
Finding the Happy Medium:

Tradeoffs in Communication,

Algorithms,

Architectures and Programming

Models

William Gropp

www.cs.illinois.edu/~wgropp

Message

• Algorithms and software must acknowledge

realities of architecture

• Message:

• Appropriate performance models can guide

development

• Avoid unnecessary synchronization

• Often encouraged by the programming model

• Don’t (only) optimize components individually

• Interactions between parts matter

Using Redundant Solvers

• AMG requires a solve on the coarse grid

• Rather than either solve in parallel (too little

work for the communication) or solve in serial

and distribute solution, solve redundantly (either

in smaller parallel groups or serial, as in this

illustration)

Redundant Solution

• Replace communication at levels ≥lred with

Allgather

• Every process now has complete information; no

further communication needed

• Performance analysis (based on Gropp & Keyes

1989) can guide selection of lred

AMG Performance Model

• We can establish upper

and lower bounds and

compare performance

• Includes contention,

bandwidth, multicore

penalties

• 82% accuracy on Hera,
98% on Zeus

• Gahvari, Baker, Schulz,

Yang, Jordan, Gropp

(ICS’11)

Redundant Solves

• Applied to Hera at LLNL, provides significant speedup

• Thanks to Hormozd Gahvari

Thinking about Broadcasts

• MPI_Bcast(buf, 100000, MPI_DOUBLE, …);

• Use a tree-based distribution:

• Use a pipeline: send the message in b byte pieces.
This allows each subtree to begin communication after
b bytes sent

• Improves total performance:
• Root process takes same time (asymptotically)

• Other processes wait less

• Time to reach leaf is b log p + (n-b), rather than n log p

• Special hardware and other algorithms can be used …

Make Full Use of the Network

• Implement MPI_Bcast(buf,n,…) as

 MPI_Scatter(buf, n/p,…, buf+rank*n/p,…)

 MPI_Allgather(buf+rank*n/p, n/p,…,buf,…)

 P0 P1 P3 P2 P4 P5 P6 P7

Optimal Algorithm Costs

• Optimal cost is O(n) (O(p) terms don’t involve n) since
scatter moves n data, and allgather also moves only n
per process; these can use pipelining to move data as
well
• Scatter by recursive bisection uses log p steps to move n(p-1)/p

data

• Scatter by direct send uses p-1 steps to move n(p-1)/p data

• Recursive doubling allgather uses log p steps to move

• N/p + 2n/p + 4n/p + … (p/2)/p = n(p-1)/p

• Bucket brigade allgather moves

• N/p (p-1) times or (p-1)n/p

• See, e.g., van de Geijn for more details

Is it communication avoiding or minimum

solution time?

• Example: non minimum collective algorithms

• Work of Paul Sack; see “Faster topology-aware

collective algorithms through non-minimal

communication”, PPoPP 2012

• Lesson: minimum communication need not be

optimal

Allgather

1 2 3 4

Input

Output

Allgather: recursive doubling

a b c d

e f g h

i j k l

m n o p

Allgather: recursive doubling

ab ab cd cd

ef ef gh gh

ij ij kl kl

mn mn op op

Allgather: recursive doubling

abcd abcd abcd abcd

efgh efgh efgh efgh

ijkl ijkl ijkl ijkl

mnop mnop mnop mnop

Allgather: recursive doubling

abcdefgh abcdefgh abcdefgh abcdefgh

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

ijklmnop ijklmnop ijklmnop ijklmnop

Allgather: recursive doubling

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop

abcdefgh

ijklmnop
T=(lg P) α + n(P-1)β

Problem: Recursive-doubling

• No congestion model:

• T=(lgP)α + n(P-1)β

• Congestion on torus:

• T≈(lgP)α + (5/24)nP4/3β

• Congestion on Clos network:

• T≈(lgP)α + (nP/μ)β

• Solution approach: move smallest amounts of data

the longest distance

Allgather: recursive halving

1

8

a b c d

e f g h

i j k l

m n o p

Allgather: recursive halving

ac bd ac bd

eg fh eg fh

ik jl ik jl

mo np mo np

Allgather: recursive halving

acik bdjl acik bdjl

egmo fhnp egmo fhnp

acik bdjl acik bdjl

egmo fhnp egmo fhnp

Allgather: recursive halving

acikbdjl acikbdjl acikbdjl acikbdjl

egmofhnp egmofhnp egmofhnp egmofhnp

acikbdjl acikbdjl acikbdjl acikbdjl

egmofhnp egmofhnp egmofhnp egmofhnp

Allgather: recursive halving

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp
T=(lg P)α + (7/6)nPβ

New problem: data misordered

• Solution: shuffle input data

• Could shuffle at end (redundant work; all

processes shuffle)

• Could use non-contiguous data moves

• Shuffle data on network…

Solution: Input shuffle

a b c d

e f g h

i j k l

m n o p

a e b f

i m j n

c g d h

k o l p

Solution: Input shuffle

Solution: Input shuffle

a e b f

i m j n

c g d h

k o l p

Solution: Input shuffle

ab ef ab ef

ij mn ij mn

cd gh cd gh

kl op kl op

Solution: Input shuffle

abcd efgh abcd efgh

ijkl mnop ijkl mnop

abcd efgh abcd efgh

ijkl mnop ijkl mnop

Solution: Input shuffle

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

T=(1+lgP) α + (7/6)nPβ

T≈(lgP)α + (7/6)nPβ

Evaluation:

Intrepid BlueGene/P at ANL

• 40k-node system

• Each is 4 x 850 MHz PowerPC 450

• 512+ nodes is 3d torus; fewer is 3d mesh

• XLC -O4

• 375 MB/s delivered per link

• 7% penalty using all 6 links both ways

Allgather performance

Notes on Allgather

• Bucket algorithm (not described here) exploits

multiple communication engines on BG

• Analysis shows performance near optimal

• Alternative to reorder data step is in memory

move; analysis shows similar performance and

measurements show reorder step faster on tested

systems

Synchronization and OS Noise

• Load imbalance due to many factors:

• “OS noise”

• Programming model runtime

• Memory waits (cache misses, refresh cycles)

• Compounded by timing effects

• Synchronization delays due to communication

(e.g., collective, halo exchange) shows up as

slow communication; scalability issues

Saving Allreduce

• One common suggestion is to avoid using Allreduce

• But algorithms with dot products are among the best known

• Can sometimes aggregate the ate to reduce the number of

separate Allreduce operations

• But better is to reduce the impact of the synchronization by

hiding the Allreduce behind other operations (in MPI, using

MPI_Iallreduce)

• We can adapt CG to nonblocking Allreduce with some

added floating point (but perhaps little time cost)

The Conjugate Gradient Algorithm

• While (not converged)

 niters += 1;

 s = A * p;

 t = p' *s;

 alpha = gmma / t;

 x = x + alpha * p;

 r = r - alpha * s;

 if rnorm2 < tol2 ; break ; end

 z = M * r;

 gmmaNew = r' * z;

 beta = gmmaNew / gmma;

 gmma = gmmaNew;

 p = z + beta * p;

end

The Conjugate Gradient Algorithm

• While (not converged)

 niters += 1;

 s = A * p;

 t = p' *s;

 alpha = gmma / t;

 x = x + alpha * p;

 r = r - alpha * s;

 if rnorm2 < tol2 ; break ; end

 z = M * r;

 gmmaNew = r' * z;

 beta = gmmaNew / gmma;

 gmma = gmmaNew;

 p = z + beta * p;

end

A Nonblocking Version of CG
• While (not converged)

 niters += 1;

 s = Z + beta * s;

 % Can begin p'*s

 S = M * s;

 t = p' *s;

 alpha = gmma / t;

 x = x + alpha * p;

 r = r - alpha * s;

 % Can move this into the subsequent dot product

 if rnorm2 < tol2 ; break ; end

 z = z - alpha * S;

 % Can begin r'*z here (also begin r'*r for convergence test)

 Z = A * z;

 gmmaNew = r' * z;

 beta = gmmaNew / gmma;

 gmma = gmmaNew;

 % Could move x = x + alpha p here to minimize p moves.

 p = z + beta * p;

end

CG Reconsidered

• By reordering operations, nonblocking dot

products (MPI_Iallreduce in MPI-3) can be

overlapped with other operations

• Trades extra local work for overlapped

communication

• On a pure floating point basis, the nonblocking

version requires 2 more DAXPY operations

• A closer analysis shows that some operations
can be merged

• More work does not imply more time

Processes and SMP nodes

• HPC users typically believe that their code “owns” all of

the cores all of the time

• The reality is that was never true, but they did have all of the

cores the same fraction of time when there was one core /node

• We can use a simple performance model to check the

assertion and then use measurements to identify the

problem and suggest fixes.

• Consider a simple Jacobi sweep on a regular mesh, with

every core having the same amount of work. How are

run times distributed?

New (?) Wrinkle – Avoiding Jitter

• Jitter here means the variation in time measured
when running identical computations

• Caused by other computations, e.g., an OS interrupt
to handle a network event or runtime library servicing
a communication or I/O request

• This problem is in some ways less serious on
HPC platform, as the OS and runtime services
are tuned to minimize impact

• However, cannot be eliminated entirely

Sharing an SMP

• Having many cores available

makes everyone think that they

can use them to solve other

problems (“no one would use all of

them all of the time”)

• However, compute-bound

scientific calculations are often

written as if all compute resources
are owned by the application

• Such static scheduling leads to

performance loss

• Pure dynamic scheduling adds

overhead, but is better

• Careful mixed strategies are even

better

• Thanks to Vivek Kale

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-

imbalance.

Pure dynamic has significant overhead; pure static

too much imbalance.

Solution: combined static and dynamic scheduling

Communication Avoiding LU factorization (CALU)

algorithm, S. Donfack, L .Grigori, V. Kale, WG,

IPDPS ‘12

Scary Consequence: Static data

decompositions will not work at

scale.

Corollary: programming models

with static task models will not

work at scale

Experiences

• Paraphrasing either Lincoln or PT Barnum:

You own some of the cores all of the time and all of the

cores some of the time, but you don’t own all of the

cores all of the time

• Translation: a priori data decompositions that were

effective on single core processors are no longer

effective on multicore processors

• We see this in recommendations to “leave one core to

the OS”

• What about other users of cores, like … the runtime system?

Observations

• Details of architecture impact performance

• Performance models can guide choices but must have

enough (and only enough) detail

• These models need only enough accuracy to guide

decisions, they do not need to be predicitive

• Synchronization is the enemy

• Many techniques have been known for decades

• We should be asking why they aren’t used, and what

role development environments should have

Some Final Questions

• Is it communication avoiding or minimum solution

time?

• Is it communication avoiding or

latency/communication hiding?

• Is it synchronization reducing or better load

balancing?

• Is it the programming model, its implementation, or

its use?

• How do we answer these questions?

