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Saddle point problem 
Predicting the transition/reaction/nucleation rate, as well as the study of the 

transition state, is of great interest to many areas of applications, such as 

computational biology, chemical engineering, material science and engineering. 

    conformational changes in macromolecules, 

    chemical reactions, 
    diffusion in condensed-matter systems, 

    nucleation phenomena during phase transitions 

 

Difficulties with experimental study: Rare events, unstable and hard to observe. 

 
Challenges with Saddle Point Search: 

      

    x  in Ω, a point/state in the energy landscape; 

    E(x) an energy functional defined on Ω. 

  
    High dimensionality and complexity of the energy landscape E; 

    Unstable nature of the saddle points/transition states; 

    Difficult/Expensive to calculate (Hessian). 
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Saddle point algorithms 

 

Chain of States Methods:  make use of the information of initial and final 

states (compute Minimal Energy Paths and transition states) 

 

Classical minimax method, by Rabinowitz, 

Nudged elastic band, by Henkelman-Jonsson-Uberuaga, etc. 
String method, by E-Ren-Vanden Eijnden, etc. 

 

 

Surface Walking Algorithms: use only local quantities around one point on the 

potential energy surface (compute transition states) 
 

Eigen-following method, by Cerjan-Miller, 

Step and slide method, by Miron-Fichthorn,  

Trajectory following algorithms, by Grantham and Vincent-Goh-Teo, 

Activation-relaxation technique method, by Mousseau-Barkema, 
Gentlest ascent method/dynamics, by Crippen-Scheraga, E-Zhou, E-Samanta, 

Dimer method/dynamics, by Henkelman-Jonsson, Poddey-Blochl, etc. 



6 

Phase Field Model 

Diffuse interface description of surfaces/interfaces, idea goes back more than 100 

years (van de Waals, Chem. Phys. 1894) 

 Ginzburg-Landau, Cahn-Hilliard, Halperin-Hohenberg,… 

 

A popular approach for free/moving interface problems 
 physics, biology, chemistry etc. 

Sharp interfaces → diffuse interfaces characterized by some order parameters 

(phase field functions) 
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Phase Field Model  
Handle complex topological changes naturally.  

 solve a single set of equations with smooth solutions. 

 

Computationally challenging:  

 2D surface → 3D phase function 
 Thin interface layer → high spatial resolution and stiffness 

 

Adaptivity can help reducing the computational cost. 

 

Eg:     Du -Zhang, SISC, 2008 

3D computation with effectively 2D complexity 
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Motivation 
 

Shape (interfaces) often go through topological changes during transition. 

 

Phase Field Model handles topological change well 

 
Quantitative study of transition/reaction/nucleation rate require high accuracy.  

        

      Thus, very thin interface and high spatial resolution. 

 

Adaptivity reduces in orders of magnitude the computational cost.  
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Chain of states or surface walking? 

Evolve many states (phase functions) 

simultaneously. 

 

Frequent inter-state communication  

and interpolation. 
 

hard to adapt mesh to solutions and 

parallelize efficiently. 

Evolve single state and related 

unstable direction. 

     highly efficient adaptive mesh. 

  

Can be parallelized using domain 
decomposition.      

     same as solving other PDE’s. 
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GAD and dimmer method 

Gentlest ascent method/dynamics, by Crippen-Scheraga, E-Zhou, E-Samanta, 

 

Finding index-1 saddle point of V(x). 
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Dimmer method/dynamics, by Henkelman-Jonsson, Poddey-Blochl, etc. 
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where Fα=(2- α)F1+(α-1)F2, and Fi= -▽V(xi) for i=1,2. 
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Shrinking Dimmer Dynamics  
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with x(0)=x0, v(0)=v0,l(0)=l0 and ||v0||2 =1, l0 > 0. 

 

Theorem.  (x*,v*,l*) is a linearly stable steady state of the above SDD, if and only if 

  

x* is a index-1 saddle point of the energy V. 
v* is a unit eigenvector of the Hessian of V at x*, HV(x*), that correspond to the smallest 

and only negative eigenvalue. 

l* is 0.   

 

 (Zhang-Du,SISC,2012) 
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SDD applied to Phase Field 
Infinite dimensional problem: the computation of critical nuclei (left) and unstable 

direction (right) with isotropic (upper) / anisotropic (lower) interfacial energy. 

Reproduced the results in  

(Zhang-Chen-Du, PRL, 2007), calculated using NEB method.  
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SDD with constraints 

The challenging task of searching for saddle points may be further 

complicated by additional constraints imposed on configuration 

variables (e.g., fixed bond length, conserved order parameter, ...). 

 

Let the constraints be denoted by G(x) = 0. 
 

Idea: Enforce constraints on x and move v along the tangential space of G. 

 
Let  J= ▽GT  whose columns are the normal vectors of the level surfaces correspond to 

the constraints. The tangential projection operator 
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SDD with constraints 

Constrained SDD: 

Here the dynamically updated Lagrange multiplier β has the following form in general 
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The initial conditions satisfy the following compatibility assumptions 

 

  G(x0)=0, ||v0||=1 and J0v0=0. 
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(Zhang-Du,JCP,2012) 
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β=0 for linear constrains 
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Vesicle membrane model 

dsHE
el

2

With volume and surface area constraints. 

Elastic bending energy, (Helfrich 1973)  
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Phase field formulation 
Energy functional 
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(Du-Liu-Wang,JCP,2004)  

 

Equilibrium (stable, meta-stable state) of the vesicle. 

 

Minimize E with constraints on V and S.(axial symmetry)(2004)  
3D simulation with adaptive FEM(Du-Zhang,SISC,2008)(Zhang-Das-

Du,JCP,2009) 
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Shape transition 

Many solution branches, i.e. many stable or meta stable states with the same volume 

and surface area. Eg. Axial symmetric case (Du-Liu-Wang,JCP,2004) 

Solution paths 

The energy landscape is even more complicated in non-axial-symmetric case. We are 

interested in   

 

The configuration of the transition states (saddle points of E(φ)). 

The energy barrier of the shape transition. 
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Algorithm 
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Constrained SDD 
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Here the notation vvT usually used in linear algebra is interpreted as vvTy=vTyv, for any v 

in H and y in H* with vTy=yTv denote the dual pairing of v with y.  

A and B are given according to the volume and surface area constraints, and Γ is taken 
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Algorithm 
The gradient of E is interpreted as the first variation of E(φ) with respect to φ 
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In order to avoid calculating Hessian of spatial derivatives of φ, the constraint on surface 

area is splitted into two parts when updating β.  
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Discretization 

Temporal:   Forward Euler 

with renormalization of v after updating 

also implemented an alternative constraint enforcement scheme based on time 

splitting, projection and normalization.  

 
Spatial: Finite difference on oct-tree block structured adaptive mesh 

Builds on PARAMESH (parallel AMR software package)  

refine-coarsen criterion designed base on interface capturing and gradient test.    

PARAMESH 

MacNeice,Olson,Mobarry et al. 

Comp. Phys. Comm.,2000 
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Refine-coarsen criterion 
Recall 

)
2

tanh(
d

The distance of a point to the interface can be easily estimated using the value of φ. We 

simply set thresholds on the distance to determine whether the grid should be refined or 

coarsened according to φ. 

In addition to φ , we set a threshold on | ▽v| to determine if the gird should be refined.    

Notice v= (φ2 -φ1)/l,  and the difference between φ1,φ2 and φ are mainly in the interface 

region when the SDD is about to converge. The variation of v also concentrates near the 

interface, as we observed both in (Zhang-Du,SISC,2012) and current simulations.   

The threshold is applied when l is sufficiently small. 

for v: 
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Saddle searching strategy  

initialize red walkers find saddles 

initialize blue walkers find minima 

red walkers follow SDD 

 

blue walkers follow gradient flow 

 

walkers can be parallelized 
naturally 
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Numerical example  

Initial state transition state 

(meta)stable state stable state 
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Numerical example  

Transition state and 

unstable direction  
unstable direction  

Eng=17.22 Eng=18.33 Eng=16.03 



28 

Numerical example  
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On-going and future works   

  Algorithms  

 multi-stage/multi-step methods, adaptive time steps. 

 high-order index saddle point 

  Applications 

 material science, nucleation 

 vesicle membrane, high genus transition state   

 

On-going works 

Future works 

(semi)-implicit time stepping based on multi-grid solver on adaptive mesh. 

adaptive dimmer length        

rigorous analysis of adaptivity both in time and space under finite element framework 

Large scale adaptive SDD simulation 

 
Funds: NSFC11271350,2013-2016 

           special research funds for State Key Lab., Y22612A33S,2012-2013 
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Summary   

Saddle point search is interesting and challenging. 

 high dimensionality 

 instability 

 

Shrinking Dimmer Dynamics (SDD): 
 converts instability to a stable system 

 guarantees convergence 

 requires only first-order derivatives 

 suitable for parallel adaptive mesh 

 walkers are independent  
 

Much more work is on the way. 

Thank You! 


