Tesla K20

Knights Corner
Xeon Phi

Vender Intel AMD NVIDIA Intel

Peak Flops 172.8Gflops 172.8Gflops >1Tflops >1Tflops

Cores
8 cores

16 threads w/HT
8 FP modules

16 cores
15 SMX modules
2880 CUDA cores

>50 cores

Connection QPI HyperTransport PCIe Gen3 PCIe

Memory
4-channel DDR3

max 1500GB
4-channel DDR3 384 bit GDDR5

GDDR5
8GB+

Power 130W 140W 250W(K10)

● 4-way CPU node
□ 700Gflops, ~550W, 1.27Gflops/W

● Single CPU node + 1 accelerator
□ 170+1000Gflops, ~430W, 2.72Gflops/W

4

Challenges

●What to do

●Performance and scalability

□ High concurrency

□ Memory size

□ Data copy latency

□ Internode communication

●Real co-processing

5

Heterogeneous practices in SCCAS

●Materials
□ SC-PEtot

●Cosmology
□ Widgeon

●Geology
□ KTM algorithm

●Bioinformatics
□ Linkage disequilibrium computation

□ InsPecT

●Fluid Mechanics
□ 2D Riemann problem

●Mathematics
□ HPSEPS

6

 Supported by

– NSFC (61202054)

– Knowledge Innovation Program of CAS (CNIC_ZR_201202)

 Collaborated with FDU and LBL

 People involved:

– SCCAS (computer science)

• WANG Long, JIA Weile, CAO Zongyan, FU Jiyun

– FUDAN University (computational mathematics)

• GAO Weiguo, WU Yue

– Lawrence Berkeley National Laboratory (physics)

• WANG Lin-Wang

 SC-PEtot: First large-scale GPU planewave DFT code

7

Sweet spot for planewave DFT calculations

●100 to 1000 atoms system

□ For >>1000 atoms, using linear scaling method (LS3DF)

●ab initio MD simulation for a few ns

□ State-of-the-art: 1-2 min per MD step

8

 Progress of SC-PEtot

●Extreme redesign and optimization from the PEtot CPU code

□ CUDA + MPI implementation

□ All data in GPU

□ Local FFT

□ Hybrid precision computing

□ compressed data for communication optimization

□ Faster libraries

□ Performance analysis and prediction model

Wang, etc., Large scale plane wave pseudopotential density functional theory
calculations on GPU clusters (SC’11)

Jia, etc. The analysis of a plane wave pseudopotential density functional theory code
on a GPU machine (Comp. Phys. Comm., doi: 10.1016/j.cpc.2012.08.002)

Jia, etc. Fast plane wave density functional theory molecular dynamics calculations
on multi-GPU machines (SC’12 poster)

Talks on APS March Meeting 2012, NVIDIA GTC 2012, etc.

9

Diagram of SC-PEtot MD steps

getwmask

CG_AllBand

extrapolation

Occupy

getpotential2L

Pulay and Kerk

Charge mixing

Force_local

Force_NL

MD

фl Allreduce фl

Allreduce Mx*MxMx*Mx

Wf Alltoall Wf

Allreduce Mx*MxMx*Mx

 nonlocal force

S
C

F
=

3

M
D

 s
te

p

3
 i

te
r

Alltoall wfWf

ρ(r) ReduceScatter ρ(r)

Allreduce

GPU CPU MPI GPU CPU MPI

dsyev

Memcpy(wf)

MPI_Allreduce(mx)

MPI_Alltoall(wf)

MPI_Allreduce(mx)

Pi = A(HΨi - εiΨi)

Proj: Pi = Pi - Σ< Pi|Ψj >Ψj
 j

Memcpy(wf)

Memcpy(mx)

Memcpy(mx)

MPI_Allreduce(mx)

Memcpy(mx)
Memcpy(mx)

Memcpy(wf)

MPI_Alltoall(wf)

Memcpy(mx)

dsyev

MPI_Allreduce(mx)

Memcpy(mx)

Memcpy(mx)

Memcpy(P)

MPI_Alltoall(P)Memcpy(P)

MPI_Alltoall(P)Memcpy(P)

Memcpy(P)it
er

a
ti

o
n

 =
 3

Ψi = Ψicosθi + Pisinθi

Orth: Ψi = Ψi - Σ< Ψi|Ψj >Ψj
 j

Sub_diag: < Ψi|H|Ψj >

Sub_diag: < Ψi|H|Ψj >

HΨi: FFT + Nonlocal

HPi: FFT + Nonlocal

Memcpy(mx)

Memcpy(wf)

10

G-space distribution to i-index distribution

– Using all-to-all collective communication

 FFT done by CUFFT routine

– 4x faster

Local FFT

11

Hybrid precision and data compression

●Residual P
□ 1-6-9 data format

□ ¼ alltoall time

●FFT
□ Single precision

□ Half FFT time

●Subdiagonization
□ Single precision

□ Half allreduce time

□ Half eigenvalue solving time

Convergence of AB_CG

12

 MAGMA for BLAS routines and Cholesky decomposition

 ELPA (up to 64 CPU cores) for eigenvalue solving

13

Library choosing

Performance analyzing equations

14

Test results

No. of CPU core 32×16 64×16 128×16 256×16

PEtot_CPU(Titan) 277s 223s 203s 216s

No. of GPU 32 64 128 256

PEtot_GPU(Titan) 31.6s 20.8s 13.2s 11.4s

PEtot_GPU(Mole-8.5) 33.1s 21.6s 13.7s 14.7s

●Testing system:

□ 512 atom GaAsN bulk system

●Platform

□ OLCF Titan first phase

□ IPE Mole-8.5

●Results

□ 18x absolute speedup for MD steps

15

Conclusion of SC-PEtot work

●It is possible to use GPU to implement planewave DFT
calculation with >10 times absolutely speedup.

●Rethink the whole parallelization scheme, and introduce
new algorithm.

●Move most data and the calculation into the GPU.

●Hybrid precision computing may possibly benefit the
performance, but it must be proved not influencing the
correctness of the computation.

●Try new numerical libraries for algebra routines.

16

MIC enabling project: Widgeon

●Supported by and collaborated with Intel

●People involved:

□ SCCAS

• CAO Zongyan, MENG Chen, WANG Long

□ Intel

• ZHOU Shan

17

Widgeon: a Galactic wind simulation code

0

1

2

3

4

5

6

7

8

9

2048 4096 8192 16384
Speedup 1 1.996 3.62 6.9
Linear 1 2 4 8

18

Potential for using accelerators

●>95% time to intensively calculate the equation:

●Exchange data only with neighbors, no collective

communication

●High MPI scalability on clusters

19

Some progress

●Running with stand alone MPI mode on KNC

□ Very bad performance at the beginning

□ Offload mode should get worse performance

●Vectorization ratio of the code is essential for the
computing performance

□ Hardly optimizing the code, for better vectorization

□ Many optimization also made the code running faster on
CPU

●Writing out a basic GPU code

□ Slower than one CPU core

20

Code optimization details (1)

●1. Eliminating the data dependencies in the loops to make

the loops vectorizable for the compiler.

DO i=1, N
 ……
 calc out a temp num, store in t
 f(i) = f(i) + t
 ……
 calc out another temp num, store in t
 f(i) = f(i) + t
ENDDO

DO i=1, N
 ……
 calc out a temp num, store in t1
……
 calc out another temp num, store in t2
 f(i) = f(i) + t1 + t2
ENDDO

21

Code optimization details (2)

●2. Rearranging and combining the loops to remove some

temporary arrays.

DO i=1, N+1
 ……
 calculate f(i)
 calculate v(i) from f(i)
 ……
ENDDO

DO i=1, N
 ……
 g(i) = (f(i) + f(i+1)) * v(i+1)
 ……
ENDDO

calculate f(1)
calculate v(1) from f(1)

DO i=2, N+1
 ……
 calculate f(i)
 calculate v from f(i)
 g(i-1) = (f(i-1) + f(i)) * v
 ……
ENDDO

22

Code optimization details (3)

●3. Manually unrolling the small inner loops to make more

calculation vectorized.

DO i=1, N
 ……
 lots of calculation
 DO j=1,5
 f(j,i) = u(j,i) * a
 ENDDO
 lots of calculation
 …...

ENDDO

DO i=1, N
 ……
 lots of calculation
 f(1,i) = u(1,i) * a
 f(2,i) = u(2,i) * a
 f(3,i) = u(3,i) * a
 f(4,i) = u(4,i) * a
 f(5,i) = u(5,i) * a
 lots of calculation
 …...

ENDDO

23

Code optimization details (4)

●4. Rearrange the rows and the columns of array in order to

make memory access contiguous in nearby loop steps.

REAL,DIMENSION(3,N)::f,u
DO i=1, N
 ……
 f(1,i) = u(1,i) * a
 f(2,i) = u(2,i) * b
 f(3,i) = u(3,i) * c
…...
ENDDO

REAL,DIMENSION(N,3)::f,u
DO i=1, N
 ……
 f(i,1) = u(i,3) * a
 f(i,2) = u(i,3) * b
 f(i,3) = u(i,3) * c
…...
ENDDO

24

On-going work

●Deep analysis with special tools

□ Find a way to higher performance

●GPU implementation for comparing

□ Better understanding of the generalities and differences
between GPU and MIC

●Using some other modes for running

□ Especially as coprocessor

25

GPU implementation of Kirchhoff time migration

● For a measured time sample on a given input trace, the travel time from
source and receiver can be calculated using the velocity model and summed
as t.

● If the computed travel time equals the actual recorded time at that point, the
amplitude will be filtered and accumulated to contribute to the output sample.

Held by Dr. LIU Fang, supported by Beijing Petrosound Geoservices Ltd.

26

Implementation details

● A hybrid system on multi-GPU clusters
□ Implemented by MPI/CUDA using CPU/GPU cooperation

□ Based on a typical master-slave mode

□ Mapped to three levels: MPI process - pthread - CUDA thread

● Test pata
□ 2D data with 1423 CDPs and 132036 traces (1.3GB)

□ 3D data with 3 inlines and 300 crosslines and 108368 traces (694MB)

● Test platform
□ 8 nodes composed of 4 CPU cores and 2 GPUs per node

Mode

2D 3D
CPU GPU speedup CPU GPU speedup

Migration stack 256s 78s 3.3 140s 58s 2.4

Velan Movie 1068s 264s 4.0 264 151s 1.8

crp 517s 276s 1.9 549s 102s 5.4

angle 1281s 160s 8.0 269 57s 4.7

27

 Linkage disequilibrium
– Consider the haplotypes for two loci A and B with two alleles

each—a two-locus, two-allele model

– The following table defines the frequencies of each combination:

– The absent alleles are recorded by ‘N’, while the rest are by ‘A/G/C/T’

Held by Dr. LIU Fang, supported by China Agriculture University

Accelerating Linkage Disequilibrium Computation on GPU

11 1 1

1 1 2 2

D x p q

D
r

p q p q

 



28

http://en.wikipedia.org/wiki/Haplotypes

 Pre-process the input data and convert the data type from ‘char’ to two bits
– Data bit：whether the primary allele

– Flag bit：whether absent

 Count N,x11,p1 and q1 using a special designed instruction ‘__popc’
on GPU

– Returns the number of bits that are set to 1 in the binary representation in a clock cycle on Fermi
devices

– Load input 32 chars by 2 reads of unsigned integers

– Can gain a speedup of more than 32 times theoretically

 Divide data into blocks
– Less memory consumption on GPU

– Better for parallel work on GPU clusters

 Re-arranage input data for coalesce read on GPU

 Using ‘atomicInc’ instruction to only store the related pairs

 Map thread organization from 2D matrix to 3D grid
– Less threads in first two dimensions

– Same input data for the same block, better for cache hit

Optimization details

29

 Test Platform：
– GPU version: NVIDIA C2075(448 cuda cores)

– CPU version: Intel Xeon 5410 (4 CPU cores)

 Timing:
– N=1000，M=296 (No I/O)

• CPU：0.62s

• GPU：0.00091s

• speedup：more than 600 times

– N= 45099，M=515 (No I/O)

• CPU：2126.25 s

• GPU：1.39 s

• speedup：more than 1500 times

– Larger input data:

• Divide into files with moderate size

• Gains the similar speedup each

Some test results

30

Accelaration of InsPecT

cuda-InsPecT
• via MPI+CUDA

Software: cuda-InsPecT（two modifications）
Database: 62346 mass spectrometric，
107962 protein sequences
Platform: Dawning 6000A

Single CPU core(estimate) 677 Tesla C2050 GPUs

Time 6 year 2.034 h

●A commonly used software in SIBS

□ CUDA+MPI

□ Master/Slave mode

Held by Dr. LANG Xianyu.

31

HPSEPS

●Parallel eigenvalue solver

□ Multi-GPU solution for symmetric tridiagonal matrices

□ Based on MRRR algorithm

□ MPI+CUDA

Held by Prof. ZHAO Yonghua

20k*20k matrix performance
GPUs 1 2 4 8 16

Time(s) 824.2 480.4 290.9 210.4 135.8

1 GPU compared to 1 CPU core
 Size 2000 5000 10000 15000

CPU 23.8 548.1 2320.18 8942.4

GPU 2.06 29.49 102.32 365.56

Speedup 11.67 18.93 22.68 24.5

16 GPUs with huge matrices
Size 20000 30000 50000

Time(s) 135.8 433.44 1388.33

32

●Be a kernel of the solvers in CCFD software

□ OpenCL/CUDA (2 versions)

Held by Prof. LU Zhonghua

63.5x 16x

2D Riemann problem in CFD

Size OpenCL CUDA

512 * 512 4.7x 10.43x
1024 * 1024 7.69x 14.72x
2048 * 2048 8.6x 16x
4096 * 4096 30.7x 57.14x
5120 * 5120 34.8x 63.17x

33

Some considerations

●How to decide whether an application can be speedup on the

accelerators, Especially for large scale computations?

●Are there more efficient models to implement the heterogeneous

codes with out performance loss?

●How to build a simple but available performance model for

applications and using it to find out the bottlenecks?

● If accelerators do most computation, what will CPUs be?

●How to build future machines for a supercomputing center,

CPUs, GPUs, MICs?

34

Summary

● Heterogeneous computing with accelerators is one of the trend in
scientific High-performance computing. It will play an important role
on the way to Exascale.

● We are keeping the pace with the development of heterogeneous
computing. Guys in SCCAS actively participate and practice
heterogeneous computing and got some achievement, especially on
GPU computing.

● Before another revolutionary technique comes out, using MPI with
heterogeneous computing kernel is still a efficient model of
implementing large scale applications.

● Working on scientific applications, we need the cooperations for
scientists of specialized subject, mathematics and computer science.

● Scalability may become a problem, but the essential thing is to
extremely explore the absolutely real performance of the accelerators.

● There should be more practice or research work to find out an easy
way to make good use of both CPUs and accelerators.

35

THANK YOU!

