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Bergische Universität Wuppertal

I Medium-sized university in
Northrine-Westfalia

I More than 16 000 students

I 250 professors

I In total more than 1 500
employees

I 7 departments and the
school of education

I Close collaboration with
Research Centre Jülich
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The model problem

I For Ω = [0, 1]2 consider the following Poisson equation

−∆u(x) = f(x), for x ∈ Ω and

u(x) = 0 for x ∈ ∂Ω.

I Discretization on grid with N = (n+ 1) · (n+ 1) grid points
using 5-point scheme yields linear system Lu = f , where

1

h2
(4ui,j−ui−1,j−ui+1,j−ui,j−1−ui,j+1) = fi,j , for i, j = 1, . . . , nk,

with h = 1/n and ui,j = 0 for i ∈ {0, n+ 1} or j ∈ {0, n+ 1}.
I Eigenvalues and eigenvectors given by

λl,m = 4− 2 cos(lπh)− 2 cos(mπh), (1)

(ϕl,m)i,j = sin(lπih) sin(mπjh), (2)



The damped Jacobi method

Definition

Let L ∈ RN×N , let f ∈ RN and let the solution u ∈ RN of the
linear system Lu = f be sought for.Let D ∈ RN×N contain the
main diagonal of L. Then the damped Jacobi method (JOR) is
defined as

φJOR : RN × RN → RN

(u(k), f) 7→ φJOR(u(k), f) = u(k+1),

where u(0) is an initial guess and

u(k+1) = u(k) − ωD−1(Lu(k) + f), k = 1, 2, . . . .

The iteration matrix is given by MJOR,ω = −ωD−1(D − L).



Behavior of the error
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Figure : Error of an arbitrarily chosen initial approximation and right
hand side of the Laplacian discretized on the unit square using 152 grid
points before and after application of one and three iterations of a
damped Jacobi method with ω = 4/5.



Smoother

I Due to the above observation, iterative methods like the
Jacobi method are called smoothers in the multigrid setting.

I We distinguish low and high frequencies.

Definition

Let L be given by the model problem. The eigenvector ϕ`;l,m as
given by (2) is called

low frequency, if max(l,m) < (n` + 1)/2,

high frequency, if (n` + 1)/2 ≤ max(l,m).

I Smoothing factor of the JOR method is defined as the worst
factor by which a high frequency is damped.



Coarse grid correction

Observation

I Iterative solvers produce geometrically smooth errors

Idea

I Geometrically smooth error well-represented on a coarser grid

I System can be solved easier on coarser grid

I Defect correction using coarse grid approximation of error

unew = uold + ẽ, ẽ = IhHL
−1
H IHh (f − Lhuold)

I Additional components needed:
I Restriction operator IHh (e.g. injection)
I Prolongation operator IhH (e.g. linear interpolation)

Resulting procedure: Coarse grid correction
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Multigrid cycle

Multigrid cycle xni =MGi(xni , bni)

xni ← S
ν1
i (xni , bni)

rni ← bni −Aixni

rni+1 ← Rirni

eni+1 ← 0
if i+ 1 = lmax then
enlmax

← A−1lmax
rnlmax

else
for j = 1, . . . , γ do

ei+1 ←MGi+1(eni+1 , eni+1)
end for

end if
eni ← Pieni+1

xni ← xni + eni

xni ← S̃
ν2
i (xni , bni)
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Parallelization of multigrid

I Variables distributed to processors

I Usually domain splitting approach

I Variable stays on assigned processor

I Yields idle processors on coarse levels

I Parallel time:

TMG(N,P ) = O(N/P + logP )

I Result of global information exchange
inherently necessary to solve the problem

I Still much better than all-to-all

I But: Becomes relevant on exascale machines

P1,1

P0,0 P0,1

P1,0



Parallel architectures

Blue Gene/P
Massivley parallel system with
modified PowerPC processors and
3D torus network for point-to-point
communication plus tree network for
global communication.

QPACE
Massively parallel system based on
PowerXCell 8i with 3D torus
network, developed by SFB/TRR 55.



Parallel multigrid solvers

I pmg
I Multigrid solver for Toeplitz and circulant matrices
I Includes algebraic optimizations based on given matrix
I Optimal solver for subclass of Toeplitz and circulant matrices
I Applicable to a broad range of applications
I Uses torus archictecture extensively
I Fits well to modern supercomputers like Blue Gene

(Q included. . . )

I Multigrid for QPACE
I Evaluation of QPACE for another architecture than QCD
I Highly structured system suitable for solution of highly

structured problems
I Similar approach to pmg taken
I Imlementation suitable for model-problem, only



Multigrid for QPACE

I Cell-based discretization instead of node-based
(no communication necessary for restriction and prolongation)

I ω-Jacobi smoother with optimal smoothing parameter ω = 2
3

I System sizes (n3)× (n3) with n = 2k, k ∈ N
I lmax = k − 1, so coarsest system has dimension (23)× (23)

I Accelerator-centric programming model

I Local Storage used, only

I Domain-splitting, i.e. each SPU handles part of the domain

I Limited LS results in limitation of local domain to 163

I Measurements carried out on a 43 partition, resulting in global
grid size 1283

I Time for one V(2,2)-cycle: 1050 µs



One link with four channels
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Other parallel multigrid solvers

I hypre (http://computation.llnl.gov/casc/hypre/)
I Solver package
I Includes structured, semi-structured and algebraic multigrid

methods
I Developed at Lawrence Livermore National Laboratory

I Trilinos (http://trilinos.sandia.gov/)
I Multi-physics simulation environment
I Includes smoothed aggregation-based multigrid method
I Available from Sandia National Laboratory

I . . .

http://computation.llnl.gov/casc/hypre/
http://trilinos.sandia.gov/
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Scalability of the solver

I Strong scaling results on 64 – 262144 processors of Blue
Gene/P (Jugene at Jülich Supercomputing Centre)

I 3-level circulant matrices

I 512× 512× 512 unknowns
( small problem, only 512 unknowns/core on 64 racks)

I System reduced to 1 unknown on coarsest level

I Toeplitz results do not vary much



Strong scaling: 512× 512× 512 circulant (time)
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Strong scaling: 512× 512× 512 circulant (speedup)
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Strong scaling: 512× 512× 512 circulant (efficiency)
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Particle simulation

I Interaction modeled via pairwise or multi-particle potentials

U(xi,xj) or U(xi1 , . . . ,xim)

I Pairwise potentials often depend on distance, i.e.

U(xi,xj) = U(rij), where rij = ‖xi − xj‖2

I Potentials either short- or long-ranged, where U long-ranged,
if U(r) decreases slower than 1/rd for d dimensions

I Efficient scalable methods exist for short-ranged potentials,
e.g. SPaSM (Gordon Bell prizes 1993, 1995, finalist 2005)

I Treatment of long-ranged potentials more involved

I Important potentials long-ranged (e.g. Coulomb potential)



Coulomb potential

I Particle interactions due to electrostatics described by
Coulomb potential

U(r) =
ε0
4π

1

r

I Electrostatic energy V of system consisting of N particles with
charges qi and pairwise distances rij in free space given by

V =
1

2

N∑
i=1

qi

N∑
j=1,j 6=i

qjU(rij)

I Analogously for periodic systems with N particles per unit cell

V =
1

2

 N∑
i=1

qi

N∑
j=1,j 6=i

qjU(rij) +
∑

z∈Z3\{0}

N∑
i=1

qi

N∑
j=1

qjU(rij + z)





Common methods

name
type

complexity description
free periodic

Ewald X O(N3/2) Splits sum into short- and
long-ranged part, solved in real
and Fourier space, respectively

P3M X O(N logN) Introduces a mesh in Ewald
summation to use FFT

Barnes-Hut X O(N logN) Organizes particles in clusters
and computes particle-cluster
interactions

FMM X X O(N) Computes cluster-cluster inter-
actions and thus reduces run-
time compared to Barnes-Hut

Here: Alternative mesh-based method using multigrid (related to P3M)

MCM (X) X O(N) Reformulation of problem as
PDE, splitting into short- and
long-ranged part



The need for supercomputing

Approaches in particle simulation:

1. Monte Carlo
Stochastic minimization of system energy

2. Molecular dynamics
Time evolution of systems by computing forces

Supercomputing needed for both approaches, because

I Energy/forces computed many times (many� 1000)

I Large number of particles desireable

(Parts of Monte Carlo embarrassingly parallel)

Parallel Coulomb solvers currently developed in

ScaFaCoS project (Uni Bonn, TU Chemnitz,

FZ Jülich, Uni Stuttgart, Uni Wuppertal,

Cognis, BASF), funded by BMBF.



Consistent mathematical formulation

I Electrostatic potential of particle i given by solution of
following Poisson equation evaluated at xi multplied by qi

−∆Φi(x) = ρi :=
1

ε0

N∑
j=1,j 6=i

qjδ(‖x− xj‖2)

I Replacement of δ-distributions by ρg, where
I ρg(x) := g(|x|)
I g sufficiently smooth and s.t.

∫
R3 ρg(x)dx = 1

I Φg known analytically

I Only solution of the following Poisson equation needed

−∆Φ(x) = ρ :=
1

ε0

N∑
j=1

qjρg(‖x− xj‖2)
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Scalability of the application

I Strong scaling results on 64 – 65536 processors of Blue
Gene/P (Jugene at Jülich Supercomputing Centre)

I Artificial imhomogeneous example of a cloud wall with
9830400 particles

I Potential computed to a root means squared error of 10−3

I Width of replacing charge distribution: 12 grid spacings

I Solving system with 512× 512× 512 unknowns

I Share of multigrid solver: 7.1 %



Strong scaling: Cloud wall with 9830400 particles (time)
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Strong scaling: Cloud wall with 9830400 part. (speedup)
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Strong scaling: Cloud wall with 9830400 part. (efficiency)
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Conclusion and outlook

Conclusion

I Multigrid methods are optimal solvers for many systems

I Multigrid has excellent strong scaling behavior

I Torus architecture especially well-suited for many structured
problems from physics

I Applications directly benefit from scalability

I Scalable application allows, e.g., for large scale molecular
dynamics simulations with many time steps

Outlook

I Parallel multigrid still active area of research

I Further developments are necessary for exascale

I Approaches to reduce influence of O(logP ) factor include
block-smoothers and aggressive coarsening
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