
The Periscope Application Tuning Framework

Prof. Dr. Michael Gerndt
Technische Univeristät München

gerndt@in.tum.de

www.autotune-project.eu

Performance Analysis and
Tuning is Essential

www.autotune-project.eu

Performance Analysis for
Parallel Systems
• Development cycle

– Assumption: Reproducibility

• Instrumentation
– Static vs Dynamic

– Source-level vs binary-level

• Monitoring
– Software vs Hardware

– Statistical profiles vs event traces

• Analysis
– Source-based tools

– Visualization tools

– Automatic analysis tools

Coding

Performance Monitoring
and Analysis

Production

Program Tuning

www.autotune-project.eu
AutoTune FP7 Project Goals

• Extend Periscope for automatic tuning
– Performance and energy

• Support wide spectrum of HPC systems
– Homogeneous and herterogeneous

– Focus on SuperMUC

• Provide an easily extensible tuning framework
– Tuning plugins

– Interface hides Periscope details but provides support by Periscope‘s
rich infrastructure

www.autotune-project.eu
Partners

Technische Universität München

Universität Wien

CAPS Entreprises

Universitat Autònoma de Barcelona

Leibniz Computing Centre

National University of Galaway, ICHEC

www.autotune-project.eu
Periscope

• Automated search
– Based on formalized performance properties

• Online analysis
– Search performed while application is executing

• Distributed search
– User specified number of analysis agents

– Additional cores for agents

• Profile data only
– even for MPI Waittime analysis

www.autotune-project.eu
Properties

• StallCycles(Region, Rank, Thread, Metric, Phase)
– Condition: Percentage of lost cycles >30%

– Confidence: 1.0

– Severity: Percentage of lost cycles

• StallCyclesIntegerLoads
– Requires access to two counters

• L3MissesDominatingMemoryAccess
– Condition: Importance of L3 misses (theoretical latencies)

– Severity: Importance multiplied by actual stall cycles

www.autotune-project.eu
Periscope Design

Frontend

Performance Analysis Agent Network

Application with Monitor

MRI

Master Agent

Communication

Agent

Analysis

Agent

www.autotune-project.eu
Agent Search Strategies

• Application phase is a period of program‘s execution
– Phase regions

• Full program

• Single user region assumed to be repetitive

– Phase boundaries have to be global (SPMD programs)

• Search strategies
– Determine hypothesis refinement

• Region nesting

• Property hierarchy-based refinement

– Single and multi step strategies

www.autotune-project.eu
Integration in Eclipse (PTP)

Where is the
problem?

What is the
most severe

problem?

Filter
problems
for region

www.autotune-project.eu
Autotune Approach

• Predefined tuning plugins combining
performance analysis and tuning

• Plugins
– Compiler based optimization

– HMPP tuning for GPUs

– Parallel pattern tuning

– MPI tuning

– Energy efficiency tuning

www.autotune-project.eu

Periscope Tuning
Framework

• Online
– Analysis and evaluation of tuned

version in single application run

– Multiple versions in single step due to
parallelism in application

• Result
– Tuning recommendation

– Adaptation of source code and /or
execution environment

– Impact on production runs

www.autotune-project.eu

Autotuning Extension in HMPP

• Directives to provide optimization space to explore
– Parameterized loop transformations

– Alternative/specialized code declaration to specify various
implementations

• HMPP static information
– Optimization space description

– Static code information collect

• Dynamic information collect (i.e. timing, parameter
values)

#pragma hmppcg(CUDA) unroll(RANGE), jam

 for(i = 0 ; i < n; i++) {

 for(j = 0 ; j < n; j++) {

 . . .

 VC(j,i) = alpha*prod+beta * VC(j,i);

 }

 }

www.autotune-project.eu
Extensions to Periscope

Frontend

Analysis Agent

Monitor Request Interface

Monitor

Tuning Plugin
Search Strategies
Scenario Execution Engine

Tuning Strategy

Tuning Actions

Tuning Action Requests

www.autotune-project.eu
Tuning Plugin

• Defines tuning space
– Crossproduct of tuning points

• Goes through single/multiple plugin steps
– Selection of a variant space

– Find best variant in this space by generating and executing tuning
scenarios

• Searching the variant space can make use of
predefined search algorithms.

• Provides functions that can be called by
– Frontend

– Meta Tuning Plugins

www.autotune-project.eu
User Defined Tuning Points

do k=1,20

 variant=k

 !$MON USERREGION TP name(Test) variable(variant) variants(10)

 tstart=MPI_Wtime()

 call sleep(5-variant+1)

 tend=MPI_Wtime()

 write (*,*) myrank, variant, tend-tstart

 !$MON END USERREGION

enddo

www.autotune-project.eu
Tuning Objectives

• Tuning searches for variant(s) with best value for a
single or multiple objectives

• Objectives are implemented as Periscope properties.
– Properties specify measurements and return a severity, i.e. the

objective value.

– They are automatically evaluated by the analysis agents based on the
AA Tuning Strategy

www.autotune-project.eu
Tuning Scenarios

• Specify a single variant
– Region to be tuned

– Tuning action/value pairs

– Objective Ids

• Life cycle
1. Creation by search algorithm -> Scenario Pool

2. Preparation -> Prepared Scenario Pool

3. Selection for experiment -> Experiment Scenario Pool

4. Evaluation -> Finished Scenario Pool

• Steps 1-3 provided by plugin functions

• Step 4 executed by Scenario Execution Engine

www.autotune-project.eu
Tuning Actions

• Monitor Request Interface (MRI)
– Configuration of monitor

– Application control

• MRI tuning actions
– Variable tuning action

– Function tuning action

• General tuning actions
– During preparation of scenarios by tuning plugin

– During restart of the application

– During execution

www.autotune-project.eu
Development of Plugins

• Determine tuning points with tuning actions

• Define (intelligent) search algorithm
– Predefined search algorithm

– Plugin-specific search algorithm

– Combination of both

• Provide functions for
– Creation and preparation of scenarios

– Optional recompilation

– Optional restart parameters

– Selection of scenarios for next experiment

– Evaluation of experiment results

www.autotune-project.eu
Status

• Demo tuning plugin provided for first year review

• Prototypes of AutoTune plugins provided by partners
in next year

• Integration with other projects
– InvasIC (TRR 89)

– Score-E proposal

www.autotune-project.eu

THANK YOU

